1
|
Satitsuksanoa P, van de Veen W, Tan G, Lopez J, Wirz O, Jansen K, Sokolowska M, Mirer D, Globinska A, Boonpiyathad T, Schneider SR, Barletta E, Spits H, Chang I, Babayev H, Tahralı İ, Deniz G, Yücel EÖ, Kıykım A, Boyd SD, Akdis CA, Nadeau K, Akdis M. Allergen-specific B cell responses in oral immunotherapy-induced desensitization, remission, and natural outgrowth in cow's milk allergy. Allergy 2025; 80:161-180. [PMID: 38989779 PMCID: PMC11724240 DOI: 10.1111/all.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-β after OIT and NT. CONCLUSION Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.
Collapse
Affiliation(s)
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Functional Genomics Center Zürich, ETH ZürichZürichSwitzerland
| | - Juan‐Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Christine Kühne–Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Stephan R. Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Swiss Institute of BioinformaticsLaussaneSwitzerland
| | - Hergen Spits
- Department of Experimental ImmunologyAcademic Medical Center of the University of AmsterdamAmsterdamthe Netherlands
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma ResearchStanfordCaliforniaUSA
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - İlhan Tahralı
- Department of ImmunologyAziz Sancar Institute of Experimental Medicine, Istanbul UniversityIstanbulTurkey
| | - Gunnur Deniz
- Department of ImmunologyAziz Sancar Institute of Experimental Medicine, Istanbul UniversityIstanbulTurkey
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical FacultyIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ayca Kıykım
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical FacultyIstanbul University‐CerrahpasaIstanbulTurkey
| | - Scott D. Boyd
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Christine Kühne–Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanfordCaliforniaUSA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| |
Collapse
|
2
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 PMCID: PMC11681768 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
3
|
Zhong X, Wu H, Zhang W, Shi Y, Gwack Y, Xue HH, Sun Z. Distinct RORγt-dependent Th17 immune responses are required for autoimmune pathogenesis and protection against bacterial infection. Cell Rep 2024; 43:114951. [PMID: 39504243 PMCID: PMC11931457 DOI: 10.1016/j.celrep.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
T helper (Th)17 cells mediate both protective anti-bacterial immune responses and autoimmune pathogenesis, but the distinct pathways regulating these Th17 responses remain unclear. Retinoid-related orphan receptor γ t (RORγt) is a master transcription factor that governs Th17 cell generation and effector functions. We found that a K256R mutation in RORγt impairs Th17-mediated experimental autoimmune encephalomyelitis (EAE) without affecting the clearance of Citrobacter rodentium. This indicates distinct RORγt roles in central nervous system pathogenesis versus gut-associated protective Th17 responses. Mechanically, RORγt/Runx1-dependent upregulation of galectin-3 (Lgals3) and chemokine receptor Ccr6 in CD4+ T cells is essential for EAE development but not for bacterial clearance. Moreover, Lgals3 is selectively required for recruiting macrophages to produce interleukin (IL)-1β, which in turn promotes Ccr6 expression on CD4+ T cells during EAE pathogenesis. Our findings highlight different RORγt-regulated Th17 pathways in autoimmunity and anti-bacterial immunity, with implications for therapies targeting Th17-mediated autoimmunity while preserving effective anti-bacterial responses.
Collapse
Affiliation(s)
- Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
4
|
Barbieri F, Grazia Martina M, Giorgio C, Linda Chiara M, Allodi M, Durante J, Bertoni S, Radi M. Benzofuran-2-Carboxamide Derivatives as Immunomodulatory Agents Blocking the CCL20-Induced Chemotaxis and Colon Cancer Growth. ChemMedChem 2024; 19:e202400389. [PMID: 38923732 DOI: 10.1002/cmdc.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Linda Chiara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marika Allodi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Joseph Durante
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Simona Bertoni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| |
Collapse
|
5
|
Wasilko DJ, Gerstenberger BS, Farley KA, Li W, Alley J, Schnute ME, Unwalla RJ, Victorino J, Crouse KK, Ding R, Sahasrabudhe PV, Vincent F, Frisbie RK, Dermenci A, Flick A, Choi C, Chinigo G, Mousseau JJ, Trujillo JI, Nuhant P, Mondal P, Lombardo V, Lamb D, Hogan BJ, Minhas GS, Segala E, Oswald C, Windsor IW, Han S, Rappas M, Cooke RM, Calabrese MF, Berstein G, Thorarensen A, Wu H. Structural basis for CCR6 modulation by allosteric antagonists. Nat Commun 2024; 15:7574. [PMID: 39217154 PMCID: PMC11365967 DOI: 10.1038/s41467-024-52045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Jennifer Alley
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Jorge Victorino
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Kimberly K Crouse
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Ru Ding
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | - Daniel Lamb
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Barbara J Hogan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Christine Oswald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Ian W Windsor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Gabriel Berstein
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
6
|
Huang Y, Zhang Y, Duan X, Hou R, Wang Q, Shi J. Exploring the immune landscape and drug prediction of an M2 tumor-associated macrophage-related gene signature in EGFR-negative lung adenocarcinoma. Thorac Cancer 2024; 15:1626-1637. [PMID: 38886907 PMCID: PMC11260554 DOI: 10.1111/1759-7714.15375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD. METHODS M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature. RESULTS CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy. CONCLUSION The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.
Collapse
Affiliation(s)
- Yajie Huang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yaozhong Zhang
- Department of Infectious DiseasesThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xiaoyang Duan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ran Hou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qi Wang
- Department of EndoscopyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian Shi
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
7
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
8
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
9
|
Tanaka T, Kitamura K, Suzuki H, Kaneko MK, Kato Y. Establishment of a Novel Anti-Human CCR6 Monoclonal Antibody C 6Mab-19 with the High Binding Affinity in Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:117-124. [PMID: 37428612 DOI: 10.1089/mab.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is a member of the G-protein-coupled receptor family that is highly expressed in B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. CCR6 has been revealed to have important functions in many pathological conditions, such as cancer, intestinal bowel disease, psoriasis, and autoimmune diseases. The only CCR6 chemokine ligand, CC motif chemokine ligand 20 (CCL20), is also involved in pathogenesis by interacting with CCR6. The CCL20/CCR6 axis is drawing attention as an attractive therapeutic target for various diseases. In this study, we developed novel monoclonal antibodies (mAbs) against human CCR6 (hCCR6) using the peptide immunization method, which are applicable to flow cytometry and immunohistochemistry. The established anti-hCCR6 mAb, clone C6Mab-19 (mouse IgG1, kappa), reacted with hCCR6-overexpressed Chinese hamster ovary-K1 (CHO/hCCR6), human liver carcinoma (HepG2), and human differentiated hepatoma (HuH-7) cells in flow cytometry. The dissociation constant (KD) of C6Mab-19 was determined as 3.0 × 10-10 M for CHO/hCCR6, 6.9 × 10-10 M for HepG2, and 1.8 × 10-10 M for HuH-7. Thus, C6Mab-19 could bind to exogenously and endogenously expressed hCCR6 with extremely high affinity. Furthermore, C6Mab-19 could stain formalin-fixed paraffin-embedded lymph node tissues from a patient with non-Hodgkin lymphoma by immunohistochemistry. Therefore, C6Mab-19 is suitable for detecting hCCR6-expressing cells and tissues and could be useful for pathological analysis and diagnosis.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaishi Kitamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Identification of CCL20 as a Key Biomarker of Inflammatory Responses in the Pathogenesis of Intracerebral Hemorrhage. Inflammation 2023:10.1007/s10753-023-01807-4. [PMID: 36939977 DOI: 10.1007/s10753-023-01807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
Inflammatory responses after intracerebral hemorrhage (ICH) contribute to severe secondary brain injury, leading to poor clinical outcomes. However, the responsible genes for effective anti-inflammation treatment in ICH remain poorly elucidated. The differentially expressed genes (DEGs) of human ICH were explored by online GEO2R. Go and KEGG were used to explore the biological function of DEGs. Protein-protein interactions (PPI) were built in the String database. Critical modules of PPI were identified by a molecular complex detection algorithm (MCODE). Cytohubba was used to determine the hub genes. The mRNA-miRNA interaction network was built in the miRWalk database. The rat ICH model was applied to validate the key genes. A total of 776 DEGs were identified in ICH. Go and KEGG analyses indicated that DEGs were mainly involved in neutrophil activation and the TNF signaling pathway. GSEA analysis presented that DEGs were significantly enriched in TNF signaling and inflammatory response. PPI network was constructed in the 48 differentially expressed inflammatory response-related genes. The critical module of the PPI network was constructed by 7 MCODE genes and functioned as the inflammatory response. The top 10 hub genes with the highest degrees were identified in the inflammatory response after ICH. CCL20 was confirmed as a key gene and mainly expressed in neurons in the rat ICH model. The regulatory network between CCL20 and miR-766 was built, and the miR-766 decrease was confirmed in a human ICH dataset. CCL20 is a key biomarker of inflammatory response after intracerebral hemorrhage, providing a potential target for inflammatory intervention in ICH.
