1
|
Khan Y, Liu L, Huang J, Zeb A, Sun X, Cai Y, Fan H. Unveiling spatial distribution of flavonoids and polysaccharides in four-year-old Polygonatum cyrtonema Hua rhizome via MALDI-MSI. Int J Biol Macromol 2025; 309:142694. [PMID: 40187464 DOI: 10.1016/j.ijbiomac.2025.142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/07/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Polygonatum cyrtonema Hua has been attracting attention of Asian countries as a traditional herbal medicine. Unveiling the spatial distribution accumulation of key metabolites is of great worth for investigating its nutritional and medicinal values. However, their spatial distribution information during different growth period (four-year-old) in rhizome has not been extensively explored, due to the lack of efficient analytical techniques. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is employed to visualize the spatial distribution of metabolites in different growth period rhizome sample (Y1, Y2, Y3, Y4). From the mass spectrum imaging, the flavonoids (chalcone, Artemetin, Peganetin, Kaempferol and Icariin) and carbohydrates (Cellobiose, 1-Kestose, Sucrose acetate isobutyrate, D-Galactose, α, β-Trehalose, Raffinose, β-Cyclodextrin were distributed evenly throughout the entire rhizome. Additionally, several flavonoids were down regulated with (27.03 %) in Y2 sample, which indicated that they apparently played protective roles in growth development in response to abiotic and biotic stress. From the collected molecular imaging data, flavonoids were observed toward the edges of rhizome and up-regulated in response to high UV radiation, indicating ability of protection against oxidative stress. Contrarily, polysaccharides dispersed increasing visualization per growth period. Comparative analysis indicated metabolites abundance thoroughly in Y4 sample, due to adopting defense against environmental stress. This study reveals an overview of the spatial distribution and accumulation of key metabolites in four-year-old P. cyrtonema rhizome, that highlight their significant roles in physiological processes as well as their potential medicinal value. Using MALDI-MSI, we characterize differential expression of flavonoids and carbohydrates. The results shows adaptive responses to environmental stress, that revealing new aspects to the nutritional and therapeutic properties.
Collapse
Affiliation(s)
- Yasmin Khan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Junru Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Aurang Zeb
- Department of Cell and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Jeyabalan J, Veluchamy A, Narayanasamy S. Production optimization, characterization, and application of a novel thermo- and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. Int J Biol Macromol 2025; 308:142557. [PMID: 40158574 DOI: 10.1016/j.ijbiomac.2025.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental pollution driven by rapid industrialization and urbanization, has become serious concern due to adverse health effects. Among various bioremediation strategies, laccase, an oxidoreductase enzyme with wide substrate range and high redox-potential (0.4-0.8 V) has garnered significant attention due to its ability to oxidize various organic pollutants into non-toxic products. However, its practical application is often limited due to susceptibility to extreme pH and inhibitory compounds present in wastewater. To overcome this challenge, bacterial laccase, also known as versatile laccases, offer superior stability under harsh environmental conditions making them ideal for bioremediation. Furthermore, isolating native bacterium from contaminated sites enhances their potential, as these organisms are naturally adapted to pollutant-rich environments with intrinsic degradation ability. In this study, Bacillus drentensis 2E was isolated from dye-effluent release site. Laccase production was systematically optimized by One-Factor-at-a-Time, Plackett-Burman Design, and Central Composite Design, yielding a 2.45-fold increase in activity compared to unoptimized condition. Optimized media composition is as follows (g/L): KNO3-5.034,Glucose-3, KH2PO4-0.3,MgSO4-0.3, NaCl-0.55, CaCl2-0.55, CuSO4-0.178 mM, inoculum volume-3.54 %. The enzyme was further characterized for kinetic properties against ABTS, guaiacol and syringaldazine. It demonstrated exceptional stability across a wide temperature (20 ± 1 °C-70 ± 1 °C) and pH range (3.0 ± 0.01-8.0 ± 0.01) with heavy metal tolerance to Ca2+, Mn2+, Mg2+,Zn2+,Cu2+,Co2+,Ni2+. Also, BDLaccase effectively degraded Acid Red-27 (99.76 ± 2.27 %) and Direct Blue-6 (67.43 ± 2.31 %) within 5 h, as confirmed using UV-Vis spectroscopy, FT-IR, and LC-MS. These findings suggests that, BDLaccase is a robust biocatalyst for bioremediation especially in treatment of dyes due to its broad stability and efficiency.
Collapse
Affiliation(s)
- Jothika Jeyabalan
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajithkumar Veluchamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Khan N. Exploring Plant Resilience Through Secondary Metabolite Profiling: Advances in Stress Response and Crop Improvement. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091600 DOI: 10.1111/pce.15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
The metabolome, encompassing small molecules within organisms, provides critical insights into physiology, environmental influences, and stress responses. Metabolomics enables comprehensive analysis of plant metabolites, uncovering biomarkers and mechanisms underlying stress adaptation. Regulatory genes such as MYB and WRKY are central to secondary metabolite synthesis and environmental resilience. By integrating metabolomics with genomics, researchers can explore stress-related pathways and advance crop improvement efforts. This review examines metabolomic profiling under stress conditions, emphasizing drought tolerance mechanisms mediated by amino acids and organic acids. Additionally, it highlights the shikimate pathway's pivotal role in synthesizing amino acids and secondary metabolites essential for plant defense. These insights contribute to understanding metabolic networks that drive plant resilience, informing strategies for agricultural sustainability.
Collapse
Affiliation(s)
- Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Shinde S, Ikuze E, Kaler E, Verma K, Louis J. Fall Armyworm Frass Induce Sorghum Defenses Against Insect Herbivores. J Chem Ecol 2025; 51:39. [PMID: 40080257 DOI: 10.1007/s10886-025-01591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The fall armyworm (FAW; Spodoptera frugiperda) is a global invasive agricultural pest. Sorghum (Sorghum bicolor), an important monocot crop cultivated worldwide, faces significant challenges from FAW, which has become a major threat to sorghum production. Plants have evolved a wide array of defense mechanisms to combat insect assault. Caterpillar secretions contain both elicitors and effectors, which can either amplify or suppress plant defenses, thereby influencing plant defense responses. In this study, we examined the role of FAW frass in modulating sorghum defenses. Our results suggest that frass application significantly induced sorghum defenses that impacted subsequent FAW herbivory. We also found that the exogenous frass application significantly elevated the phytohormone levels, specifically jasmonic acid and abscisic acid levels, potentially contributing to enhanced sorghum defense against FAW. Furthermore, FAW frass-treated plants exhibited transient increase in total flavonoids, a class of secondary metabolites, which was previously shown to have a detrimental impact on FAW growth and survival. FAW frass application on sorghum plants mitigated proliferation of specialist aphids (sugarcane aphids), though its effect on generalist aphids (greenbugs) was less pronounced. These findings highlight the role of FAW frass in mediating plant responses against both chewing and piercing-sucking insect pests, providing valuable insights into sorghum's defense mechanisms and its potential for pest management strategies.
