1
|
Han J, Ren Y, Zhang P, Fang C, Yang L, Zhou S, Ji Z. The effectiveness of treatment with probiotics in preventing necrotizing enterocolitis and related mortality: results from an umbrella meta-analysis on meta-analyses of randomized controlled trials. BMC Gastroenterol 2025; 25:245. [PMID: 40217146 PMCID: PMC11987312 DOI: 10.1186/s12876-025-03788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION Probiotic supplementation has been proposed as a preventive measure for necrotizing enterocolitis (NEC) in preterm infants. This umbrella meta-analysis assesses the effects of probiotics, including single-strain and multi-strain formulations, on NEC and related mortality. METHODS A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science, and Embase for studies up to August 2024. The AMSTAR2 tool assessed the quality of included studies. Meta-analysis studies were selected based on the PICOS framework, focusing on preterm neonates (< 37-week gestation), probiotic supplementation (single-strain or multi-strain), placebo or standard care comparison, and outcomes of NEC and mortality. Pooled relative risks (RR) and odds ratios (OR) with 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Overall, 35 eligible studies were included into the study. Twenty-six and 32 probiotic intervention arms used single- and multi-strain probiotics, respectively. The findings revealed that probiotics decreased NEC significantly (ESRR: 0.51; 95% CI: 0.46, 0.55, p < 0.001, and ESOR: 0.59; 95%CI: 0.48, 0.72, P < 0.001), and mortality rate (ESRR: 0.72; 95% CI: 0.68, 0.76, P < 0.001, and ESOR: 0.77; 95%CI: 0.70, 0.84, p < 0.001). CONCLUSION The present review suggests that supplementation with probiotics reduced NEC and related mortality. Probiotic supplementation can be recognized as a NEC-preventing approach in preterm and very preterm infants, particularly Multi-strain probiotics.
Collapse
Affiliation(s)
- Jiaju Han
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Yufeng Ren
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China.
| | - Peini Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| | - Zhiqing Ji
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China
| |
Collapse
|
2
|
Sangsefidi ZS, Sangsefidi ZS, Moharreri F, Heydari Yazdi AS, Eslami S, Emadzadeh B, Ghorani B, Sarabi-Jamab M, Farahmand A, Modiri Dovom A, Ghanaei A, Emadzadeh M. Effect of probiotics as an adjunctive therapy with Ritalin among ADHD children and adolescents: a triple-blind randomized controlled trial. Nutr Neurosci 2025; 28:522-531. [PMID: 39163291 DOI: 10.1080/1028415x.2024.2391655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
OBJECTIVE Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common mental disorders in children. Evidence regarding the impact of probiotics supplementation in ADHD children is limited and controversial. Thus, this study aimed to assess the effect of probiotics as an adjunctive therapy with Ritalin among ADHD children and adolescents. METHODS This study was a triple-blind, randomized controlled trial of 60 Iranian ADHD patients aged four to sixteen. The participants were randomly assigned to receive probiotics supplements containing both Lactobacillus plantarum PTCC 1896™ (A7) and Bifidobacterium animalis subsp. Lactis (BB-12®) (n = 30) or placebo (n = 30) for 8 weeks. ADHD symptoms were assessed using Conners' Parent Rating Scale (CPRS) and Integrated Visual and Auditory Continuous Performance Test (IVA/CPT) at baseline and during the study. RESULTS This study showed a significant decrease in the CPRS total score after 4 weeks of intervention in the probiotic group (baseline: 43.96 ± 21.52; fourth week: 37.22 ± 23.01; p = 0.01). However, no significant finding was found for the total score of the CPRS after 8 weeks. Moreover, at the end of the study, a significant increase was observed in score of auditory response control in the probiotic versus the placebo group (probiotic: 91.55 ± 16.69; placebo: 80.55 ± 17.43; p = 0.02). CONCLUSIONS Probiotics supplementation with Ritalin may have some beneficial effects among ADHD children and adolescents, such as improving auditory response control and total score of CPRS. However, further clinical trials are required to clarify the impact of probiotics on ADHD.
Collapse
Affiliation(s)
- Zahra Sadat Sangsefidi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Moharreri
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aazam Sadat Heydari Yazdi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Eslami
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Atefeh Farahmand
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Atena Modiri Dovom
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ali Ghanaei
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Camus‐Ela M, Wang Y, Rennie GH, Raghavan V, Wang J. Update on hazelnut allergy: Allergen characterization, epidemiology, food processing technique and detecting strategy. Compr Rev Food Sci Food Saf 2025; 24:e70098. [PMID: 39898897 PMCID: PMC11789833 DOI: 10.1111/1541-4337.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Hazelnuts are popular among people due to their dense nutrient component. However, eating them may be quite dangerous for those who are allergic. To improve food safety, this research examines current developments in the characterization, processing, and detection of hazelnut allergens. The identification and molecular knowledge of certain proteins that cause allergic responses are necessary for the characterization of hazelnut allergens. Proteomics and genomics are two techniques that have helped to advance our knowledge of hazelnut allergens and facilitate the creation of more precise diagnostic instruments. One important factor to reduce but not to eliminate the exposure to hazelnut allergens is food processing. The extractability of hazelnut proteins with regard to food processing plays a crucial role in determining allergenicity. Innovative technologies have been created to lessen allergenicity in foods containing hazelnuts while preserving their flavor and quality. These technologies include thermal and nonthermal processing techniques. To further safeguard consumers with hazelnut allergies, innovations in ingredient labeling and cross-contamination avoidance techniques have been put into place. For the purpose of management, if foods contain hazelnut, they must label it. Technological developments in analytical methods, including mass spectrometry, polymerase chain reaction, and enzyme-linked immunosorbent assays, have made it possible to identify hazelnut allergens with high specificity and sensitivity in a range of dietary matrices. Moreover, the advancement of point-of-care testing instruments presents the possibility of prompt on site identification, hence enhancing food safety for people with hazelnut allergies. The multidisciplinary efforts of researchers, food technologists, and allergists to enhance the safety of products containing hazelnuts are highlighted in this study.
