1
|
Balbuena-Pecino S, Riera-Heredia N, Sánchez-Moya A, Perelló-Amorós M, Gutiérrez J, Capilla E, Navarro I. Screening the effects of phytoestrogens on lipid metabolism in primary cultured adipocytes from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:71. [PMID: 40131537 PMCID: PMC11937063 DOI: 10.1007/s10695-025-01483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Aquafeed formulation has progressively reduced its dependence on fish-derived ingredients over the past decades. Plant-based substitutes have been a major focus, with soybean meal and its derivatives leading the way. However, many plants contain phytoestrogens, which may affect fish physiology. This study aimed to assess in vitro the effects of genistein (GE), daidzein (DZN), glycitein (GLY), and coumestrol (COU) on the lipid metabolism of rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata). Primary cultured adipocytes were incubated with these phytoestrogens, along with 17β-estradiol, at two doses each (1, 10, or 100 μM). The 100 μM dose of GE and DZN decreased adipocyte viability, and mainly enhanced lipid accumulation in both species, suggesting a hypertrophic condition. However, the reduction in adipocyte number and lipid content with 100 μM DZN in rainbow trout indicated a limiting effect on adipose tissue growth in this species. Interestingly, COU significantly increased cell viability in gilthead sea bream, potentially leading to hyperplastic growth, a more favorable metabolic state. In that species, which proved to be more phytoestrogens-sensitive, lipoprotein lipase was generally downregulated upon treatments. Moreover, 10 µM GE significantly decreased the mRNA levels of fatty acid transport protein 1 and fatty acid synthase, and increased those of fatty acid binding protein 1, suggesting an acceleration of the differentiation process compared to the control cells. This work provides new insights into how dietary phytoestrogens modulate fish lipid metabolism and supports that their presence in plant protein feedstuffs can potentially affect fish health and production performance.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Albert Sánchez-Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Li J, Liu H, Xu Y, Yang J, Yu Y, Wen J, Xie D, Zhong Y, Wu J, Fu M. Metabolomic Analysis of Different Parts of Black Wax Gourd ( Cucurbita pepo). Foods 2025; 14:1046. [PMID: 40232096 PMCID: PMC11941785 DOI: 10.3390/foods14061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
This study employed ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with multivariate analysis to investigate tissue-specific metabolic profiles in the peel, pulp, and seeds of black wax gourd (Benincasa hispida). A total of 1020 metabolites were identified, including 520 primary metabolites (e.g., amino acids, lipids, and organic acids) and 500 secondary metabolites (e.g., phenolic acids, flavonoids, and alkaloids). Significant metabolic divergence was observed across tissues: 658, 674, and 433 differential metabolites were identified between the peel and the pulp, the peel and the seeds, and the pulp and the seeds, respectively. Unique metabolites such as methyl 5-glucosyloxy-2-hydroxybenzoate and 3,5-di-O-caffeoylquinic acid were exclusive to the peel, while 4-O-(6'-O-glucosyl-imino)-4-hydroxybenzyl alcohol and fertaric acid were specific to the seeds. KEGG pathway enrichment revealed distinct metabolic priorities: flavonoids and phenolic acids dominated in the peel, amino acids and phenylpropanoids in the pulp, and nucleotides and lipids in the seeds. The peel exhibited the highest secondary metabolite abundance (14.27%), whereas the seeds accumulated the most primary metabolites (26.62%), including essential amino acids like L-tryptophan and functional lipids such as linoleic acid. These findings underscore the nutritional and bioactive potential of underutilized by-products (peel and seeds), providing a biochemical foundation for valorizing wax gourd tissues in the food, pharmaceutical, and agricultural industries.
Collapse
Affiliation(s)
- Jun Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| | - Haocheng Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| | - Jing Wen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (D.X.); (Y.Z.)
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (D.X.); (Y.Z.)
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| | - Manqin Fu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China; (J.L.); (H.L.); (Y.X.); (Y.Y.); (J.W.)
| |
Collapse
|
3
|
Lei Y, Zhang R, Li Y, Pang H, Fu Q, Chen C, Liu F. Pueraria Radix and Its Major Constituents Against Metabolic Diseases: Pharmacological Mechanisms and Potential Applications. Phytother Res 2025. [PMID: 40099674 DOI: 10.1002/ptr.8464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Metabolic diseases (MD), a series of chronic disorders, severely decrease the quality of life for patients but also cause a heavy economic burden. The ancient Chinese herb Pueraria Radix (PR) plays an important role in curing MD. Up to now, the bioactive compounds found in PR demonstrate effective actions in treating various metabolic disorders. This paper systematically summarizes the recent research advances on the pharmacological activities of PR and its constituents, explains the underlying mechanisms of preventing and treating MD. Besides, phytochemicals, drug delivery systems, clinical application, and safety of PR have been researched, hoping to provide valuable information for the future application, development, and improvement of PR as well as MD treatment. The information about PR was collected from various sources including classic books about Chinese herbal medicine and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, Google Scholar, X-MOL, and WANFANG using keywords given and terms like pharmacological and phytochemical details of this plant. The chemical constituents isolated and identified from PR, such as isoflavones including puerarin, formononetin, daidzin, daidzein, genistein, and so forth, polysaccharides, alkaloids, starch, and other components have been proved to have the effect of anti-diabetic, anti-obesity, anti-atherosclerotic, anti-osteoporotic, anti-hypertensive, anti-hyperlipidemia, and anti-nonalcoholic fatty liver disease (NAFLD) through PI3K/Akt, Nrf2/HO-1, LOX-1/ROS/Akt/eNOS, ERK1/2-Nrf2, GLP-1R, Caspase, MAPK, NF-κB, and other anti-inflammatory and anti-oxidant signaling pathways. Also, the active contents of PR have been designed as drug delivery systems to improve the therapeutic effects of MD. It provides a preclinical basis for the efficacy of PR as an effective therapeutic agent for the prevention and treatment of MD. Even so, further studies are still needed to enhance bioavailability and expand clinical application.
Collapse
Affiliation(s)
- Yicheng Lei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yan Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Chen Chen
- School of Biomedical Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Won Y, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Heo JD, Seong JK, Ahn MJ, Kim HJ, Kim GS. The Effects of Iridin and Irigenin on Cancer: Comparison with Well-Known Isoflavones in Breast, Prostate, and Gastric Cancers. Int J Mol Sci 2025; 26:2390. [PMID: 40141034 PMCID: PMC11942201 DOI: 10.3390/ijms26062390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. There are two main apoptotic pathways: intrinsic and extrinsic pathways. These pathways can be affected by various signaling pathways in cancer, such as the PI3K/AKT, MAPK, Wnt, and JAK/STAT pathways. Numerous approaches to cancer treatment have been studied, and among them, natural compounds have been actively researched. Flavonoids are natural compounds from fruits and vegetables and have been studied for their anti-cancer effects. Isoflavones, one of the subclasses of flavonoids, are usually found in soy food or legumes and are effective in several bioactive functions. The well-known isoflavones are genistein, daidzein, and glycitein. Irigenin and iridin can be extracted from the Iris family. Both irigenin and iridin are currently being studied for anti-inflammation, antioxidant, and anti-cancer by inducing apoptosis. In this review, we summarized five isoflavones, genistein, daidzein, glycitein, irigenin, and iridin and their effects on three different cancers: breast cancer, prostate cancer, and gastric cancer.
Collapse
Affiliation(s)
- Yaeram Won
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hun-Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Se-Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Jeong-Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Je-Kyung Seong
- Laboratory of Developmental Biology and Goenomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Mee-Jung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Hye-Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| |
Collapse
|
5
|
Yamada ALYDS, Merenda MEZ, Pereira LC, Bonneti NMD, Martins IDO, Komarcheuski AS, Henríquez LBF, Watanabe EK, Coelho GBC, Janeiro V, Mascarenhas NMF, Vasconcellos RS. Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats. Animals (Basel) 2024; 14:3574. [PMID: 39765478 PMCID: PMC11672616 DOI: 10.3390/ani14243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Isoflavones are composed of phytoestrogens (genistein and daidzein), which can be metabolized by cats. These compounds can promote the maintenance of lean body mass and control food intake. These effects are desirable in neutered animals, as they are predisposed to obesity. The objective of this study was to evaluate the effects of dietary supplementation of 1.0% isoflavone on the metabolizable energy intake, serum concentrations of satiety-related hormones and peptides, and body composition of neutered cats. Sixteen neutered adult cats were blocked by gender and divided into two groups (n = 8): the control group (CG) received a commercial diet, while the isoflavone group (IG) received the same diet supplemented by 1% of isoflavone for 99 days. Computed tomography was performed on the first and last experimental days to assess the animals' body composition. Satiety challenges were conducted on days 19 and 44. In the last day of the study, blood samples were collected to determine the concentration of insulin, ghrelin, leptin, peptide YY, and GLP-1. A statistical analysis was conducted using R software 3.5.2, considering both the interaction and individual effects of group and time (p < 0.05). The average intake of genistein in the IG was 0.75 ± 0.10 mg/kg body weight, and daidzein intake was 51.73 ± 7.05 mg/kg. No significant individual or interaction effects were observed for any of the analyzed variables. Therefore, the inclusion of 1.0% isoflavone in the diet did not affect the energy requirements, satiety responses, or body composition of neutered adult cats.
