1
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Goldoni FC, Benvenutti L, Nunes R, Vaz CR, Garcia L, Furtado K, Dos Santos Bubniak L, de Campos Buzzi F, Corrêa R, Quintão NLM, Santin JR. Safety evaluation and modulatory effects on innate immune system of pyrazoline-derived compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5677-5691. [PMID: 39601822 DOI: 10.1007/s00210-024-03653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Pyrazolines are compounds that have been studied for their strong biological potential and structure diversity. Several studies demonstrated their biological effectiveness, highlighting their anti-inflammatory potential. This study aimed to evaluate the physicochemical profile, the safety, and the anti-inflammatory effects of four pyrazolines (PH0, PH3, PH4, and PH7). Initially, in silico analysis were performed on SwissADME and QSAR Toolbox platforms. The anti-inflammatory activity was assessed by in vitro and in vivo methodologies. Neutrophils collected from mice peritoneum and macrophages immortalized cell line (Raw 264.7) were stimulated with lipopolysaccharide (LPS), and subsequent measurement of nitric oxide (NO) and IL-1β, TNF, and IL-6 cytokines were performed by ELISA method. The effect on cell migration was evaluated by chemotaxis assay. The effect on efferocytosis was investigated using senescent neutrophils and macrophages from mice's bone marrow. The in silico results suggest suitable properties for a pharmacological prototype for oral administration, with no significant toxic effects. All compounds significantly reduced NO levels, as well as levels of IL-1β, TNF, and IL-6 cytokines. Also, they were able to reduce cell migration and increase efferocytosis. The in vivo air pouch model confirmed the effects of pyrazolines on cell kinetics and on the levels of cytokines (IL-1β and TNF) on the air pouch lavage. All of the pyrazolines evaluated showed to have positive effects on mechanisms that modulate the inflammatory response. Furthermore, the in silico analysis suggests that chemical changes in the structure can lead to improvement of the biological and pharmacokinetics proprieties.
Collapse
Affiliation(s)
- Fernanda Capitanio Goldoni
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Larissa Benvenutti
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Carlos Rafael Vaz
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Louise Garcia
- Pharmacy Course, School of Health Sciences, Universidade Do Vale Do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Keyla Furtado
- Pharmacy Course, School of Health Sciences, Universidade Do Vale Do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Lorena Dos Santos Bubniak
- Pharmacy Course, School of Health Sciences, Universidade Do Vale Do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Fátima de Campos Buzzi
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Rogério Corrêa
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí (UNIVALI), 458, Bloco F6, ECS, Sala 316, CEP, Itajaí, SC, 88302-901, Brazil.
| |
Collapse
|
3
|
Imchen L, Manisekaran R, Jamir I, Rathore HS, Senthilvelan T. A review on plant-mediated synthesis of AgNPs and their formulations for wound healing application. Mol Biol Rep 2025; 52:419. [PMID: 40266399 DOI: 10.1007/s11033-025-10512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Wound healing is a sophisticated and dynamic process carried out by a myriad of cellular activities that work together in a coordinated manner to effectively repair damaged tissue. It involves a cascade process involving hemostasis, inflammation, granulation, maturation, and remodeling. However, in the case of chronic wounds, owing to the delayed wound healing process, various microbes invade the wound area and produce biofilms that hinder the healing process. Owing to rapid advancements in nanotechnology, several nanomaterials with diverse formulations have been investigated for wound healing. Among them, silver nanoparticles (AgNPs) have shown excellent properties, as they have unique physiochemical properties that address the problems associated with wound healing. The antibacterial and antioxidant properties of silver greatly enhance wound-care diagnostics. The use of medicinal plants for green synthesis of AgNPs has been widely researched, with these plants serving as both reducing and stabilizing agents in the nanoparticle formation process. This review focuses on different wound types, problems related to wounds, green-synthesized AgNPs using medicinal plants, and their limitations and advantages in wound dressing formulations. This study aims to provide the scientific community with a directional view in analyzing the role and importance of green-synthesized AgNPs in wound care.
Collapse
Affiliation(s)
- Lolenmenla Imchen
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, C.P. 37689, Mexico
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India
| | - Hanumant Singh Rathore
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, 797004, India.
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
4
|
Wiyono AV, Ardinal AP, Raharjo PP. Unraveling the significance of innate inflammation in vascular disease. Int Rev Immunol 2025:1-16. [PMID: 40255209 DOI: 10.1080/08830185.2025.2489346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Atheroma formation is initiated by the activation of endothelial and smooth muscle cells, as well as immune cells, including neutrophils, lymphocytes, monocytes, macrophages, and dendritic cells. Monocytes, macrophages, and neutrophils are the innate immune cells that provide a rapid initial line of defence against vascular disease. These cells have a short lifespan and cannot retain memories, making them potential therapeutic targets for the inflammatory process associated with atherosclerosis. In addition, macrophages comprise the majority of vessel wall infiltrates and are, therefore, implicated in all stages of atherosclerosis progression. Neutrophils are the most common type of leukocyte found in circulation, and their high levels of matrix-degrading protease explain their significance in fibrous cap destabilization. However, the activation of immune cells becomes more complex by various microenvironmental stimuli and cytokines, which ultimately transform immune cells into their pro-inflammatory state. Different types of macrophage subsets with distinct functions in inflammation, such as M1 macrophages, cause an increase in pro-inflammatory cytokines and produce reactive oxygen species and nitric oxide, further worsening the disease. This review aims to shed light on immune-mediated inflammation in cardiovascular disease by focusing on the role of macrophage subsets in vascular inflammation and plaque stability, as well as the interaction between neutrophils and monocyte-macrophages.
Collapse
Affiliation(s)
- Alice Valeria Wiyono
- Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Indonesia
| | | | - Pradana Pratomo Raharjo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Indonesia
| |
Collapse
|
5
|
Du X, Huang J, Zhao C, Hu Z, Zhang L, Xu Z, Liu X, Li X, Zhang Z, Guo S, Yin T, Wang G. Retrospective perspectives and future trends in nanomedicine treatment: from single membranes to hybrid membranes. NANOSCALE 2025; 17:9738-9763. [PMID: 40136036 DOI: 10.1039/d4nr04999c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
At present, various diseases seriously threaten human life and health, and the development of nanodrug delivery systems has brought about a turnaround for traditional drug treatments, with nanoparticles being precisely targeted to improve bioavailability. Surface modification of nanoparticles can prolong blood circulation time and enhance targeting ability. The application of cell membrane-coated nanoparticles further improves their biocompatibility and active targeting ability, providing new hope for the treatment of various diseases. Various types of cell membrane biomimetic nanoparticles have gradually attracted increasing attention due to their unique advantages. However, the pathological microenvironment of different diseases is complex and varied, and the single-cell membrane has several limitations because a single functional property cannot fully meet the requirements of disease treatment. Hybrid cell membranes integrate the advantages of multiple biological membranes and have become an emerging research hotspot. This review summarizes the application of cell membrane biomimetic nanoparticles in the treatment of various diseases and discusses the advantages, challenges and future development of biomimetic nanoparticles. We propose that the fusion of multiple membranes may be a reasonable trend in the future to provide some ideas and directions for the treatment of various diseases.
