1
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
2
|
Song X, Li Y, Wang C, Zhao Y, Yang S, Guo R, Hu M, Sun M, Zhang G, Li Y, Wang Y, Liu S, Shen Y, Li C, Zhang X, Li J, Fan B, Li B. Efficacy evaluation of a bivalent subunit vaccine against epidemic PEDV heterologous strains with low cross-protection. J Virol 2024; 98:e0130924. [PMID: 39254314 PMCID: PMC11494954 DOI: 10.1128/jvi.01309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Variant Porcine epidemic diarrhea virus (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests. The trimeric full-length S proteins of G2a and G2b variants were purified and a bivalent subunit vaccine against PEDV G2a/G2b-S was developed. In active and passive immune protection tests, the bivalent subunit vaccine produced high neutralizing antibody titers and S-specific immunoglobulin G (IgG) and IgA titers against both the G2a and G2b strains in piglets and sows. In the attack phase of the viruses, the clinical symptoms and microscopic lesions in the immunized groups were significantly alleviated. Importantly, the PEDV G2a/G2b-S bivalent subunit vaccine conferred effective passive immunity against PEDV G2a and G2b challenges in the form of colostrum-derived antibodies from the immunized sows. In conclusion, our data demonstrate the low cross-protection of PEDV epidemic G2a and G2b strains and show that the G2a/G2b-S bivalent subunit vaccine is protective against both G2a and G2b strains. It is therefore a candidate vaccine for PEDV prevention. IMPORTANCE The detection rate of PEDV G2a subtype strains is currently increasing. Although commercial vaccines are available, most vaccines do not exert an ideal protective effect against these strains. Furthermore, there is no definitive research into the cross-protection between G2a and G2b strains, and no bivalent vaccine provides joint protection against both. Therefore, in this study, we investigated the cross-protection between PEDV G2a and G2b strains and designed a candidate bivalent subunit vaccine combining the trimeric S proteins of the G2a and G2b subtypes. We demonstrate that the cross-protection between strains G2a and G2b is poor and that this bivalent subunit vaccine protects piglets from viral attack by inducing both active and passive immunity. This study emphasizes the effectiveness of the PEDV G2a/G2b-S bivalent subunit vaccine and provides a feasible method for the development of efficient PEDV vaccines.
Collapse
Affiliation(s)
- Xu Song
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yunchuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chuanhong Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mi Hu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Gege Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yupeng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yi Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Shiyu Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yaoxin Shen
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Chengcheng Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xuehan Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Baochao Fan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Hu Z, Li Y, Zhang B, Zhao Y, Guan R, Zhou Y, Du J, Zhang Z, Li X. Serum IgA antibody level against porcine epidemic diarrhea virus is a potential pre-evaluation indicator of immunization effects in sows during parturition under field conditions. Porcine Health Manag 2024; 10:32. [PMID: 39228006 PMCID: PMC11373460 DOI: 10.1186/s40813-024-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Porcine Epidemic Diarrhea (PED) is a highly contagious disease caused by Porcine Epidemic Diarrhea Virus (PEDV), resulting in a mortality rate of suckling piglets as high as 100%. Vaccination is the primary strategy for controlling PEDV infection, however, there is currently a lack of reliable methods for assessing the efficacy of vaccination. This study aimed to analyze serum and colostrum samples from 75 parturient sows with a specific vaccination strategy to measure levels of IgG, IgA, and neutralizing antibodies (nAbs) against PEDV, and to investigate the correlation between serum and colostrum antibody levels, as well as to identify potential biomarkers that can be used to evaluate immunization effects under field conditions. RESULTS The findings of correlation analysis between antibody levels of IgA, IgG, and nAbs in serum or colostrum samples revealed that IgG demonstrated the most robust correlation with nAbs exhibiting a correlation coefficient of 0.64 in serum samples. Conversely, IgA exhibited the highest correlation with nAbs, with a correlation coefficient of 0.47 in colostrum samples. Additionally, the correlation analysis of antibody levels between serum and colostrum samples indicated that serum IgA displayed the strongest correlation with colostrum IgA, with a coefficient of 0.63, indicating that serum IgA may serve as a viable alternative indicator for evaluating IgA levels in colostrum samples. To further evaluate the suitability of serum IgA as a substitute marker for colostrum IgA, levels of IgA antibodies in serum samples from sows were examined both pre- and post-parturition. The findings indicated that serum IgA levels were initially low prior to the initial immunization, experienced a notable rise 21 days after immunization, and maintained a significant elevation compared to pre-immunization levels from 21 days pre-parturition to 14 days postpartum, spanning a total of 35 days. CONCLUSIONS Serum anti-PEDV IgA antibody levels may serve as a valuable predictor for immunization effects, allowing for the assessment of colostrum IgA antibody levels up to 21 days in advance. This insight could enable veterinarians to timely adjust or optimize immunization strategies prior to parturition, thereby ensuring adequate passive immunity is conferred to piglets through colostral transfer postpartum.