Collapse
Affiliation(s)
- Mukeshimana Camus‐Ela
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Yue Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Gardiner Henric Rennie
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental SciencesMcGill UniversitySainte‐Anne‐de‐BellevueQuebecCanada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| |
Collapse
|
4
|
Kang YY, Song HJ, Park SY, Oh DN, Kim GY, Been NY, Kim DY, Lee EJ, Nam BH, Lee JM. Comparative Effects of Probiotics and Paraprobiotics Derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-Induced Ulcerative Colitis Mouse Model. J Microbiol Biotechnol 2025; 35:e2411045. [PMID: 40016142 PMCID: PMC11896797 DOI: 10.4014/jmb.2411.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025]
Abstract
Live biotherapeutic products, represented by probiotics with disease-mitigating or therapeutic effects, face significant limitations in achieving stable colonization in the gut through oral administration. However, paraprobiotics, which consist of dead or inactivated microbial cells derived from probiotics, can provide comparable health benefits while overcoming the limitations associated with live biotherapeutic products. Therefore, the purpose of this study was to quantitatively compare and analyze the effects of probiotics, which are gaining attention as treatments for inflammatory bowel diseases, and their paraprobiotic counterparts on the alleviation of ulcerative colitis. In in vitro evaluations revealed that the paraprobiotics derived from Lactiplantibacillus plantarum MGEL20154, Latilactobacillus sakei MGEL23040, and Limosilactobacillus reuteri MGEL21001 exhibited equal or significantly enhanced activities in terms of antioxidant properties, anti-inflammatory effects, and barrier integrity enhancement compared to their probiotic counterparts. Furthermore, consistent with in vitro findings, both probiotics and paraprobiotics effectively improved histological scores and reduced myeloperoxidase levels in a DSS-induced ulcerative colitis mouse model. Notably, paraprobiotics derived from L. plantarum MGEL20154 and L. reuteri MGEL21001 demonstrated significantly enhanced efficacy in restoring tight junctions, promoting mucin secretion, and reducing inflammation in colonic lesion tissues compared to their probiotic forms. Our results suggest that these paraprobiotics may serve as more suitable agents for alleviating and treating ulcerative colitis, addressing limitations associated with probiotics, such as low survival rates, instability, antibiotic susceptibility, and the potential induction of excessive inflammatory responses.
Collapse
Affiliation(s)
- Yun Young Kang
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo Jeong Song
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - So Young Park
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dong Nyoung Oh
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga Yeong Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Na Yeong Been
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Da Yeong Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun Ji Lee
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Bo-Hye Nam
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Jong-Min Lee
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Chakraborty A, Dutta P, Amrit R, Dey P, Osborne WJ. Antagonistic activity of butanamine 2,2-dinitro-N-methyl- synthesized by endosymbiotic Bacillus amyloliquefaciens VITAPRJS1 acquired from horse milk. Int Microbiol 2025:10.1007/s10123-025-00640-z. [PMID: 39939508 DOI: 10.1007/s10123-025-00640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Endosymbiotic bacteria are known to synthesize bioactive compounds which have biotechnological potentials that enhance immune responses by stimulating the production of immune cells. Horse milk is widely known to have nutraceutical and antimicrobial activities; however, there are no scientific reports on its inhibitory effects. VITAPRJS1, isolated from horse milk, showed non-hemolytic properties and was significantly tolerant to bile salt and NaCl. The isolate also exhibited potent antibacterial activity against pathogenic bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus. The bioactive antibacterial compounds were extracted using dichloromethane and were subsequently purified and identified as butanamine, 2,2-dinitro-N-methyl- through UPLC, GC-MS, and LC-MS analyses. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of functional groups such as alkane, amine, and monosubstituted 1,2-disubstituted. The screened bacterial isolate was identified as Bacillus amyloliquefaciens (OR501558) upon 16S rRNA gene sequencing. To our knowledge, this study represents the first-time report on the presence of Bacillus amyloliquefaciens in horse milk having potent antibacterial activity, highlighting its unexplored potential in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Arnab Chakraborty
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Prerona Dutta
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajshree Amrit
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Parry Dey
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - W Jabez Osborne
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Mafe AN, Iruoghene Edo G, Akpoghelie PO, Gaaz TS, Yousif E, Zainulabdeen K, Isoje EF, Igbuku UA, Opiti RA, Garba Y, Essaghah AEA, Ahmed DS, Umar H. Probiotics and Food Bioactives: Unraveling Their Impact on Gut Microbiome, Inflammation, and Metabolic Health. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10452-2. [PMID: 39808399 DOI: 10.1007/s12602-025-10452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
This review paper delves into the role of probiotics and food bioactives in influencing gut health and overall well-being, within the context of probiotics and food bioactives, emphasizing their roles in modulating inflammation, gut microbiota, and metabolic health. Probiotics are defined as live microorganisms that confer health benefits to the host, primarily through their impact on the gut microbiome; a complex community of microorganisms crucial for maintaining health. The review aims to elucidate how probiotics, incorporated into both traditional and modern food systems, can enhance gut health and address metabolic disorders. It examines the types of probiotics present in various foods and their mechanisms of action, including their effects on immune function and metabolic health. By exploring the links between probiotics and health outcomes such as digestive health, immune support, and mental health, the review identifies specific conditions where probiotics show significant promise. Hurldes such as inconsistencies in research findings, variability in probiotic strains, and dosages are addressed. The paper also suggests future research directions, including the potential for personalized probiotic interventions. The review concludes by summarizing key findings and emphasizing the critical role of probiotics in food systems for promoting overall health and mitigating metabolic diseases.
Collapse
Affiliation(s)
- Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Jalingo, Taraba State, Nigeria
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Khalid Zainulabdeen
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| |
Collapse
|
7
|
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol 2025; 15:1487641. [PMID: 39834364 PMCID: PMC11743475 DOI: 10.3389/fmicb.2024.1487641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics. It not only improves the viability and stability of probiotic cells, but also inhibits the growth of pathogenic strains. Lactobacillus and Bifidobacterium spp. are most commonly used as probiotics. The other microbial spp. that can be used as probiotics are Bacillus, Streptococcus, Enterococcus, and Saccharomyces. Probiotics can be used for the treatment of diabetes, obesity, inflammatory, cardiovascular, respiratory, Central nervous system disease (CNS) and digestive disorders. It is also essential to encapsulate live microorganisms that promote intestinal health. Encapsulation of probiotics safeguards them against risks during production, storage, and gastrointestinal transit. Heat, pressure, and oxidation eradicate probiotics and their protective qualities. Encapsulation of probiotics prolongs their viability, facilitates regulated release, reduces processing losses, and enables application in functional food products. Probiotics as microspheres produced through spray drying or coacervation. This technique regulates the release of gut probiotics and provides stress resistance. Natural encapsulating materials including sodium alginate, calcium chloride, gel beads and polysaccharide promoting safeguards in probiotics during the digestive process. However, several methods including, spray drying where liquid is atomized within a heated air chamber to evaporate moisture and produce dry particles that improves the efficacy and stability of probiotics. Additionally, encapsulating probiotics with prebiotics or vitamins enhance their efficacy. Probiotics enhance immune system efficacy by augmenting the generation of antibodies and immunological cells. It combats illnesses and enhances immunity. Recent studies indicate that probiotics may assist in the regulation of weight and blood glucose levels and influence metabolism and insulin sensitivity. Emerging research indicates that the "gut-brain axis" connects mental and gastrointestinal health. Probiotics may alleviate anxiety and depression via influencing neurotransmitter synthesis and inflammation. Investigations are underway about the dermatological advantages of probiotics that forecasting the onsite delivery of probiotics, encapsulation is an effective technique and requires more consideration from researchers. This review focuses on the applications of probiotics, prebiotics and synbiotics in the prevention and treatment of human health.