Collapse
Affiliation(s)
- Xinya Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Chuanrong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | | | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xiaoying Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xinglei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Zhengcai Zhang
- Lepu Medical Technology (Beijing) Co., Ltd, Beijing, China
| | - Songtao Guo
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| |
Collapse
|
6
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025; 92:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion in a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
7
|
Guo Y, Li Y, Li J, Cai H, Liu K, Duan D, Zhang W, Han G, Zhao Y. Controlled Inflammation Drives Neutrophil-Mediated Precision Drug Delivery in Heterogeneous Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411307. [PMID: 39799561 PMCID: PMC11923894 DOI: 10.1002/advs.202411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Indexed: 01/15/2025]
Abstract
Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers. This strategy not only enhances targeted drug delivery but also triggers the release of neutrophil extracellular traps, further potentiating the anti-tumor effect. Crucially, this study demonstrates that potential systemic inflammatory responses can be effectively mitigated through neutrophil transfusion, ensuring the safety and clinical viability of this approach. In a murine breast cancer model, the method significantly impedes tumor growth compared to conventional treatments. This work offers a versatile strategy for precise drug delivery across diverse tumor types. The findings pave the way for more effective and broadly applicable cancer treatments, potentially addressing the long-standing challenge of tumor heterogeneity.
Collapse
Affiliation(s)
- Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Haoran Cai
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
8
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates muscle inflammation-induced nociception in neonatal mice. Brain Behav Immun 2025; 125:198-211. [PMID: 39716683 PMCID: PMC11903163 DOI: 10.1016/j.bbi.2024.12.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1/C-C motif chemokine ligand 2 (MCP1/CCL2) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving chemokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
Affiliation(s)
- Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Prakriti Gupta
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Namrata G R Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
9
|
Cool T, Baena ARY, Rommel M, Mattingly C, Bachinsky E, Saini S, Chattopadhyaya S, Manso BA, Rajendiran S, Worthington AK, Poscablo DM, Deguzman A, Berger-Cahn T, Boyd DF, Forsberg EC. Perinatal Nicotine Exposure Disrupts Hematopoietic Stem Cell Development and Elevates Influenza Susceptibility in Adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639728. [PMID: 40060466 PMCID: PMC11888371 DOI: 10.1101/2025.02.23.639728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Tobacco use during pregnancy has many deleterious health consequences for not only the smoking mother, but also on the unborn fetus. Children of smoking mothers are reported to have higher frequency and severity of respiratory diseases later in life; however, the mechanisms driving this increased vulnerability are not clearly understood. One potential cause of increased disease susceptibility is an altered immune system, originating in epigenetically maladaptive hematopoietic stem cells (HSCs). Here, we show that perinatal nicotine exposure (PNE) alters the establishment of HSCs and fetal-derived non-traditional tissue immune cells, with no alterations in circulating immune cell numbers. Suppression of HSCs and lung immune cells persisted for weeks after PNE had ceased. Strikingly, PNE led to increased disease susceptibility and severity upon challenge with influenza A virus in adulthood. This was associated with significant and highly selective alterations in lung immune cells, emphasizing the importance of cellular mechanisms in resilience to infections. Together, these experiments demonstrate that perinatal exposures that have deleterious consequences on hematopoietic establishment can impair immune function for life and identify the cellular mechanisms by which perinatal nicotine exposure predisposes the offspring to a weakened defense against respiratory pathogens.
Collapse
Affiliation(s)
- T Cool
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - A Rodriguez Y Baena
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mge Rommel
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - C Mattingly
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - E Bachinsky
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - S Saini
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - S Chattopadhyaya
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - B A Manso
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - S Rajendiran
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - A K Worthington
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - D M Poscablo
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - A Deguzman
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - T Berger-Cahn
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - D F Boyd
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - E C Forsberg
- Program in Biomedical Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Mierzejewski K, Stryiński R, Bogacka I, Golubska M, Carrera M, Kurzynska A. Lipopolysaccharide affects metabolic processes and energy homeostasis in the corpus luteum. Front Mol Biosci 2025; 11:1523098. [PMID: 39845899 PMCID: PMC11753227 DOI: 10.3389/fmolb.2024.1523098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Chronic inflammation caused by Escherichia coli infections has a significant negative impact on the reproductive system and impairs fertility. The corpus luteum (CL) plays a central role not only in regulating the ovary cycle, but also in implantation of the embryo and maintenance of early pregnancy through the secretion of progesterone. Understanding the intricate interplay between inflammatory processes and reproductive organ's function is crucial for the development of effective therapeutic strategies to alleviate reproductive disorders and improve fertility. Methods The aim of this study was to determine the in vitro effects of lipopolysaccharide (LPS) on the proteomic profile of the porcine CL in the mid-luteal phase of the estrous cycle using LC-MS/MS analysis. The CL slices were incubated in the presence of LPS for 24 h. Results We identified 12 differentially regulated proteins after treatment with LPS (7 of them were upregulated, while 5 were downregulated). The analysis showed that these proteins are involved in processes such as glucose metabolism, the tricarboxylic acid cycle (TCA), detoxification processes as well as steroid biosynthesis in the CL. Moreover, we demonstrated that LPS decreases glucose levels and increases progesterone levels in the CL. Conclusion These findings suggest that LPS modulates key metabolic pathways in the CL, potentially impacting its functional activity.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Aleksandra Kurzynska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
11
|
Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol 2025; 103:31-44. [PMID: 39471989 DOI: 10.1111/imcb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 12/03/2024]
Abstract
Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.
Collapse
Affiliation(s)
- Shangwei Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanhe Zheng
- Digestive Department, The First People's Hospital of Lanzhou New Area, Lanzhou, China
| | - Zhenjun Pu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyu Nian
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Junliang Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
12
|
Sripadi HP, Kaur R, Manohar Koli S, Sharma N, Vijaya Sarathi UVR, Babu Nanubolu J, Balaji Andugulapati S, Sistla R. Biochanin-A co-crystal formulation improves bioavailability and ameliorates cerulein-induced pancreatitis by attenuating the inflammation. Int J Pharm 2024; 667:124874. [PMID: 39490549 DOI: 10.1016/j.ijpharm.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Co-crystallization of a therapeutic ingredient with an appropriate co-former is a powerful technique to augment the physicochemical and pharmacokinetic properties and the effectiveness of Active Pharmaceutical Ingredients (APIs). Biochanin A (BCA), a flavonoid with medicinal potential, is limited by poor solubility and low oral bioavailability. This study aimed to design and develop a novel BCA-nicotinamide cocrystal as BCC to enhance BCA's oral bioavailability and explore its therapeutic potential for ameliorating cerulein-induced acute pancreatitis (CIAP) by elucidating the target identification utilizing tissue/serum metabolite profiles. The cocrystal was designed by the supramolecular synthon approach and characterized by single-crystal X-ray diffraction that confirms a robust three-dimensional hydrogen-bonded network of BCA and Nicotinamide (NCT) in the crystal. FT-IR and DSC were used to analyze the cocrystal's intermolecular interactions and thermal behavior. BCC exhibited enhanced solubility and drug release compared to BCA alone, resulting in enhanced oral bioavailability and pancreatic tissue concentration. Comparing BCC to BCA in the CIAP model, BCC therapy remarkably reduced cerulein-induced pancreatitis, evidenced by significant reductions in inflammation, acinar cell atrophy, and amylase levels in pancreatic tissues. Further, the cocrystal formulation also down-regulated the oxidative stress markers, inflammatory cytokines and macrophage-related proteins. The study has identified distinct metabolomic signatures linked with AP with the help of Orbitrap Exploris mass spectrometry, which could pave the way for creating focused diagnostic tools for a better prognosis. In conclusion, these results offer new insights into exploring mechanistic pathways associated with specific biomarkers and underscore BCC cocrystal as a promising approach to enhance BCA's therapeutic potential.