Collapse
Affiliation(s)
| | | | - Layne Carolina Pereira
- Department of Animal Science, State University of Maringá (UEM), Maringá 87020-900, Brazil
| | | | | | | | | | | | | | - Vanderly Janeiro
- Department of Statistics, State University of Maringá (UEM), Maringá 87020-900, Brazil
| | | | | |
Collapse
|
6
|
Chen Y, Huang Y, Gan Q, Zhang W, Sun H, Zhu L, Wang W. Characterization of tea polysaccharides from Tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways. J Food Sci 2024; 89:10064-10078. [PMID: 39636766 DOI: 10.1111/1750-3841.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
In the present study, we succeeded in extracting tea polysaccharide (TPS) from Tieguanyin oolong tea, and the TPS was characterized. TPS is an acidic heteropolysaccharide containing rhamnose, arabinose, galactose, glucose (Glc), xylose, mannose, galacturonic acid, and guluronic acid. We found that TPS supplementation partially reversed the elevated levels of serum alanine aminotransferase, total cholesterol, and low-density lipoprotein cholesterol in high-fat diet (HD)-induced nonalcoholic fatty liver disease (NAFLD) mice (p < 0.05), and hepatic steatosis and impaired Glc tolerance were also ameliorated. After HD intervention, the activity of Adenosine 5'-monophosphate-activated protein kinase (AMPK) and its downstream genes, including Sirtuin 1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP1c), acetyl-coenzyme A carboxylase 1 (ACC1), and adipose triglyceride lipase (ATGL), was significantly inhibited (p < 0.05). TPS can increase the expression of these genes. The hepatoprotective effects of TPS in AMPK-/- mice almost completely disappeared. Moreover, the expression levels of SIRT1, SREBP1c, ACC1, and ATGL did not significantly change after TPS supplementation (p > 0.05). Therefore, our findings suggest that TPS protects the liver from hepatic glucolipid metabolism disorders in HD-induced NAFLD mice by activating AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanxin Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nutrition, The 95th Hospital of Putian, Putian, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingling Zhu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Jin S, Zheng Y, Li D, Liu X, Zhu T, Wang S, Liu Z, Liu Y. Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice. Breast Cancer Res 2024; 26:147. [PMID: 39456028 PMCID: PMC11515845 DOI: 10.1186/s13058-024-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelial‒mesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/β-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingce Zheng
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China
| | - Ding Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
8
|
Kositanurit W, Siritaweechai N, Varachotisate P, Burana C, Sukswai N, Surintrspanont J, Siriviriyakul P, Kaikaew K, Werawatganon D. Genistein mitigates diet-induced obesity and metabolic dysfunctions in gonadectomized mice with some sex-differential effects. Front Endocrinol (Lausanne) 2024; 15:1392866. [PMID: 39351533 PMCID: PMC11439649 DOI: 10.3389/fendo.2024.1392866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Obesity is associated with insulin resistance (IR) and metabolic dysfunction-associated steatotic liver disease (MASLD). Genistein, an isoflavone, is a promising natural compound for preventing and treating obesity and metabolic dysfunctions. We aimed to investigate the sex-specific protective effects of genistein on obesity, IR, and MASLD in a murine model of sex hormone deprivation with diet-induced obesity (DIO), mimicking postmenopausal women or aging men with metabolic syndrome. Methods Gonadectomized and sham-operated C57BL/6NJcl mice were fed a high-fat high-sucrose diet for 4 weeks to induce obesity (7 mice per group). In gonadectomized mice, genistein (16 mg/kg/day) or vehicle (7.5% dimethyl sulfoxide) was orally administered for 45 days. We assessed glucose homeostasis parameters, hepatic histopathology, and hepatic gene expression to investigate the effects of gonadectomy and genistein treatment. Results Gonadectomy exacerbated adiposity in both sexes. Ovariectomy diminished the protective effects of female gonadal hormones on the homeostatic model assessment for insulin resistance (HOMA-IR), serum alanine transaminase levels, hepatic steatosis score, and the expression of hepatic genes associated with MASLD progression and IR, such as Fasn, Srebf1, Saa1, Cd36, Col1a1, Pck1, and Ppargc1a. Genistein treatment in gonadectomized mice significantly reduced body weight gain and the hepatic steatosis score in both sexes. However, genistein treatment significantly attenuated HOMA-IR and the expression of the hepatic genes only in female mice. Conclusion Genistein treatment mitigates DIO-related MASLD in both male and female gonadectomized mice. Regarding hepatic gene expression associated with MASLD and IR, the beneficial effect of genistein was significantly evident only in female mice. This study suggests a potential alternative application of genistein in individuals with obesity and sex hormone deprivation, yet pending clinical trials.
Collapse
Affiliation(s)
- Weerapat Kositanurit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natakorn Siritaweechai
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pachara Varachotisate
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chuti Burana
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Narittee Sukswai
- Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jerasit Surintrspanont
- Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Kasiphak Kaikaew
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Duangporn Werawatganon
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
El-Feky AM, Mohammed NA. Potential antioxidant and cytotoxic impacts of defatted extract rich in flavonoids from Styphnolobium japonicum leaves growing in Egypt. Sci Rep 2024; 14:18690. [PMID: 39134561 PMCID: PMC11319774 DOI: 10.1038/s41598-024-68675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Styphnolobium japonicum leaves are considered a rich source of flavonoids, which are the prospective basis for various therapeutic effects. However, there has been a lack of comprehensive cytotoxic studies conducted on these leaves. Therefore, this ongoing investigation aimed to detect and isolate the flavonoids present in S. japonicum leaves, and assess their antioxidant and anticancer properties. The defatted extract from S. japonicum leaves was analyzed using HPLC, which resulted in the identification of seven phenolics and six flavonoids. Rutin and quercetin were found to be the most abundant. Furthermore, a comprehensive profile of flavonoids was obtained through UPLC/ESI-MS analysis in negative acquisition mode. Fragmentation pathways of the identified flavonoids were elucidated to gain relevant insights into their structural characteristics. Furthermore, genistein 7-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside were isolated and characterized. The defatted extract rich in flavonoids exhibited significant antioxidant, iron-reducing, free radicals scavenging impacts, and remarkable cytotoxicity against the liver cell line (IC50 337.9μg/ mL) and lung cell line (IC50 55.0 μg/mL). Furthermore, the antioxidant and anticancer capacities of the three isolated flavonoids have been evaluated, and it has been observed that their effects are concentration-dependent. The findings of this research highlight the promising impact of flavonoids in cancer therapy. It is recommended that future scientific investigations prioritize the exploration of the distinct protective and therapeutic characteristics of S. japonicum leaves, which hold significant potential as a valuable natural resource.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nadia A Mohammed
- Department of Medical Biochemistry, National Research Center, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
10
|
Choi YR, Shim J, Kim MJ. Correction: Choi et al. Genistin: A Novel Potent Anti-Adipogenic and Anti-Lipogenic Agent. Molecules 2020, 25, 2042. Molecules 2024; 29:714. [PMID: 38338490 PMCID: PMC10856200 DOI: 10.3390/molecules29030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Error in Figure [...].
Collapse
Affiliation(s)
- Yae Rim Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.R.C.); (J.S.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaewon Shim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.R.C.); (J.S.)