Collapse
Affiliation(s)
- Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Edith Ikuze
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Esha Kaler
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kashish Verma
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
5
|
Bali S, Mohapatra S, Michael R, Arora R, Dogra V. Plastidial metabolites and retrograde signaling: A case study of MEP pathway intermediate MEcPP that orchestrates plant growth and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109747. [PMID: 40073740 DOI: 10.1016/j.plaphy.2025.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Plants are frequently exposed to environmental stresses. In a plant cell, chloroplast acts as machinery that rapidly senses changing environmental conditions and coordinates with the nucleus and other subcellular organelles by exchanging plastidial metabolites, proteins/peptides, or lipid derivatives, some of which may act as retrograde signals. These specific plastidial metabolites include carotenoid derivatives, isoprenes, phosphoadenosines, tetrapyrroles, phytohormone (like salicylic acid), and reactive electrophile species (RES), which mediate retrograde communications to sustain stress conditions. The methylerythritol phosphate (MEP) pathway is an essential and evolutionarily conserved isoprenoid biosynthetic pathway operating in bacteria and plastids, synthesizing metabolites such as terpenoids, gibberellins, abscisic acid, phytol chain of chlorophyll, carotenoids, tocopherols, and glycosides. The MEP pathway is susceptible to oxidative stress, which results in the overaccumulation of its intermediates, such as methylerythritol cyclodiphosphate (MEcPP). Recent studies revealed that under stress conditions, leading to its accumulation, MEcPP mediates retrograde signaling that alters the nuclear gene expression, leading to growth inhibition and acclimation. This review covers aspects of its generation, signaling, mechanism of action, and interplay with other factors to acquire adaptive responses during stress conditions. The review highlights the importance of plastids as sensors of stress and plastidial metabolites as retrograde signals communicating with nucleus and other sub-cellular organelles to regulate plants' response to different stress conditions.
Collapse
Affiliation(s)
- Shagun Bali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India
| | - Sumanta Mohapatra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Michael
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India
| | - Rashmi Arora
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Maimaiti A, Gu W, Yu D, Guan Y, Qu J, Qin T, Wang H, Ren J, Zheng H, Wu P. Dynamic molecular regulation of salt stress responses in maize ( Zea mays L.) seedlings. FRONTIERS IN PLANT SCIENCE 2025; 16:1535943. [PMID: 40070712 PMCID: PMC11893837 DOI: 10.3389/fpls.2025.1535943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Introduction Maize ranks among the most essential crops globally, yet its growth and yield are significantly hindered by salt stress, posing challenges to agricultural productivity. To utilize saline-alkali soils more effectively and enrich maize germplasm resources, identifying salt-tolerant genes in maize is essential. Methods In this study, we used a salt-tolerant maize inbred line, SPL02, and a salt-sensitive maize inbred line, Mo17. We treated both lines with 180 mmol/L sodium chloride (NaCl) for 0 days, 3 days, 6 days, and 9 days at the three-leaf growth stage (V3). Through comprehensive morphological, physiological, and transcriptomic analyses, we assessed salt stress effects and identified hub genes and pathways associated with salt tolerance. Results Our analysis identified 25,383 expressed genes, with substantial differences in gene expression patterns across the salt treatment stages. We found 8,971 differentially expressed genes (DEGs)-7,111 unique to SPL02 and 4,791 unique to Mo17-indicating dynamic gene expression changes under salt stress. In SPL02, the DEGs are primarily associated with the MAPK signaling pathway, phenylpropanoid biosynthesis, and hormone signaling under salt treatment conditions. In Mo17, salt stress responses are primarily mediated through the abscisic acid-activated signaling pathway and hormone response. Additionally, our weighted gene co-expression network analysis (WGCNA) pinpointed five hub genes that likely play central roles in mediating salt tolerance. These genes are associated with functions including phosphate import ATP-binding protein, glycosyltransferase, and WRKY transcription factors. Discussion This study offers valuable insights into the complex regulatory networks governing the maize response to salt stress and identifies five hub genes and pathways for further investigation. These findings contribute valuable knowledge for enhancing agricultural resilience and sustainability in saline-affected environments.
Collapse
Affiliation(s)
- Atikaimu Maimaiti
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Gu
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Diansi Yu
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Guan
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingtao Qu
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tao Qin
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Wang
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiaojiao Ren
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Hongjian Zheng
- Crop Breeding, Cultivation Research Institution/Centro Internacional de Mejoramientode Maizy Trigo (CIMMYT)-China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Penghao Wu
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Czylkowska A, Pitucha M, Raducka A, Fornal E, Kordialik-Bogacka E, Ścieszka S, Smoluch M, Burdan F, Jędrzejec M, Szymański P. Thiosemicarbazone-Based Compounds: A Promising Scaffold for Developing Antibacterial, Antioxidant, and Anticancer Therapeutics. Molecules 2024; 30:129. [PMID: 39795184 PMCID: PMC11721278 DOI: 10.3390/molecules30010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This paper presents the synthesis and characterization of new thiosemicarbazone derivatives with potential applications as antibacterial, antioxidant and anticancer agents. Six thiosemicarbazone derivatives (L-L5) were synthesized by reacting an appropriate thiosemicarbazide derivative with 2-pyridinecarboxaldehyde. The structures of the obtained compounds were confirmed using mass spectrometry, infrared spectroscopy, and NMR spectroscopy. Antibacterial activity was evaluated by using the microdilution method, determining the minimum inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Compound L1 showed the most potent antibacterial activity, especially against Bacillus cereus (MIC 10 mg/L). Molecular docking to topoisomerase II and transcriptional regulator PrfA suggests that the studied compounds can effectively bind to molecular targets recognized in anticancer and antibacterial therapies. An assessment of physicochemical properties (ADME) indicates favorable parameters of the compounds as potential drugs. Compounds L and L2 showed the highest antioxidant activity, surpassing the activity of the Trolox standard. Cytotoxicity against A549 lung cancer cells was evaluated by the MTT assay. Compound L4 exhibited the strongest inhibitory effect on cancer cell survival. The obtained results indicate that the synthesized thiosemicarbazide derivatives, especially L1, L2, and L4, are promising compounds with potential applications as antibacterial and anticancer drugs.
Collapse
Affiliation(s)
- Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.R.); (E.F.)
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Anita Raducka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.R.); (E.F.)
| | - Ewelina Fornal
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (A.R.); (E.F.)
| | - Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (E.K.-B.); (S.Ś.)
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland; (E.K.-B.); (S.Ś.)
| | - Marek Smoluch
- Faculty of Materials Science and Ceramics, AGH University, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Franciszek Burdan
- Human Anatomy Department, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Mateusz Jędrzejec
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (M.J.); (P.S.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland; (M.J.); (P.S.)