Collapse
Affiliation(s)
- Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Saylee Manohar Koli
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
13
|
Fowler JF, Eubank TA, Garey KW. Proton pump inhibitor effect on macrophage and neutrophil function: a systematic review. Front Immunol 2024; 15:1477993. [PMID: 39776898 PMCID: PMC11703997 DOI: 10.3389/fimmu.2024.1477993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken. The purpose of this systematic review was to determine the potential mechanisms of how PPI-induced inhibition of macrophage and neutrophil function may increase infection risk in susceptible hosts. Methods A database search using Scopus and PubMed was performed to identify studies that investigated the effects of PPIs on neutrophils or macrophage function. Results The final screening yielded 21 English-language research articles that focused on the impacts of PPIs on the function of macrophages and neutrophils. PPI mechanistic effects included cytotoxic effects on polymorphonuclear neutrophils, inhibition of reactive oxygen species (ROS) and reactive nitrogen species, phagocytosis and phagosomal degradation, inhibition of chemotaxis and migration, altering Toll-like receptor signaling and p38 protein phosphorylation in immune cells, and altering neutrophil and macrophage gene expression. Discussion The impact of PPIs on MΦs and neutrophils regarding their role in the immune response to bacterial pathogens was summarized. PPI effects on macrophages and neutrophils occurred due to the therapeutic mechanism of PPIs, the protonation of sulfhydryl groups and the subsequent formation of a disulfide bond, and other pleiotropic manners. Given the common use of PPIs, these results highlight the necessity to optimize PPI use and stewardship to curtail unnecessary drug use.
Collapse
Affiliation(s)
| | | | - Kevin W. Garey
- College of Pharmacy, University of Houston, Houston,
TX, United States
| |
Collapse
|
14
|
Campbell AC, Kuonqui KG, Ashokan G, Rubin J, Shin J, Pollack BL, Roberts A, Sarker A, Park HJ, Kataru RP, Barrio AV, Mehrara BJ. Role of inducible nitric oxide (iNOS) and nitrosative stress in regulating sex differences in secondary lymphedema. Front Physiol 2024; 15:1510389. [PMID: 39691094 PMCID: PMC11649630 DOI: 10.3389/fphys.2024.1510389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Secondary lymphedema is a common complication following surgical treatment of solid tumors. Although more prevalent in women due to higher breast cancer rates, men also develop lymphedema, often with more severe manifestations. Despite these differences in clinical presentation, the cellular mechanisms underlying sex differences are poorly understood. Previous studies have shown that inducible nitric oxide synthase (iNOS) expression by inflammatory cells is an important regulator of lymphatic pumping and leakiness in lymphedema and that lymphatic endothelial cells are highly sensitive to nitrosative stress. Based on this rationale, we used a mouse tail model of lymphedema to study the role of nitric oxide in sex-related differences in disease severity. Consistent with clinical findings, we found that male mice have significantly worse tail edema and higher rates of tail necrosis compared with female mice following tail skin/lymphatic excision (p = 0.001). Our findings correlated with increased tissue infiltration of iNOS + inflammatory cells, increased iNOS protein expression, and increased nitrosative stress in male mouse lymphedematous skin tissues (p < 0.05). Importantly, transgenic male mice lacking the iNOS gene (iNOS-KO) displayed markedly reduced swelling, inflammation, and tissue necrosis rates, whereas no differences were observed between wild-type and iNOS-KO female mice. Overall, our results indicate that iNOS-mediated nitric oxide production contributes to sex-based differences in secondary lymphedema severity, emphasizing the need to consider sex as a biological variable in lymphedema research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
15
|
Moon HR, Yun JM. p-Coumaric acid modulates cholesterol efflux and lipid accumulation and inflammation in foam cells. Nutr Res Pract 2024; 18:774-792. [PMID: 39651322 PMCID: PMC11621437 DOI: 10.4162/nrp.2024.18.6.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a primary cause of cardiovascular disease associated with inflammation and lipid metabolism disorders. The accumulation of cholesterol-containing macrophage foam cells characterizes the early stages. The p-coumaric acid (p-CA) contained in vegetables may have various physiological activities. The inhibitory effect of p-CA on foam cell creation in THP-1 macrophages needs clarification. In this study, we explored the impact of p-CA on foam cells by co-treatment with oxidized low-density lipoprotein (ox-LDL) and lipopolysaccharides (LPS), mimicking the development of atherosclerosis in vitro and studied the regulation of its underlying mechanisms. MATERIALS/METHODS THP-1 cells differentiated by phorbol 12-myristate 13-acetate (1 μM) for 48 h and treated in the absence or presence of p-CA for 48 h. THP-1 macrophages were treated with combined ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability. Oil red O staining allowed us to observe lipid accumulation. Western blotting and quantitative polymerase chain reactions quantified corresponding proteins and mRNA. RESULTS Ox-LDL and LPS for 24 h enhanced the lipid accumulation using Oil red O in treated foam cells. By contrast, p-CA treatment inhibited lipid accumulation. p-CA significantly upregulated cholesterol efflux-related genes such as ATP binding cassette transporter A1, liver-X-receptor α and peroxisome proliferator-activated receptor gamma expression. Moreover, p-CA decreased lipid accumulation-related gene such as lectin-like oxidized low-density lipoprotein receptor-1, cluster of differentiation 36 and scavenger receptor class A1 expression. Combined ox-LDL and LPS increased nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and pro-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin [IL]-6) activation and expression compared with untreated. p-CA suppressed this increased expression of NF-κB and COX-2, TNF-α and IL-6. CONCLUSION p-CA may play a vital role in atherosclerosis inhibition and protective effects by suppressing lipid accumulation and foam cell creation by increasing cholesterol efflux and can be potential agents for preventing atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
16
|
Pritha AN, Medha TN, Pasmay AA, Al Mamun M, Afroze F, Chisti MJ. Dysregulated blood biomarkers in women with acute and chronic respiratory conditions due to air pollutant exposure: An exploratory systematic review. J Glob Health 2024; 14:04207. [PMID: 39513278 PMCID: PMC11544524 DOI: 10.7189/jogh-14-04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background Air pollution exposure poses significant health risks for the general population, but particularly for women with acute and chronic respiratory conditions. Given the increasing global burden of air pollution-related illnesses, understanding these biomarkers is crucial for developing targeted interventions and improving respiratory health outcomes in vulnerable populations. In this systematic review, we aimed to determine potential dysregulated respiratory inflammatory blood biomarker candidates in adult female patients who experience varying levels and sources of inhaled pollutant exposure. Methods We searched the Cochrane Library, PubMed, and Web of Science with nuanced search terms to retrieve articles published in English between 1 January 2000 and 12 June 2023, to ensure relevancy. We filtered our findings to generate a focussed narrative analysis and used the Risk of Bias In Non-randomized Studies-of Exposures (ROBINS-E) and Risk-of-bias VISualization (robVIS) tools to ensure the validity of the data and the quality of the conclusions being made. Results We identified 916 articles from the databases used in our search, 16 of which met the criteria of our focussed narrative analysis. Among blood biomarkers, platelet-activating factor and eosinophilia could be used to assess the severity of asthma conditions, as a lack or reduction thereof indicates specific conditions. Pro-inflammatory cytokines require further validation, as some studies with a high risk of bias have reported conflicting results compared to more recent research on whether these markers are up-regulated or down-regulated. We found one study to be at a very high risk of bias, two had a high risk of bias, one had some concerns of confounding factors which may not have affected their results, and 12 studies had a low risk of bias. Conclusions There were narrowed-down blood biomarker candidates that could be used in future research and avenues of research like generating specific microRNA sequences to test for prognostic/diagnostic tests. Registration PROSPERO: 42023435721.