Collapse
|
11
|
Tang Z, Gu Y, Shi Z, Min L, Zhang Z, Zhou P, Luo R, Wang Y, Cui Y, Sun Y, Wang X. Multiplex immune profiling reveals the role of serum immune proteomics in predicting response to preoperative chemotherapy of gastric cancer. Cell Rep Med 2023; 4:100931. [PMID: 36724786 PMCID: PMC9975277 DOI: 10.1016/j.xcrm.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Responses toward preoperative chemotherapy are heterogeneous in patients with gastric adenocarcinoma. Existing studies in the field focus heavily on the tumor microenvironment (TME), whereas little is known about the relationship between systemic immunity and chemotherapy response. In this study, we collect serum samples from patients with gastric adenocarcinoma before, on, and after preoperative chemotherapy and study their immune proteomics using an antibody-based proteomics panel. We also collect surgically resected tumor samples and incorporate multiple methods to assess their TME. We find that both local and systemic immune features are associated with treatment response. Preoperative chemotherapy induces a sophisticated systemic immune response indicated by dynamic serum immune proteomics. A pretreatment serum protein scoring system is established for response prediction. Together, these findings highlight the fundamental but largely underestimated role of systemic immunity in the treatment of gastric cancer, suggesting a patient stratification strategy based on pretreatment serum immune proteomics.
Collapse
Affiliation(s)
- Zhaoqing Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhongyi Shi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lingqiang Min
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ziwei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peng Zhou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Hirz T, Mei S, Sarkar H, Kfoury Y, Wu S, Verhoeven BM, Subtelny AO, Zlatev DV, Wszolek MW, Salari K, Murray E, Chen F, Macosko EZ, Wu CL, Scadden DT, Dahl DM, Baryawno N, Saylor PJ, Kharchenko PV, Sykes DB. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat Commun 2023; 14:663. [PMID: 36750562 PMCID: PMC9905093 DOI: 10.1038/s41467-023-36325-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.
Collapse
Affiliation(s)
- Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bronte M Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dimitar V Zlatev
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew W Wszolek
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Zhang J, Liu X, Huang Z, Wu C, Zhang F, Han A, Stalin A, Lu S, Guo S, Huang J, Liu P, Shi R, Zhai Y, Chen M, Zhou W, Bai M, Wu J. T cell-related prognostic risk model and tumor immune environment modulation in lung adenocarcinoma based on single-cell and bulk RNA sequencing. Comput Biol Med 2023; 152:106460. [PMID: 36565482 DOI: 10.1016/j.compbiomed.2022.106460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND T cells are present in all stages of tumor formation and play an important role in the tumor microenvironment. We aimed to explore the expression profile of T cell marker genes, constructed a prognostic risk model based on these genes in Lung adenocarcinoma (LUAD), and investigated the link between this risk model and the immunotherapy response. METHODS We obtained the single-cell sequencing data of LUAD from the literature, and screened out 6 tissue biopsy samples, including 32,108 cells from patients with non-small cell lung cancer, to identify T cell marker genes in LUAD. Combined with TCGA database, a prognostic risk model based on T-cell marker gene was constructed, and the data from GEO database was used for verification. We also investigated the association between this risk model and immunotherapy response. RESULTS Based on scRNA-seq data 1839 T-cell marker genes were identified, after which a risk model consisting of 9 gene signatures for prognosis was constructed in combination with the TCGA dataset. This risk model divided patients into high-risk and low-risk groups based on overall survival. The multivariate analysis demonstrated that the risk model was an independent prognostic factor. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. Risk scores of the model were closely correlated with Linoleic acid metabolism, intestinal immune network for IgA production and drug metabolism cytochrome P450. CONCLUSION Our study proposed a novel prognostic risk model based on T cell marker genes for LUAD patients. The survival of LUAD patients as well as treatment outcomes may be accurately predicted by the prognostic risk model, and make the high-risk population present different immune cell infiltration and immunosuppression state.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aiqing Han
- School of Management, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Zhou
- Pharmacy Department, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
14
|
Asano T, Tanaka T, Suzuki H, Li G, Nanamiya R, Tateyama N, Isoda Y, Okada Y, Kobayashi H, Yoshikawa T, Kaneko MK, Kato Y. Development of a Novel Anti-Mouse CCR6 Monoclonal Antibody (C 6Mab-13) by N-Terminal Peptide Immunization. Monoclon Antib Immunodiagn Immunother 2022; 41:343-349. [PMID: 36383115 DOI: 10.1089/mab.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor family member that is highly expressed in B lymphocytes, certain subsets of effector and memory T cells, and immature dendritic cells. CCR6 has only one chemokine ligand, CCL20. The CCL20-CCR6 axis has been recognized as a therapeutic target for autoimmune diseases and tumor. This study developed specific monoclonal antibodies (mAbs) against mouse CCR6 (mCCR6) using the peptide immunization method. The established anti-mCCR6 mAb, C6Mab-13 (rat IgG1, kappa), reacted with mCCR6-overexpressed Chinese hamster ovary-K1 (CHO/mCCR6), and mCCR6-endogenously expressed P388 (mouse lymphoid neoplasma) and J774-1 (mouse macrophage-like) cells in flow cytometry. The dissociation constant (KD) of C6Mab-13 for CHO/mCCR6 cells was determined to be 2.8 × 10-9 M, indicating that C6Mab-13 binds to mCCR6 with high affinity. In summary, C6Mab-13 is useful for detecting mCCR6-expressing cells through flow cytometry.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiyori Kobayashi
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Zhang T, Zhu T, Wen J, Chen Y, Wang L, Lv X, Yang W, Jia Y, Qu C, Li H, Wang H, Qu L, Ning Z. Gut microbiota and transcriptome analysis reveals a genetic component to dropping moisture in chickens. Poult Sci 2022; 102:102242. [PMID: 36931071 PMCID: PMC10036737 DOI: 10.1016/j.psj.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 03/12/2023] Open
Abstract
High dropping moisture (DM) in poultry production has deleterious effects on the environment, feeding cost, and public health of people and animals. To explore the contributing genetic components, we classified DM of 67-wk-old Rhode Island Red (RIR) hens at 4 different levels and evaluated the underlying genetic heritability. We found the heritability of DM to be 0.219, indicating a moderately heritable trait. We then selected chickens with the highest and lowest DM levels. Using transcriptome, we only detected 12 differentially expressed genes (DEGs) between these 2 groups from the spleen, and 1,507 DEGs from intestinal tissues (jejunum and cecum). The low number of DEGs observed in the spleen suggests that differing moisture levels are not attributed to pathogenic infection. Fourteen of the intestinal high expressed genes are associated with water-salt metabolism (WSM). We also investigated the gut microbial composition by 16S rRNA gene amplicon sequencing. Six different microbial operational taxonomic units (OTUs) (Cetobacterium, Sterolibacterium, Elusimicrobium, Roseburia, Faecalicoccus, and Megamonas) between the 2 groups from jejunum and cecum are potentially biomarkers related to DM levels. Our results identify a genetic component to chicken DM, and can guide breeding strategies.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Huie Wang
- College of Animal Science, Tarim University, Xinjiang, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Chen Y, Tang C, Shen Z, Peng S, Wu W, Lei Z, Zhou J, Li L, Lai Y, Huang H, Guo Z. Bibliometric analysis of the global research development of bone metastases in prostate cancer: A 22-year study. Front Oncol 2022; 12:947445. [PMID: 36237319 PMCID: PMC9552849 DOI: 10.3389/fonc.2022.947445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is the second most diagnosed cancer in men. Most PCa-related deaths result from metastatic disease. Metastases occur most often in the bones (90%). However, the current treatments for bone metastases in PCa are not very effective. Here we present an overview of the current research situation of bone metastases in PCa, focusing on hotspots and trends. Methods We searched the Web of Science Core Collection database for publications related to bone metastases in PCa published between 1999 and 2021. We used VOSviewer, CiteSpace, and a bibliometric online platform to perform a bibliometric analysis of countries, institutions, authors, journals, references, and keywords. Results A total of 4,832 related articles were included in the present study. The USA published the most articles in the field, followed by China and England. The University of Texas MD Anderson Cancer Center is the leading institution in the research field of bone metastases in PCa. Saad F, from Canada, has made great achievements in this area by publishing 91 related articles. Prostate is the journal which published most related articles, and Mundy GR, 2002, Nat Rev Cancer, is the most cited article in this field. Furthermore, the analysis of author keywords can be divided into five clusters: (1) diagnosis of PCa, (2) mechanism of bone metastasis, (3) drug treatments of bone metastases, (4) radiotherapy of bone metastases, and (5) treatments and prognosis of PCa. Conclusions mCRPC has been the hottest topic in PCa in recent years. CT is the most common diagnostic method for bone metastases. Enzalutamide and radium-223, as important treatments for bone metastases in PCa, bring about widespread attention. Furthermore, the researchers focus on the tumor microenvironment and biomarkers to explore the mechanism and the therapeutic targets of bone metastases in PCa.