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| |
Collapse
|
8
|
Alum EU. Climate change and its impact on the bioactive compound profile of medicinal plants: implications for global health. PLANT SIGNALING & BEHAVIOR 2024; 19:2419683. [PMID: 39460932 PMCID: PMC11520564 DOI: 10.1080/15592324.2024.2419683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| |
Collapse
|
9
|
Sagan B, Czerny B, Stasiłowicz-Krzemień A, Szulc P, Skomra U, Karpiński TM, Lisiecka J, Kamiński A, Kryszak A, Zimak-Krótkopad O, Cielecka-Piontek J. Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop ( Humulus lupulus L.) Varieties. Foods 2024; 13:4155. [PMID: 39767097 PMCID: PMC11675283 DOI: 10.3390/foods13244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.
Collapse
Affiliation(s)
- Bartłomiej Sagan
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Urszula Skomra
- Institute of Soil Science and Plant Cultivation State Research Institute, Department of Biotechnology and Plant Breeding, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Pomeranian Medical University Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Oskar Zimak-Krótkopad
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| |
Collapse
|
10
|
da C. Pinaffi-Langley AC, Tarantini S, Hord NG, Yabluchanskiy A. Polyphenol-Derived Microbiota Metabolites and Cardiovascular Health: A Concise Review of Human Studies. Antioxidants (Basel) 2024; 13:1552. [PMID: 39765880 PMCID: PMC11673714 DOI: 10.3390/antiox13121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphenols, plant-derived secondary metabolites, play crucial roles in plant stress responses, growth regulation, and environmental interactions. In humans, polyphenols are associated with various health benefits, particularly in cardiometabolic health. Despite growing evidence of polyphenols' health-promoting effects, their mechanisms remain poorly understood due to high interindividual variability in bioavailability and metabolism. Recent research highlights the bidirectional relationship between dietary polyphenols and the gut microbiota, which can influence polyphenol metabolism and, conversely, be modulated by polyphenol intake. In this concise review, we summarized recent advances in this area, with a special focus on isoflavones and ellagitannins and their corresponding metabotypes, and their effect on cardiovascular health. Human observational studies published in the past 10 years provide evidence for a consistent association of isoflavones and ellagitannins and their metabotypes with better cardiovascular risk factors. However, interventional studies with dietary polyphenols or isolated microbial metabolites indicate that the polyphenol-gut microbiota interrelationship is complex and not yet fully elucidated. Finally, we highlighted various pending research questions that will help identify effective targets for intervention with precision nutrition, thus maximizing individual responses to dietary and lifestyle interventions and improving human health.
Collapse
Affiliation(s)
- Ana Clara da C. Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, 1085 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Olszowy-Tomczyk M, Paprotny Ł, Wianowska D. Stability of Selected Phenolic Acids Under Simulated and Real Extraction Conditions from Plants. Molecules 2024; 29:5861. [PMID: 39769950 PMCID: PMC11677208 DOI: 10.3390/molecules29245861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Currently, there is a significant demand for natural biologically active compounds. Emphasis is placed on improving the quality and safety of processed natural products, which is understandable in light of the frequently observed instability of natural compounds and their degradation, among others, to compounds of unknown biological activity. In this paper, the influence of typical conditions of currently used assisted extraction techniques on the stability of 5-O-caffeoylquinic acid and 1,3-di-O-caffeoylquinic acid during their simulated and real extraction from plants was investigated. In the experiments, extraction assisted by microwave radiation, ultrasound and pressure in procedures known as MASE, UASE and PLE techniques, respectively, was used. By comparing the amounts of native plant components, i.e., compounds present in the extract obtained, as shown, by the non-destructive SSDM technique with the amounts of these compounds estimated in extracts obtained by the above-mentioned techniques, it was proven that their content is variable. These differences are a consequence of two opposing processes, i.e., the success of the isolation process (its efficiency) and the degree of degradation/transformation of the main components. The results of the studies presented here can reduce the share of the second of the above, and consequently contribute to more effective obtaining of phenolic compounds from plants.
Collapse
Affiliation(s)
- Małgorzata Olszowy-Tomczyk
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| | - Łukasz Paprotny
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| |
Collapse
|
12
|
Pu W, Yu Y, Shi X, Shao Y, Ye B, Chen Y, Song Q, Shen J, Li H. The Effect of Seasonal and Annual Variation on the Quality of Polygonatum Cyrtonema Hua Rhizomes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3459. [PMID: 39771157 PMCID: PMC11676584 DOI: 10.3390/plants13243459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This study aims to reveal the interannual and seasonal variations in functional components in Polygonatum cyrtonema Hua. rhizomes and evaluate whether the variations significantly affect the quality of rhizomes as a traditional Chinese herbal medicine. The interannual and seasonal variations in total flavonoid content and total saponin content were analyzed. The global dynamic variation in secondary metabolites in the rhizomes during a five-year growth period and in two traditional harvesting seasons were investigated based on metabolomics method. Results clearly showed that the functional components in P. cyrtonema rhizomes exhibited a significant increase in accumulation during the one- to four-year growth period and a significant decrease in accumulation during the four- to five-year growth period. The most active accumulation occurred during the three- to four-year growth period. Drastic variations in functional components occurred from spring to autumn. The significant interannual variation and drastic seasonal variation were strongly associated with the enrichment in some pathways related to the biosynthesis of secondary metabolites and the metabolisms of amino acids. The interannual and seasonal variations in functional components significantly affected the quality of P. cyrtonema rhizomes. The four-year-old rhizomes had the most superior quality due to their higher content of functional components and much more newly formed components. The rhizomes harvested in spring or autumn had unequal quality because of their significant differences in composition and content of functional components. Specifically, the rhizomes from spring contained more flavonoids, alkaloids, and phenolic acids, while those from autumn comprised more steroids. In conclusion, this study reveals that the interannual and seasonal variations in functional components can significantly affect the quality of P. cyrtonema rhizomes as a traditional Chinese herbal medicine. This study provides foundational insights and theoretical guidance for determining an optimal cultivation period to obtain medicinal rhizomes with superior quality. It also offers a strategy for harvesting medicinal rhizomes in two different seasons to achieve unequal quality.