Collapse
Affiliation(s)
- Zhiqiang Hu
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Yang Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Bingzhou Zhang
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Ying Zhao
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
| | - Ran Guan
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Yapeng Zhou
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China
| | - Jiafa Du
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China
| | - Zhimin Zhang
- College of Animal Science, Xichang University, No.1 Xuefu Road, Anning Town, Xichang, 615013, Sichuan Province, P. R. China.
| | - Xiaowen Li
- Shandong Engineering Research Center of Pig and Poultry Health Breeding and Important Infectious Disease Purification, Shandong New Hope Liuhe Group Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, 266100, Qingdao, Shandong, P. R. China.
| |
Collapse
|
4
|
Luo H, Liang Z, Lin J, Wang Y, Liu Y, Mei K, Zhao M, Huang S. Research progress of porcine epidemic diarrhea virus S protein. Front Microbiol 2024; 15:1396894. [PMID: 38873162 PMCID: PMC11169810 DOI: 10.3389/fmicb.2024.1396894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a single-stranded RNA virus with a capsid membrane that causes acute infectious gastrointestinal disease characterized by vomiting, diarrhea, and dehydration in swine. Piglets are more susceptible to PEDV than adults, with an infection rate reaching 90% and a fatality rate as high as 100%. Moreover, PEDV has a rapid transmission rate and broad transmission range. Consequently, PEDV has caused considerable economic losses and negatively impacted the sustainability of the pig industry. The surface spike (S) glycoprotein is the largest structural protein in PEDV virions and is closely associated with host cell fusion and virus invasion. As such, the S protein is an important target for vaccine development. In this article, we review the genetic variation, immunity, apoptosis-induction function, virulence, vaccine potential, and other aspects of the PEDV S protein. This review provides a theoretical foundation for preventing and controlling PEDV infection and serves as a valuable resource for further research and development of PEDV vaccines.
Collapse
Affiliation(s)
- Haojian Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junjie Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiqiao Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yingying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kun Mei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Hua Sheng Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
5
|
Szyller H, Antosz K, Batko J, Mytych A, Dziedziak M, Wrześniewska M, Braksator J, Pytrus T. Bioactive Components of Human Milk and Their Impact on Child's Health and Development, Literature Review. Nutrients 2024; 16:1487. [PMID: 38794725 PMCID: PMC11124180 DOI: 10.3390/nu16101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The composition of human breast milk is an ideal combination of substances necessary for the healthy development of an infant's body while protecting from pathogens and the balanced development of the microbiota. Its composition is dynamic and changes with the age of the child, meeting their current needs. The study provides a thorough overview of human milk components, such as immunological components, growth factors, hormones, carbohydrates, lipids, minerals, and vitamins. Authors focus on capturing the most important aspects of the effects of these substances on a newborn's body, while also looking for specific connections and describing the effects on given systems. Supplementation and the use of ingredients are also discussed. The purpose of this paper is to present the current state of knowledge about the bioactive components of human milk and their impact on the growth, development, and health of the young child.
Collapse
Affiliation(s)
- Hubert Szyller
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Katarzyna Antosz
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Joanna Batko
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Agata Mytych
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Marta Dziedziak
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Martyna Wrześniewska
- Student Scientific Group of Pediatric Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.A.); (J.B.); (A.M.); (M.D.); (M.W.)
| | - Joanna Braksator
- 2nd Clinical Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wrocalw, Poland; (J.B.); (T.P.)
| | - Tomasz Pytrus
- 2nd Clinical Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wrocalw, Poland; (J.B.); (T.P.)
| |
Collapse
|
6
|
Lei J, Miao Y, Bi W, Xiang C, Li W, Zhang R, Li Q, Yang Z. Porcine Epidemic Diarrhea Virus: Etiology, Epidemiology, Antigenicity, and Control Strategies in China. Animals (Basel) 2024; 14:294. [PMID: 38254462 PMCID: PMC10812628 DOI: 10.3390/ani14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus, which is one of the main causative agents of porcine epidemic diarrhea (PED), with 100% morbidity and 80-100% mortality in neonatal piglets. Since 2010, large-scale PED caused by highly pathogenic variants of PEDV has occurred successively in China and other countries in the world, posing a great threat to the global pig industry. It has been demonstrated in many investigations that the classic attenuated vaccine strain, PEDV CV777, is insufficient to fully protect against the PEDV variants. Moreover, the maternally derived antibodies elicited by inactivated vaccines also cannot completely protect piglets from infection. In addition, feedback feeding poses a risk of periodic PEDV recurrence in pig farms, making it challenging to successfully limit the spread of PEDV in China. This review focuses on the etiology, epidemiology, antigenicity, and control strategies of PEDV in China and provides information for the formulation of effective control measures.
Collapse
Affiliation(s)
- Jianlin Lei
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wenrui Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Chaohui Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| | - Qian Li
- College of Agriculture and Forestry Science and Technology, Longdong University, Qingyang 745000, China;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (W.B.); (C.X.); (W.L.); (R.Z.); (Z.Y.)
| |
Collapse
|
7
|
Kumar D, Anderson Reever AV, Pittman JS, Springer NL, Mallen K, Roman-Sosa G, Sangewar N, Casey-Moore MC, Bowen MD, Mwangi W, Marthaler DG. Role of Pre-Farrow Natural Planned Exposure of Gilts in Shaping the Passive Antibody Response to Rotavirus A in Piglets. Vaccines (Basel) 2023; 11:1866. [PMID: 38140269 PMCID: PMC10748143 DOI: 10.3390/vaccines11121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Amanda V. Anderson Reever
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | | | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Kylynn Mallen
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Mary C. Casey-Moore
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | | |
Collapse
|
8
|
Sohn EJ, Kang H, Min K, Park M, Kim JH, Seo HW, Lee SJ, Kim H, Tark D, Cho HS, Choi BH, Oh Y. A Plant-Derived Maternal Vaccine against Porcine Epidemic Diarrhea Protects Piglets through Maternally Derived Immunity. Vaccines (Basel) 2023; 11:vaccines11050965. [PMID: 37243069 DOI: 10.3390/vaccines11050965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Newborn piglets are susceptible to a highly contagious enteritis caused by the porcine epidemic diarrhea virus (PEDV), associated with high levels of mortality worldwide. There is pressing need for a rapid, safe, and cost-effective vaccine to safeguard pigs from getting infected by PEDV. PEDV belongs to the coronavirus family and is characterized by high levels of mutability. The primary goal of a PEDV vaccine is to provide immunity to newborn piglets through vaccination of sows. Plant-based vaccines are becoming more popular because they have low manufacturing costs, are easily scalable, have high thermostability, and a long shelf life. This is in contrast to conventional vaccines which include inactivated, live, and/or recombinant types that can be expensive and have limited ability to respond to rapidly mutating viruses. The binding of the virus to host cell receptors is primarily facilitated by the N-terminal subunit of the viral spike protein (S1), which also contains several epitopes that are recognized by virus-neutralizing antibodies. As a result, we generated a recombinant S1 protein using a plant-based vaccine platform. We found that the recombinant protein was highly glycosylated, comparable to the native viral antigen. Vaccination of pregnant sows at four and two weeks before farrowing led to the development of humoral immunity specific to S1 in the suckling piglets. In addition, we noted significant viral neutralization titers in both vaccinated sows and piglets. When challenged with PEDV, piglets born from vaccinated sows displayed less severe clinical symptoms and significantly lower mortality rates compared to piglets born from non-vaccinated sows.