Collapse
Affiliation(s)
- Bhutada Sarita
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Dahikar Samadhan
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Md Zakir Hassan
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Elena G. Kovaleva
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
8
|
Singh V, Shirbhate E, Kore R, Vishwakarma S, Parveen S, Veerasamy R, Tiwari AK, Rajak H. Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives. Mini Rev Med Chem 2025; 25:76-93. [PMID: 38982701 DOI: 10.2174/0113895575320344240625080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Subham Vishwakarma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Shadiya Parveen
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| | - Ravichandran Veerasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah Darul Aman, 08100, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, AR 72205, USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), 495 009, India
| |
Collapse
|
9
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
10
|
Elhalik MA, Mekky AE, Khedr M, Suleiman WB. Antineoplastic with DNA fragmentation assay and anti-oxidant, anti-inflammatory with gene expression activity of Lactobacillus plantarum isolated from local Egyptian milk products. BMC Microbiol 2024; 24:443. [PMID: 39472774 PMCID: PMC11520475 DOI: 10.1186/s12866-024-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Many lactic acid bacteria (LAB), known for their human health benefits, are derived from milk and utilized in biotherapeutic applications or for producing valuable nutraceuticals. However, the specific role of milk-associated LAB in biotherapeutics remains underexplored. To address this, eight milk product samples were randomly selected from the Egyptian market, diluted, and then cultured anaerobically on MRS agar. Subsequently, 16 suspected LAB isolates were recovered and underwent rapid preliminary identification. Among these isolates, the Lactobacillus plantarum strain with accession number (OQ547261.1) was identified due to its strong antioxidant activity depending on the DPPH assay, L. plantarum displayed notable antioxidant activities of 71.8% and 93.8% at concentrations of 125-1000 µg/mL, respectively. While ascorbic acid showed lower concentrations of 7.81, 3.9, and 1.95 µg/mL which showed activities of 45.1%, 34.2%, and 27.2%, respectively. The anti-inflammatory efficacy of L. plantarum was evaluated based on its capability to prevent hemolysis induced by hypotonic conditions. At a concentration of 1000 µg/mL, L. plantarum could reduce hemolysis by 97.7%, nearly matching the 99.5% inhibition rate achieved by the standard drug, indomethacin, at an identical concentration. Moreover, L. plantarum exhibited high hemolytic activity at 100 µg/mL (14.3%), which decreased to 1.4% at 1000 µg/mL. The abundance of phenolic acids and flavonoids was determined by high-performance liquid chromatography (HPLC) in L. plantarum. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that L. plantarum increased gene expression of the inflammatory marker TLR2 by 133%, and cellular oxidation markers SOD1 and SOD2 by 65% and 74.2%, respectively, while suppressing CRP expression by 33.3%. These results underscore L. plantarum's exceptional anti-inflammatory and antioxidant activities. Furthermore, L. plantarum induces cancer cell death through necrotic nuclear DNA fragmentation. These findings suggest that L. plantarum is not only suitable for nutraceutical production but also holds potential as a probiotic strain. Future research should focus on enhancing the capacity of this strain across various industries and fostering innovation in multiple fields.
Collapse
Affiliation(s)
- Mohamed A Elhalik
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Waleed B Suleiman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
11
|
Al-Kabe SH, Niamah AK. Current Trends and Technological Advancements in the Use of Oxalate-Degrading Bacteria as Starters in Fermented Foods-A Review. Life (Basel) 2024; 14:1338. [PMID: 39459637 PMCID: PMC11509417 DOI: 10.3390/life14101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Nephrolithiasis is a medical condition characterized by the existence or development of calculi, commonly referred to as stones within the renal system, and poses significant health challenges. Calcium phosphate and calcium oxalate are the predominant constituents of renal calculi and are introduced into the human body primarily via dietary sources. The presence of oxalates can become particularly problematic when the delicate balance of the normal flora residing within the gastrointestinal tract is disrupted. Within the human gut, species of Oxalobacter, Lactobacillus, and Bifidobacterium coexist in a symbiotic relationship. They play a pivotal role in mitigating the risk of stone formation by modulating certain biochemical pathways and producing specific enzymes that can facilitate the breakdown and degradation of oxalate salts. The probiotic potential exhibited by these bacteria is noteworthy, as it underscores their possible utility in the prevention of nephrolithiasis. Investigating the mechanisms by which these beneficial microorganisms exert their effects could lead to novel therapeutic strategies aimed at reducing the incidence of kidney stones. The implications of utilizing probiotics as a preventive measure against kidney stone formation represent an intriguing frontier in both nephrology and microbiome research, meriting further investigation to unlock their full potential.
Collapse
Affiliation(s)
| | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City 61004, Iraq;
| |
Collapse
|
12
|
Bai Z, Wu Y, Gao D, Dong Y, Pan Y, Gu S. Gut Microbiome and Metabolome Alterations in Overweight or Obese Adult Population after Weight-Loss Bifidobacterium breve BBr60 Intervention: A Randomized Controlled Trial. Int J Mol Sci 2024; 25:10871. [PMID: 39456659 PMCID: PMC11507383 DOI: 10.3390/ijms252010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Probiotics, known for regulating gut microbiota, may aid those with overweight or obesity, but their mechanisms require more research. This study involved 75 overweight or obese young adults, randomly assigned to either a Bifidobacterium breve BBr60 (BBr60) group or a placebo group. Both groups received diet guidance and took either BBr60 (1 × 1010 CFU/day) or a placebo for 12 weeks. Researchers analyzed body composition, serum glucose, lipids, liver and kidney function, comprehensive metabolome, and intestinal homeostasis before and after the intervention. After 12 weeks, BBr60 significantly reduced weight and BMI compared to pretreatment levels and outperformed the placebo. The BBr60 group also showed improved blood biochemistry, with notably lower fasting blood glucose (FBG) levels than the placebo group (p < 0.05). Additionally, BBr60 influenced vital serum and fecal metabolites related to three amino acid metabolic pathways and regulated the bacteria Dialister, Klebsiella, and Bacteroides, which correlated strongly with serum metabolites. These findings indicate that BBr60 can safely and effectively regulate BMI, body weight, serum glucose, lipids, and liver function markers, which may involve BBr60's impact on key gut bacteria, which influence metabolites related to the valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and alanine, aspartate, and glutamate metabolism.
Collapse
Affiliation(s)
- Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Dejiao Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Yao Dong
- Germline Stem Cells and Microenvironment Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujia Pan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China; (Z.B.); (Y.W.); (D.G.); (Y.P.)