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea; (Y.R.C.); (J.S.)
| |
Collapse
|
11
|
Zheng X, Zhang J, Liu S, Yu Y, Peng Q, Peng Y, Yao X, Peng X, Zhou J. Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives. Anticancer Agents Med Chem 2024; 24:961-968. [PMID: 38639281 DOI: 10.2174/0118715206299272240409043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions via regulating a number of targets and signaling pathways, such as anti-cancer, antioxidant, antibacterial, antiinflammatory, antifungal, antiviral, iron chelation, anti-obesity, anti-diabetes, and anti-hypertension. Pub- Med/Medline and Web of Science were searched using appropriate keywords until the end of December 2023. Despite its many potential benefits, genistein's clinical application is limited by low hydrophilicity, poor solubility, and suboptimal bioavailability due to its structure. These challenges can be addressed through the conversion of genistein into glycosides. Glycosylation of active small molecules may enhance their solubility, stability, and biological activity. In recent years, extensive research has been conducted on the synthesis, properties, and anticancer activity of glycoconjugates. Previous reviews were devoted to discussing the biological activities of genistin, with a little summary of the biosynthesis and the structure-activity relationship for their anticancer activity of genistein glycoside derivatives. Therefore, we summarized recent advances in the biosynthesis of genistein glycosylation and discussed the antitumor activities of genistein glycoside derivatives in a structure-activity relationship, which may provide important information for further development of genistein derivatives.
Collapse
Affiliation(s)
- Xing Zheng
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan, 410004, China
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan, 410004, China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingzi Yu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaling Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xingxing Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
12
|
Lee JI, Oh JH, Karadeniz F, Kong CS, Seo Y. Inhibitory Effects of Sesquiterpenoids Isolated from Artemisia scoparia on Adipogenic Differentiation of 3T3-L1 Preadipocytes. Int J Mol Sci 2023; 25:200. [PMID: 38203371 PMCID: PMC10779302 DOI: 10.3390/ijms25010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Obesity and related complications are significant health issues in modern society, largely attributed to a sedentary lifestyle and a carbohydrate-rich diet. Since anti-obesity drugs often come with severe side effects, preventative measures are being sought globally, including dietary changes and functional foods that can counteract weight gain. In this context, plant-based metabolites are extensively studied for their advantageous biological effects against obesity. Several plants within the Artemisia genus have been reported to possess anti-adipogenic properties, preventing adipocytes from maturing and accumulating lipids. The present study investigated the anti-adipogenic potential of two sesquiterpenoids, reynosin and santamarine, isolated from A. scoparia in adipose-induced 3T3-L1 preadipocytes. Differentiating 3T3-L1 adipocytes treated with these isolated compounds displayed fewer adipogenic characteristics compared to untreated mature adipocytes. The results indicated that cells treated with reynosin and santamarine accumulated 55.0% and 52.5% fewer intracellular lipids compared to untreated control adipocytes, respectively. Additionally, the mRNA expression of the key adipogenic marker, transcription factor PPARγ, was suppressed by 87.2% and 91.7% following 60 μM reynosin and santamarine treatment, respectively, in differentiated adipocytes. Protein expression was also suppressed in a similar manner, at 92.7% and 82.5% by 60 μM reynosin and santamarine treatment, respectively. Likewise, SERBP1c and C/EBPα were also downregulated at both gene and protein levels in adipocytes treated with samples during differentiation. Further analysis suggested that the anti-adipogenic effect of the compounds might be a result of AMPK activation and the subsequent suppression of MAPK phosphorylation. Overall, the present study suggested that sesquiterpenoids, reynosin, and santamarine were two potential bioactive compounds with anti-adipogenic properties. Further research is needed to explore other bioactive agents within A. scoparia and elucidate the in vivo action mechanisms of reynosin and santamarine.
Collapse
Affiliation(s)
- Jung Im Lee
- Incheon Regional Office, National Fishery Products Quality Management Service Incheon, Incheon 22346, Republic of Korea;
| | - Jung Hwan Oh
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Republic of Korea;
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea; (F.K.); (C.-S.K.)
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea; (F.K.); (C.-S.K.)
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958, Republic of Korea; (F.K.); (C.-S.K.)
- Department of Food and Nutrition, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
13
|
Lee EJ, Song J, Park CH, Mun EG, Wang J, Han A, Park JE, Cha YS. Soy Sauce Lowers Body Weight and Fat Mass in High-Fat Diet-Induced Obese Rats. J Med Food 2023; 26:858-867. [PMID: 37862057 DOI: 10.1089/jmf.2022.k.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Soy sauce (SS) is a traditional fermented seasoning. Although fermented foods have diverse health beneficial effects, SS intake has been discouraged because of its high salt level. This study was designed to evaluate the antiobesity outcomes of SS and the potential involvement of salt content in SS by adding a high-salt group. Sprague-Dawley rats were randomly assigned into four groups: normal diet (ND, 10% fat of total kcal), high-fat diet (HD, 60% fat of total kcal), HD with salt water (HDSW, NaCl = 8%), and HD with SS (HDSS, NaCl = 8%). SS significantly decreased HD-induced body weight gain and lipogenic gene expression without affecting food consumption. Moreover, SS also reduced hepatic injury and lipid accumulation, and also improved hyperlipidemia. Furthermore, SS decreased the mRNA levels related to obesity-derived inflammatory responses, while HDSW did not change the levels of those markers. These observations indicate that SS ameliorates obesity in HD-fed obese rats by attenuating dyslipidemia. Moreover, SS might also have an anti-inflammatory effect in HD-induced obesity, which requires further investigation. Most importantly, SS offers these beneficial effects regardless of its high salt content, implying that different dietary salt sources lead to the distinct health outcomes. In conclusion, the findings of this study improve the understanding of the functional effect of SS.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeongwoo Song
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Chan-Ho Park
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Eun-Gyung Mun
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jinxi Wang
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jung Eun Park
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- Nutracore Co., Ltd., Beobjo-Ro, Suwon, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- K-Food Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
14
|
Chalotra R, Gupta T, Chib S, Amanat M, Kumar P, Singh R. Treatment of diabetic complications: do flavonoids holds the keys? Crit Rev Food Sci Nutr 2023; 64:11091-11112. [PMID: 37435788 DOI: 10.1080/10408398.2023.2232868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Diabetes mellitus (DM) is an endocrinological disorder in which blood sugar levels get elevated and if unmanaged, it leads to several critical complications. Existing therapies or drugs are not able to attain absolute control of DM. Moreover, associated side/adverse effects associated with pharmacotherapy further worsen the Quality of life of patients. Present review is focused on therapeutical potential of flavonoids in management of diabetes and diabetic complications. Plenteous literature has established significant potential of flavonoids in the treatment of diabetes and diabetic complications. A number of flavonoids are found to be effective in treatment of not only diabetes but progression of diabetic complication was also found to be attenuated with the use of flavonoids. Moreover, SAR studies of some flavonoids also indicated the that efficacy of flavonoids is increased with a change in functional group of flavonoids in the treatment of diabetes and diabetic complications. A number of clinical trials are into action to investigate the therapeutic potential of flavonoids as first-line drugs or as adjuvants for treatment of diabetes and diabetic complications.. Owing to their diverse mechanism of action, efficacy and safety, flavonoids may be conscripted as potential candidate for treatment of diabetic complications.