Collapse
Affiliation(s)
- Eun-Ju Sohn
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Minhee Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Ju-Hun Kim
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Hwi-Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Joon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Heeyeon Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Ho-Seong Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Liu Y, Han X, Qiao Y, Wang T, Yao L. Porcine Deltacoronavirus-like Particles Produced by a Single Recombinant Baculovirus Elicit Virus-Specific Immune Responses in Mice. Viruses 2023; 15:v15051095. [PMID: 37243181 DOI: 10.3390/v15051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs appeared as spherical particles with a diameter similar to that of the native virions. Furthermore, PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies. In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and IFN-γ. Moreover, the combination of PDCoV VLPs and Freund's adjuvant could improve the level of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines to prevent PDCoV infections.
Collapse
Affiliation(s)
- Yangkun Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xueying Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yaqi Qiao
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Tiejun Wang
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
10
|
Su F, Li J, Xue Y, Yu B, Ye S, Xu L, Fu Y, Yuan X. Early Oral Administration of Ginseng Stem-Leaf Saponins Enhances the Peyer's Patch-Dependent Maternal IgA Antibody Response to a PEDV Inactivated Vaccine in Mice, with Gut Microbiota Involvement. Vaccines (Basel) 2023; 11:vaccines11040830. [PMID: 37112742 PMCID: PMC10143706 DOI: 10.3390/vaccines11040830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Neonatal piglets during the first week of life are highly susceptible to porcine epidemic diarrhoea virus (PEDV) infection, with mortality rates reaching 80-100%. Passive lactogenic immunity remains the most effective way to protect neonates from infection. Although safe, inactivated vaccines provide little or no passive protection. Here, we administered ginseng stem-leaf saponins (GSLS) to mice before parenteral immunization with an inactivated PEDV vaccine to investigate the effect of GSLS on the gut-mammary gland (MG)-secretory IgA axis. Early oral GSLS administration potently increased PEDV-specific IgA plasma cell generation in the intestine, facilitated intestinal IgA plasma cell migration to the MG by enhancing the chemokine receptor (CCR)10-chemokine ligand (CCL)28 interaction, and ultimately promoted specific IgA secretion into milk, which was dependent on Peyer's patches (PPs). Additionally, GSLS improved the gut microbiota composition, especially increasing probiotic abundance, and these microflora members promoted the GSLS-enhanced gut-MG-secretory IgA axis response and were regulated by PPs. In summary, our findings highlight the potential of GSLS as an oral adjuvant for PEDV-inactivated vaccines and provide an attractive vaccination strategy for lactogenic immunity induction in sows. Further studies are required to evaluate the mucosal immune enhancement efficacy of GSLS in pigs.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou 310020, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310002, China
| |
Collapse
|
11
|
Liang JQ, Xie MY, Hou LJ, Wang HL, Luo JY, Sun JJ, Xi QY, Jiang QY, Chen T, Zhang YL. miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection. Antiviral Res 2023; 212:105579. [PMID: 36907442 DOI: 10.1016/j.antiviral.2023.105579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration, and high mortality in neonatal piglets. It has caused huge economic losses to animal husbandry worldwide. Current commercial PEDV vaccines do not provide enough protection against variant and evolved virus strains. No specific drugs are available to treat PEDV infection. The development of more effective therapeutic anti-PEDV agents is urgently needed. Our previous study suggested that porcine milk small extracellular vesicles (sEV) facilitate intestinal tract development and prevent lipopolysaccharide-induced intestinal injury. However, the effects of milk sEV during viral infection remain unclear. Our study found that porcine milk sEV, which was isolated and purified by differential ultracentrifugation, could inhibit PEDV replication in IPEC-J2 and Vero cells. Simultaneously, we constructed a PEDV infection model for piglet intestinal organoids and found that milk sEV also inhibited PEDV infection. Subsequently, in vivo experiments showed that milk sEV pre-feeding exerted robust protection of piglets from PEDV-induced diarrhea and mortality. Strikingly, we found that the miRNAs extracted from milk sEV inhibited PEDV infection. miRNA-seq, bioinformatics analysis, and experimental verification demonstrated that miR-let-7e and miR-27b, which were identified in milk sEV targeted PEDV N and host HMGB1, suppressed viral replication. Taken together, we revealed the biological function of milk sEV in resisting PEDV infection and proved its cargo miRNAs, miR-let-7e and miR-27b, possess antiviral functions. This study is the first description of the novel function of porcine milk sEV in regulating PEDV infection. It provides a better understanding of milk sEV resistance to coronavirus infection, warranting further studies to develop sEV as an attractive antiviral.
Collapse
Affiliation(s)
- Jia Qi Liang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Mei-Ying Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, 510520, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Hai-Long Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
12
|
Qin Z, Nai Z, Li G, He X, Wang W, Xia J, Chao W, Li L, Jiang X, Liu D. The Oral Inactivated Porcine Epidemic Diarrhea Virus Presenting in the Intestine Induces Mucosal Immunity in Mice with Alginate-Chitosan Microcapsules. Animals (Basel) 2023; 13:ani13050889. [PMID: 36899746 PMCID: PMC10000104 DOI: 10.3390/ani13050889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.