Collapse
Affiliation(s)
- Yongming Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zefeng Shen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanhua Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Lei
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Yang H, Xiong B, Xiong T, Wang D, Yu W, Liu B, She Q. Identification of key genes and mechanisms of epicardial adipose tissue in patients with diabetes through bioinformatic analysis. Front Cardiovasc Med 2022; 9:927397. [PMID: 36158806 PMCID: PMC9500152 DOI: 10.3389/fcvm.2022.927397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIn recent years, peri-organ fat has emerged as a diagnostic and therapeutic target in metabolic diseases, including diabetes mellitus. Here, we performed a comprehensive analysis of epicardial adipose tissue (EAT) transcriptome expression differences between diabetic and non-diabetic participants and explored the possible mechanisms using various bioinformatic tools.MethodsRNA-seq datasets GSE108971 and GSE179455 for EAT between diabetic and non-diabetic patients were obtained from the public functional genomics database Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were identified using the R package DESeq2, then Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Next, a PPI (protein–protein interaction) network was constructed, and hub genes were mined using STRING and Cytoscape. Additionally, CIBERSORT was used to analyze the immune cell infiltration, and key transcription factors were predicted based on ChEA3.ResultsBy comparing EAT samples between diabetic and non-diabetic patients, a total of 238 DEGs were identified, including 161 upregulated genes and 77 downregulated genes. A total of 10 genes (IL-1β, CD274, PDCD1, ITGAX, PRDM1, LAG3, TNFRSF18, CCL20, IL1RN, and SPP1) were selected as hub genes. GO and KEGG analysis showed that DEGs were mainly enriched in the inflammatory response and cytokine activity. Immune cell infiltration analysis indicated that macrophage M2 and T cells CD4 memory resting accounted for the largest proportion of these immune cells. CSRNP1, RELB, NFKB2, SNAI1, and FOSB were detected as potential transcription factors.ConclusionComprehensive bioinformatic analysis was used to compare the difference in EAT between diabetic and non-diabetic patients. Several hub genes, transcription factors, and immune cell infiltration were identified. Diabetic EAT is significantly different in the inflammatory response and cytokine activity. These findings may provide new targets for the diagnosis and treatment of diabetes, as well as reduce potential cardiovascular complications in diabetic patients through EAT modification.
Collapse
|
18
|
Lee B, Namkoong H, Yang Y, Huang H, Heller D, Szot GL, Davis MM, Husain SZ, Pandol SJ, Bellin MD, Habtezion A. Single-cell sequencing unveils distinct immune microenvironments with CCR6-CCL20 crosstalk in human chronic pancreatitis. Gut 2022; 71:1831-1842. [PMID: 34702715 PMCID: PMC9105403 DOI: 10.1136/gutjnl-2021-324546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Chronic pancreatitis (CP) is a potentially fatal disease of the exocrine pancreas, with no specific or effective approved therapies. Due to difficulty in accessing pancreas tissues, little is known about local immune responses or pathogenesis in human CP. We sought to characterise pancreatic immune responses using tissues derived from patients with different aetiologies of CP and non-CP organ donors in order to identify key signalling molecules associated with human CP. DESIGN We performed single-cell level cellular indexing of transcriptomes and epitopes by sequencing and T-cell receptor (TCR) sequencing of pancreatic immune cells isolated from organ donors, hereditary and idiopathic patients with CP who underwent total pancreatectomy. We validated gene expression data by performing flow cytometry and functional assays in a second patient with CP cohort. RESULTS Deep single-cell sequencing revealed distinct immune characteristics and significantly enriched CCR6+ CD4+ T cells in hereditary compared with idiopathic CP. In hereditary CP, a reduction in T-cell clonality was observed due to the increased CD4+ T (Th) cells that replaced tissue-resident CD8+ T cells. Shared TCR clonotype analysis among T-cell lineages also unveiled unique interactions between CCR6+ Th and Th1 subsets, and TCR clustering analysis showed unique common antigen binding motifs in hereditary CP. In addition, we observed a significant upregulation of the CCR6 ligand (CCL20) expression among monocytes in hereditary CP as compared with those in idiopathic CP. The functional significance of CCR6 expression in CD4+ T cells was confirmed by flow cytometry and chemotaxis assay. CONCLUSION Single-cell sequencing with pancreatic immune cells in human CP highlights pancreas-specific immune crosstalk through the CCR6-CCL20 axis, a signalling pathway that might be leveraged as a potential future target in human hereditary CP.
Collapse
Affiliation(s)
- Bomi Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA .,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Yan Yang
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - David Heller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Gregory L Szot
- Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA,Department of Microbiology and Immunology, Stanford Medicine, Stanford, California, USA,Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Stephen J Pandol
- Basic and Translational Pancreatic Research, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Melena D Bellin
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, Minnesota, USA,Department of Pediatrics, University of Minnesota Medical Center and Masonic Children’s Hospital, Minneapolis, Minnesota, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA .,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, Elgavish S, Nevo Y, Benyamini H, Plaschkes I, Klein S, Mali A, Rose-John S, Peled A, Galun E, Axelrod JH. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med 2022; 14:e15653. [PMID: 35785521 PMCID: PMC9358397 DOI: 10.15252/emmm.202115653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Irradiation‐induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA‐seq analysis of whole skin‐derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence‐associated IL‐6 and IL‐1 signaling, together with IL‐17 upregulation and CCR6+‐mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation‐induced IL‐6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL‐6−/− or IL‐1R−/− mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6‐mediated immune cell migration in CCR6−/− mice. Moreover, IL‐6 deficiency strongly reduced IL‐17, IL‐22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL‐6, IL‐17, CCL3, and MHC upregulation, suggesting that proximity‐dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T‐cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Collapse
Affiliation(s)
- Mor Paldor
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orr Levkovitch-Siany
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dana Eidelshtein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Revital Adar
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Claes D Enk
- Department of Dermatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yitzhak Marmary
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Klein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Alex Mali
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Amnon Peled
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
20
|
Crescents in primary glomerulonephritis: a pattern of injury with dissimilar actors. A pathophysiologic perspective. Pediatr Nephrol 2022; 37:1205-1214. [PMID: 34312722 DOI: 10.1007/s00467-021-05199-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
Cellular crescents are defined as two or more layers of proliferating cells in Bowman's space and are a hallmark of inflammatory active glomerulonephritis and a histologic marker of severe glomerular injury. In general, the percentage of glomeruli that exhibit crescents correlates with the severity of kidney failure and other clinical manifestations of nephritic syndrome. In general, a predominance of active crescents is associated with rapidly progressive glomerulonephritis and a poor outcome. The duration and potential reversibility of the underlying disease correspond with the relative predominance of cellular or fibrous components in the crescents, the initial location of the immunologic insult inside the glomerulus, and the sort of involved cells and inflammatory mediators. However, the presence of active crescents may not have the same degree of significance in the different types of glomerulopathies. The pathophysiology of parietal cell proliferation may have dissimilar origins, underscoring the fact that the resultant crescents are a non-specific morphological pattern of glomerular injury with different implications in clinical prognosis in the scope of glomerular diseases.