Collapse
Affiliation(s)
- Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Tanya Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Muhammed Amanat
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
15
|
Zhao Z, Gao W, Ding X, Xu X, Xiao C, Mao G, Xing W. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front Nutr 2023; 10:1195107. [PMID: 37476404 PMCID: PMC10354435 DOI: 10.3389/fnut.2023.1195107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changqian Xiao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
16
|
Tiwari A, Tiwari V, Sharma A, Singh D, Singh Rawat M, Virmani T, Virmani R, Kumar G, Kumar M, Alhalmi A, Noman OM, Mothana RA, Alali M. Tanshinone-I for the treatment of uterine fibroids: Molecular docking, simulation, and density functional theory investigations. Saudi Pharm J 2023; 31:1061-1076. [PMID: 37250358 PMCID: PMC10209546 DOI: 10.1016/j.jsps.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Uterine fibroids (UF), most prevalent gynecological disorder, require surgery when symptomatic. It is estimated that between 25 and 35 percent of women wait until the symptoms have worsened like extended heavy menstrual bleeding and severe pelvic pain. These UF may be reduced in size through various methods such as medical or surgical intervention. Progesterone (prog) is a crucial hormone that restores the endometrium and controls uterine function. In the current study, 28 plant-based molecules are identified from previous literature and docked onto the prog receptors with 1E3K and 2OVH. Tanshinone-I has shown the best docking score against both proteins. The synthetic prog inhibitor Norethindrone Acetate is used as a standard to evaluate the docking outcomes. The best compound, tanshinone-I, was analyzed using molecular modeling and DFT. The RMSD for the 1E3K protein-ligand complex ranged from 0.10 to 0.42 Å, with an average of 0.21 Å and a standard deviation (SD) of 0.06, while the RMSD for the 2OVH protein-ligand complex ranged from 0.08 to 0.42 Å, with an average of 0.20 Å and a SD of 0.06 showing stable interaction. In principal component analysis, the observed eigen values of HPR-Tanshinone-I fluctuate between -1.11 to 1.48 and -1.07 to 1.25 for PC1 and PC2, respectively (1E3K), and the prog-tanshinone-I complex shows eigen values of -38.88 to -31.32 and -31.32 to 35.87 for PC1 and PC2, respectively (2OVH), which shows Tanshinone-I forms a stable protein-ligand complex with 1E3K in comparison to 2OVH. The Free Energy Landscape (FEL) analysis shows the Gibbs free energy in the range of 0 to 8 kJ/mol for Tanshinone-I with 1E3K and 0 to 14 kJ/mol for Tanshinone-I with the 2OVH complex. The DFT calculation reveals ΔE value of 2.8070 eV shows tanshinone-I as a stable compound. 1E3K modulates the prog pathway, it may have either an agonistic or antagonistic effect on hPRs. Tanshinone-I can cause ROS, apoptosis, autophagy (p62 accumulation), up-regulation of inositol requiring protein-1, enhancer-binding protein homologous protein, p-c-Jun N-terminal kinase (p-JNK), and suppression of MMPs. Bcl-2 expression can change LC3I to LC3II and cause apoptosis through Beclin-1 expression.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Ajay Sharma
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Manju Singh Rawat
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Sciences, College of Pharmacy, Aden University, Aden, Yemen
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alali
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
17
|
Feng ZJ, Lai WF. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15041105. [PMID: 37111591 PMCID: PMC10143291 DOI: 10.3390/pharmaceutics15041105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Biochanin A (BCA), an isoflavone derived from various plants such as chickpea, red clover and soybean, is attracting increasing attention and is considered to have applications in the development of pharmaceuticals and nutraceuticals due to its anti-inflammatory, anti-oxidant, anti-cancer and neuroprotective properties. To design optimised and targeted BCA formulations, on one hand there is a need for more in-depth studies on the biological functions of BCA. On the other hand, further studies on the chemical conformation, metabolic composition and bioavailability of BCA need to be conducted. This review highlights the various biological functions, extraction methods, metabolism, bioavailability, and application prospects of BCA. It is hoped that this review will provide a basis for understanding the mechanism, safety and toxicity of BCA and implementing the development of BCA formulations.
Collapse
Affiliation(s)
- Zhen-Jie Feng
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
18
|
Liu M, Lv Q, Xu J, Liu B, Zhou Y, Zhang S, Shen X, Wang L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem Pharmacol 2023; 209:115447. [PMID: 36746262 DOI: 10.1016/j.bcp.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As a common intracellular facultative anaerobic Gram-positive bacterium, Listeria monocytogenes (L. monocytogenes) exhibits strong resistance to extreme environments, such as low temperature and a wide range of pH values, causing contamination in food production and processing. Sortase A (SrtA) and listeriolysin O (LLO), two crucial virulence factors of L. monocytogenes, are widely recognized as potential targets for the development of anti-L. monocytogenes infection drugs. In this study, we found that genistin simultaneously inhibits the peptidase activity of SrtA and the hemolytic activity of LLO without affecting the growth of L. monocytogenes, alleviating concerns about developing resistance. Furthermore, we demonstrated that genistin reduces L. monocytogenes biofilm formation and invasion of human colorectal cancer (Caco-2) cells. Subsequent mechanistic studies revealed that genistin inhibited LLO-mediated Caco-2 cell damage by blocking LLO oligomerization. Fluorescence quenching assay revealed the potential binding mode of SrtA and LLO to genistin. Genistin might bind to the active pocket of SrtA through residues Leu33, Asn29, and Met40, interacting with D1 domain of LLO involved in oligomerization and pore formation through residues Asn259. Studies in infection models revealed that genistin reduces mortality and pathological damage in mice infected with L. monocytogenes. These results indicate that genistin is a promising anti-virulence agent that could be considered an alternative candidate for the treatment of L. monocytogenes infection.
Collapse
Affiliation(s)
- Minda Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Qianghua Lv
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, P.R.China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, P.R.China
| | - Jingwen Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baichen Liu
- The Second Bethune Clinical Medical College of Jilin University, Changchun 130012, Jilin, People's Republic of China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Siqi Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Xue Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Lin Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
The Metabolites and Mechanism Analysis of Genistin against Hyperlipidemia via the UHPLC-Q-Exactive Orbitrap Mass Spectrometer and Metabolomics. Molecules 2023; 28:molecules28052242. [PMID: 36903488 PMCID: PMC10005657 DOI: 10.3390/molecules28052242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Genistin, an isoflavone, has been reported to have multiple activities. However, its improvement of hyperlipidemia is still unclear, and the same is true with regard to its mechanism. In this study, a high-fat diet (HFD) was used to induce a hyperlipidemic rat model. The metabolites of genistin in normal and hyperlipidemic rats were first identified to cause metabolic differences with Ultra-High-Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS). The relevant factors were determined via ELISA, and the pathological changes of liver tissue were examined via H&E staining and Oil red O staining, which evaluated the functions of genistin. The related mechanism was elucidated through metabolomics and Spearman correlation analysis. The results showed that 13 metabolites of genistin were identified in plasma from normal and hyperlipidemic rats. Of those metabolites, seven were found in normal rat, and three existed in two models, with those metabolites being involved in the reactions of decarbonylation, arabinosylation, hydroxylation, and methylation. Three metabolites, including the product of dehydroxymethylation, decarbonylation, and carbonyl hydrogenation, were identified in hyperlipidemic rats for the first time. Accordingly, the pharmacodynamic results first revealed that genistin could significantly reduce the level of lipid factors (p < 0.05), inhibited lipid accumulation in the liver, and reversed the liver function abnormalities caused by lipid peroxidation. For metabolomics results, HFD could significantly alter the levels of 15 endogenous metabolites, and genistin could reverse them. Creatine might be a beneficial biomarker for the activity of genistin against hyperlipidemia, as revealed via multivariate correlation analysis. These results, which have not been reported in the previous literature, may provide the foundation for genistin as a new lipid-lowering agent.
Collapse
|
20
|
Santos Filho LED, Santos GPLD, Silva JA, Silva FDA, Silva MN, Almeida AAD, Coqueiro RDS, Coimbra CC, Soares TDJ, Magalhães ACMD. Dietary Soy Isoflavones Prevent Metabolic Disturbs Associated with a Deleterious Combination of Obesity and Menopause. J Med Food 2023; 26:104-113. [PMID: 36383150 DOI: 10.1089/jmf.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of soy isoflavone supplementation (25 mg/kg) on insulin resistance and inflammation in adipose tissue in an experimental model of menopause-obesity. Twenty-four female Wistar rats were ovariectomized (O) and distributed among the groups: OSD-ovariectomized rats submitted to normocaloric standard diet (n = 6); OHF-ovariectomized rats submitted to high-fat diet (n = 9); and OHFI-ovariectomized rats submitted to high-fat diet with isoflavones (n = 9). Weight gain, body adiposity, food and caloric intake, blood pressure, and glucose tolerance were assessed. After 24 weeks, the rats were euthanized; the thoracic blood collected for serum insulin determination and the homeostatic model assessment-insulin resistance) (HOMA-IR) and homeostatic model assessment-β cell (HOMA-β) indices were calculated. Abdominal adipose tissues were removed, weighed, and fixed for immunohistochemical and morphometric studies. Isoflavones decreased weight gain and blood pressure without changing the food and caloric intake (P < .05). Isoflavones did not affect the weight of the abdominal adipose tissue depots (P < .05). Although they did not alter glucose tolerance, the isoflavones reduced HOMA-IR and HOMA-β, serum insulin levels, in addition to reducing adipocytes' size (P < .05). The number of macrophages, lymphocytes, and crown-like structures in adipose tissue was lower in the group treated with isoflavones (P < .05). In conclusion, our data show that dietary soy isoflavones' supplementation prevents many of well-known deleterious combination of obesity and menopause on metabolism, such as body overweight, adipocyte hypertrophy, and hypertension, as well as insulin resistance and adipose tissue inflammation.