Collapse
Affiliation(s)
- Ziliang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zida Nai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Gang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Jiqiao Xia
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wang Chao
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lu Li
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
- Correspondence: (X.J.); (D.L.); Tel.: +86-451-55190722 (X.J. & D.L.)
| |
Collapse
|
13
|
Zhang H, Li Y, Yang R, Xiao L, Dong S, Lin J, Liu G, Shan H. Erastin inhibits porcine epidemic diarrhea virus replication in Vero cells. Front Cell Infect Microbiol 2023; 13:1142173. [PMID: 36936772 PMCID: PMC10015705 DOI: 10.3389/fcimb.2023.1142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV), an intestinal pathogenic coronavirus, has caused significant economic losses to the swine industry worldwide. At present, there are several treatment methods, but there is still a lack of clinically effective targeted drugs, new antiviral mechanisms and drugs need to be explored. Methods In this study, we established a model of erastin versus ferrostatin-1 treatment of Vero cells, and then detected virus proliferation and gene expression by RT-qPCR through PEDV infection experiments. Results We demonstrated for the first time that erastin significantly inhibited the replication of PEDV upon entry into cells; Vero treated with erastin significantly regulated the expression of three genes, NRF2, ACSL4 and GPX4, notably erastin regulated the expression of these three genes negatively correlated with the expression induced by PEDV virus infection. Conclusions Since NRF2, ACSL4 and GPX4 are classical Ferroptosis genes, this study speculates that erastin may inhibit the replication of PEDV in Vero cells in part through the regulation of ferroptosis pathway, and erastin may be a potential drug for the treatment of PEDV infection.
Collapse
Affiliation(s)
- Hongliang Zhang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Yingguang Li
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Ruimei Yang
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Ling Xiao
- Animal Husbandry and Veterinary Station of Rushanzhai Town, Rushan Animal Husbandry Development Center, Weihai, China
| | - Shaoming Dong
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Jiaxu Lin
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
| | - Gang Liu
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gang Liu, ; Hu Shan,
| | - Hu Shan
- College of Veterinary Medicine, Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Gang Liu, ; Hu Shan,
| |
Collapse
|
14
|
Chepngeno J, Amimo JO, Michael H, Jung K, Raev S, Lee MV, Damtie D, Mainga AO, Vlasova AN, Saif LJ. Rotavirus A Inoculation and Oral Vitamin A Supplementation of Vitamin A Deficient Pregnant Sows Enhances Maternal Adaptive Immunity and Passive Protection of Piglets against Virulent Rotavirus A. Viruses 2022; 14:2354. [PMID: 36366453 PMCID: PMC9697517 DOI: 10.3390/v14112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the impact of vitamin A deficiency (VAD)/supplementation (±VA) and group A RV (RVA) maternal immunization of RVA seropositive multiparous pregnant sows, on their immune responses (anamnestic response) and on passive protection of their piglets against RVA challenge. Our results showed that VAD- mock sows had increased RVA RNA shedding at 1-5 days post piglet RVA challenge, and their litters had increased RVA shedding and diarrhea frequency throughout the experiment. VAD decreased memory B cell frequencies while VA supplementation increased RVA specific IgA/IgG antibody (Ab) secreting cell (ASC) numbers in blood, milk, and tissues of RVA inoculated VAD sows. The increased numbers of RVA specific IgA/IgG ASCs in blood, milk/colostrum, intestinal contents, and tissues in VA supplemented VAD sows, suggest a role of VA in B cell immunity and trafficking to tissues. We also observed that RVA inoculated sows had the highest viral neutralizing Ab titers in serum and milk while VA supplementation of VAD sows and RVA inoculation increased IgA+ B cell frequencies in sow colostrum. In summary, we demonstrated that daily oral VA-supplementation (2nd trimester-throughout lactation) to RVA inoculated VAD sows improved the function of their gut-mammary-IgA immunological axis, reducing viral RNA shedding, diarrhea, and increasing weight gain in suckling piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 00625, Kenya
| | - Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Marcia V. Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- The Ohio State University Global One Health LLC, Eastern Africa Regional Office, Addis Ababa, Ethiopia
| | - Alfred O. Mainga
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 00625, Kenya
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
15
|
Kumar D, Anderson AV, Pittman J, Springer NL, Marthaler DG, Mwangi W. Antibody Response to Rotavirus C Pre-Farrow Natural Planned Exposure to Gilts and Their Piglets. Viruses 2022; 14:2250. [PMID: 36298806 PMCID: PMC9610825 DOI: 10.3390/v14102250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda V. Anderson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeremy Pittman
- Smithfield Foods, Inc., 434 E Main St., Waverly, VA 23890, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Kumar D, Shepherd FK, Springer NL, Mwangi W, Marthaler DG. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022; 11:pathogens11101078. [PMID: 36297136 PMCID: PMC9607047 DOI: 10.3390/pathogens11101078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers’ mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55108, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| | - Douglas G. Marthaler
- Indical Inc., 1317 Edgewater Dr #3722, Orlando, FL 32804, USA
- Correspondence: (D.K.); (W.M.); (D.G.M.); Tel.: +1-804-503-1241 (D.K.)