Collapse
Affiliation(s)
- Weiting Pu
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (W.P.)
| | - Yefei Yu
- Zhejiang Dapanshan National Natural Reserve Administration, Panan 322300, China;
| | - Xiaoxiao Shi
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Ye Shao
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (W.P.)
| | - Bihuan Ye
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Youwu Chen
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qiyan Song
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Jianjun Shen
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Haibo Li
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| |
Collapse
|
13
|
Zeghbib W, Boudjouan F, Carneiro J, Oliveira ALS, Sousa SF, Pintado ME, Ourabah A, Vasconcelos V, Lopes G. LC-ESI-UHR-QqTOF-MS/MS profiling and anti-inflammatory potential of the cultivated Opuntia ficus-indica (L.) Mill. and the wild Opuntia stricta (Haw.) Haw. fruits from the Algerian region. Food Chem 2024; 460:140414. [PMID: 39084103 DOI: 10.1016/j.foodchem.2024.140414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Opuntia plants are abundant but still underexplored edible resources of the Algerian region. This work chemically characterizes extracts of different parts of the fruit of the commercial Opuntia ficus-indica (L.) Mill. and the wild Opuntia stricta (Haw.) Haw. growing in Bejaia, and evaluates their anti-inflammatory potential through different cell and cell-free bioassays. The LC-ESI-UHR-QqTOF-MS/MS analysis enabled the identification of 18 compounds, with azelaic acid and 1-O-vanilloyl-β-d-glucose reported here for the first time. Aqueous extracts of seeds were the most effective in scavenging superoxide anion radical (IC50 = 111.08 μg/mL) and presented the best anti-inflammatory potential in LPS-stimulated macrophages (IC50 = 206.30 μg/mL). The pulp of O. stricta suggested potential for addressing post-inflammatory hyperpigmentation, with piscidic and eucomic acids predicted with the strongest binding affinity towards tyrosinase, exhibiting higher scoring values than the reference inhibitor kojic acid. This pioneer study brings valuable perspectives for the pharmacological, nutritional and economic valorization of the wild O. stricta for functional foods.
Collapse
Affiliation(s)
- Walid Zeghbib
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000 Bejaia, Algeria; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Fares Boudjouan
- Université de Bejaia, Faculté de Technologie, Laboratoire de Génie de l'Environnement, 06000 Bejaia, Algeria; Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Département de Biotechnologie, 06000, Bejaia, Algeria.
| | - João Carneiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Ana L S Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
| | - Sérgio F Sousa
- LAQV@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Manuela Estevez Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
| | - Asma Ourabah
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000 Bejaia, Algeria.
| | - Vitor Vasconcelos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Graciliana Lopes
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Jaroszewicz B, Stojek K, Bruelheide H, Ponette Q, Scherer-Lorenzen M, Verheyen K, Kiss AK. Canopy openness, proportion of deciduous trees and topsoil C/N ratio drive the yield, but their effect on the polyphenol content of medicinal plants is species-specific. EUROPEAN JOURNAL OF FOREST RESEARCH 2024; 143:1759-1771. [DOI: 10.1007/s10342-024-01724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 01/05/2025]
Abstract
AbstractForests and woodlands are the major source of wild medicinal plants worldwide. In our study, we aimed to identify the factors influencing the yield and polyphenol content of Aegopodium podagraria L., Galium aparine L., Rubus fruticosus L., Rubus idaeus L., Stachys sylvatica L. and Urtica dioica L., the common and abundant medicinal plant species in the study areas. We showed that European temperate forests are potentially an important source of the medicinal resources. Light availability, controlled by canopy cover, proportion of deciduous trees and stand basal area were the most important factors positively influencing both abundance and quality of medicinal plants. The C/N ratio and pH of the topsoil were the most important factors positively influencing the content of phenolic compounds. The phenolic content was highly species-specific and varied according to local environmental conditions. A high proportion of deciduous species and a high canopy openness increased the yield and quality of medicinal plants by ensuring high light availability. Plants with high total polyphenol content should also be sought on biologically active (non-acidic) soils with a high C/N ratio. Our results can be used to guide forest management in areas where harvesting of understory medicinal plants is an important provisioning ecosystem service. In many cases a forest management scenario friendly to medicinal plants may require only a minor changes in forest management intensity, as cultivation or enhanced growth of MD plants can take place in intensively thinned forests and cleared forest patches, without competing with timber production.
Collapse
|
15
|
Lee J, Song JH, Mun SH, Ko HJ, Um S, Kim SH. Structural Elucidation and Antiviral Properties of Pannosides from the Halophyte Aster tripolium L. Mar Drugs 2024; 22:524. [PMID: 39728099 DOI: 10.3390/md22120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Four previously undescribed pentacyclic triterpenoid saponins, pannosides F-I (1-4), were isolated from the halophyte Aster tripolium L. (Tripolium pannonicum), and their chemical structures were elucidated using 1D and 2D NMR spectroscopy and mass spectrometry. Comprehensive structural analysis revealed the presence of distinct aglycone and glycosidic moieties, along with complex acylation patterns. The acyl chains of pannosides, 3-hydroxybutyrate (3-HB) residues, were derivatized with (S)- and (R)- phenylglycine methyl ester to resolve the absolute configurations of the chiral centers in 3-HB. Then, the acyl chain-containing saponins, pannosides were evaluated for their antiviral activities against enterovirus A71 (EV71), coxsackievirus B3 (CVB3), and rhinovirus 1B (HRV1B). Pannosides exhibited antiviral activities against HRV1B, EV71, and CVB3. These findings suggest that saponins from A. tripolium exhibit potential antiviral activities and could be further explored for their therapeutic applications.
Collapse
Affiliation(s)
- Jaeyoun Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
16
|
Li B, Ge Y, Liang J, Zhu Z, Chen B, Li D, Zhuang Y, Wang Z. Precise regulating the specific oxygen consumption rate to strengthen the CoQ 10 biosynthesis by Rhodobater sphaeroides. BIORESOUR BIOPROCESS 2024; 11:106. [PMID: 39496909 PMCID: PMC11534906 DOI: 10.1186/s40643-024-00813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is the most consumed dietary supplement and mainly biosynthesized by aerobic fermentation of Rhodobacter sphaeroides (R. sphaeroides). Oxygen supply was identified as a bottleneck for improving CoQ10 yield in R. sphaeroides. In this study, a precise regulation strategy based on dielectric spectroscopy (DS) was applied to further improve CoQ10 biosynthesis by R. sphaeroide. First, a quantitative response model among viable cells, cell morphology, and oxygen uptake rate (OUR) was established. DS could be used to detect viable R. sphaeroides cells, and the relationship among cell morphology, CoQ10 biosynthesis, and OUR was found to be significant. Based on this model, the online specific oxygen consumption rate (QO2) control strategy was successfully applied to the CoQ10 fermentation process. QO2 controlled at 0.07 ± 0.01 × 10- 7mmol/cell/h was most favorable for CoQ10 biosynthesis, resulting in a 28.3% increase in CoQ10 production. Based on the multi-parameters analysis and online QO2 control, a precise online nutrient feeding strategy was established using conductivity detected by DS. CoQ10 production was improved by 35%, reaching 3384 mg/L in 50 L bioreactors. This online control strategy would be effectively applied for improving industrial CoQ10 production, and the precise fermentation control strategy could also be applied to other fermentation process.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China
| | - Yan Ge
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Jianguang Liang
- College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company, Hohhot, 010000, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, P.O. box 329#, Shanghai, 200237, China.