Collapse
Affiliation(s)
- Luciano Evangelista Dos Santos Filho
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Grazielle Prates Lourenço Dos Santos
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Jussara Andrade Silva
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Fernanda de Abreu Silva
- Postgraduate Multicentric Program in Physiological Sciences, Brazilian Physiological Society/Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Mirlana Neves Silva
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | - Amanda Alves de Almeida
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | | | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Telma de Jesus Soares
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória of Conquista, Bahia, Brazil
| | | |
Collapse
|
21
|
Zhang M, Lei J, Wang Y, Zhang J, Liu D. Ethnopharmacology, phytochemistry and pharmacology of Benincasae Exocarpium: A review. CHINESE HERBAL MEDICINES 2023; 15:15-26. [PMID: 36875430 PMCID: PMC9975641 DOI: 10.1016/j.chmed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022] Open
Abstract
Benincasae Exocarpium (BE, Dongguapi in Chinese), as the dried outer pericarp of Benincasa hispida (wax gourd) in Cucurbitaceae family, is one of traditional Chinese medicines with the same origin as medicine and food. Up to now, 43 compounds were isolated from BE, including flavonoids, alkaloids, tannins, phenolic acids, soluble fiber and carbohydrates. Modern pharmacological studies and clinical practice showed that BE has diuretic, hypolipidemic effects, hypoglycemic, antioxidant, antibacterial, and other effects. The folk uses, functional factors, pharmacological activities, patents and clinical applications of BE were reviewed in this paper. In addition, the paper also discussed the current problems for the further studies. The information summarized in this paper provides valuable clues for the comprehensive utilization of medicine and food resources and gives a scientific basis for the development of medicinal plants of BE.
Collapse
Affiliation(s)
- Meng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jialong Lei
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Yansheng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| |
Collapse
|
22
|
Saleh MA, Antar SA, Abdo W, Ashour A, Zaki AA. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:966-978. [PMID: 35907070 DOI: 10.1007/s11356-022-22268-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Cancer is the world's second-largest cause of death. Although there are numerous cancer treatment options, they are typically uncomfortable owing to side effects and ineffectual due to increased resistance to traditional anti-cancer medications or radiation therapy. A key method in cancer treatment is to target delayed/inhibited inflammation and apoptosis, which are very active areas of research. Natural chemicals originating from plants are of particular interest because of their high bioavailability, safety, few side effects, and, most importantly, cost-effectiveness. Flavonoids have become incredibly common as anti-cancer medications, with promising findings as cytotoxic anti-cancer agents that cause cancer cell death. Isolated compound (genistin) was evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7 and MDA-MB-231). The compound exhibited good cytotoxic activities against both cell lines. In vivo antiproliferative efficacy was also investigated in Ehrlich's ascites carcinoma (EAC). Compared to the control group, genistin revealed a significant decrease in tumor weight, volume, high-mobility group box1 (HMGB1), and nuclear factor-kappa B (NF-κB) contents. On the other hand, B-cell lymphoma 2 (Bcl-2) contents increase suggesting an anti-inflammatory and anti-apoptotic activity through inhibition of HMGB1 signaling and activating the Bcl-2 pathway.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
23
|
Lee D, Hong S, Jung K, Choi S, Kang KS. Suppressive Effects of Flavonoids on Macrophage-Associated Adipocyte Inflammation in a Differentiated Murine Preadipocyte 3T3-L1 Cells Co-Cultured with a Murine Macrophage RAW264.7 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3552. [PMID: 36559664 PMCID: PMC9783032 DOI: 10.3390/plants11243552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The suppressive effects of flavonoids on macrophage-associated adipocyte inflammation in a differentiated murine preadipocyte cell line (3T3-L1) co-cultured with a murine macrophage cell line (RAW264.7) were evaluated. Extracellular lipid accumulation was investigated via Oil Red O staining. The expression levels of adipogenesis- and inflammation-associated proteins, including CCAAT/enhancer-binding protein (C/EBP)-α, inducible nitric oxide synthase (iNOS), C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ), and cyclooxygenase-2 (COX-2), were determined via Western blotting. Proinflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1) and interleukin-6 (IL-6), were assessed using enzyme-linked immunosorbent assay kits. We found that silybin, formononetin, and diosmetin inhibited lipid accumulation and production of proinflammatory cytokines in the co-cultures of 3T3-L1 and RAW264.7 cells. Moreover, they inhibited the protein expression of PPARγ, C/EBPα, COX-2, C/EBPβ, and iNOS in the co-cultures of 3T3-L1 and RAW264.7 cells. These data support that silybin, formononetin, and diosmetin inhibit macrophage-associated adipocyte inflammation and lipid accumulation.
Collapse
Affiliation(s)
- Dahae Lee
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sukyong Hong
- College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
| | - Kiwon Jung
- College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
- Oncobix Co., Ltd., Yongin-si 16950, Republic of Korea
| | - Sungyoul Choi
- Department of Neuropsychiatry, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
24
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
25
|
Wang S, Du Q, Meng X, Zhang Y. Natural polyphenols: a potential prevention and treatment strategy for metabolic syndrome. Food Funct 2022; 13:9734-9753. [PMID: 36134531 DOI: 10.1039/d2fo01552h] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic syndrome (MS) is the term for a combination of hypertension, dyslipidemia, insulin resistance, and central obesity as factors leading to cardiovascular and metabolic disease. Epidemiological investigation has shown that polyphenol intake is negatively correlated with the incidence of MS. Natural polyphenols are widely found in cocoa beans, tea, vegetables, fruits, and some Chinese herbal medicines; they are a class of plant compounds containing a variety of phenolic structural units, which are potent antioxidants and anti-inflammatory agents in plants. Polyphenols are composed of flavonoids (such as flavanols, anthocyanidins, anthocyanins, isoflavones, etc.) and non-flavonoids (such as phenolic acids, stilbenes, and lignans). Modern pharmacological studies have proved that polyphenols can reduce blood pressure, improve lipid metabolism, lower blood glucose, and reduce body weight, thereby preventing and improving MS. Due to the unique characteristics and potential development and application value of polyphenols, this review summarizes some natural polyphenols that could treat MS, including their chemical properties, plant sources, and pharmacological action against MS, to provide a basis for the further study of polyphenols in MS.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
26
|
Bragagnolo FS, Socas-Rodríguez B, Mendiola JA, Cifuentes A, Funari CS, Ibáñez E. Pressurized natural deep eutectic solvents: An alternative approach to agro-soy by-products. Front Nutr 2022; 9:953169. [PMID: 36159477 PMCID: PMC9493435 DOI: 10.3389/fnut.2022.953169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 – molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | | | - Jose A. Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
- *Correspondence: Elena Ibáñez,
| |
Collapse
|
27
|
Das A, Ghosh S. Determination of chiral bioactive molecules in Justicia adhatoda leaves by GC-MS. Chirality 2022; 34:1453-1465. [PMID: 36046957 DOI: 10.1002/chir.23504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022]
Abstract
Chiral compounds find importance as drugs and therapeutic targets. Enantiomers of chiral drugs have been found to show different biological properties like pharmacokinetics, toxicology, pharmacology, metabolism, and so forth. In this study, we have identified the chiral compounds present in the medicinal plant Adhatoda vasica Nees (Justicia adhatoda Linn). Phytochemical investigation on the leaves of Justicia adhatoda resulted in the identification of 27 chiral compounds. We report diverse compounds identified in the crude methanolic extract of Justicia adhatoda leaves by GC-MS analysis exhibiting diverse biological activities. Quantitative analysis of anticancer compound dihydroxycolchicine from the methanolic extract of J. adhatoda leaves was done by external standard method, and the amount of anticancer compound dihydroxycolchicine was found to be 87.823 mg/l indicative of moderate production in the leaves. Therefore, the extract of leaves of Justicia adhatoda can be used as a potential source of chiral bioactive molecules of pharmacological importance for drug synthesis.