| |
Collapse
|
17
|
Wang K, Hu Z, Fan M, Shao Z, Yu Q, Li X. Development of an indirect ELISA to detect PEDV specific IgA antibody based on a PEDV epidemic strain. BMC Vet Res 2022; 18:319. [PMID: 35982455 PMCID: PMC9386190 DOI: 10.1186/s12917-022-03419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine epidemic diarrhea (PED), a swine epidemic disease caused by porcine epidemic diarrhea virus (PEDV), is characterized by severe watery diarrhea, vomiting, dehydration and high mortality in piglets, and has caused serious economic losses to the global porcine industry. The level of PEDV IgA antibody is a key marker to assess the extent of passive immunity of the resistance against PEDV infection. However, current commercial structure proteins-based kits for detection of PEDV antibody are not affordable, and those kits require complicated antigen preparation procedures, which cannot meet the scope of economic benefits of many large-scale pig companies in China. Therefore, there is an urgent need to develop an accurate, simple, and economical method for IgA detection in clinical samples. In this study, an indirect ELISA (i-ELISA) method was developed based on a purified PEDV epidemic strain (NH-TA2020). Results The results show that optimal working dilution ratios of PEDV antigen and HRP anti-swine IgA are at 1: 1000 and 1:15000 respectively. The sensitivity of this method is high with the maximum dilution of samples up to 1:160, and coefficients of variation (CV) of both the intra assays and inter assays were no more than 15%. In addition, the relative sensitivities of the i-ELISA were above 90% compared with values from commercial kits in both serum and oral fluid samples. Conclusions Our results suggested that the i-ELISA developed in this study was an accurate, simple, and economical method for PEDV-IgA detection in clinical samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03419-w.
Collapse
Affiliation(s)
- Kun Wang
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Mingyu Fan
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Zhenwen Shao
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Qiannan Yu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China
| | - Xiaowen Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), Dezhou, China. .,Shandong Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, China. .,Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, New Hope Liuhe Co., Ltd, Chengdu, China.
| |
Collapse
|
18
|
Schumacher L, Chen Q, Fredericks L, Gauger P, Bandrick M, Keith M, Giménez-Lirola L, Magstadt D, Yim-im W, Welch M, Zhang J. Evaluation of the Efficacy of an S-INDEL PEDV Strain Administered to Pregnant Gilts against a Virulent Non-S-INDEL PEDV Challenge in Newborn Piglets. Viruses 2022; 14:v14081801. [PMID: 36016423 PMCID: PMC9416680 DOI: 10.3390/v14081801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.
Collapse
Affiliation(s)
- Loni Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Lindsay Fredericks
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Drew Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Wannarat Yim-im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
- Correspondence: ; Tel.: +1-515-294-8024
| |
Collapse
|
19
|
Development of a Genetically Engineered Bivalent Vaccine against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus. Viruses 2022; 14:v14081746. [PMID: 36016368 PMCID: PMC9413861 DOI: 10.3390/v14081746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in increased mortality among newborn piglets. In this paper, we developed a bivalent vaccine against PEDV and PoRV by constructing a recombinant PEDV encoding PoRV VP7 (rPEDV-PoRV-VP7). The recombinant virus was constructed by replacing the entire open reading frame 3 (ORF3) in the genome of an attenuated PEDV strain YN150 with the PoRV VP7 gene using reverse genetic systems. Similar plaque morphology and replication kinetics were observed in Vero cells with the recombinant PEDV compared to the wild-type PEDV. It is noteworthy that the VP7 protein could be expressed stably in rPEDV-PoRV-VP7-infected cells. To evaluate the immunogenicity and safety of rPEDV-PoRV-VP7, 10-day-old piglets were vaccinated with the recombinant virus. After inoculation, no piglet displayed clinical symptoms such as vomiting, diarrhea, or anorexia. The PoRV VP7- and PEDV spike-specific IgG in serum and IgA in saliva were detected in piglets after rPEDV-PoRV-VP7 vaccination. Moreover, both PoRV and PEDV neutralizing antibodies were produced simultaneously in the inoculated piglets. Collectively, we engineered a recombinant PEDV expressing PoRV VP7 that could be used as an effective bivalent vaccine against PEDV and PoRV.
Collapse
|
20
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
21
|
Beneficial effects of probiotics on the pig production cycle: an overview of clinical impacts and performance. Vet Microbiol 2022; 269:109431. [DOI: 10.1016/j.vetmic.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
22
|
Nguyen Thi TH, Chen CC, Chung WB, Chaung HC, Huang YL, Cheng LT, Ke GM. Antibody Evaluation and Mutations of Antigenic Epitopes in the Spike Protein of the Porcine Epidemic Diarrhea Virus from Pig Farms with Repeated Intentional Exposure (Feedback). Viruses 2022; 14:551. [PMID: 35336958 PMCID: PMC8954129 DOI: 10.3390/v14030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The feedback strategy, or controlled exposure of pig herd to the porcine epidemic diarrhea virus (PEDV), significantly decreased losses during a severe outbreak in late 2013 in Taiwan. However, some pig farms still suffered from recurrent outbreaks. To evaluate the association between antibody titers and clinical manifestations, sera and colostra were analyzed from one pig farm that employed the feedback strategy. Furthermore, spike (S) gene full sequences from six positive samples of two farms with and without using feedback were compared to investigate the evolution of PEDV variants circulating in pig herds. The results in this study showed that high PEDV antibody titers do not correlate with the high rate of protection from PEDV infection. In addition, repeated feedback generated the emergence of PEDV variants with unique substitutions of N537S and Y561H in the COE domain and S769F in the SS6 epitopes. These mutations indicated the pathogenetic evolution of PEDV strains existing in the cycle of the feedback method. A very strict biosecurity practice to block the routes of pathogen transfer should be followed to achieve successful control of PEDV infections in pig herds.