Collapse
|
21
|
Zhang W, Li I, Reticker-Flynn NE, Good Z, Chang S, Samusik N, Saumyaa S, Li Y, Zhou X, Liang R, Kong CS, Le QT, Gentles AJ, Sunwoo JB, Nolan GP, Engleman EG, Plevritis SK. Identification of cell types in multiplexed in situ images by combining protein expression and spatial information using CELESTA. Nat Methods 2022; 19:759-769. [PMID: 35654951 PMCID: PMC9728133 DOI: 10.1038/s41592-022-01498-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and subjective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.
Collapse
Affiliation(s)
- Weiruo Zhang
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Irene Li
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
- Cancer Biology Program, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Zinaida Good
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nikolay Samusik
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Saumyaa Saumyaa
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yuanyuan Li
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xin Zhou
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rachel Liang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Christina S Kong
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Division of Head and Neck Surgery, Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Edgar G Engleman
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Aljabban J, Rohr M, Borkowski VJ, Nemer M, Cohen E, Hashi N, Aljabban H, Boateng E, Syed S, Mohammed M, Mukhtar A, Hadley D, Panahiazar M. Probing predilection to Crohn's disease and Crohn's disease flares: A crowd-sourced bioinformatics approach. J Pathol Inform 2022; 13:100094. [PMID: 36268056 PMCID: PMC9576970 DOI: 10.1016/j.jpi.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Crohn's Disease (CD) is an inflammatory disease of the gastrointestinal tract that affects millions of patients. While great strides have been made in treatment, namely in biologic therapy such as anti-TNF drugs, CD remains a significant health burden. Method We conducted two meta-analyses using our STARGEO platform to tag samples from Gene Expression Omnibus. One analysis compares inactive colonic biopsies from CD patients to colonic biopsies from healthy patients as a control and the other compares colonic biopsies from active CD lesions to inactive lesions. Separate tags were created to tag colonic samples from inflamed biopsies (total of 65 samples) and quiescent tissue in CD patients (total of 39 samples), and healthy tissue from non-CD patients (total of 30 samples). Results from the two meta-analyses were analyzed using Ingenuity Pathway Analysis. Results For the inactive CD vs healthy tissue analysis, we noted FXR/RXR and LXR/RXR activation, superpathway of citrulline metabolism, and atherosclerosis signaling as top canonical pathways. The top upstream regulators include genes implicated in innate immunity, such as TLR3 and HNRNPA2B1, and sterol regulation through SREBF2. In addition, the sterol regulator SREBF2, lipid metabolism was the top disease network identified in IPA (Fig. 1). Top upregulated genes hold implications in innate immunity (DUOX2, REG1A/1B/3A) and cellular transport and absorption (ABCG5, NPC1L1, FOLH1, and SLC6A14). Top downregulated genes largely held roles in cell adhesion and integrity, including claudin 8, PAQR5, and PRKACB.For the active vs inactive CD analysis, we found immune cell adhesion and diapedesis, hepatic fibrosis/hepatic stellate cell activation, LPS/IL-1 inhibition of RXR function, and atherosclerosis as top canonical pathways. Top upstream regulators included inflammatory mediators LPS, TNF, IL1B, and TGFB1. Top upregulated genes function in the immune response such as IL6, CXCL1, CXCR2, MMP1/7/12, and PTGS2. Downregulated genes dealt with cellular metabolism and transport such as CPO, RBP2, G6PC, PCK1, GSTA1, and MEP1B. Conclusion Our results build off established and recently described research in the field of CD. We demonstrate the use of our user-friendly platform, STARGEO, in investigating disease and finding therapeutic avenues.
Collapse
Affiliation(s)
- Jihad Aljabban
- University of Wisconsin Hospitals and Clinics, Madison, WI, United States,Corresponding author.
| | - Michael Rohr
- University of Central Florida College of Medicine, Orlando, FL, United States
| | | | - Mary Nemer
- University of Wisconsin Hospitals and Clinics, Madison, WI, United States
| | - Eli Cohen
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naima Hashi
- Mayo Clinic Minnesota, Rochester, MN, United States
| | | | - Emmanuel Boateng
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Saad Syed
- Northwestern Memorial Hospital, Chicago, IL, United States
| | | | - Ali Mukhtar
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Dexter Hadley
- University of Central Florida College of Medicine, Orlando, FL, United States
| | - Maryam Panahiazar
- University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
23
|
Esteves P, Allard B, Celle A, Dupin I, Maurat E, Ousova O, Thumerel M, Dupuy JW, Leste-Lasserre T, Marthan R, Girodet PO, Trian T, Berger P. Asthmatic bronchial smooth muscle increases rhinovirus replication within the bronchial epithelium. Cell Rep 2022; 38:110571. [PMID: 35354045 DOI: 10.1016/j.celrep.2022.110571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/13/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Rhinovirus (RV) infection of the bronchial epithelium is implicated in the vast majority of severe asthma exacerbations. Interestingly, the susceptibility of bronchial epithelium to RV infection is increased in persons with asthma. Bronchial smooth muscle (BSM) remodeling is an important feature of severe asthma pathophysiology, and its reduction using bronchial thermoplasty has been associated with a significant decrease in the exacerbation rate. We hypothesized that asthmatic BSM can play a role in RV infection of the bronchial epithelium. Using an original co-culture model between bronchial epithelium and BSM cells, we show that asthmatic BSM cells increase RV replication in bronchial epithelium following RV infection. These findings are related to the increased production of CCL20 by asthmatic BSM cells. Moreover, we demonstrate an original downregulation of the activity of the epithelial protein kinase RNA-activated (PKR) antiviral pathway. Finally, we identify a direct bottom-up effect of asthmatic BSM cells on bronchial epithelium susceptibility to RV infection.
Collapse
Affiliation(s)
- Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Benoit Allard
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Jean-William Dupuy
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France.
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC 1401, 33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Plateforme Transcriptome Neurocentre Magendie U1215, Functionnal Genomics Center (CGFB) Proteomics Facility, CIC 1401, PTIB - Hôpital Xavier Arnozan, Avenue du Haut Lévêque, 33600 PESSAC, 33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de pharmacologie, CIC 1401, Service de chirurgie thoracique, 33604 Pessac, France
| |
Collapse
|
24
|
Development of a High-Throughput Calcium Mobilization Assay for CCR6 Receptor Coupled to Hydrolase Activity Readout. Biomedicines 2022; 10:biomedicines10020422. [PMID: 35203631 PMCID: PMC8962412 DOI: 10.3390/biomedicines10020422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
CCR6 is a chemokine receptor highly implicated in inflammatory diseases and could be a potential therapeutic target; however, no therapeutic agents targeting CCR6 have progressed into clinical evaluation. Development of a high-throughput screening assay for CCR6 should facilitate the identification of novel compounds against CCR6. To develop a cell-based assay, RBL-2H3 cells were transfected with plasmids encoding β-hexosaminidase and CCR6. Intracellular calcium mobilization of transfected cells was measured with a fluorescent substrate using the activity of released hexosaminidase as readout of the assay. This stable, transfected cell showed a specific signal to the background ratio of 19.1 with low variability of the signal along the time. The assay was validated and optimized for high-throughput screening. The cell-based calcium mobilization assay responded to the specific CCR6 ligand, CCL20, in a dose-dependent manner with an EC50 value of 10.72 nM. Furthermore, the assay was deemed robust and reproducible with a Z’ factor of 0.63 and a signal window of 7.75. We have established a cell-based high-throughput calcium mobilization assay for CCR6 receptor. This assay monitors calcium mobilization, due to CCR6h activation by CCL20, using hexosaminidase activity as readout. This assay was proved to be robust, easy to automate and could be used as method for screening of CCR6 modulators.