Collapse
Affiliation(s)
- Anuradha Das
- School of Chemical Sciences (SCS), National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute (HBNI), Odisha, India.,School of Biological Sciences (SBS), National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shyamasree Ghosh
- School of Chemical Sciences (SCS), National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute (HBNI), Odisha, India.,School of Biological Sciences (SBS), National Institute of Science Education and Research (NISER), Bhubaneswar, an OCC of Homi Bhabha National Institute (HBNI), Odisha, India
| |
Collapse
|
28
|
Lo YL, Wang TY, Chen CJ, Chang YH, Lin AMY. Two-in-One Nanoparticle Formulation to Deliver a Tyrosine Kinase Inhibitor and microRNA for Targeting Metabolic Reprogramming and Mitochondrial Dysfunction in Gastric Cancer. Pharmaceutics 2022; 14:1759. [PMID: 36145507 PMCID: PMC9504622 DOI: 10.3390/pharmaceutics14091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
Abstract
Dysregulational EGFR, KRAS, and mTOR pathways cause metabolic reprogramming, leading to progression of gastric cancer. Afatinib (Afa) is a broad-spectrum tyrosine kinase inhibitor that reduces cancer growth by blocking the EGFR family. MicroRNA 125 (miR-125) reportedly diminishes EGFRs, glycolysis, and anti-apoptosis. Here, a one-shot formulation of miR-125 and Afa was presented for the first time. The formulation comprised solid lipid nanoparticles modified with mitochondrial targeting peptide and EGFR-directed ligand to suppress pan-ErbB-facilitated epithelial-mesenchymal transition and mTOR-mediated metabolism discoordination of glycolysis-glutaminolysis-lipids. Results showed that this cotreatment modulated numerous critical proteins, such as EGFR/HER2/HER3, Kras/ERK/Vimentin, and mTOR/HIF1-α/HK2/LDHA pathways of gastric adenocarcinoma AGS cells. The combinatorial therapy suppressed glutaminolysis, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. The cotreatment also notably decreased the levels of lactate, acetyl-CoA, and ATP. The active involvement of mitophagy supported the direction of promoting the apoptosis of AGS cells, which subsequently caused the breakdown of tumor-cell homeostasis and death. In vivo findings in AGS-bearing mice confirmed the superiority of the anti-tumor efficacy and safety of this combination nanomedicine over other formulations. This one-shot formulation disturbed the metabolic reprogramming; alleviated the "Warburg effect" of tumors; interrupted the supply of fatty acid, cholesterol, and triglyceride; and exacerbated the energy depletion in the tumor microenvironment, thereby inhibiting tumor proliferation and aggressiveness. Collectively, the results showed that the two-in-one nanoparticle formulation of miR-125 and Afa was a breakthrough in simplifying drug preparation and administration, as well as effectively inhibiting tumor progression through the versatile targeting of pan-ErbB- and mTOR-mediated mitochondrial dysfunction and dysregulated metabolism.
Collapse
Affiliation(s)
- Yu-Li Lo
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tse-Yuan Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Anya Maan-Yuh Lin
- Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
29
|
Mladenova SG, Savova MS, Marchev AS, Ferrante C, Orlando G, Wabitsch M, Georgiev MI. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomed Pharmacother 2022; 149:112908. [PMID: 35367764 DOI: 10.1016/j.biopha.2022.112908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is a global health burden for which we do not yet have effective treatments for prevention or therapy. Plants are an invaluable source of bioactive leads possessing anti-adipogenic potential. Ethnopharmacological use of Ononis spinosa L. roots (OSR) for treatment of obesity and metabolic disorders requires а scientific rationale. The current study examined the anti-adipogenic capacity of OSR and its secondary metabolites ononin (ONON) and maackiain (MACK) in human adipocytes as an in vitro model of obesity. Both ONON and MACK diminished lipid accumulation during adipocyte differentiation. Molecular docking analysis exposed the potential interactions between MACK or ONON and target regulatory adipogenic proteins. Furthermore, results from an RT-qPCR analysis disclosed significant upregulation of AMPK by MACK and ONON treatment. In addition, ONON increased SIRT1, PI3K and ACC mRNA expression, while MACK notably downregulated CEBPA, AKT, SREBP1, ACC and ADIPOQ. The protein level of PI3K, C/EBPα, PPARγ and adiponectin was reduced upon MACK treatment in a concentration-dependent manner. Similarly, ONON suppressed PI3K, PPARγ and adiponectin protein abundance. Finally, our study provides evidence that ONON exerts anti-adipogenic effect by upregulation of SIRT1 and inhibition of PI3K, PPARγ and adiponectin, while MACK induced strong inhibitory effect on adipogenesis via hampering PI3K, PPARγ/C/EBPα signaling and anti-lipogenic effect through downregulation of SREBP1 and ACC. Even though OSR does not hamper adipogenic differentiation, it could be exploited as a source of natural leads with anti-adipogenic potential. The multidirectional mechanism of action of MACK warrant further validation in the context of in vivo obesity models.
Collapse
Affiliation(s)
- Saveta G Mladenova
- BB-NCIPD Ltd., BB-National Centre of Infectious and Parasitic Diseases, Ministry of Health, 1000 Sofia, Bulgaria
| | - Martina S Savova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89073 Ulm, Germany
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
30
|
Kharnaior P, Tamang JP. Metagenomic-Metabolomic Mining of Kinema, a Naturally Fermented Soybean Food of the Eastern Himalayas. Front Microbiol 2022; 13:868383. [PMID: 35572705 PMCID: PMC9106393 DOI: 10.3389/fmicb.2022.868383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Kinema is a popular sticky fermented soybean food of the Eastern Himalayan regions of North East India, east Nepal, and south Bhutan. We hypothesized that some dominant bacteria in kinema may contribute to the formation of targeted and non-targeted metabolites for health benefits; hence, we studied the microbiome-metabolite mining of kinema. A total of 1,394,094,912 bp with an average of 464,698,304 ± 120,720,392 bp was generated from kinema metagenome, which resulted in the identification of 47 phyla, 331 families, 709 genera, and 1,560 species. Bacteria (97.78%) were the most abundant domain with the remaining domains of viruses, eukaryote, and archaea. Firmicutes (93.36%) was the most abundant phylum with 280 species of Bacillus, among which Bacillus subtilis was the most dominant species in kinema followed by B. glycinifermentans, B. cereus, B. licheniformis, B. thermoamylovorans, B. coagulans, B. circulans, B. paralicheniformis, and Brevibacillus borstelensis. Predictive metabolic pathways revealed the abundance of genes associated with metabolism (60.66%), resulting in 216 sub-pathways. A total of 361 metabolites were identified by metabolomic analysis (liquid chromatography-mass spectrophotometry, LC-MS). The presence of metabolites, such as chrysin, swainsonine, and 3-hydroxy-L-kynurenine (anticancer activity) and benzimidazole (antimicrobial, anticancer, and anti-HIV activities), and compounds with immunomodulatory effects in kinema supports its therapeutic potential. The correlation between the abundant species of Bacillus and primary and secondary metabolites was constructed with a bivariate result. This study proves that Bacillus spp. contribute to the formation of many targeted and untargeted metabolites in kinema for health-promoting benefits.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
31
|
Fan X, Han J, Zhang F, Chen W. Red yeast rice: a functional food used to reduce hyperlipidemia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jun Han
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
32
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
33
|
Liquiritigenin Inhibits Lipid Accumulation in 3T3-L1 Cells via mTOR-Mediated Regulation of the Autophagy Mechanism. Nutrients 2022; 14:nu14061287. [PMID: 35334944 PMCID: PMC8954126 DOI: 10.3390/nu14061287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Liquiritigenin (LQG) is a natural flavonoid from the herb Glycyrrhiza uralensis Fisch that exhibits multiple biological activities. However, its specific role in antiobesity and its related underlying molecular mechanisms remain unknown. The primary purpose of this study is to explore the effects and regulatory mechanisms of LQG on lipid accumulation in 3T3-L1 adipocytes. The results show that LQG significantly reduced triglyceride levels and downregulated the expression of transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes. Additionally, the expression of sterol-regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) involved in lipogenesis was reduced by treatment with LQG. The protein expression levels of light chain 3B (LC3B), autophagy-related protein 7 (ATG7) and p62 were also modulated by LQG, leading to the suppression of autophagy. Further, LQG activated the phosphorylation of the mammalian target of rapamycin (mTOR), the inhibition of which was followed by the restored expression of autophagy-related proteins. Pretreatment with an mTOR inhibitor also reverted the expression of several genes or proteins involved in lipid synthesis. These results suggest that LQG inhibited lipid accumulation via mTOR-mediated autophagy in 3T3-L1 white adipocytes, indicating the role of LQG as a potential natural bioactive component for use in dietary supplements for preventing obesity.