Collapse
Affiliation(s)
- Thu Hien Nguyen Thi
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, No.1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Chi-Chih Chen
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Yen-Li Huang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Guan-Ming Ke
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|
23
|
Antiviral Activities of Carbazole Derivatives against Porcine Epidemic Diarrhea Virus In Vitro. Viruses 2021; 13:v13122527. [PMID: 34960796 PMCID: PMC8703851 DOI: 10.3390/v13122527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives. Eighteen carbazole derivatives (No.1 to No.18) were synthesized, and No.5, No.7, and No.18 were identified to markedly reduce the replication of enhanced green fluorescent protein (EGFP) inserted-PEDV, and the mRNA level of PEDV N. Flow cytometry assay, coupled with CCK8 assay, confirmed No.7 and No.18 carbazole derivatives displayed high inhibition effects with low cell toxicity. Furthermore, time course analysis indicated No.7 and No.18 carbazole derivatives exerted inhibition at the early stage of the viral life cycle. Collectively, the analysis underlines the benefit of carbazole derivatives as potential inhibitors of PEDV, and provides candidates for the development of novel therapeutic agents.
Collapse
|
24
|
Maj M, Fake GM, Walker JH, Saltzman R, Howard JA. Oral Administration of Coronavirus Spike Protein Provides Protection to Newborn Pigs When Challenged with PEDV. Vaccines (Basel) 2021; 9:vaccines9121416. [PMID: 34960163 PMCID: PMC8706244 DOI: 10.3390/vaccines9121416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate whether oral administration of maize-produced S antigen can provide passive immunity to piglets against porcine epidemic diarrhea virus (PEDV), 16 pregnant sows were randomly assigned to one of four treatments: (1) injection of PEDV vaccine (INJ), (2) maize grain without S protein (CON), (3) maize grain containing low dose of S antigen (LOV) and (4) maize grain containing a high dose of S antigen (HOV). Vaccines were administered on days 57, 85 and 110 of gestation. Sows’ serum and colostrum were collected at farrowing and milk on day 6 post-challenge to quantify neutralizing antibodies (NABs) and cytokines. Piglets were challenged with PEDV 3–5 d after farrowing, and severity of disease and mortality assessed on day 11 post-challenge. Disease severity was lower in LOV and INJ compared with HOV and CON, whereas the survival rate increased in piglets from LOV sows compared with HOV and CON (p ≤ 0.001). Higher titers of NABs and lower levels of cytokine granulocyte-macrophage colony-stimulating factor in sows’ milk were positively correlated with piglet survivability (p ≤ 0.05). These data suggest that feeding S protein in corn to pregnant sows protects nursing piglets against PEDV.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Gina M. Fake
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA;
| | - John H. Walker
- Department of Statistics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | | | - John A. Howard
- Applied Biotechnology Institute, Cal Poly Tech Park, San Luis Obispo, CA 93407, USA;
- Correspondence:
| |
Collapse
|
25
|
Wang H, Kong N, Jiao Y, Dong S, Sun D, Chen X, Zheng H, Tong W, Yu H, Yu L, Zhang W, Tong G, Shan T. EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by Regulating IRAV To Degrade Viral Nucleocapsid Protein. J Virol 2021; 95:e0064521. [PMID: 34287043 PMCID: PMC8428380 DOI: 10.1128/jvi.00645-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has reemerged lately, resulting in large economic losses. During viral infection, type I interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production. To suppress virus replication, the host must activate IFN-stimulated genes and some host restriction factors to circumvent viral replication. This study observed that PEDV infection induced early growth response gene 1 (EGR1) expression in PEDV-permissive cells. EGR1 overexpression remarkably suppressed PEDV replication. In contrast, depletion of EGR1 led to a significant increase in viral replication. EGR1 suppressed PEDV replication by directly binding to the IFN-regulated antiviral (IRAV) promoter and upregulating IRAV expression. A detailed analysis revealed that IRAV interacts and colocalizes with the PEDV nucleocapsid (N) protein, inducing N protein degradation via the E3 ubiquitin ligase MARCH8 to catalyze N protein ubiquitination. Knockdown of endogenous MARCH8 significantly reversed IRAV-mediated N protein degradation. The collective findings demonstrate a new mechanism of EGR1-mediated viral restriction, in which EGR1 upregulates the expression of IRAV to degrade PEDV N protein through MARCH8. IMPORTANCE PEDV is a highly contagious enteric coronavirus that has rapidly emerged worldwide and has caused severe economic losses. No currently available drugs or vaccines can effectively control PEDV. PEDV has evolved many strategies to limit IFN-I production. We identified EGR1 as a novel host restriction factor and demonstrated that EGR1 suppresses PEDV replication by directly binding to the IRAV promoter and upregulating the expression of IRAV, which interacts with and degrades the PEDV N protein via the E3 ubiquitin ligase MARCH8 to catalyze nucleocapsid protein ubiquitination, which adds another layer of complexity to the innate antiviral immunity of this newly identified restriction factor. A better understanding of the innate immune response to PEDV infection will aid the development of novel therapeutic targets and more effective vaccines against virus infection.
Collapse
Affiliation(s)
- Hua Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yajuan Jiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Dage Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
26
|
Chang CY, Wang YS, Wu JF, Yang TJ, Chang YC, Chae C, Chang HW, Hsu STD. Generation and Characterization of a Spike Glycoprotein Domain A-Specific Neutralizing Single-Chain Variable Fragment against Porcine Epidemic Diarrhea Virus. Vaccines (Basel) 2021; 9:vaccines9080833. [PMID: 34451958 PMCID: PMC8402611 DOI: 10.3390/vaccines9080833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence of the genotype (G) 2 and re-emergence of the G1 porcine epidemic diarrhea virus (PEDV) has caused severe economic impacts in the past decade. Developments of efficient vaccines against new variants of PEDV have been challenging, not least because of the difficulties in eliciting mucosal and lactogenic immunity. A single-chain fragment variable (scFv) capable of efficient antigen recognition is an alternative to vaccination and treatment of a viral infection. In the present study, the variable regions of the light chain and the heavy chain of a G2b PEDV spike domain A (S1A)-specific neutralizing monoclonal antibody (mAb) were sequenced, constructed with a (G4S) x3 linker, and produced by a mammalian protein expression system. Our results demonstrated that the PEDV S1A domain scFv was able to bind to S proteins of both G1 and G2b PEDVs. Nevertheless, the scFv was only capable of neutralizing the homologous G2b PEDV but not the G1 PEDV. The binding ability of the G2b-specific neutralizing scFv was not able to predict the neutralizing ability toward heterologous PEDV. The anti-PEDV S1A scFv presented herein serves as a potential therapeutic candidate against the virulent G2b PEDV.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.C.); (Y.-S.W.); (T.-J.Y.)
| | - Yong-Sheng Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.C.); (Y.-S.W.); (T.-J.Y.)