Collapse
|
25
|
Bruchard M, Geindreau M, Perrichet A, Truntzer C, Ballot E, Boidot R, Racoeur C, Barsac E, Chalmin F, Hibos C, Baranek T, Paget C, Ryffel B, Rébé C, Paul C, Végran F, Ghiringhelli F. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat Immunol 2022; 23:262-274. [DOI: 10.1038/s41590-021-01120-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
|
26
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
27
|
Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, Chen Z, Wang L, Long Y, Hou T, Si J, Chen S. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes 2022; 13:1980347. [PMID: 34632963 PMCID: PMC8510564 DOI: 10.1080/19490976.2021.1980347] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors and is associated with Fusobacterium nucleatum (F. nucleatum, Fn) infection. In this study, we explored the role of F. nucleatum in the CRC metastasis. Our results showed that the abundance of F. nucleatum was enriched in the feces and tumors of patients with CRC and tended to increase in stage IV compared to stage I in patients with metastatic CRC. Tumor-derived CCL20 activated by F. nucleatum not only increases CRC metastasis, but also participates in the reprograming of the tumor microenvironment. F. nucleatum promoted macrophage infiltration through CCL20 activation and simultaneously induced M2 macrophage polarization, enhancing the metastasis of CRC. In addition, we identified using database prediction and luciferase activity hat miR-1322, a candidate regulatory micro-RNA, could bind to CCL20 directly. F. nucleatum infection decreased the expression of miR-1322 by activating the NF-κB signaling pathway in CRC cells. In conclusion, F. nucleatum promotes CRC metastasis through the miR-1322/CCL20 axis and M2 polarization.
Collapse
Affiliation(s)
- Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,CONTACT Shujie Chen
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Zhehang Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yanqin Long
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Tongyao Hou Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Hangzho, 310003, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,Jianmin Si
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,CONTACT Shujie Chen
| |
Collapse
|
28
|
Maulding ND, Seiler S, Pearson A, Kreusser N, Stuart JM. Dual RNA-Seq analysis of SARS-CoV-2 correlates specific human transcriptional response pathways directly to viral expression. Sci Rep 2022; 12:1329. [PMID: 35079083 PMCID: PMC8789814 DOI: 10.1038/s41598-022-05342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.
Collapse
Affiliation(s)
- Nathan D Maulding
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Spencer Seiler
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Alexander Pearson
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Nicholas Kreusser
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua M Stuart
- Biomolecular Engineering and Bioinformatics, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
29
|
Kwantwi LB, Wang S, Sheng Y, Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered 2021; 12:6923-6934. [PMID: 34569432 PMCID: PMC8806797 DOI: 10.1080/21655979.2021.1974765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have demonstrated notable roles of CCL20 in breast cancer progression. Based on these findings, CCL20 has become a potential therapeutic target for cancer immunotherapy. Accordingly, studies utilizing monoclonal antibodies to target CCL20 are currently being experimented. However, the existence of cytokine network in the tumor microenvironment collectively regulates tumor progression. Hence, a deeper understanding of the role of CCL20 and the underlying signaling pathways regulating the functions of CCL20 may provide a novel strategy for therapeutic interventions. This review provides the current knowledge on how CCL20 interacts with breast cancer cells to influence tumor progression via immunosuppression, angiogenesis, epithelial to mesenchymal transition, migration/invasion and chemoresistance. As a possible candidate biomarker, we also reviewed signal pathways and other factors in the tumor microenvironment regulating the tumor-promoting functions of CCL20.These new insights may be useful to design new potent and selective CCL20 inhibitors against breast cancer in the future.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Shujing Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Youjing Sheng
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
| | - Qiang Wu
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
30
|
Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T, Brouse T, Scadden EW, Igolkina AA, Kokkaliaris K, Choi BD, Barkas N, Randolph MA, Shin JH, Saylor PJ, Scadden DT, Sykes DB, Kharchenko PV. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021; 39:1464-1478.e8. [PMID: 34719426 PMCID: PMC8578470 DOI: 10.1016/j.ccell.2021.09.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.
Collapse
Affiliation(s)
- Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Childhood Cancer Research Unit, Department of Women's Health and Children's, Karolinska Institutet, Stockholm, Sweden.
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Brouse
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth W Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna A Igolkina
- St. Petersburg Polytechnical University, St. Petersburg, Russia
| | - Konstantinos Kokkaliaris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Nikolas Barkas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - John H Shin
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
31
|
Chen M, Su J, Feng C, Liu Y, Zhao L, Tian Y. Chemokine CCL20 promotes the paclitaxel resistance of CD44 +CD117 + cells via the Notch1 signaling pathway in ovarian cancer. Mol Med Rep 2021; 24:635. [PMID: 34278466 PMCID: PMC8280726 DOI: 10.3892/mmr.2021.12274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have found that C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6)/notch receptor 1 (Notch1) signaling serves an important role in various diseases, but its role and mechanism in ovarian cancer remains to be elucidated. The aim of the present study was to investigate the underlying mechanism of CCL20/CCR6/Notch1 signaling in paclitaxel (PTX) resistance of a CD44+CD117+ subgroup of cells in ovarian cancer. The CD44+CD117+ cells were isolated from SKOV3 cells, followed by determination of the PTX resistance and the CCR6/Notch1 axis. Notch1 was silenced in the CD44+CD117+ subgroup and these cells were treated with CCL20, followed by examination of PTX resistance and the CCR6/Notch1 axis. Furthermore, in nude mice, CD44+CD117+ and CD44‑CD117‑ cells were used to establish the xenograft model and cells were treated with PTX and/or CCL20, followed by proliferation, apoptosis, reactive oxygen species (ROS) and mechanism analyses. Higher expression levels of Oct4, CCR6, Notch1 and ATP binding cassette subfamily G member 1 (ABCG1), increased sphere formation ability, IC50 and proliferative ability, as well as lower ROS levels and apoptosis were observed in CD44+CD117+ cells compared with the CD44‑CD117‑ cells. It was found that CCL20 could significantly increase the expression levels of Oct4, CCR6, Notch1 and ABCG1, enhance the IC50, sphere formation ability and proliferation, as well as decrease the ROS and apoptosis levels in the CD44+CD117+ cells. However, Notch1 knockdown could markedly reverse these changes. Moreover, CCL20 could significantly increase the proliferation and expression levels of Oct4, CCR6, Notch1 and ABCG1 in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. After treatment with PTX, apoptosis and ROS levels were decreased in the CD44+CD117+ groups compared with the CD44‑CD117‑ groups. Collectively, the present results demonstrated that, via the Notch1 pathway, CCL20/CCR6 may promote the stemness and PTX resistance of CD44+CD117+ cells in ovarian cancer.
Collapse
Affiliation(s)
- Min Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Juan Su
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Chunmei Feng
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Ying Liu
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
32
|
Wang L, Sfakianos JP, Beaumont KG, Akturk G, Horowitz A, Sebra RP, Farkas AM, Gnjatic S, Hake A, Izadmehr S, Wiklund P, Oh WK, Szabo PM, Wind-Rotolo M, Unsal-Kacmaz K, Yao X, Schadt E, Sharma P, Bhardwaj N, Zhu J, Galsky MD. Myeloid Cell-associated Resistance to PD-1/PD-L1 Blockade in Urothelial Cancer Revealed Through Bulk and Single-cell RNA Sequencing. Clin Cancer Res 2021; 27:4287-4300. [PMID: 33837006 PMCID: PMC8338756 DOI: 10.1158/1078-0432.ccr-20-4574] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To define dominant molecular and cellular features associated with PD-1/PD-L1 blockade resistance in metastatic urothelial cancer. EXPERIMENTAL DESIGN We pursued an unbiased approach using bulk RNA sequencing data from two clinical trials to discover (IMvigor 210) and validate (CheckMate 275) pretreatment molecular features associated with resistance to PD-1/PD-L1 blockade in metastatic urothelial cancer. We then generated single-cell RNA sequencing (scRNA-seq) data from muscle-invasive bladder cancer specimens to dissect the cellular composition underlying the identified gene signatures. RESULTS We identified an adaptive immune response gene signature associated with response and a protumorigenic inflammation gene signature associated with resistance to PD-1/PD-L1 blockade. The adaptive immune response:protumorigenic inflammation signature expression ratio, coined the 2IR score, best correlated with clinical outcomes, and was externally validated. Mapping these bulk gene signatures onto scRNA-seq data uncovered their underlying cellular diversity, with prominent expression of the protumorigenic inflammation signature by myeloid phagocytic cells. However, heterogeneity in expression of adaptive immune and protumorigenic inflammation genes was observed among single myeloid phagocytic cells, quantified as the myeloid single cell immune:protumorigenic inflammation ratio (Msc2IR) score. Single myeloid phagocytic cells with low Msc2IR scores demonstrated upregulation of proinflammatory cytokines/chemokines and downregulation of antigen presentation genes, were unrelated to M1 versus M2 polarization, and were enriched in pretreatment blood samples from patients with PD-L1 blockade-resistant metastatic urothelial cancer. CONCLUSIONS The balance of adaptive immunity and protumorigenic inflammation in individual tumor microenvironments is associated with PD-1/PD-L1 resistance in urothelial cancer with the latter linked to a proinflammatory cellular state of myeloid phagocytic cells detectable in tumor and blood.See related commentary by Drake, p. 4139.