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
13
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
14
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
17
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
18
|
Zaib S, Hayat A, Khan I. Probiotics and their Beneficial Health Effects. Mini Rev Med Chem 2024; 24:110-125. [PMID: 37291788 DOI: 10.2174/1389557523666230608163823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Probiotics are living microorganisms that are present in cultured milk and fermented food. Fermented foods are a rich source for the isolation of probiotics. They are known as good bacteria. They have various beneficial effects on human health including antihypertensive effects, antihypercholesterolemic effects, prevention of bowel disease, and improving the immune system. Microorganisms including bacteria, yeast, and mold are used as probiotics but the major microorganisms that are used as probiotics are bacteria from the genus Lactobacillus, Lactococcus, Streptococcus, and Bifidobacterium. Probiotics are beneficial in the prevention of harmful effects. Recently, the use of probiotics for the treatment of various oral and skin diseases has also gained significant attention. Clinical studies indicate that the usage of probiotics can alter gut microbiota composition and provoke immune modulation in a host. Due to their various health benefits, probiotics are attaining more interest as a substitute for antibiotics or anti-inflammatory drugs leading to the growth of the probiotic market.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Aqsa Hayat
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
19
|
Ji J, Jin W, Liu S, Jiao Z, Li X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm (Beijing) 2023; 4:e420. [PMID: 37929014 PMCID: PMC10625129 DOI: 10.1002/mco2.420] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
The gut microbiota and its homeostasis play a crucial role in human health. However, for some diseases related to the gut microbiota, current traditional medicines can only relieve symptoms, and it is difficult to solve the root causes or even cause side effects like disturbances in the gut microbiota. Increasing clinical studies and evidences have demonstrated that probiotics, prebiotics, and postbiotics can prevent and treat various diseases, but currently they can only be used as dietary supplements rather than medicines, which restricts the application of probiotics in the field of medicine. Here, this review analyzes the importance of gut microbiota in human health and the current problems of traditional medicines, and systematically summarizes the effectiveness and mechanisms of probiotics, prebiotics, and postbiotics in maintaining health and treating diseases based on animal models and clinical trials. And based on current research outcomes and development trends in this field, the challenges and prospects of their clinical application in maintaining health, alleviating and treating diseases are analyzed. It is hoped to promote the application of probiotics, prebiotics, and postbiotics in disease treatment and open up new frontiers in probiotic research.
Collapse
Affiliation(s)
- Jing Ji
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Weilin Jin
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityThe First Clinical Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zuoyi Jiao
- Cuiying Biomedical Research CenterThe Second Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
20
|
Marginean CM, Popescu M, Drocas AI, Cazacu SM, Mitrut R, Marginean IC, Iacob GA, Popescu MS, Docea AO, Mitrut P. Gut–Brain Axis, Microbiota and Probiotics—Current Knowledge on Their Role in Irritable Bowel Syndrome: A Review. GASTROINTESTINAL DISORDERS 2023; 5:517-535. [DOI: 10.3390/gidisord5040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common digestive disorder with a significant impact on both individuals and society in terms of quality of life and healthcare costs. A growing body of research has identified various communication pathways between the microbiota and the brain in relation to motility disorders, with the gut–brain axis being key to the pathogenesis of IBS. Multiple factors contribute to the pathogenetic pathways in IBS, including immune mechanisms, psychosocial factors, increased oxidative stress and pro-inflammatory cytokine release, as well as genetic and hormonal factors. Increased permeability of the normal intestinal barrier allows bacterial products to access the lamina propria, providing a mechanism for perpetuating chronic inflammation and characteristic symptoms. The microbiota influences inflammatory processes in IBS by altering the balance between pro-inflammatory factors and host defence. Probiotics modulate the pathophysiological mechanisms involved in IBS by influencing the composition of the microbiota and improving intestinal motility disorders, visceral hypersensitivity, immune function of the intestinal epithelium, metabolic processes in the intestinal lumen, dysfunction of the microbiota-GBA, and are recognised as effective and safe in IBS therapy. Our study aimed to provide a comprehensive overview of the relationship between the gut–brain axis, microbiota, and IBS, based on current information.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Ioan Drocas
- Department of Urology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Paul Mitrut
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
21
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Zaguła G, Pawlos M. Bioavailability of Macroelements from Synbiotic Sheep's Milk Ice Cream. Nutrients 2023; 15:3230. [PMID: 37513648 PMCID: PMC10383885 DOI: 10.3390/nu15143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
To determine the potential bioavailability of macroelements (Ca, Mg, P, K), probiotic ice cream samples (Lactaseibacillus paracasei L-26, Lactobacillus casei 431, Lactobacillus acidophilus LA-5, Lactaseibacillus rhamnosus and Bifidobacterium animalis ssp. lactis BB-12) from sheep's milk with inulin, apple fiber and inulin, or apple fiber and control samples were submitted to in vitro digestion in the mouth, stomach and small intestine. The bioavailability of calcium in the ice cream samples ranged from 40.63% to 54.40%, whereas that of magnesium was 55.64% to 44.42%. The highest bioavailability of calcium and magnesium was shown for the control samples. However, adding 4% inulin reduced the bioavailability of calcium by about 3-5% and magnesium only by about 5-6%. Adding 4% apple fiber reduced the bioavailability of calcium by as much as 6-12% and magnesium by 7-8%. The highest bioavailability of calcium was determined in ice cream with L. paracasei, and the highest bioavailability of magnesium was determined in ice cream with L. casei. The bioavailability of phosphorus in ice cream ranged from 47.82% to 50.94%. The highest bioavailability of phosphorus (>50%) was in sheep ice cream fermented by B. animalis. In the control ice cream, the bioavailability of potassium was about 60%. In ice cream with inulin, the bioavailability of potassium was lower by 3-4%, and in ice cream with apple fiber, the bioavailability of potassium was lower by up to 6-9%. The bioavailability of potassium was significantly influenced only by the addition of dietary fiber. The results of the study confirmed the beneficial effect of bacteria on the bioavailability of Ca, Mg and P.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food and Nutrition Technology, College of Natural Science, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| |
Collapse
|
22
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 PMCID: PMC10395298 DOI: 10.1016/j.heliyon.2023.e17878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
23
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 DOI: 10.1016/j.heliyon.2023.e17878if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2024] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
24
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
25
|
Babina K, Salikhova D, Polyakova M, Zaytsev A, Egiazaryan A, Novozhilova N. Knowledge and Attitude towards Probiotics among Dental Students and Teachers: A Cross-Sectional Survey. Dent J (Basel) 2023; 11:dj11050119. [PMID: 37232770 DOI: 10.3390/dj11050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
This cross-sectional survey assessed the knowledge of and the attitude towards probiotics of dental students and academics at Sechenov University, Moscow, Russia. Our questionnaire consisted of 15 questions divided into 3 sections: respondents' sociodemographic data, knowledge on probiotics, and attitude towards probiotics. The data were analyzed using the Mann-Whitney U test, Fisher's exact test, and Spearman's rank correlation coefficient. Out of the 658 questionnaires distributed, a total of 239 questionnaires were completed by the undergraduates, yielding a response rate of 39.6%, and 54 by the teaching staff (response rate = 100%). Most students (53.6%) and teachers (55.5%) had a fair knowledge of probiotics (p = 0.3135). A vast majority of dental students (97.9%) and all teachers had a positive attitude towards probiotics, with higher mean scores among academics (p < 0.001). A positive weak correlation was found between knowledge and attitude (Spearman r = 0.17, p = 0.0027). The results obtained reveal the need for more evidence-based educational trainings for university teachers and a course on probiotics to be included in the curriculum for dental students.