| |
Collapse
|
17
|
Li IC, Lee YL, Li TJ, Tsai YS, Chen YL, Chen CC. Whole-Genome Sequencing of Three Lactiplantibacillus plantarum Strains Reveals Potential Metabolites for Boosting Host Immunity Safely. J Microbiol Biotechnol 2024; 34:2079-2090. [PMID: 39263794 PMCID: PMC11540610 DOI: 10.4014/jmb.2402.02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
In response to the growing demand for immune-related products, this study evaluated the safety and immune-modulating potential of three newly discovered Lactiplantibacillus plantarum strains (GKM3, GKK1, and GKD7) through toxicity tests and whole-genome sequencing. Safety evaluations, including the analysis of antimicrobial resistance genes, virulence factors, plasmids, and prophages, classified these strains as safe for human consumption. Acute oral toxicity tests further supported their safety. To evaluate their immune-modulating potential, dendritic cells were exposed to these strains, and the secretion of key cytokines (IFN-β and IL-12) was measured. Among the strains, GKK1 exhibited the highest enhancement of IFN-β and IL-12 production, suggesting its potential as an immune-stimulating probiotic. Bioinformatics analysis revealed potential metabolic pathways and secondary metabolites, including predicted bacteriocins, associated with immune modulation. The presence of a nitrate reductase region in the GKK1 strain indicated its ability to produce nitric oxide, a critical molecule involved in immune regulation and host defense. The presence of glucorhamnan-related gene clusters in GKK1 also suggested immune-enhancing effects. Nitrate reductase expression was confirmed using qPCR, with the highest levels detected in GKK1. Moreover, this study is the first to show an anti-inflammatory effect of plantaricin A, linked to its presence in strain GKM3 and its potential therapeutic applications due to sequence similarity to known anti-inflammatory peptides. Overall, these three L. plantarum strains demonstrated a safe profile and GKK1 showed potential as an immunity-enhancing probiotic. However, additional investigation is required to confirm the involvement of specific metabolic pathways, secondary metabolites, and bacteriocins in immune responses.
Collapse
Affiliation(s)
- I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd, Taoyuan City 325, Taiwan
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| |
Collapse
|
18
|
Safaei F, Alirezalu A, Noruzi P, Alirezalu K. Phytochemical and morpho-physiological response of Melissa officinalis L. to different NH 4+ to NO 3̄ ratios under hydroponic cultivation. BMC PLANT BIOLOGY 2024; 24:968. [PMID: 39407126 PMCID: PMC11481551 DOI: 10.1186/s12870-024-05693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The utilization of nutrition management, has recently been developed as a means of improving the growth and production of phytochemical compounds in herbs. The present study aimed to improve the growth, physiological, and phytochemical characteristics of lemon balm (Melissa officinalis L.) using different NH4+ (ammonium) to NO3̄ (nitrate) ratios (0:100, 25:75, 50:50, 75:25 and 100:0) under floating culture system (FCS). RESULTS The treatment containing 0:100 - NH4+:NO3̄ ratio showed the most remarkable values for the growth and morpho-physiological characteristics of M. officinalis. The results demonstrated that maximum biomass (105.57 g) earned by using the ratio of 0:100 and minimum at 75:25 ratio of NH4+: NO3̄. The plants treated with high nitrate ratio (0:100 - NH4+:NO3̄) showed the greatest concentration of total phenolics (60.40 mg GAE/g DW), chlorophyll a (31.32 mg/100 g DW), flavonoids (12.97 mg QUE/g DW), and carotenoids (83.06 mg/100 g DW). Using the 75:25 - NH4+:NO3̄ ratio caused the highest dry matter (DM), N and K macronutrients in the leaves. The highest antioxidant activity by both DPPH (37.39 µg AAE/mL) and FRAP (69.55 mM Fe++/g DW) methods was obtained in 75:25 - NH4+:NO3̄ treatment. The p-coumaric acid as a main abundant phenolic composition, was detected by HPLC analysis as the highest content in samples grown under 0:100 - NH4+:NO3̄ treatment. Also, the major compounds in M. officinalis essential oil were identified as geranial, neral, geranyl acetate and geraniol by GC analysis. With increasing NO3̄ application, geraniol and geranyl acetate contents were decreased. CONCLUSIONS The findings of present study suggest that the management of NH4+ to NO3̄ ratios in nutrient solutions could contribute to improving growth, physiological and phytochemical properties of M. officinalis. The plants treated with high nitrate ratio (especially 0:100 - NH4+:NO3̄) showed the greatest effects on improving the growth and production of morpho-physiological and phytochemical compounds. By comprehensively understanding the intricate dynamics among nitrogen sources, plants, and their surroundings, researchers and practitioners can devise inventive approaches to optimize nitrogen management practices and foster sustainable agricultural frameworks.
Collapse
Affiliation(s)
- Farzad Safaei
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Parviz Noruzi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Xu N, Yang F, Dai W, Yuan C, Li J, Zhang H, Ren Y, Zhang M. The Influence of Sodium Humate on the Biosynthesis and Contents of Flavonoid Constituents in Lemons. PLANTS (BASEL, SWITZERLAND) 2024; 13:2888. [PMID: 39458835 PMCID: PMC11511212 DOI: 10.3390/plants13202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Sodium humate (SH) is the sodium salt of humic acid. Our previous research has demonstrated that SH has the ability to enhance the levels of total flavonoids in various parts of lemons, including the leaves, peels, pulps, and seeds, thereby improving the quality of lemons. In the current study, the regulation effect of SH on the biosynthesis and content of lemon flavonoid compounds was examined using transcriptome sequencing technology and flavonoid metabolomic analysis. Following SH treatment, the transcriptome sequencing analysis revealed 320 differentially expressed genes (DEGs) between samples treated with SH and control (CK) samples, some of which were associated with the phenylalanine pathway by KEGG annotation analysis. The levels of seven flavonoid compounds identified in lemon peels were observed to increase, and eriocitrin and isoorientin were identified as differential metabolites (DMs, VIP > 1) using OPLS-DA analysis. The integrated analysis of transcriptomics and flavonoid metabolomics indicates that SH treatment induces alterations in gene expression and metabolite levels related to flavonoid synthesis. Specifically, SH influences flavonoid biosynthesis by modulating the activity of key enzymes in the phenylalanine pathway, including HCT (O-hydroxycinnamoyltransferase) and F5H (ferulate-5-hydroxylase).
Collapse
Affiliation(s)
- Nianao Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Fan Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Ruili 678600, China; (F.Y.); (J.L.)