Collapse
Affiliation(s)
- Li Wang
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin G Beaumont
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Guray Akturk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Horowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert P Sebra
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, a Mount Sinai venture, Stamford, Connecticut
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adam M Farkas
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Austin Hake
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sudeh Izadmehr
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, New York
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William K Oh
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, New York
| | | | | | | | - Xin Yao
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Eric Schadt
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, New York
| | - Jun Zhu
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, New York.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - Matthew D Galsky
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, New York.
| |
Collapse
|
33
|
Gómez-Melero S, García-Maceira FI, García-Maceira T, Luna-Guerrero V, Montero-Peñalvo G, Túnez-Fiñana I, Paz-Rojas E. Amino terminal recognition by a CCR6 chemokine receptor antibody blocks CCL20 signaling and IL-17 expression via β-arrestin. BMC Biotechnol 2021; 21:41. [PMID: 34225700 PMCID: PMC8259436 DOI: 10.1186/s12896-021-00699-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background CCR6 chemokine receptor is an important target in inflammatory diseases. Th17 cells express CCR6 and a number of inflammatory cytokines, including IL-17 and IL-22, which are involved in the propagation of inflammatory immune responses. CCR6 antagonist would be a potential treatment for inflammatory diseases such as psoriasis or rheumatoid arthritis. The aim of this study is to develop an antagonistic monoclonal antibody (mAb) against human CCR6 receptor (hCCR6). Results We generate monoclonal antibodies against hCCR6 immunizing Balb/c mice with hCCR6 overexpressing cells. The antibodies were tested by flow cytometry for specific binding to hCCR6, cloned by limiting dilution and resulted in the isolation and purification monoclonal antibody 1C6. By ELISA and flow cytometry, was determined that the antibody obtained binds to hCCR6 N-terminal domain. The ability of 1C6 to neutralize hCCR6 signaling was tested and we determined that 1C6 antibody were able to block response in β-arrestin recruitment assay with IC50 10.23 nM, but did not inhibit calcium mobilization. In addition, we found in a chemotaxis assay that 1C6 reduces the migration of hCCR6 cells to their ligand CCL20. Finally, we determined by RT-qPCR that the expression of IL-17A in Th17 cells treated with 1C6 was inhibited. Conclusions In the present study, we applied whole cell immunization for successfully obtain an antibody that is capable to neutralize hCCR6 signaling and to reduce hCCR6 cells migration and IL-17 expression. These results provide an efficient approach to obtain therapeutic potential antibodies in the treatment of CCR6-mediated inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00699-2.
Collapse
Affiliation(s)
- Sara Gómez-Melero
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain.
| | - Fé Isabel García-Maceira
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Tania García-Maceira
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Verónica Luna-Guerrero
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Gracia Montero-Peñalvo
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - Isaac Túnez-Fiñana
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Elier Paz-Rojas
- Canvax Biotech, Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| |
Collapse
|
34
|
Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021; 11:biom11060893. [PMID: 34208465 PMCID: PMC8234904 DOI: 10.3390/biom11060893] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-β. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.
Collapse
|
35
|
Wirtz S, Schulz-Kuhnt A, Neurath MF, Atreya I. Functional Contribution and Targeted Migration of Group-2 Innate Lymphoid Cells in Inflammatory Lung Diseases: Being at the Right Place at the Right Time. Front Immunol 2021; 12:688879. [PMID: 34177944 PMCID: PMC8222800 DOI: 10.3389/fimmu.2021.688879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, group-2 innate lymphoid cells (ILC2s) have been discovered and successfully established as crucial mediators of lung allergy, airway inflammation and fibrosis, thus affecting the pathogenesis and clinical course of many respiratory diseases, like for instance asthma, cystic fibrosis and chronic rhinosinusitis. As an important regulatory component in this context, the local pulmonary milieu at inflammatory tissue sites does not only determine the activation status of lung-infiltrating ILC2s, but also influences their motility and migratory behavior. In general, many data collected in recent murine and human studies argued against the former concept of a very strict tissue residency of innate lymphoid cells (ILCs) and instead pointed to a context-dependent homing capacity of peripheral blood ILC precursors and the inflammation-dependent capacity of specific ILC subsets for interorgan trafficking. In this review article, we provide a comprehensive overview of the so far described molecular mechanisms underlying the pulmonary migration of ILC2s and thereby the numeric regulation of local ILC2 pools at inflamed or fibrotic pulmonary tissue sites and discuss their potential to serve as innovative therapeutic targets in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Korytina GF, Aznabaeva YG, Akhmadishina LZ, Kochetova OV, Nasibullin TR, Zagidullin NS, Zagidullin SZ, Viktorova TV. The Relationship Between Chemokine and Chemokine Receptor Genes Polymorphisms and Chronic Obstructive Pulmonary Disease Susceptibility in Tatar Population from Russia: A Case Control Study. Biochem Genet 2021; 60:54-79. [PMID: 34091786 DOI: 10.1007/s10528-021-10087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease affecting primarily distal respiratory pathways and lung parenchyma. This study aimed to determine possible genetic association of chemokine and chemokine receptor genes polymorphisms with COPD in a Tatar population from Russia. SNPs of CCL20, CCR6, CXCL8, CXCR1, CXCR2, CCL8, CCL23, CCR2, and CX3CL1 genes and their gene-gene interactions were analyzed for association with COPD in cohort of 601 patients and 617 controls. As a result statistically significant associations with COPD in the study group under the biologically plausible assumption of additive genetic model were identified in CCL20 (rs6749704) (P = 0.00001, OR 1.55), CCR6 (rs3093024) (P = 0.0003, OR 0.74), CCL8 (rs3138035) (P = 0.0001, OR 0.67), CX3CL1 (rs170364) (P = 0.023, OR 1.21), CXCL8 (rs4073) (P = 0.007, OR 1.23), CXCR2 (rs2230054) (P = 0.0002, OR 1.32). Following SNPs CCL20 (rs6749704), CX3CL1 (rs170364), CCL8 (rs3138035), CXCL8 (rs4073), CXCR2 (rs2230054) showed statistically significant association with COPD only in smokers. The association of CCR6 (rs3093024) with COPD was confirmed both in smokers and in non-smokers. A relationship between smoking index and CCL20 (rs6749704) (P = 0.04), CCR6 (rs3093024) (P = 0.007), CCL8 (rs3138035) (P = 0.0043), and CX3CL1 (rs170364) (P = 0.04) was revealed. A significant genotype-dependent variation of Forced Vital Capacity was observed for CCL23 (rs854655) (P = 0.04). Forced Expiratory Volume in 1 s / Forced Vital Capacity ratio was affected by CCL23 (rs854655) (P = 0.05) and CXCR2 (rs1126579) (P = 0.02). Using the APSampler algorithm, we obtained nine gene-gene combinations that remained significantly associated with COPD; loci CCR2 (rs1799864) and CCL8 (rs3138035) were involved in the largest number of the combinations. Our results indicate that CCL20 (rs6749704), CCR6 (rs3093024), CCR2 (rs1799864), CCL8 (rs3138035), CXCL8 (rs4073), CXCR1 (rs2234671), CXCR2 (rs2230054), and CX3CL1 (rs170364) polymorphisms are strongly associated with COPD in Tatar population from Russia, alone and in combinations. For the first time combination of the corresponding SNPs were considered and as a result 8 SNP patterns were associated with increased risk of COPD.