Collapse
Affiliation(s)
- Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Dilara Salikhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Egiazaryan
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
26
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Sharifi‐Rad J, Painuli S, Sener B, Kılıç M, Kumar NVA, Semwal P, Docea AO, Suleria HAR, Calina D. Revisiting the nutraceutical profile, chemical composition, and health benefits of jaggery: Updates from recent decade. EFOOD 2023. [DOI: 10.1002/efd2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
| | - Sakshi Painuli
- Department of Biotechnology Graphic Era University Dehradun Uttarakhand India
| | - Bilge Sener
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry University of Karachi Karachi Pakistan
| | - Mehtap Kılıç
- Department of Pharmacognosy, Faculty of Pharmacy Health Sciences University Ankara Turkey
| | - Nanjangud V. A. Kumar
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - Prabhakar Semwal
- Department of Biotechnology Graphic Era University Dehradun Uttarakhand India
| | - Anca O. Docea
- Department of Toxicology University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
28
|
In Vitro Characterization of Limosilactobacillus reuteri Lac Ib01 (OL468126.1) Isolated from Traditional Sheep Dry Sausage and Evaluation of the Activity of Arthrospira platensis or Phycocyanin on Its Growth-Promoting Ability. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The positive impact of probiotic strains on human health is more evident than ever. To achieve the beneficial health effects and desirable functional properties of probiotics, sufficient numbers of these microorganisms must reach the intestinal tract with high survival rates. The purpose of this study was to identify and characterize a novel strain of Limosilactobacillus reuteri isolated from traditional sheep dry sausage and evaluate its growth-promoting ability with the addition of Arthrospira platensis or phycocyanin extract. In vitro experimental approaches were conducted to determine the physiological features of the candidate probiotic isolate, including biochemical identification, 16S rRNA gene sequencing, tolerance assays to acid and bile salts, antimicrobial activities, adherence ability, and antiproliferative assays. The effects of A. platensis or phycocyanin (0, 1, 5, and 8 mg/mL) on the growth of probiotic cultures were studied after 0, 24, 48, and 72 h. Our results showed that the isolated Limosilactobacillus reuteri (OL468126.1) possesses desirable characteristics as a probiotic candidate and can, therefore, be used as an ingredient in functional foods. Furthermore, A. platensis and phycocyanin extract have great potential for enhancing the growth and prolonging the stationary phase of isolated probiotics. Our findings showed that phycocyanin extract not only plays the role of a natural pigment but also acts as a growth promoter of probiotics.
Collapse
|
29
|
Pramanik S, Venkatraman S, Karthik P, Vaidyanathan VK. A systematic review on selection characterization and implementation of probiotics in human health. Food Sci Biotechnol 2023; 32:423-440. [PMID: 36911328 PMCID: PMC9992678 DOI: 10.1007/s10068-022-01210-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues. The global probiotics market has been incrementally growing in recent years, as consumers' demand for healthy diets and wellness has continued to increase. This has prompted the food industry to develop new probiotic-containing food products, as well as researchers to explore their specific characteristics and impacts on human health. Although most probiotics are fastidious microorganisms that are nutritionally demanding and sensitive to environmental conditions, they become less viable as they are processed and stored. In this review we studied the current literature on the fundamental idea of probiotic bacteria, their medical benefits, and their selection, characterization, and implementations. Graphical Abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Pothiyappan Karthik
- Department of Food Biotechnology, Karpagam Academic of Higher Education, Coimbatore, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| |
Collapse
|
30
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
31
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Bhatt S, Kanoujia J, Mohana Lakshmi S, Patil CR, Gupta G, Chellappan DK, Dua K. Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:276-288. [PMID: 35352640 DOI: 10.2174/1871527321666220329140804] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/26/2021] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
The human gut microbiota plays a significant role in the pathophysiology of central nervous system-related diseases. Recent studies suggest correlations between the altered gut microbiota and major depressive disorder (MDD). It is proposed that normalization of the gut microbiota alleviates MDD. The imbalance of brain-gut-microbiota axis also results in dysregulation of the hypothalamicpituitary- adrenal (HPA) axis. This imbalance has a crucial role in the pathogenesis of depression. Treatment strategies with certain antibiotics lead to the depletion of useful microbes and thereby induce depression like effects in subjects. Microbiota is also involved in the synthesis of various neurotransmitters (NTs) like 5-hydroxy tryptamine (5-HT; serotonin), norepinephrine (NE) and dopamine (DA). In addition to NTs, the gut microbiota also has an influence on brain derived neurotrophic factor (BDNF) levels. Recent research findings have exhibited that transfer of stress prone microbiota in mice is also responsible for depression and anxiety-like behaviour in animals. The use of probiotics, prebiotics, synbiotics and proper diet have shown beneficial effects in the regulation of depression pathogenesis. Moreover, transplantation of fecal microbiota from depressed individuals to normal subjects also induces depression-like symptoms. With the precedence of limited therapeutic benefits from monoamine targeting drugs, the regulation of brain-gut microbiota is emerging as a new treatment modality for MDDs. In this review, we elaborate on the significance of brain-gut-microbiota axis in the progression of MDD, particularly focusing on the modulation of the gut microbiota as a mode of treating MDD.
Collapse
Affiliation(s)
- Shvetank Bhatt
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior -474005, Madhya Pradesh, India
| | - C R Patil
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra 425405, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
33
|
Li Y, Wu Y, Wu L, Qin L, Liu T. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. J Transl Med 2022; 20:498. [PMID: 36324119 PMCID: PMC9632036 DOI: 10.1186/s12967-022-03695-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in the prediabetic population by meta-analysis, namely, fasting blood glucose (FBG), glycated haemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the mechanisms of action are summarized from the existing studies. METHODS Seven databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed, CNKI, and Wanfang Med) were searched until March 2022. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model to observe the efficacy of probiotic supplementation on the included indicators. RESULTS Seven publications with a total of 460 patients were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HbA1c (WMD, -0.07; 95% CI -0.11, -0.03; P = 0.001), QUICKI (WMD, 0.01; 95% CI 0.00, 0.02; P = 0.04), TC (SMD, -0.28; 95% CI -0.53, -0.22; P = 0.03), TG (SMD, -0.26; 95% CI -0.52, -0.01; P = 0.04), and LDL-C (WMD, -8.94; 95% CI -14.91, -2.97; P = 0.003) compared to levels in the placebo group. The effects on FBG (WMD, -0.53; 95% CI -2.31, 1.25; P = 0.56), HOMA-IR (WMD, -0.21; 95% CI -0.45, 0.04; P = 0.10), and HDL-C (WMD, 2.05; 95% CI -0.28, 4.38; P = 0.08) were not different from those of the placebo group. CONCLUSION The present study clearly indicated that probiotics may fulfil an important role in the regulation of HbA1c, QUICKI, TC, TG and LDL-C in patients with prediabetes. In addition, based on existing studies, we concluded that probiotics may regulate blood glucose homeostasis in a variety of ways. TRIAL REGISTRATION This meta-analysis has been registered at PROSPERO with ID: CRD42022321995.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
34
|
Huang R, Zhang R, Yao S, Si M, Xia R, Zhou X, Fan X, Jiang K. Glutamic acid assisted hydrolysis strategy for preparing prebiotic xylooligosaccharides. Front Nutr 2022; 9:1030685. [PMID: 36324624 PMCID: PMC9618876 DOI: 10.3389/fnut.2022.1030685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 03/04/2024] Open
Abstract
Since the immune-boosting properties as well as the benefit of promoting the growth of gut bacteria, xylooligosaccharides as prebiotics have attracted considerable interest as functional feed additives around the world. A growing number of studies suggest that acidic hydrolysis is the most cost-effective method for treating xylan materials to prepare xylooligosaccharides, and organic acids were proved to be more preferable. Therefore, in this study, glutamic acid, as an edible and nutritive organic acid, was employed as a catalyst for hydrolyzing xylan materials to prepare xylooligosaccharides. Further, xylooligosaccharide yields were optimized using the response surface methodology with central composite designs. Through the response surface methodology, 28.2 g/L xylooligosaccharides with the desirable degree of polymerization (2-4) at a yield of 40.5 % could be achieved using 4.5% glutamic acid at 163°C for 41 min. Overall, the application of glutamic acid as a catalyst could be a potentially cost-effective method for producing xylooligosaccharides.