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Cheng Yuan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Jinxue Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Ruili 678600, China; (F.Y.); (J.L.)
| | - Hanqi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Youdi Ren
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| |
Collapse
|
20
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
21
|
Ahsan S, Injamum-Ul-Hoque M, Shaffique S, Ayoobi A, Rahman MA, Rahman MM, Choi HW. Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2774. [PMID: 39409645 PMCID: PMC11479007 DOI: 10.3390/plants13192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
Collapse
Affiliation(s)
- S.M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Akhtar Ayoobi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | | | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hyong Woo Choi
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
22
|
Zeb U, Rahim F, Azizullah A, Saleh IA, Wali S, Khan AA, Khan H, Fiaz S, AbdElgawad H, Iqbal B, Okla MK, Fahad S, Cui FJ. Effects of copper sulphate stress on the morphological and biochemical characteristics of Spinacia oleracea and Avena sativa. BMC PLANT BIOLOGY 2024; 24:889. [PMID: 39343870 PMCID: PMC11441127 DOI: 10.1186/s12870-024-05566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Plants are subjected to various biotic and abiotic stresses that significantly impact their growth and productivity. To achieve balanced crop growth and yield, including for leafy vegetables, the continuous application of micronutrient is crucial. This study investigates the effects of different concentrations of copper sulphate (0, 75, 125, and 175 ppm) on the morphological and biochemical features of Spinacia oleracea and Avena sativa. Morphological parameters such as plant height, leaf area, root length, and fresh and dry weights were optimized at a concentration of 75 ppm copper sulfate. At this concentration, chlorophyll a & b levels increased significantly in Spinacia oleracea (462.9 and 249.8 𝜇𝑔/𝑔), and Avena sativa (404.7 and 437.63𝜇𝑔/𝑔). However, carotenoid content and sugar levels in Spinacia oleracea were negatively affected, while sugar content in Avena sativa increased at 125 ppm (941.6 µg/ml). Protein content increased in Spinacia oleracea (75 ppm, 180.3 µg/ml) but decreased in Avena sativa. Phenol content peaked in both plants at 75 ppm (362.2 and 244.5 µg/ml). Higher concentrations (175 ppm) of copper sulfate reduced plant productivity and health. Plants exposed to control and optimal concentrations (75 and 125 ppm) of copper sulpate exhibited the best health and growth compared to those subjected to higher concentrations. Maximum plant height, leaf area, root length, fresh and dry weights were observed at lower concentrations (75 and 125 ppm) of copper sulfate, while higher concentrations caused toxicity. Optimal copper sulfate levels enhanced chlorophyll a, chlorophyll b, total chlorophyll, protein, and phenol contents but inhibited sugar and carotenoid contents in both Spinacia oleracea and Avena sativa. Overall, increased copper sulfate treatment adversely affected the growth parameters and biochemical profiles of these plants.
Collapse
Affiliation(s)
- Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Biology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, 24420, Pakistan
| | - Azizullah Azizullah
- Department of Biology, Faculty of Biological and Biomedical Science, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | | | - Sher Wali
- Department of Botany, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Asif Ali Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hanif Khan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 65541, Egypt
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212000, China
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Arshad KT, Xiang C, Yuan C, Li L, Wang J, Zhou P, Manzoor N, Yang S, Li M, Liang Y, Chen J, Zhao Y. Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14500. [PMID: 39221482 DOI: 10.1111/ppl.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.
Collapse
Affiliation(s)
- Khadija Tehseen Arshad
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Nazer Manzoor
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junwen Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
24
|
Cho H, Lee DH, Jeong DH, Jang JH, Son Y, Lee SY, Kim HJ. Study on Betaine and Growth Characteristics of Lycium chinense Mill. in Different Cultivation Environments in South Korea. PLANTS (BASEL, SWITZERLAND) 2024; 13:2316. [PMID: 39204752 PMCID: PMC11359574 DOI: 10.3390/plants13162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Betaine is a useful compound that has various activities and is the marker compound of Lycium chinense fruit in Korean Pharmacopoeia. we seek to support the stable production of medicinal goji berries, which have significant potential in the pharmaceutical industry due to their high values, and to provide foundational data for consistent quality control. This study's purpose was to examine the correlation among betaine content, environmental variables, and the growth characteristics of L. chinense fruits. The fruits were collected from 25 cultivation sites across South Korea. We investigated five growth characteristics and betaine contents in L. chinense fruits and twelve soil physicochemical properties, and seven meteorological data at cultivation sites. The fruit's growth characteristics included a length of 15.62-26.49 mm, a width of 7.09-11.38 mm, a fresh weight of 0.73-1.62 g, and a sugar content of 11.10-19.62 Brix°. Its betaine content ranged from 0.54% to 0.97%. The betaine content was positively correlated with electrical conductivity (0.327 **), exchangeable potassium (0.314 **), and sodium (0.259 *) and negatively correlated with annual average minimum temperature (-0.256 *) and annual average temperature (-0.242 *). Also, betaine showed a positive correlation with the length of the fruit (0.294 *) and the fresh weight of the fruit (0.238 *). These results can be used to find the best cultivation method and to manage quality control for the highly economical L. chinense fruit.
Collapse
Affiliation(s)
- Hyejung Cho
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Dong Hwan Lee
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Dae Hui Jeong
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Jun Hyuk Jang
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Yonghwan Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Sun-Young Lee
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| | - Hyun-Jun Kim
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju-si 36040, Republic of Korea; (H.C.); (D.H.L.); (D.H.J.); (J.H.J.); (Y.S.); (S.-Y.L.)
| |
Collapse
|
25
|
Wennrich JP, Holzenkamp C, Ashrafi S, Maier W, Wang H, Ibrahim MAA, Ebada SS, Stadler M. Laburnicolamine: A Rare Penillic Acid Congener from the Nematode Cyst-Associated Fungus Laburnicola nematophila. Chem Biodivers 2024; 21:e202401152. [PMID: 38771298 DOI: 10.1002/cbdv.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A chemical investigation of a methanol extract derived from a solid-state rice culture of the nematode-cyst associated fungus Laburnicola nematophila K01 led to the isolation and characterization of a previously undescribed penillic acid analogue named laburnicolamine (1). The chemical structure was elucidated through comprehensive 1D and 2D NMR spectroscopic analyses in methanol-d4 and DMSO-d6, alongside with HR-ESI-MS spectrometry. The absolute configuration of 1 was concluded through the electronic circular dichroism (ECD) and time-dependent density functional theory-ECD (TDDFT-ECD) computations compared to its acquired spectrum. Biological assays revealed that compound 1 exhibited no significant cytotoxic, antimicrobial, or nematicidal activity.
Collapse
Affiliation(s)
- Jan-Peer Wennrich
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Caren Holzenkamp
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Samad Ashrafi
- Institute for Epidemiology and Pathogen Diagonstics, Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Braunschweig, Germany
| | - Wolfgang Maier
- Institute for Epidemiology and Pathogen Diagonstics, Julius Kühn Institute (JKI) - Federal Research Center for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Hao Wang
- Key Laboratory of Natural Products Research and Development of Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Sherif S Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| |
Collapse
|
26
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
27
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
29
|
Cenobio-Galindo ADJ, Hernández-Fuentes AD, González-Lemus U, Zaldívar-Ortega AK, González-Montiel L, Madariaga-Navarrete A, Hernández-Soto I. Biofungicides Based on Plant Extracts: On the Road to Organic Farming. Int J Mol Sci 2024; 25:6879. [PMID: 38999990 PMCID: PMC11241162 DOI: 10.3390/ijms25136879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.