Collapse
Affiliation(s)
- Gulnaz F Korytina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation. .,Department of Biology, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation.
| | - Yulia G Aznabaeva
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Leysan Z Akhmadishina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Olga V Kochetova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktybry 71, Ufa, 450054, Russian Federation
| | - Naufal Sh Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Shamil Z Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| | - Tatyana V Viktorova
- Department of Biology, Bashkir State Medical University, Lenina Str, 3, Ufa, 450008, Russian Federation
| |
Collapse
|
37
|
Meitei HT, Jadhav N, Lal G. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmun Rev 2021; 20:102846. [PMID: 33971346 DOI: 10.1016/j.autrev.2021.102846] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Chemokine receptor CCR6 is expressed on various cells such as B cells, immature dendritic cells, innate lymphoid cells (ILCs), regulatory CD4 T cells, and Th17 cells. CCL20 is the only known high-affinity ligand that binds to CCR6 and drives CCR6+ cells' migration in tissues. CCL20 is mainly produced by epithelial cells, and its expression is increased by several folds under inflammatory conditions. Genome-wide association studies (GWAS) in patients with inflammatory bowel disease (IBD), psoriasis (PS), rheumatoid arthritis (RA), and multiple sclerosis (MS) showed a very strong correlation between the expression of CCR6 and disease severity. It has been shown that disruption of CCR6-CCL20 interaction by using antibodies or antagonists prevents the migration of CCR6 expressing immune cells at the site of inflammation and reduces the severity of the disease. This review discussed the importance of the CCR6-CCL20 axis in IBD, PS, RA, and MS, and recent advances in targeting the CCR6-CCL20 in controlling these autoimmune diseases.
Collapse
Affiliation(s)
| | - Nandadeep Jadhav
- National Centre for Cell Science, Ganeshkhind, Pune MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, Ganeshkhind, Pune MH-411007, India.
| |
Collapse
|
38
|
Zhao J, Xie X, Di T, Liu Y, Qi C, Chen Z, Li P, Wang Y. Indirubin attenuates IL-17A-induced CCL20 expression and production in keratinocytes through repressing TAK1 signaling pathway. Int Immunopharmacol 2021; 94:107229. [PMID: 33611057 DOI: 10.1016/j.intimp.2020.107229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Psoriatic skin inflammation is mainly driven by complex interactions of infiltrating immune cells and activated keratinocytes. Keratinocytes play an active role in initiating and maintenance of psoriatic skin inflammation by secreting chemokines and cytokines. IL-17A produced by T cells potently upregulates the production of chemokine CCL20 in the keratinocytes, which further chemoattracts IL-17A-producing CCR6+ immune cells to the site of inflammation. Indirubin, an active constituent of indigo naturalis, has been reported to possess anti-inflammatory activities, but whether it can suppress the production of chemokines in keratinocytes is largely unknown. To address this question, IL-17A stimulated HaCaT cells were used as cell model to explore the effects of indirubin on the expression and secretion of chemokines. Also, RNA-seq analysis was performed to extensively understand the entire gene expression changes after indirubin treatment and identify the differentially expressed genes further. Indirubin treatment strongly inhibited CCL20 expression and secretion in IL-17A stimulated HaCaT cells. The inhibitory action of indirubin on CCL20 expression was mainly mediated by TAK1 signaling pathway in a mouse psoriasis-like model and cultured HaCaT cells in vitro. Combining with our previous report, indirubin ameliorated psoriasiform dermatitis by breaking CCL20/CCR6 axis-mediated inflammatory loops. Our results provide novel insights into the mechanisms of indirubin in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Xiangjiang Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Yu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China; Beijing University of Chinese Medicine, No. 11, North Three-ring East Road, Chaoyang District, Beijing 100029, PR China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Zhaoxia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, NO.23, Art Gallery Back Street, Dongcheng District, Beijing 10010, PR China.
| |
Collapse
|
39
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
40
|
Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel) 2021; 13:1946. [PMID: 33919517 PMCID: PMC8073377 DOI: 10.3390/cancers13081946] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are critical mediators of tissue homeostasis and influence various aspects of immunity. Tumor-associated macrophages are one of the main cellular components of the tumor microenvironment. Depending on their activation status, macrophages can exert a dual influence on tumorigenesis by either antagonizing the cytotoxic activity of immune cells or, less frequently, by enhancing antitumor responses. In most situations, TAMs suppress T cell recruitment and function or regulate other aspects of tumor immunity. The importance of TAMs targeting in cancer therapy is derived from the strong association between the high infiltration of TAMs in the tumor tissue with poor patient prognosis. Several macrophage-targeting approaches in anticancer therapy are developed, including TAM depletion, inhibition of new TAM differentiation, or re-education of TAM activation for cancer cell phagocytosis. In this review, we will describe the role of TAMs in tumor development, including such aspects as protumorigenic inflammation, immune suppression, neoangiogenesis, and enhancement of tissue invasion and distant metastasis. Furthermore, we will discuss therapeutic approaches that aim to deplete TAMs or, on the contrary, re-educate TAMs for cancer cell phagocytosis and antitumor immunity.
Collapse
Affiliation(s)
- Ewa Cendrowicz
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (E.C.); (E.B.)
| | - Tomasz P. Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, Building F, 02-097 Warsaw, Poland;
| |
Collapse
|
41
|
Ikawa T, Miyagawa T, Fukui Y, Minatsuki S, Maki H, Inaba T, Hatano M, Toyama S, Omatsu J, Awaji K, Norimatsu Y, Watanabe Y, Yoshizaki A, Sato S, Asano Y. Association of serum CCL20 levels with pulmonary vascular involvement and primary biliary cholangitis in patients with systemic sclerosis. Int J Rheum Dis 2021; 24:711-718. [PMID: 33750014 DOI: 10.1111/1756-185x.14103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
AIM Systemic sclerosis (SSc) is a chronic autoimmune disease resulting in vasculopathy and fibrosis of the skin and major internal organs. Especially, interstitial lung disease and pulmonary arterial hypertension are the leading causes of mortality. C-C motif ligand 20 (CCL20) is known as a homeostatic and inflammatory chemokine, which is associated with fibrosis and angiogenesis and constantly expressed in organs involved in SSc. Therefore, we investigated the potential contribution of CCL20 to the development of SSc. METHOD We conducted cross-sectional analyses of 67 SSc patients and 20 healthy controls recruited in a single center for 9 years. Serum CCL20 levels were measured by enzyme-linked immunosorbent assay. Statistical analyses were performed with the Mann-Whitney U test, the Kruskal-Wallis test followed by Dunn's multiple comparison test, Fisher's exact probability test and the Spearman's rank correlation coefficient. RESULTS SSc patients had significantly higher serum CCL20 levels than healthy controls. In SSc patients, serum CCL20 levels correlated inversely with the percentage of predicated diffusion lung capacity for carbon monoxide and positively with mean pulmonary artery pressure (mPAP). In addition, SSc patients with increased serum CCL20 levels had anti-mitochondrial antibody M2 titer significantly elevated relative to those with normal levels, and SSc patients with asymptomatic primary biliary cholangitis (PBC) possessed higher serum CCL20 levels than those without. Importantly, serum CCL20 levels were associated positively with mPAP values and PBC presence by multivariate regression analysis. CONCLUSION Serum CCL20 levels may be involved in the development of pulmonary vascular involvement leading to pulmonary arterial hypertension and asymptomatic PBC in SSc patients.