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Jou-Fei Wu
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (J.-F.W.); (Y.-C.C.); (H.-W.C.)
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.C.); (Y.-S.W.); (T.-J.Y.)
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (J.-F.W.); (Y.-C.C.); (H.-W.C.)
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea;
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (J.-F.W.); (Y.-C.C.); (H.-W.C.)
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-Y.C.); (Y.-S.W.); (T.-J.Y.)
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-2785-5696 (ext. 5120)
| |
Collapse
|
27
|
Suda Y, Miyazaki A, Miyazawa K, Shibahara T, Ohashi S. Systemic and intestinal porcine epidemic diarrhea virus-specific antibody response and distribution of antibody-secreting cells in experimentally infected conventional pigs. Vet Res 2021; 52:2. [PMID: 33397461 PMCID: PMC7780908 DOI: 10.1186/s13567-020-00880-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a coronavirus disease characterized by the rapid spread of severe diarrhea among pigs. PED virus (PEDV) infects and replicates mainly in the epithelial cells of the duodenum, jejunum, ileum and colon. Serum or mucosal IgA antibody levels have been used to predict both vaccine efficacy and the level of protective immunity to enteric infectious diseases in individuals or herds. Details of the B-cell immune response upon PEDV infection, such as the systemic and mucosal PEDV IgA antibody response, the distribution of IgA antibody-secreting cells (ASCs), and their role in virus clearance are not yet clear. In this experimental infection study, we observed similar fluctuations in PEDV IgA antibody levels in serum and intestinal contents of the upper and lower jejunum and ileum, but not fecal samples, over the 4-week experimental course. ASCs that actively secrete PEDV IgA antibody without in vitro stimulation were distributed mainly in the upper jejunum, whereas memory B cells that showed enhanced PEDV IgA antibody production upon in vitro stimulation were observed in mesenteric lymph nodes and the ileum. Our findings will contribute to the development of effective vaccines and diagnostic methods for PEDV.
Collapse
Affiliation(s)
- Yuto Suda
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan. .,Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Seiichi Ohashi
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
28
|
Cimolai N. Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19. ACTA ACUST UNITED AC 2020; 2:2670-2683. [PMID: 33195997 PMCID: PMC7652409 DOI: 10.1007/s42399-020-00634-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 01/02/2023]
Abstract
New data specific to COVID-19 are emerging quickly on key issues of immunity and prevention, but past research in coronavirology and for other human pathogens (e.g., Mycoplasma pneumoniae) has been available and of great relevance. Considerable study of endemic human coronaviruses has shown that neutralizing antibody correlates with protection, but effective clinical protection is variable for subsequent virus exposure. Animal coronavirus research has emphasized the importance of local mucosal protection (especially IgA) and systemic responses. Animal model and human post-infection studies for SARS-CoV and MERS-CoV are largely corroborative. Whether for passive therapeutic strategies or vaccination, these findings provide a template for COVID-19. Many approaches to vaccination have emerged, and there may be more than one vaccine that will be applied, but individualized obstacles and concerns for administration, efficacy, and safety are inevitable. Regardless of safeguards or promises that may be understood from laboratory or vertebrate experiments, observations from large-scale human trials will ultimately prove to shape the medical future. Focus on common mucosal immunity can be underrated, and equally or more, focus on lactogenic immunity may be underestimated. In understanding both passive immunity and protection, the body is already primed to educate us with decisions of what constitutes protection and harm. This review provides key insights that drive hypotheses into how the instinct of immunity and the intelligence of the maternal component of the common mucosal immune system has already guided us and may continue to do so effectively into a bright and safe future.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC Canada
- Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4 Canada
| |
Collapse
|
29
|
Fenizia C, Biasin M, Cetin I, Vergani P, Mileto D, Spinillo A, Gismondo MR, Perotti F, Callegari C, Mancon A, Cammarata S, Beretta I, Nebuloni M, Trabattoni D, Clerici M, Savasi V. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun 2020; 11:5128. [PMID: 33046695 PMCID: PMC7552412 DOI: 10.1038/s41467-020-18933-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of SARS-CoV-2 infection during gestation remains unclear. Here, we analyse the viral genome on maternal and newborns nasopharyngeal swabs, vaginal swabs, maternal and umbilical cord plasma, placenta and umbilical cord biopsies, amniotic fluids and milk from 31 mothers with SARS-CoV-2 infection. In addition, we also test specific anti-SARS-CoV-2 antibodies and expression of genes involved in inflammatory responses in placentas, and in maternal and umbilical cord plasma. We detect SARS-CoV-2 genome in one umbilical cord blood and in two at-term placentas, in one vaginal mucosa and in one milk specimen. Furthermore, we report the presence of specific anti-SARS-CoV-2 IgM and IgG antibodies in one umbilical cord blood and in one milk specimen. Finally, in the three documented cases of vertical transmission, SARS-CoV-2 infection was accompanied by a strong inflammatory response. Together, these data support the hypothesis that in utero SARS-CoV-2 vertical transmission, while low, is possible. These results might help defining proper obstetric management of COVID-19 pregnant women, or putative indications for mode and timing of delivery.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Viral/analysis
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- Betacoronavirus/isolation & purification