Collapse
Affiliation(s)
- Ariana N Pritha
- Department of Neuroscience, Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, USA
| | - Tanisha N Medha
- Department of Internal Medicine, Health Sciences Center, University of New Mexico Comprehensive Cancer Center, Albuquerque, USA
| | - Andrea A Pasmay
- Department of Neuroscience, Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, USA
| | - Md Al Mamun
- Library, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Farzana Afroze
- Dhaka Hospital, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammod Jobayer Chisti
- Dhaka Hospital, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
17
|
Tang C, Jia F, Wu M, Wang Y, Lu X, Li J, Ding Y, Chen W, Chen X, Han F, Xu H. Elastase-targeting biomimic nanoplatform for neurovascular remodeling by inhibiting NETosis mediated AlM2 inflammasome activation in ischemic stroke. J Control Release 2024; 375:404-421. [PMID: 39288890 DOI: 10.1016/j.jconrel.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Neutrophil elastase (NE) is a protease released by activated neutrophils in the brain parenchyma after cerebral ischemia, which plays a pivotal role in the regulation of neutrophil extracellular traps (NETs) formation. The excess NETs could lead to blood-brain barrier (BBB) breakdown, overwhelming neuroinflammation, and neuronal injury. While the potential of targeting neutrophils and inhibiting NE activity to mitigate ischemic stroke (IS) pathology has been recognized, effective strategies that inhibit NETs formation remain under-explored. Herein, a biomimic multifunctional nanoplatform (HM@ST/TeTeLipos) was developed for active NE targeting and IS treatment. The core of the HM@ST/TeTeLipos consisted of sivelestat-loaded ditelluride-containing liposomes with ROS-responsive and NE-inhibiting properties. The outer shell was composed of platelet-neutrophil hybrid membrane vesicles (HMVs), which acted to hijack neutrophils and neutralize proinflammatory cytokines. Our studies revealed that HM@ST/TeTeLipos could effectively inhibit NE activity, thereby suppressing the release of NETs, impeding the activation of the AIM2 inflammasome, and consequently redirecting the immune response away from a pro-inflammatory M1 microglia phenotype. This resulted in enhanced neurovascular remodeling, reduced BBB disruption, and diminished neuroinflammation, ultimately promoting neuron survival. We believe that this innovative approach holds significant potential for improving the treatment of IS and various NE-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Jia
- Department of Neurosurgery, Yancheng NO.1 People's Hospital, The Affiliated Yancheng First Hospital of Nanjing University Medical School, 224008, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yanling Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Weilin Chen
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Feng Han
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
18
|
Song HA, Jang SY, Park MJ, Kim SW, Kang CG, Lee JH, Kim HJ, Kim J, Lee JK, Chung KS, Lee KT. Immunostimulation Signaling via Toll-like Receptor 2 Activation: A Molecular Mechanism of Lactococcus lactis OTG1204 In Vitro and In Vivo. Nutrients 2024; 16:3629. [PMID: 39519462 PMCID: PMC11547582 DOI: 10.3390/nu16213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The immune system's defense against pathogens involves innate and adaptive responses, crucial in maintaining overall health. Immunosuppressed states render individuals more susceptible to potential diseases, indicating the need for effective strategies to bolster immune functions. OBJECTIVES Although the immunostimulatory effects of various probiotics have been studied, the specific effects and molecular mechanisms of Lactococcus lactis OTG1204 (OTG1204) remain unknown. In this study, the aim was to investigate the molecular mechanisms of OTG1204 in RAW 264.7 macrophages, the key effector cells of the innate immune system involved in host defense and inflammatory responses. Additionally, in this study, the effects of OTG1204 on cyclophosphamide (CTX)-induced immunosuppression states were investigated, thereby demonstrating its potential as an immune stimulant. METHODS To assess the macrophage activation ability and underlying mechanisms of OTG1204, RAW 264.7 cells were utilized with transfection, enzyme-linked immunosorbent assay, and quantitative real-time PCR analyses. Furthermore, to evaluate the immunostimulatory effects under immunosuppressed conditions, CTX-induced immunosuppression mice model was employed, and analyses were performed using hematoxylin and eosin staining, flow cytometry, and microbiota examination. RESULTS OTG1204 activated RAW 264.7 macrophages, leading to increased production of nitric oxide, prostaglandin E2, and cytokines. This immune activation was mediated through the upregulation of toll-like receptor 2, which subsequently activated the nuclear factor-κB (NF-kB) and mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathways, thereby stimulating the immune response. In CTX-treated mice, OTG1204 recovered body weight, spleen, and mesenteric lymph node indices, and natural killer cell activity. It re-established populations of innate and adaptive immune cells and activated T cells to secrete cytokines. We also examined the gut barrier integrity and microbiota composition to assess OTG1204's impact on intestinal health, as these factors play a significant role in immune enhancement. OTG1204 enhanced gut barrier integrity by upregulating mucin 2 and tight junction proteins and modulated the gut microbiota by restoring the Firmicutes/Bacteroidetes balance and reducing the abundance of Actinobacteria and Tenericutes. CONCLUSION These results suggest that OTG1204 may serve as an effective probiotic for immune enhancement and gut health management by targeting the NF-κB and MAPK/AP-1 pathways, with minimal side effects.
Collapse
Affiliation(s)
- Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Min-Ji Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Wook Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Choon Gil Kang
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Joo Hyun Lee
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Hye-Jin Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jiheon Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
19
|
Garanina A, Vishnevskiy D, Chernysheva A, Malinovskaya J, Lazareva P, Semkina A, Abakumov M, Naumenko V. The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils. Biomedicines 2024; 12:2180. [PMID: 39457493 PMCID: PMC11505478 DOI: 10.3390/biomedicines12102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neutrophils are emerging as promising candidates for cell-based nanodrug delivery to tumors due to their unique biological properties. This study aims to investigate the mechanisms of nanoparticle internalization by neutrophils, specifically focusing on liposomes, poly(lactic-co-glycolic acid) (PLGA), and magnetite nanoparticles. Understanding these mechanisms could enhance the efficiency of neutrophil-based nanodrug delivery for cancer treatment. METHODS Neutrophils were isolated from the peripheral blood of mice bearing 4T1 mammary adenocarcinoma. Confocal microscopy, transmission electron microscopy, and flow cytometry were employed to evaluate the uptake of liposomes, PLGA, and magnetite nanoparticles by neutrophils. The effects of cultivation conditions, such as the presence or absence of plasma in the growth medium, were also examined. Additionally, the roles of immunoglobulins (IgG/IgM) and cell surface receptors (Fc and scavenger receptors) in nanoparticle internalization were explored. RESULTS All types of nanoparticles were successfully internalized by neutrophils, though the mechanisms of uptake varied. Plasma presence in the medium significantly influenced nanoparticle binding, particularly for PLGA nanoparticles. Internalization of PLGA nanoparticles was found to depend on the presence of IgG/IgM in the medium and Fc receptors on neutrophil surfaces, while scavenger receptors were not involved. CONCLUSIONS Understanding the distinct endocytosis pathways for different nanoparticles can improve the efficacy of neutrophil loading with nanodrugs, potentially advancing the development of neutrophil-based cancer therapies. The findings underscore the importance of the extracellular environment in modulating nanoparticle uptake.
Collapse
Affiliation(s)
- Anastasiia Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Anastasia Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Julia Malinovskaya
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Polina Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Maxim Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Victor Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| |
Collapse
|
20
|
Marrufo AM, Flores-Mireles AL. Macrophage fate: to kill or not to kill? Infect Immun 2024; 92:e0047623. [PMID: 38829045 PMCID: PMC11385966 DOI: 10.1128/iai.00476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.