Collapse
Affiliation(s)
- Tetsuya Ikawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisataka Maki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Inaba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
43
|
Lim GB, Kim YA, Seo JH, Lee HJ, Gong G, Park SH. Prediction of prognostic signatures in triple-negative breast cancer based on the differential expression analysis via NanoString nCounter immune panel. BMC Cancer 2020; 20:1052. [PMID: 33138797 PMCID: PMC7607642 DOI: 10.1186/s12885-020-07399-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Triple-Negative Breast Cancer (TNBC) is an aggressive and complex subtype of breast cancer. The current biomarkers used in the context of breast cancer treatment are highly dependent on the targeting of oestrogen receptor, progesterone receptor, or HER2, resulting in treatment failure and disease recurrence and creating clinical challenges. Thus, there is still a crucial need for the improvement of TNBC treatment; the discovery of effective biomarkers that can be easily translated to the clinics is essential. METHODS We report an approach for the discovery of biomarkers that can predict tumour relapse and pathologic complete response (pCR) in TNBC on the basis of mRNA expression quantified using the NanoString nCounter Immunology Panel. To overcome the limited sample size, prediction models based on random Forest were constructed using the differentially expressed genes (DEGs) as selected features. We also evaluated the differences between pre- and post-treatment groups aiming for the combinatorial assessment of pCR and relapse using additive models in edgeR. RESULTS We identify nine and 13 DEGs strongly associated with pCR and relapse, respectively, from 579 immune genes in a small number of samples (n = 55) using edgeR. An additive model for the comparison of pre- and post-treatment groups via the adjustment of the independent subject in the relapse group revealed associations for 41 genes. Comprehensive analysis indicated that our prediction models outperformed those constructed using features extracted from the existing feature selection model Elastic Net in terms of accuracy. The prediction models were assessed using a randomization test to validate the robustness (empirical P for the model of pCR = 0.015 and empirical P for the model of relapse = 0.018). Furthermore, three DEGs (FCER1A, EDNRB, and TGFBI) in the model of relapse showed prognostic significance for predicting the survival of patients with cancer through Cox proportional hazards regression model-based survival analysis. CONCLUSION Gene expression quantified via the NanoString nCounter Immunology Panel can be seamlessly analysed using edgeR, even considering small sample sizes. Our approach provides a scalable framework that can easily be applied for the discovery of biomarkers based on the NanoString nCounter Immunology Panel. DATA AVAILABILITY The source code will be available from github at https://github.com/sungheep/nanostring .
Collapse
Affiliation(s)
- Gyeong Back Lim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978 Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Jeong-Han Seo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Sung Hee Park
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978 Republic of Korea
- Foundation of University-Industry Cooperation, Soongsil University, Seoul, 06978 Republic of Korea
| |
Collapse
|
44
|
Mo M, Tong S, Huang W, Cai Y, Zu X, Hu X. High serum CCL20 is associated with tumor progression in penile cancer. J Cancer 2020; 11:6812-6822. [PMID: 33123272 PMCID: PMC7591991 DOI: 10.7150/jca.48939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Serum cancer biomarker has been proven to be very valuable in cancer diagnosis, disease monitoring and prognosis assessment, despite there is still a lack of serum biomarker for penile cancer (PC). Our initial analysis on public GEO dataset identified CCL20 as a top C-C motif ligand (CCL) gene enriched in PC. The patients with PC exhibited markedly higher preoperative serum CCL20 level than healthy control. The area under the curve (AUC) was 0.855 with the sensitivity of 72.4%, and specificity of 93.5% to distinguish PC. Preoperative serum CCL20 level was significantly associated with clinicopathological characteristics including T stage (P=0.005), nodal status (P=0.008), and pelvic lymph node metastasis (P=0.007). PC Patients with high serum CCL20 level had shorter disease-free survival compared to those with low level (P<0.001). Cox regression analysis showed that serum CCL20 level could serve as an independent prognostic factor for disease-free survival with a HR of 3.980 (95% CI: 1.209-13.098, P=0.023). Furthermore, CCL20 expression was observed in PC tissues and cell lines. Knockdown of CCL20 expression markedly suppressed malignant phenotypes (cell proliferation, clonogenesis, apoptosis escape, migration and invasion), attenuated STAT3 and AKT signaling and reduced MMP2/9 secretion in PC cell lines. Consistently, CCL20 and its receptor CCR6 exhibited correlated expression pattern in PC tissues. In conclusion, serum CCL20 level might serve as a potential diagnostic and prognostic cancer biomarker for PC. CCL20 might activate multiple downstream oncogenic signaling pathways (STAT3, AKT, MMP2/9) to promote malignant progression of PC, which may warrant further investigation in the future.
Collapse
Affiliation(s)
- Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Huang
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
45
|
Ziegler ME, Claytor B, Bell M, Casas L, Widgerow AD. Gene Expression Changes in the Skin of Patients Undergoing Medial Thigh Liposuction With Pre-Surgical and Post-Surgical Application of Topical Products. Aesthet Surg J Open Forum 2020; 2:ojaa033. [PMID: 33791656 PMCID: PMC7671262 DOI: 10.1093/asjof/ojaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Skin topical preconditioning before and after surgical procedures is a relatively new concept, particularly in relation to the efficient removal of tissue breakdown products. Clinical trials demonstrate improvements, such as less induration, when surgery is combined with topical product preconditioning and with usage post-surgery. OBJECTIVES This trial aimed to assess the efficacy of such a regimen at the molecular level through gene expression studies in combination with clinical assessments. METHODS Six women who underwent medial thigh liposuction administered either a bland moisturizer or the experimental topical products to each side of the surgical area twice daily. Biopsies were taken before any topical application, at 2 and 4 weeks after liposuction. An inflammation-related gene expression analysis was conducted to compare the different conditions. In addition, the degree of induration was assessed in a blinded manner. RESULTS Compared with the bland moisturizer, the experimental group demonstrated a hastened immune inflammatory response moving more rapidly to an anti-inflammatory reversal at 2 weeks followed by a wound healing extracellular remodeling effect at 4 weeks. This matched the clinical picture depicting less induration with the treatment. CONCLUSIONS For patients undergoing body procedures, a topical treatment with the Alastin induces an accelerated healing response, inducing the clearance of "waste" products and the induction of anti-inflammatory genes. Furthermore, this topical treatment stimulates extracellular matrix remodeling, which ultimately leads to less induration. LEVEL OF EVIDENCE 5
Collapse
Affiliation(s)
| | | | | | | | - Alan D Widgerow
- Corresponding Author:Dr Alan D. Widgerow, 3129 Tiger Run Court Suite #109, Carlsbad, CA 92010, USA. E-mail: ; Instagram: @alanwidge
| |
Collapse
|
46
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
47
|
Ccr6 Deficiency Attenuates Spontaneous Chronic Colitis in Winnie. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The immune-modulator behaviour of the CCR6/CCL20 axis in multi -system pathophysiology and molecular signalling was investigated at two clinically significant time points, using a Ccr6—deficient mouse model of spontaneous colitis. Methods:Four groups of mice, (C57BL/6J, Ccr6−/− of C57BL/6J, Winnie × Ccr6−/− and Winnie) were utilized and (I) colonic clinical parameters (2) histology of colon, spleen, kidney and liver (3) T and B lymphocyte distribution in the spleen and MLN by flowcytometry (5) colonic CCL20, phosphorylated PI3K and phosphorylated Akt expression by immunohistochemistry and (6) colonic cytokine expression by RT-PCR were evaluated. Results: CCR6 deficiency was shown to attenuate inflammation in the spleen, liver and gut while renal histology remained unaffected. Marked focal lobular inflammation with reactive nuclear features were observed in hepatocytes and a significant neutrophil infiltration in red pulp with extra medullary hemopoiesis in the spleen existed in Winnie. These changes were considerably reduced in Winnie × Ccr6−/− with elevated goblet cell numbers and mucus production in the colonic epithelium. Conclusions: Results indicate that Ccr6-deficiency in the colitis model contributes towards resolution of disease. Our findings demonstrate an intricate networking role for CCR6 in immune activation, which is downregulated by Ccr6 deficiency, and could provide newer clinical therapies in colitis.
Collapse
|
48
|
Zins K, Abraham D. Comment on:Kadomoto, S. et al. "Tumor-Associated Macrophages Induce Migration of Renal Cell Carcinoma Cells via Activation of the CCL20-CCR6 Axis" Cancers 2020, 12, 89. Cancers (Basel) 2020; 12:E342. [PMID: 32028699 PMCID: PMC7072274 DOI: 10.3390/cancers12020342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/03/2022] Open
Abstract
Macrophages form a major component of the leukocyte infiltrate in solid tumors and it has become increasingly clear that tumor-associated macrophages (TAMs) have tumor-promoting effects within the stroma [1]. Renal cell carcinoma (RCC) solid tumors are comprised of a heterogeneous microenvironment of both malignant and normal stromal cells containing large numbers of macrophages [2].We read with interest the paper by Suguru Kadomoto et al. entitled "Tumor-associated macrophages induce migration of renal cell carcinoma cells via activation of the CCL20-CCR6 axis", published in Cancers [3], in which they report that the CCL20-CCR6 axis induces migration and epithelial-mesenchymal transition (EMT) of ACHN and Caki-1 RCC cells in co-cultures with THP-1/U937-derived tumor conditioned macrophages.[...].
Collapse
Affiliation(s)
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna 1090, Austria;
| |
Collapse
|