- COVID-19
- Coronavirus Infections/diagnosis
- Coronavirus Infections/pathology
- Coronavirus Infections/transmission
- Coronavirus Infections/virology
- Female
- Genome, Viral
- Humans
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Inflammation
- Middle Aged
- Pandemics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/pathology
- Pneumonia, Viral/transmission
- Pneumonia, Viral/virology
- Pregnancy
- Pregnancy Complications, Infectious/diagnosis
- Pregnancy Complications, Infectious/pathology
- Pregnancy Complications, Infectious/virology
- SARS-CoV-2
- Young Adult
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Irene Cetin
- Department of Woman, Mother and Neonate Buzzi Children's Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, Milan, Italy
| | - Patrizia Vergani
- Department of Maternal Fetal Medicine, Fondazione MBBM, San Gerardo Hospital, University of Milan-Bicocca, Monza, Italy
| | - Davide Mileto
- Clinical Microbiology, Virology and Bio-emergence Diagnosis, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Maria Rita Gismondo
- Clinical Microbiology, Virology and Bio-emergence Diagnosis, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Francesca Perotti
- Department of Obstetrics and Gynecology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Clelia Callegari
- Department of Maternal Fetal Medicine, Fondazione MBBM, San Gerardo Hospital, University of Milan-Bicocca, Monza, Italy
| | - Alessandro Mancon
- Clinical Microbiology, Virology and Bio-emergence Diagnosis, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Selene Cammarata
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Department of Biological and Clinical Sciences, University of Milan, Milan, Italy
| | - Ilaria Beretta
- Division of Infectious Diseases, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Manuela Nebuloni
- Pathology Unit, ASST Fatebenfretalli-Sacco, Department of Biological and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- IRCCS Fondazione don Carlo Gnocchi, Milan, Italy
| | - Valeria Savasi
- Unit of Obstetrics and Gynecology, ASST Fatebenefratelli-Sacco, Department of Biological and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
30
|
Li C, Cheng G. Will Hydroxychloroquine Still Be a Game-Changer for COVID-19 by Combining Azithromycin? Front Immunol 2020; 11:1969. [PMID: 32849658 PMCID: PMC7426511 DOI: 10.3389/fimmu.2020.01969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Recent small-scale clinical trials have shown promising results in the use of hydroxychloroquine, an FDA approved anti-malaria drug, for the treatment of COVID-19. However, large scale, randomized and double-blind clinical trials are needed to confirm the safety and efficacy of hydroxychloroquine in COVID-19 patients. Here, we review the progress of using hydroxychloroquine or chloroquine as anti-viral agents, failed clinical trials of chloroquine in treatment of dengue virus and influenza infection, and especially the mechanism of azithromycin in inhibiting viral replication, so as to shed light on the ongoing clinical trials and further researches of hydroxychloroquine on SARS-CoV-2 infected patients.
Collapse
Affiliation(s)
- Chunfeng Li
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA, United States
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States
| |
Collapse
|
31
|
De Luca D, Rava L, Nadel S, Tissieres P, Gawronski O, Perkins E, Chidini G, Tingay DG. The EPICENTRE (ESPNIC Covid pEdiatric Neonatal Registry) initiative: background and protocol for the international SARS-CoV-2 infections registry. Eur J Pediatr 2020; 179:1271-1278. [PMID: 32440887 PMCID: PMC7242019 DOI: 10.1007/s00431-020-03690-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
The outbreak of SARS-CoV-2 is the worst healthcare emergency of this century, and its impact on pediatrics and neonatology is still largely unknown. The European Society for Pediatric and Neonatal Intensive Care (ESPNIC) launched the EPICENTRE (ESPNIC Covid pEdiatric Neonatal Registry) international, multicenter, and multidisciplinary initiative to study the epidemiology, clinical course, and outcomes of pediatric and neonatal SARS-CoV-2 infections. EPICENTRE background and aims are presented together with protocol details. EPICENTRE is open to centers all over the world, and this will allow to provide a pragmatic picture of the epidemic, with a particular attention to pediatric and neonatal critical care issues.Conclusions: EPICENTRE will allow researchers to clarify the epidemiology, clinical presentation, and outcomes of pediatric and neonatal SARS-CoV-2 infection, refining its clinical management and hopefully providing new insights for clinicians. What is Known: • COVID19 is the new disease caused by SARS-CoV-2 infection and is spreading around the globe. • Majority of data available about SARS-CoV-2 infections originates from adult patients. What is New: • EPICENTRE is the first international, multicenter, multidisciplinary, meta-data driven, hospital-based, online, prospective cohort registry dedicated to neonatal and pediatric SARS-CoV-2 infections. • EPICENTRE will allow to understand epidemiology and physiopathology of COVID19.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital-APHP & Paris Saclay University, Paris, France
| | - Lucilla Rava
- Unit of Clinical Epidemiology, “Bambino Gesu” Children Hospital-IRCCS, Rome, Italy
| | - Simon Nadel
- Paediatric Intensive Care Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Pierre Tissieres
- Division of Pediatric Critical Care, Paris Saclay University Hospital-APHP & Paris Saclay University, Paris, France
| | - Orsola Gawronski
- Continuing Education and Nursing Research Unit, “Bambino Gesu” Children Hospital-IRCCS, Rome, Italy
| | - Elisabeth Perkins
- Neonatal Research, Murdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David G. Tingay
- Neonatal Research, Murdoch Children’s Research Institute, Melbourne, VIC Australia
| |
Collapse
|
32
|
Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res 2020; 286:198045. [PMID: 32502552 PMCID: PMC7266596 DOI: 10.1016/j.virusres.2020.198045] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|