Collapse
Affiliation(s)
- Armando M. Marrufo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
21
|
Lim JO, Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Kim SH, Kim JC. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Antioxidants (Basel) 2024; 13:972. [PMID: 39199218 PMCID: PMC11351339 DOI: 10.3390/antiox13080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are used in products that are applied to the human body, such as cosmetics and food, but their biocompatibility remains controversial. Pycnogenol (PYC), a natural extract of pine bark, exerts anti-inflammatory and antioxidant effects. In this study, we investigated whether PYC effectively alleviates pulmonary toxicity induced by airway exposure to TiO2NPs, and the beneficial effects of PYC were explained through the analysis of changes to the mechanism of cytotoxicity. TiO2NPs induced pulmonary inflammation and mucus production, increased the levels of malondialdehyde, and upregulated thioredoxin-interacting protein (TXNIP) and cleaved-caspase 3 (Cas3) in the lungs of mice. However, PYC treatment reduced the levels of all toxicity markers of TiO2NPs and restored glutathione levels. These antioxidant and anti-inflammatory effects of PYC were also demonstrated in TiO2NP-exposed human airway epithelial cells by increasing the mRNA levels of antioxidant enzymes and decreasing the expression of TXNIP, cleaved-Cas3, and inflammatory mediators. Taken together, our results showed that PYC attenuated TiO2NP-induced lung injury via TXNIP downregulation. Therefore, our results suggest the potential of PYC as an effective anti-inflammatory and antioxidant agent against TiO2NP-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| |
Collapse
|
22
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
23
|
Ignes-Romeu A, Weppner HK, Kaur T, Singh M, Hind LE. THP-1 Macrophages Limit Neutrophil Transendothelial Migration in a Model Infection. Cell Mol Bioeng 2024; 17:279-293. [PMID: 39372553 PMCID: PMC11450111 DOI: 10.1007/s12195-024-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Dysregulated neutrophil function plays a significant role in the pathology of infections, cancer, cardiovascular diseases, and autoimmune disorders. Neutrophil activity is influenced by various cell populations, including macrophages, which are crucial regulators. However, the exact role of human macrophages in controlling neutrophil function remains unclear due to a scarcity of studies utilizing human cells in physiologically relevant models. Methods We adapted our "Infection-on-a-Chip" microfluidic device to incorporate macrophages within the collagen extracellular matrix, allowing for the study of interactions between human neutrophils and macrophages in a context that mimics in vivo conditions. The integration of THP-1 macrophages was optimized and their effect on the endothelial lumen was characterized, focusing on permeability and structural integrity. The device was then employed to examine the influence of macrophages on neutrophil response to infection with the bacterial pathogen Pseudomonas aeruginosa. Results Integration of THP-1 macrophages into the microfluidic device was successfully optimized, showing no increase in endothelial permeability or structural damage. The presence of macrophages was found to significantly reduce neutrophil transendothelial migration in response to Pseudomonas aeruginosa infection. Conclusions Our findings highlight the regulatory role of macrophages in modulating neutrophil responses, suggesting potential therapeutic targets to control neutrophil function in various diseases. The modified microfluidic platform offers a valuable tool for mechanistic studies into macrophage-neutrophil interactions in disease contexts. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00813-2.
Collapse
Affiliation(s)
- Aitana Ignes-Romeu
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Hannah K. Weppner
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Tanisha Kaur
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| | - Maya Singh
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
- Present Address: Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO 80303 USA
| |
Collapse
|
24
|
Brahadeeswaran S, Tamizhselvi R. Consequence of alcohol intoxication-mediated efferocytosis impairment. Front Immunol 2024; 15:1386658. [PMID: 39104537 PMCID: PMC11298354 DOI: 10.3389/fimmu.2024.1386658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
25
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
26
|
Bragato C, Mazzotta R, Persico A, Bengalli R, Ornelas M, Gomes F, Bonfanti P, Mantecca P. Biocompatibility Analysis of Bio-Based and Synthetic Silica Nanoparticles during Early Zebrafish Development. Int J Mol Sci 2024; 25:5530. [PMID: 38791566 PMCID: PMC11121961 DOI: 10.3390/ijms25105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| | - Roberta Mazzotta
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| | - Andrea Persico
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| | - Rossella Bengalli
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| | - Mariana Ornelas
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Braga, Portugal; (M.O.); (F.G.)
| | - Filipa Gomes
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Braga, Portugal; (M.O.); (F.G.)
| | - Patrizia Bonfanti
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.M.); (A.P.); (R.B.); (P.B.); (P.M.)
| |
Collapse
|
27
|
Chen J, Shi Z, Zhang C, Xiong K, Zhao W, Wang Y. Oroxin A alleviates early brain injury after subarachnoid hemorrhage by regulating ferroptosis and neuroinflammation. J Neuroinflammation 2024; 21:116. [PMID: 38702778 PMCID: PMC11069275 DOI: 10.1186/s12974-024-03099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhonghua Shi
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Chunlei Zhang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| | - Wei Zhao
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, 904 th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, No. 101 Xingyuan North Road, Liangxi District, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
28
|
Zhu C, Wang D, Chang C, Liu A, Zhou J, Yang T, Jiang Y, Li X, Jiang W. Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:239-252. [PMID: 38682172 PMCID: PMC11058545 DOI: 10.4196/kjpp.2024.28.3.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 05/01/2024]
Abstract
Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 g/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 g/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Canmin Zhu
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Dili Wang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Chang Chang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Aofei Liu
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ji Zhou
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ting Yang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Yuanfeng Jiang
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xia Li
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Weijian Jiang
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
29
|
Yu X, Li L, Cai B, Zhang W, Liu Q, Li N, Shi X, Yu L, Chen R, Qiu C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir Res 2024; 25:76. [PMID: 38317239 PMCID: PMC10845530 DOI: 10.1186/s12931-024-02706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by airway inflammation and remodeling, whose pathogenetic complexity was associated with abnormal responses of various cell types in the lung. The specific interactions between immune and stromal cells, crucial for asthma pathogenesis, remain unclear. This study aims to determine the key cell types and their pathological mechanisms in asthma through single-cell RNA sequencing (scRNA-seq). METHODS A 16-week mouse model of house dust mite (HDM) induced asthma (n = 3) and controls (n = 3) were profiled with scRNA-seq. The cellular composition and gene expression profiles were assessed by bioinformatic analyses, including cell enrichment analysis, trajectory analysis, and Gene Set Enrichment Analysis. Cell-cell communication analysis was employed to investigate the ligand-receptor interactions. RESULTS The asthma model results in airway inflammation coupled with airway remodeling and hyperresponsiveness. Single-cell analysis revealed notable changes in cell compositions and heterogeneities associated with airway inflammation and remodeling. GdT17 cells were identified to be a primary cellular source of IL-17, related to inflammatory exacerbation, while a subpopulation of alveolar macrophages exhibited numerous significantly up-regulated genes involved in multiple pathways related to neutrophil activities in asthma. A distinct fibroblast subpopulation, marked by elevated expression levels of numerous contractile genes and their regulators, was observed in increased airway smooth muscle layer by immunofluorescence analysis. Asthmatic stromal-immune cell communication significantly strengthened, particularly involving GdT17 cells, and macrophages interacting with fibroblasts. CXCL12/CXCR4 signaling was remarkedly up-regulated in asthma, predominantly bridging the interaction between fibroblasts and immune cell populations. Fibroblasts and macrophages could jointly interact with various immune cell subpopulations via the CCL8/CCR2 signaling. In particular, fibroblast-macrophage cell circuits played a crucial role in the development of airway inflammation and remodeling through IL1B paracrine signaling. CONCLUSIONS Our study established a mouse model of asthma that recapitulated key pathological features of asthma. ScRNA-seq analysis revealed the cellular landscape, highlighting key pathological cell populations associated with asthma pathogenesis. Cell-cell communication analysis identified the crucial ligand-receptor interactions contributing to airway inflammation and remodeling. Our findings emphasized the significance of cell-cell communication in bridging the possible causality between airway inflammation and remodeling, providing valuable hints for therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Xiu Yu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Bicheng Cai