Collapse
Affiliation(s)
- Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Alma Delia Hernández-Fuentes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Uriel González-Lemus
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Ana Karen Zaldívar-Ortega
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Lucio González-Montiel
- Instituto de Tecnología de los Alimentos, Universidad de la Cañada, Teotitlán de Flores Magón 68540, Oaxaca, Mexico;
| | - Alfredo Madariaga-Navarrete
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| | - Iridiam Hernández-Soto
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1 Rancho Universitario, Tulancingo 43600, Hidalgo, Mexico; (A.d.J.C.-G.); (A.D.H.-F.); (U.G.-L.); (A.K.Z.-O.); (A.M.-N.)
| |
Collapse
|
30
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Alsharif B, Bashir Y, Boylan F. Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia. Molecules 2024; 29:2882. [PMID: 38930948 PMCID: PMC11206503 DOI: 10.3390/molecules29122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses were conducted on essential oil extracted from Saudi Arabian Artemisia judaica L. (A. judaica) aerial parts, resulting in the identification of 58 constituents, representing 93.0% of the total oil composition. The oil primarily consisted of monoterpenes (38.6%), sesquiterpenes (14.1%), and other compounds such as ethyl esters and cyclic ketones (40.3%). The main components identified were piperitone (16.5%), ethyl cinnamate (12.9%), and camphor (9.7%). Multivariate statistical analyses (MVAs), including principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) analysis, were employed to compare the chemical makeup of this oil with 20 other A. judaica oils from various regions. The study revealed distinct clusters, highlighting unique chemotypes and geographic variations. Particularly, the oil from the current study demonstrated a specialized chemical profile with significant concentrations of specific compounds, contributing significantly to its distinctiveness. Further cytotoxicity testing on RAW264.7 macrophages suggested that concentrations below 20 μg/mL of A. judaica oil are suitable for future pharmacological investigations. This study provides valuable insights into the chemical diversity, geographic variations, and potential biomedical applications of these essential oils.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasmin Bashir
- School of Pharmacy, University of Pavia, 27100 Pavia, Italy;
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland;
- Trinity Centre for Natural Products Research—NatPro, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
32
|
Alzahrani AR, Hosny N, Mohamed DI, Abo Nahas HH, Albogami A, Al-Hazani TMI, Ibrahim IAA, Falemban AH, Bamagous GA, Saied EM. Unveiling the multifaceted antiproliferative efficacy of Cichorium endivia root extract by dual modulation of apoptotic and inflammatory genes, inducing cell cycle arrest, and targeting COX-2. RSC Adv 2024; 14:19400-19427. [PMID: 38887636 PMCID: PMC11182420 DOI: 10.1039/d4ra02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 μg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 μg mL-1 and 3.86 μg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Nora Hosny
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University Ismailia 41522 Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University Ismailia Egypt
| | - Doaa I Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | | | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University Al Aqiq Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University P. O. Box: 83 Al-Kharj 11940 Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University 41522 Ismailia Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
33
|
Muterko A, Kiseleva A, Salina E. A Transcriptome Response of Bread Wheat ( Triticum aestivum L.) to a 5B Chromosome Substitution from Wild Emmer. PLANTS (BASEL, SWITZERLAND) 2024; 13:1514. [PMID: 38891322 PMCID: PMC11174853 DOI: 10.3390/plants13111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Over the years, alien chromosome substitution has attracted the attention of geneticists and breeders as a rich source of remarkable genetic diversity for improvement in narrowly adapted wheat cultivars. One of the problems encountered along this way is the coadaptation and realization of the genome of common wheat against the background of the introduced genes. Here, using RNA-Seq, we assessed a transcriptome response of hexaploid wheat Triticum aestivum L. (cultivar Chinese Spring) to a 5B chromosome substitution with its homolog from wild emmer (tetraploid wheat T. dicoccoides Koern) and discuss how complete the physiological compensation for this alien chromatin introgression is. The main signature of the transcriptome in the substituted line was a sharp significant drop of activity before the beginning of the photoperiod with a gradual increase up to overexpression in the middle of the night. The differential expression altered almost all biological processes and pathways tested. Because in most cases, the differential expression or its fold change were modest, and this was only a small proportion of the expressed transcriptome, the physiological compensation of the 5B chromosome substitution in common wheat seemed overall satisfactory, albeit not completely. No over- or under-representation of differential gene expression was found in specific chromosomes, implying that local structural changes in the genome can trigger a global transcriptome response.
Collapse
Affiliation(s)
- Alexandr Muterko
- Institute of Cytology and Genetics SB RAS, 10 Akad. Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
34
|
Holzenkamp C, Wennrich JP, Muema JM, Ashrafi S, Maier W, Stadler M, Ebada SS. Laburnicotides A-F: Acyclic N-Acetyl Oligopeptides from the Nematode-Cyst-Associated Fungus Laburnicola nematophila. ACS OMEGA 2024; 9:21658-21667. [PMID: 38764662 PMCID: PMC11097168 DOI: 10.1021/acsomega.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Nematode-associated fungi revealed the potential to produce a broad spectrum of chemical scaffolds. In this study, a mycelial extract of Laburnicola nematophila, a fungal strain derived from the cereal cyst nematode Heterodera filipjevi, was chemically explored and afforded six unprecedentedly reported acylic N-acetyl oligopeptides, laburnicotides A-F (1-6). Structure elucidation of the isolated compounds was established based on comprehensive 1D and 2D NMR spectroscopic analyses together with the acquired HR-ESI-MS spectrometric data. The absolute configuration of amino acid residues in 1-6 was established by performing advanced Marfey's derivatization method. All isolated compounds were assessed for their cytotoxic, antimicrobial, antiviral, and nematicidal activities with no potential activity observed.
Collapse
Affiliation(s)
- Caren Holzenkamp
- Department
of Microbial Drugs, Helmholtz Centre
for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, Braunschweig 38106, Germany
| | - Jan-Peer Wennrich
- Department
of Microbial Drugs, Helmholtz Centre
for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, Braunschweig 38106, Germany
| | - Jackson M. Muema
- Compound
Profiling and Screening (COPS), Helmholtz
Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Samad Ashrafi
- Institute
for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)−Federal Research Center
for Cultivated Plants, Messeweg 11-12, Braunschweig 38104, Germany
- Institute
for Crop and Soil Science, Julius Kühn
Institute (JKI)−Federal Research Centre for Cultivated Plants, Bundesallee 58, Braunschweig 38116, Germany
| | - Wolfgang Maier
- Institute
for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)−Federal Research Center
for Cultivated Plants, Messeweg 11-12, Braunschweig 38104, Germany
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre
for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, Braunschweig 38106, Germany
| | - Sherif S. Ebada
- Department
of Microbial Drugs, Helmholtz Centre
for Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, Braunschweig 38124, Germany
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| |
Collapse
|
35
|
Ma C, Huang Z, Feng X, Memon FU, Cui Y, Duan X, Zhu J, Tettamanti G, Hu W, Tian L. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:252-265. [PMID: 38354633 DOI: 10.1016/j.wasman.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.