Collapse
|
34
|
St Aubin CR, Fisher AL, Hernandez JA, Broderick TL, Al-Nakkash L. Mitigation of MAFLD in High Fat-High Sucrose-Fructose Fed Mice by a Combination of Genistein Consumption and Exercise Training. Diabetes Metab Syndr Obes 2022; 15:2157-2172. [PMID: 35911503 PMCID: PMC9329575 DOI: 10.2147/dmso.s358256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Metabolic dysfunction-associated fatty liver disease (MAFLD) is fueled by escalations in both sedentary behavior and caloric intake and is noted in obese type 2 diabetic (T2DM) patients. This study aimed to examine the effects of exercise and the phytoestrogen genistein in mice fed a high fat (60% fat) high sugar (55% fructose with 45% sucrose), HFHS diet. METHODS Male C57BL/6J mice were assigned to five groups: HFHS, HFHS with genistein (600 mg/kg diet, HFHS+Gen), HFHS with moderate exercise (HFHS+Ex), and HFHS with combined genistein and moderate exercise (HFHS-Gen+Ex). Control lean mice were fed standard chow and water. Exercise consisted of 30-minute sessions of treadmill running five days/week for the 12-week study duration. Body weight was assessed weekly. Liver, kidney, fecal pellets and serum were extracted at the end of the study and maintained at -80°C. RESULTS After 12 weeks of treatment, mice in the HFHS group had the highest hepatic lipid content. Plasma levels of glucose, insulin, leptin, cholesterol, amylin, and total fat content were significantly elevated in HFHS mice compared to control mice. HFHS feeding increased protein expression of carnitine palmitoyltransferase 1b (CPT-1b isoform) in gastrocnemius, CPT1a, glucose transporter protein 2 (GLUT2), glucocorticoid receptor (GR), and fructose 1,6-bisphosphate 1 (FBP1) expression in liver. Exercise alone had minor effects on these metabolic abnormalities. Genistein alone resulted in improvements in body weight, fat content, amylin, insulin sensitivity, and liver histopathology, GR, FBP1, and acetyl-CoA carboxylase 1 (ACC1). Combination treatment resulted in additional metabolic improvements, including reductions in hepatic lipid content and lipid area, alanine transferase activity, CPT1b, and CPT1a. CONCLUSION Our results indicate that a HFHS diet is obesogenic, inducing metabolic perturbations consistent with T2DM and MAFLD. Genistein alone and genistein combined with moderate intensity exercise were effective in reducing MAFLD and the aberrations induced by chronic HFHS feeding.
Collapse
Affiliation(s)
- Chaheyla R St Aubin
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Amy L Fisher
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Jose A Hernandez
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Tom L Broderick
- Department of Physiology, College of Graduate Studies Midwestern University, Glendale, AZ, 85308, USA
- Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies Midwestern University, Glendale, AZ, 85308, USA
- Correspondence: Layla Al-Nakkash, Department of Physiology, College of Graduate Studies, Midwestern University, 19555 North 59th Avenue, Glendale, AZ, 85308, USA, Tel +1 623 572 3719, Fax +1 623 572 3673, Email
| |
Collapse
|
35
|
Yamagata K, Yamori Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021; 26:5863. [PMID: 34641407 PMCID: PMC8512040 DOI: 10.3390/molecules26195863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa 282-8510, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan;
| |
Collapse
|
36
|
Moosavian SP, Rahimlou M, Asbaghi O, Moradi S, Marx W, Paknahad Z. The effect of soy products on circulating adiponectin and leptin concentration in adults: A systematic review and meta-analysis of randomised controlled trials. Int J Clin Pract 2021; 75:e14100. [PMID: 33619795 DOI: 10.1111/ijcp.14100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Human clinical trials that have investigated the effect of soy product consumption on adipokines have reported inconsistent results. Our objective was to elucidate the role of soy product consumption on adiponectin and leptin in adults through a systematic review and meta-analysis of available randomised placebo-controlled trials (RCTs). METHODS The systematic search included PubMed, Scopus, Web of Science, EmBase, Google Scholar and Cochrane database from inception to July 2020. Human clinical trials that reported the effect of soy product consumption on leptin and adiponectin were included. The pooled weighted mean difference (WMD) was calculated by the random-effects model. Heterogeneity, sensitivity analysis, and publication bias were reported using standard methods. Quality assessment was performed using Cochrane risk of bias assessment tool. RESULTS Overall, 13 RCTs with 824 participants were included in this meta-analysis. Our analysis showed that soy product consumption did not significantly affect leptin (WMD: 0.01 ng/mL; 95% CI, -0.16, 0.18; P = .88) and adiponectin (WMD: -0.09 ng/mL; 95% CI, -0.29, 0.12; P = .39) concentration in comparison with control. Furthermore, subgroup analysis indicated that the effect remained non-significant when analysed by study design, participant demographics and intervention characteristics. Based on the Cochrane Collaboration Risk of Bias tool, seven studies were considered good quality and six studies were fair. CONCLUSION The present systematic review and meta-analysis suggest that soy product consumption had no significant effect on leptin and adiponectin levels in adults. However, future larger and well-designed trials are still needed to further explore this research area and to address the heterogeneous study design used in the existing literature.
Collapse
Affiliation(s)
- Seyedeh Parisa Moosavian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Wolfgang Marx
- iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, VIC, Australia
| | - Zamzam Paknahad
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Lee D, Kim JY, Kim HW, Yoo JE, Kang KS. Combined Beneficial Effect of Genistein and Atorvastatin on Adipogenesis in 3T3-L1 Adipocytes. Biomolecules 2021; 11:biom11071052. [PMID: 34356676 PMCID: PMC8301876 DOI: 10.3390/biom11071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Genistein (4,5,7-trihydroxyisoflavone) is abundant in various dietary vegetables, especially soybeans, and is known to have not only an estrogenic effect but also an antiadipogenic effect. Atorvastatin (dihydroxy monocarboxylic acid) is a statin used to prevent heart disease. Although genistein and atorvastatin have been reported to possess antiadipogenic effects, their combined effects are still unclear. The aim of the current study was to explore whether the combination of genistein and atorvastatin at low concentrations significantly suppresses adipogenesis in a murine preadipocyte cell line (3T3-L1) compared to treatment with genistein or atorvastatin alone. Our results showed that cotreatment with 50 µM genistein and 50 nM atorvastatin significantly suppressed preadipocyte differentiation, whereas when each compound was used alone, there was no inhibitory effect. Additionally, cotreatment with genistein and atorvastatin significantly downregulated adipogenic marker proteins, including mitogen-activated protein kinases (MAPKs), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), glucocorticoid receptor (GR), and CCAAT/enhancer-binding protein β (C/EBPβ). This is the first evidence of the combined antiadipogenic effects of genistein and atorvastatin. Although additional experiments are required, combinational treatment with genistein and atorvastatin may be an alternative treatment for menopause-associated lipid metabolic disorders and obesity.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ji-Youn Kim
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon 35235, Korea; (J.-Y.K.); (H.-W.K.)
| | - Hae-Won Kim
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon 35235, Korea; (J.-Y.K.); (H.-W.K.)
| | - Jeong-Eun Yoo
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon 35235, Korea; (J.-Y.K.); (H.-W.K.)