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Wei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Quan Liu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Xing Shi
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Li Yu
- Longgang Central Hospital of Shenzhen, LongGang District, Shenzhen, 518116, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| |
Collapse
|
30
|
Huang X, Luo X, Huang S, Chen X, Qiu L. Inhibition of FoxO1 alleviates polycystic ovarian syndrome by reducing inflammation and the immune response. Funct Integr Genomics 2024; 24:6. [PMID: 38189995 DOI: 10.1007/s10142-024-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The aim of this study was to explore the role of forkhead box transcription Factor O1 (FoxO1) in chronic inflammation in polycystic ovary syndrome (PCOS). A PCOS rat model was constructed as an in vivo model by letrozole induction, and granulosa cells (GCs) from PCOS rats were isolated and cultured as an in vitro cellular model. FoxO1 was knocked down by shRNA and siRNA in the PCOS rat model and GCs model, respectively. H&E staining was conducted to evaluate the effect of FoxO1 inhibition on ovarian pathology and dysfunction in PCOS rats. The levels of inflammatory cytokines in the ovaries and uterus of PCOS rats and in GCs were assessed by ELISA. Flow cytometry was used to evaluate the changes in the contents of neutrophils and macrophages in the peripheral blood and spleen of PCOS rats. CCK-8 assays and Annexin V-FITC/PI staining were performed to evaluate the proliferation and apoptosis of GCs. The expression of genes and proteins related to the TLR4/NF-κB/NLRP3 pathway in GCs was determined by RT-qPCR and Western blotting. The results indicated that FoxO1 was highly expressed in PCOS rat model. Inhibition of FoxO1 significantly mitigated the pathological changes and dysfunction in the ovaries of PCOS rats while also suppressing inflammation and fibrosis in the ovaries and uterus. Moreover, knocking down FoxO1 facilitated the restoration of the normal ratio of neutrophils and macrophages in the peripheral blood and spleen of PCOS rats and promoted M2 polarization of macrophages. Additionally, inhibition of FoxO1 promoted the proliferation of GCs and inhibited the inflammatory response in GCs. Furthermore, FoxO1 knockdown inhibited the activation of the NF-κB pathway and the formation of the NLRP3 inflammasome in GCs. In conclusion, inhibition of FoxO1 can alleviate PCOS by inhibiting the TLR4/NF-κB/NLRP3 pathway to reduce inflammation and the immune response.
Collapse
Affiliation(s)
- Xiaolan Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, Fujian, China.
| | - Xiangmin Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, Fujian, China
| | - Suzhen Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, Fujian, China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, Fujian, China
| | - Lingling Qiu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, Fujian, China
| |
Collapse
|
31
|
Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. J Nanobiotechnology 2023; 21:443. [PMID: 37996911 PMCID: PMC10666376 DOI: 10.1186/s12951-023-02200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Acute pancreatitis (AP) is a common and life-threatening digestive disorder. However, its diagnosis and treatment are still impeded by our limited understanding of its etiology, pathogenesis, and clinical manifestations, as well as by the available detection methods. Fortunately, the progress of microenvironment-targeted nanoplatforms has shown their remarkable potential to change the status quo. The pancreatic inflammatory microenvironment is typically characterized by low pH, abundant reactive oxygen species (ROS) and enzymes, overproduction of inflammatory cells, and hypoxia, which exacerbate the pathological development of AP but also provide potential targeting sites for nanoagents to achieve early diagnosis and treatment. This review elaborates the various potential targets of the inflammatory microenvironment of AP and summarizes in detail the prospects for the development and application of functional nanomaterials for specific targets. Additionally, it presents the challenges and future trends to develop multifunctional targeted nanomaterials for the early diagnosis and effective treatment of AP, providing a valuable reference for future research.
Collapse
Affiliation(s)
- Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yiqing Zhang
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospita, PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| | - Jun Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
32
|
Garanina AS, Vishnevskiy DA, Chernysheva AA, Valikhov MP, Malinovskaya JA, Lazareva PA, Semkina AS, Abakumov MA, Naumenko VA. Neutrophil as a Carrier for Cancer Nanotherapeutics: A Comparative Study of Liposome, PLGA, and Magnetic Nanoparticles Delivery to Tumors. Pharmaceuticals (Basel) 2023; 16:1564. [PMID: 38004431 PMCID: PMC10674452 DOI: 10.3390/ph16111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Insufficient drug accumulation in tumors is still a major concern for using cancer nanotherapeutics. Here, the neutrophil-based delivery of three nanoparticle types-liposomes, PLGA, and magnetite nanoparticles-was assessed both in vitro and in vivo. Confocal microscopy and a flow cytometry analysis demonstrated that all the studied nanoparticles interacted with neutrophils from the peripheral blood of mice with 4T1 mammary adenocarcinoma without a significant impact on neutrophil viability or activation state. Intravital microscopy of the tumor microenvironment showed that the neutrophils did not engulf the liposomes after intravenous administration, but facilitated nanoparticle extravasation in tumors through micro- and macroleakages. PLGA accumulated along the vessel walls in the form of local clusters. Later, PLGA nanoparticle-loaded neutrophils were found to cross the vascular barrier and migrate towards the tumor core. The magnetite nanoparticles extravasated in tumors both via spontaneous macroleakages and on neutrophils. Overall, the specific type of nanoparticles largely determined their behavior in blood vessels and their neutrophil-mediated delivery to the tumor. Since neutrophils are the first to migrate to the site of inflammation, they can increase nanodrug delivery effectiveness for nanomedicine application.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil A. Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Anastasia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Marat P. Valikhov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | | | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| | - Maxim A. Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.V.); (M.P.V.); (P.A.L.); (A.S.S.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.A.C.); (V.A.N.)
| |
Collapse
|
33
|
Ghosh S, Ghosh R, Sawoo R, Dutta P, Bishayi B. Impact of dual neutralization of TNF-α and IL-1β along with Gentamicin treatment on the functions of blood and splenic neutrophils and its role on improvement of S. aureus induced septic arthritis. Int Immunopharmacol 2023; 123:110766. [PMID: 37572502 DOI: 10.1016/j.intimp.2023.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Researches of recent past years have emphasized potential of antibiotics to improve septic arthritis but as multi-drug resistant strains like MRSA are emerging fast, new alternative therapeutic advances are high in demand. This study aims to figure out the role of neutrophils in regulating inflammatory responses of S. aureus induced septic arthritis while using TNF-α Ab or IL-1β Ab along with antibiotic gentamicin or both in combination. In this study, role of anti-oxidant enzymes were investigated and correlated with generated ROS level. While expression of TLR2, TNFR2, MMP2, RANKL, SAPK/JNK in the spleen were evaluated through western blot. Serum activity of IL-8, IL-10, IL-12, OPG, OPN, CRP was assessed using ELISA. Flow cytometry study evaluated inflamed neutrophil population. Results have shown TNF-α neutralization along with gentamicin was able to reduce arthritic swelling prominently. While combination therapy effectively reduced blood neutrophil ROS activity, arginase activity, MPO activity along with spleen bacterial burden. Serum OPG, CRP, IL-10 level got reduced while serum OPN, IL-8 and IL-12 level enhanced in treatment groups, showing mitigation of inflammatory damage. Overall, it is a novel work that observed how antibiotic and antibody therapy enhanced neutrophil function positively to combat sepsis. This study may not be fully applicable in clinical trials as it is performed with animal model. Clinical trials include crystalline and inflammatory arthritides, trauma, neoplasm. Interdisciplinary collaboration between radiology, orthopaedic surgery and knowledge of animal system responses may give better idea to find proper therapeutic approach in future research works.