Collapse
Affiliation(s)
- Chong Ma
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xingbao Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Fareed Uddin Memon
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Ying Cui
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xinyu Duan
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Jianfeng Zhu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Wenfeng Hu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China; Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangdong 510642, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China.
| |
Collapse
|
36
|
Tabatabaeipour SN, Shiran B, Ravash R, Niazi A, Ebrahimie E. Comprehensive transcriptomic meta-analysis unveils new responsive genes to methyl jasmonate and ethylene in Catharanthusroseus. Heliyon 2024; 10:e27132. [PMID: 38449649 PMCID: PMC10915408 DOI: 10.1016/j.heliyon.2024.e27132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.
Collapse
Affiliation(s)
- Seyede Nasim Tabatabaeipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Niazi
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
37
|
Murthy HN, Joseph KS, Paek KY, Park SY. Production of specialized metabolites in plant cell and organo-cultures: the role of gamma radiation in eliciting secondary metabolism. Int J Radiat Biol 2024; 100:678-688. [PMID: 38451191 DOI: 10.1080/09553002.2024.2324469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE To provide an updated summary of recent advances in the application of gamma irradiation to elicit secondary metabolism and for induction of mutations in plant cell and organ cultures for the production of industrially important specialized metabolites (SMs). CONCLUSIONS Research on the application of gamma radiation with plants has contributed a lot to microbial decontamination of seeds, and the promotion of physiological processes such as seed germination, seedling vigor, plant growth, and development. Various studies have demonstrated the influence of gamma rays on the morphology, physiology, and biochemistry of plants. Recent research efforts have also shown that low-dose gamma (5-100 Gy) irradiation can be utilized as an expedient solution to alleviate the deleterious effect of abiotic stresses and to obtain better yields of plants. Inducing mutagenesis using gamma irradiation has also evolved as a better option for inducing genetic variability in crops, vegetables, medicinal and ornamentals for their genetic improvement. Plant SMs are gaining increasing importance as pharmaceutical, therapeutic, cosmetic, and agricultural products. Plant cell, tissue, and organ cultures represent an attractive alternative to conventional methods of procuring useful SMs. Among the varied approaches the elicitor-induced in vitro culture techniques are considered an efficient tool for studying and improving the production of SMs. This review focuses on the utilization of low-dose gamma irradiation in the production of high-value SMs such as phenolics, terpenoids, and alkaloids. Furthermore, we present varied successful examples of gamma-ray-induced mutations in the production of SMs.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, India
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
38
|
Djilianov D, Moyankova D, Mladenov P, Topouzova-Hristova T, Kostadinova A, Staneva G, Zasheva D, Berkov S, Simova-Stoilova L. Resurrection Plants-A Valuable Source of Natural Bioactive Compounds: From Word-of-Mouth to Scientifically Proven Sustainable Use. Metabolites 2024; 14:113. [PMID: 38393005 PMCID: PMC10890500 DOI: 10.3390/metabo14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.
Collapse
Affiliation(s)
- Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski', 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 21 Bldg. Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
39
|
Abada E, Mashraqi A, Modafer Y, Al Abboud MA, El-Shabasy A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J Biol Sci 2024; 31:103877. [PMID: 38148949 PMCID: PMC10749906 DOI: 10.1016/j.sjbs.2023.103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Interest in the biosynthesis of nanoparticles has increased in the last era by researchers. Nanoparticles have several applications in different fields like optoelectronics, magnetic devices, drug delivery, and sensors. Nanoparticle synthesis by green methods is safe for the environment and should be explored and encouraged popularly since various plants' have the high extent to form these nanoparticles. Worldwide, UV spectroscopy, X-ray diffraction, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM) besides Fourier Transform Infrared Spectroscopy (FTIR) are used in many ways for characterize nanoparticles. The most advantageous use of AgNPs is their great attribution to be used as antimicrobial agents. Finally, concept of AgNPs synthesis is deserved to be the modern technical and medical concern. The current review shows a complete comprehensive and analytical survey of the biosynthesis of AgNPs with a particular focus on their activities as antimicrobials and the possible theories of their effect on the microbial cell and all influenced secondary metabolites.
Collapse
Affiliation(s)
- Emad Abada
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Abdullah Mashraqi
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Yosra Modafer
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - Mohamed A. Al Abboud
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| | - A. El-Shabasy
- Biology Department/ College of Science, Jazan University, Jazan City 82817, Saudi Arabia
| |
Collapse
|
40
|
Uddin M, Bhat UH, Singh S, Singh S, Chishti AS, Khan MMA. Combined application of SiO 2 and TiO 2 nanoparticles enhances growth characters, physiological attributes and essential oil production of Coleus aromatics Benth. Heliyon 2023; 9:e21646. [PMID: 38058652 PMCID: PMC10695843 DOI: 10.1016/j.heliyon.2023.e21646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Nanoparticles (NPs) have gained considerable interest among researchers in the field of plant biology, particularly in the agricultural sector. Among the numerous NPs, the individual application of silicon (Si) or titanium (Ti), in their oxide forms, had a positive influence on growth, physiochemical and yield attributes of plants. However, the synergetic application of both these NPs has not been studied yet. Therefore, the current study was aimed to investigate the effect of combined application of silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs on the growth characters, physiological parameters, and essential oil quality and production of Coleus aromatics Benth. Aqueous solutions of nanoparticles were applied to the foliage of the plants at varying combinations (Si50+Ti50, Si100+Ti50, Si100+Ti100, Si200+Ti100, Si100+Ti200 and Si200+Ti200 mg L-1). Various morpho-physiological, biochemical and yield attributes were assessed at 120 days after planting. The results demonstrated that both Si and Ti NPs improved the growth and photosynthetic efficiency in a dose dependent manner. The best results were obtained by the combined application of Si100+Ti100 mg L-1, and thereafter, the values declined progressively. The maximum improvement in fresh weight (39.5 %) and dry weight (40.8 %) of shoot, fresh weight (45.7 %) and dry weight (49.4 %) of root was observed as compared to respective controls. Moreover, the exogenous application of Si100+Ti100 mg L-1 increased photosynthetic attributes such as total content of chlorophyll (41.7 %), carotenoids (43.7 %), chlorophyll fluorescence (7.1 %), and carbonic anhydrase (23.8 %). All of these contributed to the highest accumulation in the content (129.0 %) and yield (215.5 %) of essential oil (EO), in comparison to the control. Thus, results encouraged the use of SiO2 and TiO2 NPs to be applied in combined form to boost the essential oil production of Coleus aromaticus. The findings of this study may serve agronomists to determine the optimal concentrations of NPs for enhanced production of bioactive compounds with a wide range of industrial applications.
Collapse
Affiliation(s)
- Moin Uddin
- Botany section, Women's College, Aligarh Muslim University, Aligarh-202002, India
| | - Urooj Hassan Bhat
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh-202002, India
| | - Sarika Singh
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh-202002, India
| | - Sangram Singh
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh-202002, India
| | - Aman Sobia Chishti
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh-202002, India
| | - M. Masroor A. Khan
- Advanced Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|