Collapse
Affiliation(s)
- Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Mengyuan Si
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ruowen Xia
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
36
|
Butnariu M, Quispe C, Herrera-Bravo J, Helon P, Kukula-Koch W, López V, Les F, Vergara CV, Alarcón-Zapata P, Alarcón-Zapata B, Martorell M, Pentea M, Dragunescu AA, Samfira I, Yessimsiitova Z, Daştan SD, Castillo CMS, Roberts TH, Sharifi-Rad J, Koch W, Cho WC. The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies. Biomed Pharmacother 2022; 153:113364. [PMID: 35810693 DOI: 10.1016/j.biopha.2022.113364] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022] Open
Abstract
Thymoquinone (TQ) is a secondary metabolite found in abundance in very few plant species including Nigella sativa L., Monarda fistulosa L., Thymus vulgaris L. and Satureja montana L. Preclinical pharmacological studies have shown that TQ has many biological activities, such as anti-inflammatory, antioxidant and anticancer. Both in vivo and in vitro experiments have shown that TQ acts as an antitumor agent by altering cell cycle progression, inhibiting cell proliferation, stimulating apoptosis, inhibiting angiogenesis, reducing metastasis and affecting autophagy. In this comprehensive study, the evidence on the pharmacological potential of TQ on pancreatic cancer is reviewed. The positive results of preclinical studies support the view that TQ can be considered as an additional therapeutic agent against pancreatic cancer. The possibilities of success for this compound in human medicine should be further explored through clinical trials.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile.
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile.
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Schinzla 13a Str., 27-600, Sandomierz, Poland.
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093, Lublin, Poland.
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain.
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain.
| | - Cristian Valdés Vergara
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Chile.
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII - Bio Bio Region, Chile; Facultad de Medicina Veterinaria, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII - Bio Bio Region, Chile.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile; Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile.
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania.
| | - Aneta Anca Dragunescu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania.
| | - Ionel Samfira
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan.
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey.
| | | | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, NSW 2006 Australia.
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008 Cuenca, Ecuador.
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
37
|
Food Quality, Drug Safety, and Increasing Public Health Measures in Supply Chain Management. Processes (Basel) 2022. [DOI: 10.3390/pr10091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, there has been an increased interest in public health measures concerning food quality and drug safety in supply chains and logistics operations. Against this backdrop, this study systematically reviewed the extant literature to identify gaps in studying food quality and drug safety, the proposed solutions to these issues, and potential future research directions. This study utilized content analysis. The objectives of the review were to (1) identify the factors affecting food quality and possible solutions to improve results, (2) analyze the factors that affect drug safety and identify ways to mitigate them through proper management; and (3) establish integrated supply chains for food and drugs by implementing modern technologies, followed by one another to ensure a multi-layered cross-verification cascade and resource management at the different phases to ensure quality, safety, and sustainability for the benefit of public health. This review investigated and identified the most recent trends and technologies used for successfully integrated supply chains that can guarantee food quality and drug safety. Using appropriate keywords, 298 articles were identified, and 205 were shortlisted for the analysis. All analysis and conclusions are based on the available literature. The outcomes of this paper identify new research directions in public health and supply chain management.
Collapse
|
38
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
39
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Genistein: Therapeutic and Preventive Effects, Mechanisms, and Clinical Application in Digestive Tract Tumor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5957378. [PMID: 35815271 PMCID: PMC9259214 DOI: 10.1155/2022/5957378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
Genistein is one of the numerous recognized isoflavones that may be found in a variety of soybeans and soy products, including tofu and tofu products. The chemical name for genistein is 4', 5, 7-trihydroxyisoflavone, and it is found in plants. In recent years, the scientific world has become more interested in genistein because of its possible therapeutic effects on many forms of cancer. It has been widely investigated for its anticancer properties. The discovery of genistein's mechanism of action indicates its potential for apoptosis induction and cell cycle arrest in gastrointestinal cancer, especially gastric and colorectal cancer. Genistein's pharmacological activities as determined by the experimental studies presented in this review lend support to its use in the treatment of gastrointestinal cancer; however, additional research is needed in the future to determine its efficacy, safety, and the potential for using nanotechnology to increase bioavailability and therapeutic efficacy.
Collapse
|
41
|
Biodetoxification and Protective Properties of Probiotics. Microorganisms 2022; 10:microorganisms10071278. [PMID: 35888997 PMCID: PMC9319832 DOI: 10.3390/microorganisms10071278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population’s safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics’ possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association.