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
34
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
35
|
Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-inflammatory activities of flavonoid derivates. ADMET AND DMPK 2023; 11:331-359. [PMID: 37829324 PMCID: PMC10567070 DOI: 10.5599/admet.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Background and purpose Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges. Review approach This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug. Key results Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds. Conclusion In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
Collapse
Affiliation(s)
- Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Nangsih Sulastri Slamet
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Fihrina Mohamad
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Hartati Hartati
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Sukmawati A Damiti
- Department of Midwivery, Politeknik Kesehatan Kementerian Kesehatan Palangka Raya 73111, Palangka Raya, Indonesia
| | - Francisca Diana Alexandra
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sudarman Rahman
- Faculty of mathematics and natural sciences, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali 80235, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Denpasar, Bali 80235, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
36
|
Mu Q, Yao K, Syeda MZ, Zhang M, Cheng Q, Zhang Y, Sun R, Lu Y, Zhang H, Luo Z, Huang H, Liu X, Luo C, Zhu X, Wu S, Cui L, Huang C, Chen X, Tang L. Ligustrazine Nanoparticle Hitchhiking on Neutrophils for Enhanced Therapy of Cerebral Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301348. [PMID: 37078794 PMCID: PMC10323616 DOI: 10.1002/advs.202301348] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Ischemic stroke is a refractory disease that endangers human health and safety owing to cerebral ischemia. Brain ischemia induces a series of inflammatory reactions. Neutrophils migrate from the circulatory system to the site of cerebral ischemia and accumulate in large numbers at the site of inflammation across the blood-brain barrier. Therefore, hitchhiking on neutrophils to deliver drugs to ischemic brain sites could be an optimal strategy. Since the surface of neutrophils has a formyl peptide receptor (FPR), this work modifies a nanoplatform surface by the peptide cinnamyl-F-(D)L-F-(D)L-F (CFLFLF), which can specifically bind to the FPR receptor. After intravenous injection, the fabricated nanoparticles effectively adhered to the surface of neutrophils in peripheral blood mediated by FPR, thereby hitchhiking with neutrophils to achieve higher accumulation at the inflammatory site of cerebral ischemia. In addition, the nanoparticle shell is composed of a polymer with reactive oxygen species (ROS)-responsive bond breaking and is encased in ligustrazine, a natural product with neuroprotective properties. In conclusion, the strategy of hitching the delivered drugs to neutrophils in this study could improve drug enrichment in the brain, thereby providing a general delivery platform for ischemic stroke or other inflammation-related diseases.
Collapse
Affiliation(s)
- Qingchun Mu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Kai Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Madiha Zahra Syeda
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Min Zhang
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Qian Cheng
- Basic Medical CollegeGuilin Medical UniversityGuilin541199China
| | - Yufei Zhang
- Basic Medical CollegeGuilin Medical UniversityGuilin541199China
| | - Rui Sun
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Yuting Lu
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Huamiao Zhang
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Zhicheng Luo
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Hanning Huang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiaojing Liu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Chunmei Luo
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiulong Zhu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Shuyu Wu
- Department of NeurosurgeryHainan General HospicalHainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of PharmacyGuangdong Medical UniversityDongguan523808China
| | - Chunming Huang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiologyand SurgeryClinical Imaging Research CentreCentre for Translational MedicineNanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineDepartments of Chemical and Biomolecular Engineeringand Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Longguang Tang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| |
Collapse
|
37
|
Oh GC, Choi YJ, Park BW, Ban K, Park HJ. Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts? Korean Circ J 2023; 53:367-386. [PMID: 37271744 DOI: 10.4070/kcj.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Gyu-Chul Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
38
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
39
|
Madruga D, Garcia MM, Martino L, Hassan H, Elayat G, Ghali L, Ceballos L. Positive correlational shift between crevicular antimicrobial peptide LL-37, pain and periodontal status following non-surgical periodontal therapy. A pilot study. BMC Oral Health 2023; 23:335. [PMID: 37246231 DOI: 10.1186/s12903-023-03023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/06/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Periodontitis has a high prevalence and uncertain recurrence. Unlike the pro-inflammatory cytokine profile, little is known about the anti-inflammatory cytokine and antimicrobial peptide overview following treatment. The present study aimed to evaluate if any of the antimicrobial peptide LL-37, interleukin (IL) 4, 10 and 6 together with the volume of gingival crevicular fluid (GCF) and total protein concentration in GCF could be used as correlative biomarkers for the severity in periodontitis as well as prognostic factors in the management of the disease. METHODS Forty-five participants were recruited and allocated to the healthy (15), Stage I-II (15) or Stage III-IV periodontitis (15) group. Along with periodontal examination, GCF samples were obtained at baseline and 4-6 weeks following scaling and root planing (SRP) for the periodontitis groups. GCF samples were analyzed by ELISA kits to quantify LL-37 and IL-4, -6 and - 10. One-way ANOVA followed by Dunnett's test was used to determine differences among the three groups at baseline. Two-way ANOVA followed by Sidak's post-hoc test was used to compare between pre- and post-SRP in the two periodontitis groups. RESULTS The amount of GCF volume was significantly correlated to the severity of periodontitis and decreased following SRP, particularly in the Stage III-IV group (p < 0.01). The levels of LL-37, IL-6, and pain and periodontal clinical parameters were significantly correlated to the severity of periodontitis. IL-4 and IL-10 in the periodontitis groups were significantly lower than the healthy group (p < 0.0001) and barely improved following SRP up to the level of the healthy group. CONCLUSIONS With the limitations of this study, crevicular LL-37 may be a candidate for a biomarker of periodontitis and the associated pain upon probing. TRIAL REGISTRATION The study was registered in clinical trials.gov, with number NCT04404335, dated 27/05/2020.
Collapse
Affiliation(s)
- David Madruga
- Area of Stomatology, Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, Alcorcón, E-28922, Spain
| | - Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Avda. de Atenas s/n, Alcorcón, E-28922, Spain.
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), Alcorcón, Spain.
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.