- Correspondence: (J.-E.Y.); (K.S.K.); Tel.: +82-42-470-9139 (J.-E.Y.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (J.-E.Y.); (K.S.K.); Tel.: +82-42-470-9139 (J.-E.Y.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
38
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|
39
|
Tomani JCD, Bonnet O, Nyirimigabo A, Deschamps W, Tchinda AT, Jansen O, Ledoux A, Mukazayire MJ, Vanhamme L, Frédérich M, Muganga R, Souopgui J. In Vitro Antiplasmodial and Cytotoxic Activities of Compounds from the Roots of Eriosema montanum Baker f. (Fabaceae). Molecules 2021; 26:molecules26092795. [PMID: 34068519 PMCID: PMC8125995 DOI: 10.3390/molecules26092795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria remains one of the leading causes of death in sub-Saharan Africa, ranked in the top three infectious diseases in the world. Plants of the Eriosema genus have been reported to be used for the treatment of this disease, but scientific evidence is still missing for some of them. In the present study, the in vitro antiplasmodial activity of the crude extract and compounds from Eriosema montanum Baker f. roots were tested against the 3D7 strain of Plasmodium falciparum and revealed using the SYBR Green, a DNA intercalating compound. The cytotoxicity effect of the compounds on a human cancer cell line (THP-1) was assessed to determine their selectivity index. It was found that the crude extract of the plant displayed a significant antiplasmodial activity with an IC50 (µg/mL) = 17.68 ± 4.030 and a cytotoxic activity with a CC50 (µg/mL) = 101.5 ± 12.6, corresponding to a selective antiplasmodial activity of 5.7. Bioactivity-guided isolation of the major compounds of the roots' crude extract afforded seven compounds, including genistein, genistin and eucomic acid. Under our experimental conditions, using Artemisinin as a positive control, eucomic acid showed the best inhibitory activity against the P. falciparum 3D7, a well-known chloroquine-sensitive strain. The present results provide a referential basis to support the traditional use of Eriosema species in the treatment of malaria.
Collapse
Affiliation(s)
- Jean Claude Didelot Tomani
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (J.C.D.T.); (A.N.); (M.J.M.); (R.M.)
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (W.D.); (L.V.)
| | - Olivier Bonnet
- Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, University of Liège, B36, 4000 Liège, Belgium; (O.B.); (O.J.); (A.L.); (M.F.)
| | - Alain Nyirimigabo
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (J.C.D.T.); (A.N.); (M.J.M.); (R.M.)
- Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, University of Liège, B36, 4000 Liège, Belgium; (O.B.); (O.J.); (A.L.); (M.F.)
| | - William Deschamps
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (W.D.); (L.V.)
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 13033, Cameroon;
| | - Olivia Jansen
- Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, University of Liège, B36, 4000 Liège, Belgium; (O.B.); (O.J.); (A.L.); (M.F.)
| | - Allison Ledoux
- Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, University of Liège, B36, 4000 Liège, Belgium; (O.B.); (O.J.); (A.L.); (M.F.)
| | - Marie Jeanne Mukazayire
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (J.C.D.T.); (A.N.); (M.J.M.); (R.M.)
| | - Luc Vanhamme
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (W.D.); (L.V.)
| | - Michel Frédérich
- Centre for Interdisciplinary Research on Medicines (CIRM), Laboratory of Pharmacognosy, University of Liège, B36, 4000 Liège, Belgium; (O.B.); (O.J.); (A.L.); (M.F.)
| | - Raymond Muganga
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (J.C.D.T.); (A.N.); (M.J.M.); (R.M.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium; (W.D.); (L.V.)
- Correspondence: ; Tel.: +32-2-650-9936
| |
Collapse
|
40
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
41
|
Bharti R, Chopra BS, Raut S, Khatri N. Pueraria tuberosa: A Review on Traditional Uses, Pharmacology, and Phytochemistry. Front Pharmacol 2021; 11:582506. [PMID: 33708108 PMCID: PMC7941752 DOI: 10.3389/fphar.2020.582506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pueraria tuberosa (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand), is a perennial herb distributed throughout India and other Asian countries. Traditionally, tuber and leaves of this plant have extensively been reported for nutritional and medicinal properties in Ayurveda as well as in Chinese traditional practices. The objective of the present review is to compile and update the published data on traditional uses, pharmacological potential, and phytochemistry of compounds isolated from the plant Pueraria tuberosa. P. tuberosa extracts and its purified compounds possess multiple activities such as anticancer, anticonvulsant, antidiabetic, antifertility, anti-inflammatory, antioxidant, anti-stress, antiulcerogenic, cardioprotective, hypolipidemic, hepatoprotective, immunomodulatory, nephroprotective, nootropic, neuroprotective, and wound healing. Tuber and leaf extracts of P. tuberosa contain several bioactive constituents such as puerarin, daidzein, genistein, quercetin, irisolidone, biochanin A, biochanin B, isoorientin, and mangiferin, which possess an extensive range of pharmacological activities. The extensive range of pharmacological properties of P. tuberosa provides opportunities for further investigation and presents a new approach for the treatment of ailments. Many phytochemicals have been identified and characterized from P. tuberosa; however, some of them are still unexplored, and there is no supporting data for their activities and exact mechanisms of action. Therefore, further investigations are warranted to unravel the mechanisms of action of individual constituents of this plant.
Collapse
Affiliation(s)
- Ram Bharti
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhupinder Singh Chopra
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
42
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
43
|
Shyni GL, Sajin KF, Mangalam SN, Raghu KG. An in vitro study reveals the anti-obesity effects of 7- methoxy-3-methyl-5-((E)-prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran from Myristica fragrans. Eur J Pharmacol 2020; 891:173686. [PMID: 33121949 DOI: 10.1016/j.ejphar.2020.173686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Adipogenesis, the maturation process of preadipocytes, is closely associated with the development of obesity and other complex metabolic syndromes. Herein, we investigated the effect of 7- methoxy-3-methyl-5-((E)- prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran (TM), a benzofuran, isolated from the mace of Myristica fragrans Houtt on adipogenesis in 3T3-L1 preadipocytes to extrapolate whether this compound has any anti-obesity potential. For this, 3T3-L1 preadipocytes were induced to differentiate in the presence of various concentrations of TM (1, 5, 10 μM) and analyzed for triglyceride (TG) accumulation and the expression of proteins and genes involved in lipogenesis and lipolysis associated with adipogenesis. Results showed that TM significantly reduced TG accumulation and expression of marker proteins of adipocyte differentiation (peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and fatty acid-binding protein 4) and increased the secretion of glycerol in a dose-dependent manner. There was a significant dose-dependent decrease in the expression of fatty acid synthase, stearoyl-CoA desaturase-1, sterol regulatory element-binding transcription factor 1c, and acetyl-CoA carboxylase 1 and an increase in carnitine palmitoyltransferase 1, acyl-CoA oxidase, and peroxisome proliferator-activated receptor α in TM treated cells. The phosphorylation of cAMP-activated protein kinase was also increased, which in turn activated the phosphorylation of acetyl-CoA carboxylase in mature adipocytes. Also, there was an increase in glucose uptake by TM, suggesting its insulin-sensitizing potential. This is the first report on the anti-obesity effects of TM from Myristica fragrans on adipogenesis and lipid metabolism in 3T3-L1 adipocytes and demands detailed in vivo study for developing TM as anti-obesity therapeutics.
Collapse
Affiliation(s)
- Gangadharan Leela Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kaithathara Francis Sajin
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sivasankaran Nair Mangalam
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
44
|
Kim M, Im S, Cho YK, Choi C, Son Y, Kwon D, Jung YS, Lee YH. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin. Biomolecules 2020; 10:E1394. [PMID: 33008006 PMCID: PMC7601939 DOI: 10.3390/biom10101394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Soy isoflavones are bioactive phytoestrogens with known health benefits. Soybean embryo extract (SEE) has been consumed as a source of isoflavones, mainly daidzein, glycitein, and genistein. While previous studies have reported the anti-obesity effects of SEE, this study investigates their molecular mechanisms and the synergistic effects of co-treatment with SEE and enzymatically modified isoquercitrin (EMIQ). SEE upregulated genes involved in lipolysis and brown adipocyte markers and increased mitochondrial content in differentiated C3H10T1/2 adipocytes in vitro. Next, we use a high-fat diet-induced obesity mouse model to determine the anti-obesity effect of SEE. Two weeks of single or combined treatment with SEE and EMIQ significantly reduced body weight gain and improved glucose tolerance. Mechanistically, SEE treatment increased mitochondrial content and upregulated genes involved in lipolysis in adipose tissue through the cAMP/PKA-dependent signaling pathway. These effects required a cytosolic lipase adipose triglyceride lipase (ATGL) expression, confirmed by an adipocyte-specific ATGL knockout mouse study. Collectively, this study demonstrates that SEE exerts anti-obesity effects through the activation of adipose tissue metabolism and exhibits a synergistic effect of co-treatment with EMIQ. These results improve our understanding of the mechanisms underlying the anti-obesity effects of SEE related to adipose tissue metabolism.
Collapse
Affiliation(s)
- Minsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yoon keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Cheoljun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Yeonho Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| | - Doyoung Kwon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (D.K.); (Y.-S.J.)
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (M.K.); (S.I.); (Y.k.C.); (C.C.); (Y.S.)
| |
Collapse
|