Collapse
|
42
|
Long X, Wang P, Zhou Y, Wang Q, Ren L, Li Q, Zhao X. Preventive effect of Lactobacillus plantarum HFY15 on carbon tetrachloride (CCl 4 )-induced acute liver injury in mice. J Food Sci 2022; 87:2626-2639. [PMID: 35534088 DOI: 10.1111/1750-3841.16171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 01/15/2023]
Abstract
Carbon tetrachloride (CCl4 ) is the main chemical causing liver damage. In this experiment, the effect of Lactobacillus plantarum HFY15 treatment on CCl4 -induced acute liver injury was investigated using mice. Fifty adult mice were randomized into five study groups, each group with 10 ml kg-1 saline, 50 mg kg-1 silymarin, and 109 CFU kg-1 L. plantarum HFY15 and LDSB per day, and all the mice expect the normal group were injected 0.8% CCl4 (10 ml kg-1 ) on the 14th day. Following the 16 h induction of the liver injury, various biochemical markers were assessed for blood and liver tissue. After L. plantarum HFY15 treatment, the content of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in serum decreased by 67.7%, 65.0%, 41.9%, 59.5%, and 51.5%, respectively, and the level of antioxidant enzymes (total superoxide dismutation [T-SOD], catalase [CAT], glutathione [GSH]) increased by more than twofold. Pro-inflammatory cytokine interleukin-6 (IL-6), interferon-γ (INF-γ), and tumor necrosis factor-α (TNF-α) decreased by more than 45% in serum and live. What is more, L. plantarum HFY15 increased the expression of antiapoptosis genes Bcl-2 by eightfold, inhibiting the expression of proapoptotic genes Caspase-3 and Bax by about threefold. Lactobacillus plantarum HFY15 has obvious protective effects on CCl4 -induced liver injury by inhibiting oxidation, reducing the release of inflammatory factors, and exerting suppressive effect on apoptotic process in the CCl4 -induced liver injury. Lactobacillus plantarum HFY15 can be developed as edible lactic acid bacteria for preventing liver toxicity. PRACTICAL APPLICATION: L. plantarum HFY15 can alleviate liver injury caused by carbon tetrachloride toxicity through antioxidant, anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Pan Wang
- Department of Traumatology, Chongqing University Central Hospital/Chongqing Emergency Medical Center, Chongqing, P. R. China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Qiang Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Lixuan Ren
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Qin Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P. R. China
| |
Collapse
|
43
|
Abid R, Waseem H, Ali J, Ghazanfar S, Muhammad Ali G, Elasbali AM, Alharethi SH. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J Fungi (Basel) 2022; 8:444. [PMID: 35628700 PMCID: PMC9147304 DOI: 10.3390/jof8050444] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces cerevisiae var. boulardii is best known for its treatment efficacy against different gastrointestinal diseases. This probiotic yeast can significantly protect the normal microbiota of the human gut and inhibit the pathogenicity of different diarrheal infections. Several clinical investigations have declared S. cerevisiae var. boulardii a biotherapeutic agent due to its antibacterial, antiviral, anti-carcinogenic, antioxidant, anti-inflammatory and immune-modulatory properties. Oral or intramuscular administration of S. cerevisiae var. boulardii can remarkably induce health-promoting effects in the host body. Different intrinsic and extrinsic factors are responsible for its efficacy against acute and chronic gut-associated diseases. This review will discuss the clinical and beneficial effects of S. cerevisiae var. boulardii in the treatment and prevention of different metabolic diseases and highlight some of its health-promising properties. This review article will provide fundamental insights for new avenues in the fields of biotherapeutics, antimicrobial resistance and one health.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Hassan Waseem
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Jafar Ali
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Shakira Ghazanfar
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Ghulam Muhammad Ali
- Pakistan Agricultural Research Council (PARC) 20, Ataturk Avenue, G-5/1, Islamabad 44000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Al-Jouf P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66262, Saudi Arabia;
| |
Collapse
|
44
|
Effect of early enteral nutrition combined with probiotics in patients with stroke: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2022; 76:592-603. [PMID: 34302128 DOI: 10.1038/s41430-021-00986-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Whether to conduct early enteral nutrition combined with probiotics (EEN/probiotics) in stroke patients remains controversial. This study was aimed to systematically explore the efficacy and safety of EEN/probiotics in stroke patients. SUBJECT/METHODS We performed searches in EMBASE, PubMed, Medline, Cochrane Library, Chinese Biomedicine Literature Database (SinoMed), Chinese Scientific Journal Database (VIP), Chinese National Knowledge Infrastructure (CNKI) and Wanfang database. RESULTS A total of 26 randomized controlled trials (2216 patients) were included. Meta-analysis showed a significantly lower incidence of gastrointestinal complications (%) (OR, 0.29; 95% CI,0.24-0.36; P < 0.00001), a lower incidence of infection (%) (OR, 0.27; 95% CI, 0.21-0.36; P < 0.00001), a shorter length of hospital stay (d) (MD, -8.70; 95% CI, -13.24 to -4.16; P = 0.003), and a lower dysbacteriosis rate (%) (OR, 0.17; 95% CI, 0.07-0.41; P < 0.0001) in the EEN/probiotics group than EEN group. Compared with EEN group, EEN/probiotics group had lower levels of diamine oxidase (U/L) (MD, -0.78; 95% CI, -0.93 to -0.63; P < 0.00001), D-lactic acid (mmol/L) (MD, -0.06; 95% CI, -0.07 to -0.05; P < 0.00001) and higher levels of albumin (g/L) (MD, 3.38; 95% CI, 2.74-4.02; P < 0.00001), prealbumin (mg/L) (MD, 32.20; 95% CI, 24.42-39.98; P < 0.00001), total protein (g/L) (MD, 4.91; 95% CI, 3.20-6.62; P < 0.00001), hemoglobin (g/L) (MD, 9.62; 95% CI, 7.92-11.32; P < 0.00001), immunoglobulin A (g/L) (MD, 0.23; 95% CI, 0.12-0.34; P < 0.0001) and immunoglobulin G (g/L) (MD, 0.33; 95% CI, 0.21-0.45; P < 0.00001). CONCLUSION Early enteral nutrition combined with probiotics may effectively improve the nutritional status of stroke patients, regulate the intestinal flora and intestinal mucosal barrier function, improve the immune function, reduce the incidence of infectious complications and gastrointestinal motility disorders.
Collapse
|
45
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
46
|
The Effect of Oral Probiotics (Streptococcus Salivarius k12) on the Salivary Level of Secretory Immunoglobulin A, Salivation Rate, and Oral Biofilm: A Pilot Randomized Clinical Trial. Nutrients 2022; 14:nu14051124. [PMID: 35268099 PMCID: PMC8912462 DOI: 10.3390/nu14051124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to assess the effect of oral probiotics containing the Streptococcus salivarius K12 strain on the salivary level of secretory immunoglobulin A, salivation rate, and oral biofilm. Thirty-one consenting patients meeting the inclusion criteria were recruited in this double-blind, placebo-controlled, two-arm, parallel-group study and randomly divided into probiotic (n = 15) and placebo (n = 16) groups. Unstimulated salivation rate, concentration of salivary secretory immunoglobulin A, Turesky index, and Papillary-Marginal-Attached index were assessed after 4 weeks of intervention and 2 weeks of washout. Thirty patients completed the entire study protocol. We found no increase in salivary secretory immunoglobulin A levels and salivary flow rates in the probiotic group compared with placebo. Baseline and outcome salivary secretory immunoglobulin A concentrations (mg/L) were 226 ± 130 and 200 ± 113 for the probiotic group and 205 ± 92 and 191 ± 97 for the placebo group, respectively. A significant decrease in plaque accumulation was observed in the probiotic group at 4 and 6 weeks. Within the limitations of the present study, it may be concluded that probiotic intake (Streptococcus salivarius K12) does not affect salivation rates and secretory immunoglobulin A salivary levels but exhibits a positive effect on plaque accumulation. Trial registration NCT05039320. Funding: none.
Collapse
|
47
|
African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Sci Food 2022; 6:15. [PMID: 35181677 PMCID: PMC8857253 DOI: 10.1038/s41538-022-00130-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional fermented foods are of major importance with respect to the socio-economic growth, food security, nutrition, and health of African consumers. In several African countries, traditional fermentation processes provide a means of food preservation, improving the shelf life and adding to the nutrients in the food products. As with any fermented foods, the associated food microbiota is of great importance and interest. Recent studies on the microbiome of African fermented foods using high-throughput DNA sequencing techniques have revealed the presence of diverse microbial populations of fundamental, technological, and commercial interest that could be harnessed to further improve health, food safety, and quality. This review provides an overview of African fermented foods, their microbiota, and the health-promoting potential of these foods and microbes.
Collapse
|
48
|
Primary Prevention of Pediatric Asthma through Nutritional Interventions. Nutrients 2022; 14:nu14040754. [PMID: 35215404 PMCID: PMC8875095 DOI: 10.3390/nu14040754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Asthma is the most common chronic non-communicable disease in children, the pathogenesis of which involves several factors. The increasing burden of asthma worldwide has emphasized the need to identify the modifiable factors associated with the development of the disease. Recent research has focused on the relationship between dietary factors during the first 1000 days of life (including pregnancy)—when the immune system is particularly vulnerable to exogenous interferences—and allergic outcomes in children. Specific nutrients have been analyzed as potential targets for the prevention of childhood wheeze and asthma. Recent randomized controlled trials show that vitamin D supplementation during pregnancy, using higher doses than currently recommended, may be protective against early childhood wheezing but not school-age asthma. Omega-3 fatty acid supplementation during pregnancy and infancy may be associated with a reduced risk of childhood wheeze, although the evidence is conflicting. Data from observational studies suggest that some dietary patterns during pregnancy and infancy might also influence the risk of childhood asthma. However, the quality of the available evidence is insufficient to allow recommendations regarding dietary changes for the prevention of pediatric asthma. This review outlines the available high-quality evidence on the role of prenatal and perinatal nutritional interventions for the primary prevention of asthma in children and attempts to address unmet areas for future research in pediatric asthma prevention.
Collapse
|
49
|
Alshehri MM, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Tutuncu S, Aydar EF, Topkaya C, Mertdinc Z, Ozcelik B, Aital M, Kumar NVA, Lapava N, Rajkovic J, Ertani A, Nicola S, Semwal P, Painuli S, González-Contreras C, Martorell M, Butnariu M, Bagiu IC, Bagiu RV, Barbhai MD, Kumar M, Daştan SD, Calina D, Cho WC. A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6025900. [PMID: 35154569 PMCID: PMC8837466 DOI: 10.1155/2022/6025900] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/04/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
The use of phytochemicals is gaining interest for the treatment of metabolic syndromes over the synthetic formulation of drugs. Senna is evolving as one of the important plants which have been vastly studied for its beneficial effects. Various parts of Senna species including the root, stem, leaves, and flower are found rich in numerous phytochemicals. In vitro, in vivo, and clinical experiments established that extracts from Senna plants have diverse beneficial effects by acting as a strong antioxidant and antimicrobial agent. In this review, Senna genus is comprehensively discussed in terms of its botanical characteristics, traditional use, geographic presence, and phytochemical profile. The bioactive compound richness contributes to the biological activity of Senna plant extracts. The review emphasizes on the in vivo and in vitro antioxidant and anti-infectious properties of the Senna plant. Preclinical studies confirmed the beneficial effects of the Senna plant extracts and its bioactive components in regard to the health-promoting activities. The safety, side effects, and therapeutic limitations of the Senna plant are also discussed in this review. Additional research is necessary to utilize the phenolic compounds towards its use as an alternative to pharmacological treatments and even as an ingredient in functional foods.
Collapse
Affiliation(s)
- Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Sena Tutuncu
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Elif Feyza Aydar
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Cansu Topkaya
- Bahçeşehir University-School of Applied Disciplines-Gastronomy and Culinary Arts, Beşiktaş, İstanbul 34022, Turkey
| | - Zehra Mertdinc
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Beraat Ozcelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Mahima Aital
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - N. V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Natallia Lapava
- Medicine Standardization Department of Vitebsk State Medical University, Belarus
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, 248 001 Uttarakhand, India
- Uttarakhand State Council for Science and Technology, 248 007, Dehradun, Uttarakhand, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, 248 001 Uttarakhand, India
- Himalayan Environmental Studies and Conservation Organization, 248 001, Dehradun, Uttarakhand, India
| | - Carlos González-Contreras
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, 4070386 Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, 4070386 Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Mrunal D. Barbhai
- Chemical and Biochemical Processing Division, Central Institute for Research (ICAR) on Cotton Technology, 400019, Mumbai, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research (ICAR) on Cotton Technology, 400019, Mumbai, India
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
50
|
Jeong J, Mun S, Oh Y, Cho CS, Yun K, Ahn Y, Chung WH, Lim MY, Lee KE, Hwang TS, Han K. A qRT-PCR Method Capable of Quantifying Specific Microorganisms Compared to NGS-Based Metagenome Profiling Data. Microorganisms 2022; 10:microorganisms10020324. [PMID: 35208779 PMCID: PMC8875016 DOI: 10.3390/microorganisms10020324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
Metagenome profiling research using next-generation sequencing (NGS), a technique widely used to analyze the diversity and composition of microorganisms living in the human body, especially the gastrointestinal tract, has been actively conducted, and there is a growing interest in the quantitative and diagnostic technology for specific microorganisms. According to recent trends, quantitative real-time PCR (qRT-PCR) is still a considerable technique in detecting and quantifying bacteria associated with the human oral and nasal cavities, due to the analytical cost and time burden of NGS technology. Here, based on NGS metagenome profiling data produced by utilizing 100 gut microbiota samples, we conducted a comparative analysis for the identification and quantification of five bacterial genera (Akkermansia, Bacteroides, Bifidobacterium, Phascolarctobacterium, and Roseburia) within same metagenomic DNA samples through qRT-PCR assay in parallel. Genus-specific primers, targeting the particular gene of each genus for qRT-PCR assay, allowed a statistically consistent quantification pattern with the metagenome profiling data. Furthermore, results of bacterial identification through Sanger validation demonstrated the high genus-specificity of each primer set. Therefore, our study suggests that an approach to quantifying specific microorganisms by applying the qRT-PCR method can compensate for the concerns (potential issues) of NGS while also providing efficient benefits to various microbial industries.
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea; (J.J.); (Y.O.)
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea; (J.J.); (Y.O.)
| | - Chun-Sung Cho
- Department of Neurosurgery, College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Kyeongeui Yun
- HuNBiome Co., Ltd., Seoul 08507, Korea; (K.Y.); (Y.A.)
| | - Yongju Ahn
- HuNBiome Co., Ltd., Seoul 08507, Korea; (K.Y.); (Y.A.)
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (W.-H.C.); (M.Y.L.)
| | - Mi Young Lim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (W.-H.C.); (M.Y.L.)
| | - Kyung Eun Lee
- Department of Oral Medicine, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea;
| | | | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea; (J.J.); (Y.O.)
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-550-1240
| |
Collapse
|