| | - Luca Martino
- Area of Signal Theory and Communications, Department of Signal Theory and Communications and Telematics Systems and Computing, Higher Technical School of Telecommunications Engineering, Universidad Rey Juan Carlos (URJC), Cam. del Molino, 5, Fuenlabrada, E-28942, Spain
- High Performance Data Science and Signal Processing for Networks and Society research group, Universidad Rey Juan Carlos (DSSP), Fuenlabrada, Spain
| | - Haidar Hassan
- Academic Plastic Surgery, School of Medicine and Dentistry, Blizard Institute, Barts and The London, Queen Mary University of London, London, E1 2AD, UK
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Ghada Elayat
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
- Department of Pathology, Faculty of Medicine, Tanta University, El Bahr St, Tanta, 31111, Egypt
| | - Lucy Ghali
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Laura Ceballos
- Area of Stomatology, Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, Alcorcón, E-28922, Spain
- High Performance Development and Innovation in Dental Biomaterials Research Group, Universidad Rey Juan Carlos (IDIBO), Alcorcón, Spain
| |
Collapse
|
40
|
Seo G, Kim K. Exploring the mechanism of action of Hedyotis diffusa Willd on acne using network analysis. Medicine (Baltimore) 2023; 102:e33323. [PMID: 36961163 PMCID: PMC10037416 DOI: 10.1097/md.0000000000033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
In this study, we used a network pharmacological method to explore the active ingredients of Hedyotis diffusa Willd (HDW) in the treatment of acne and elucidated the physiological mechanisms in the human body in which they are involved. We identified the active compounds of HDW that are expected to act effectively in the human body using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform and extracted potential interacting proteins for each active compound using the Swiss Target Prediction platform. Next, we analyzed the potential mechanisms of action of the protein targets shared by HDW and each standard drug on acne and assessed the possibility of spontaneous occurrence of the binding between proteins and active compounds through the molecular docking process. Seven active compounds were selected according to the oral bioavailability and drug-likeness criteria of the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. Subsequently, 300 protein targets were collected from the Swiss Target Prediction. Using the Search Tool for the Retrieval of Interacting Genes/Proteins database, a protein-protein interaction network was constructed by analyzing the relationship between HDW, acne, and each standard drug. By analyzing the gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway, the "positive regulation of lipid metabolic process" was found to be the most involved pathway shared by HDW, acne, and isotretinoin. An analysis of the protein targets shared by the antibiotic agents with HDW and acne found that "cholesterol storage" in tetracycline, "icosacoid transport" in azithromycin, "steroid hydroxylase activity" in erythromycin, "positive regulation of leukocyte tethering or rolling" in clindamycin, "response to UV-A" in minocycline, "steroid 11-beta-monooxygenase activity" in doxycycline, and "neutrophil-mediated immunity" in trimethoprim were the most involved. Virtual molecular docking analysis showed that all proteins spontaneously bound to their corresponding active compounds. Our analysis suggests that HDW can, directly and indirectly, suppress sebum secretion and exert antiinflammatory effects on acne. Further, HDW may regulate free radicals and suppress apoptosis. Therefore, HDW can be used as an alternative or supplement to standard drugs for acne treatment in patients who cannot use standard treatments due to side effects.
Collapse
Affiliation(s)
- Gwangyeel Seo
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
41
|
Wijerathna HMSM, Nadarajapillai K, Shanaka KASN, Kasthuriarachchi TDW, Jung S, Lee S, Lee J. Molecular characterization and immune response of suppressor of cytokine signaling 5b from redlip mullet (Planiliza haematocheilus): Disclosing its anti-viral potential and effect on cell proliferation. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108629. [PMID: 36822381 DOI: 10.1016/j.fsi.2023.108629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1β and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.
Collapse
Affiliation(s)
- H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
42
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
43
|
Jain N, Shahrukh S, Famta P, Shah S, Vambhurkar G, Khatri DK, Singh SB, Srivastava S. Immune cell-camouflaged surface-engineered nanotherapeutics for cancer management. Acta Biomater 2023; 155:57-79. [PMID: 36347447 DOI: 10.1016/j.actbio.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Nanocarriers (NCs) have shown potential in delivering hydrophobic cytotoxic drugs and tumor-specific targeting. However, the inability to penetrate the tumor microenvironment and entrapment by macrophages has limited their clinical translation. Various cell-based drug delivery systems have been explored for their ability to improve circulation half-life and tumor accumulation capabilities. Tumors are characterized by high inflammation, which aids in tumor progression and metastasis. Immune cells show natural tumor tropism and penetration inside the tumor microenvironment (TME) and are a topic of great interest in cancer drug delivery. However, the TME is immunosuppressive and can polarize immune cells to pro-tumor. Thus, the use of immune cell membrane-coated NCs has gained popularity. Such carriers display immune cell-specific surface receptors for tumor-specific accumulation but lack cell machinery. The lack of immune cell machinery makes them unaffected by the immunosuppressive TME, meanwhile maintaining the inherent tumor tropism. In this review, we discuss the molecular mechanism behind the movement of various immune cells toward TME, the preparation and characterization of membrane-coated NCs, and the efficacy of immune cell-mimicking NCs in tumor therapy. Regulatory guidelines and the bottlenecks in clinical translation are also highlighted. STATEMENT OF SIGNIFICANCE: Nanocarriers have been explored for the site-specific delivery of chemotherapeutics. However, low systemic circulation half-life, extensive entrapment by macrophages, and poor accumulation inside the tumor microenvironment prevent the clinical translation of conventional nanotherapeutics. Immune cells possess the natural tropism towards the tumor along the chemokine gradient. Hence, coating the nanocarriers with immune cell-derived membranes can improve the accumulation of nanocarriers inside the tumor. Moreover, coating with membranes derived autologous immune cells will prevent engulfment by the macrophages.
Collapse
Affiliation(s)
- Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
44
|
Japiassu KB, Fay F, Marengo A, Louaguenouni Y, Cailleau C, Denis S, Chapron D, Tsapis N, Nascimento TL, Lima EM, Fattal E. Interplay between mucus mobility and alveolar macrophage targeting of surface-modified liposomes. J Control Release 2022; 352:15-24. [PMID: 36209941 DOI: 10.1016/j.jconrel.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Alveolar macrophages play a crucial role in the initiation and resolution of the immune response in the lungs. Pro-inflammatory M1 alveolar macrophages are an interesting target for treating inflammatory and infectious pulmonary diseases. One commune targeting strategy is to use nanoparticles conjugated with hyaluronic acid, which interact with CD44 overexpressed on the membrane of those cells. Unfortunately, this coating strategy may be countered by the presence on the surface of the nanoparticles of a poly(ethylene glycol) corona employed to improve nanoparticles' diffusion in the lung mucus. This study aims to measure this phenomenon by comparing the behavior in a murine lung inflammation model of three liposomal platforms designed to represent different poly(ethylene glycol) and hyaluronic acid densities (Liposome-PEG, Liposome-PEG-HA and Liposome-HA). In this work, the liposomes were obtained by a one-step ethanol injection method. Their interaction with mucin and targeting ability toward pro-inflammatory macrophages were then investigated in vitro and in vivo in a LPS model of lung inflammation. In vitro, poly(ethylene glycol) free HA-liposomes display a superior targeting efficiency toward M1 macrophages, while the addition of poly(ethylene glycol) induces better mucus mobility. Interestingly in vivo studies revealed that the three liposomes showed distinct cell specificity with alveolar macrophages demonstrating an avidity for poly(ethylene glycol) free HA-liposomes, while neutrophils favored PEGylated liposomes exempt of HA. Those results could be explained by the presence of two forces exercising a balance between mucus penetration and receptor targeting. This study corroborates the importance of considering the site of action and the targeted cells when designing nanoparticles to treat lung diseases.
Collapse
Affiliation(s)
- Kamila Bohne Japiassu
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France; Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Francois Fay
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Alessandro Marengo
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Younès Louaguenouni
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Catherine Cailleau
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Stéphanie Denis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - David Chapron
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Nicolas Tsapis
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France
| | - Thais Leite Nascimento
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Eliana Martins Lima
- Center for RD&I in Pharmaceutical Nano/Technology (FarmaTec), Federal University of Goias, Goiania, 74605-220, Goias, Brazil
| | - Elias Fattal
- University Paris-Saclay, CNRS, Institut Galien Paris-Saclay (UMR 8612), Châtenay-Malabry, France.
| |
Collapse
|
45
|
Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: A comprehensive review. Biomed Pharmacother 2022; 156:113841. [DOI: 10.1016/j.biopha.2022.113841] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
|
46
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
47
|
Wu M, Lin M, Li P, Huang X, Tian K, Li C. Local anesthetic effects of lidocaine-loaded carboxymethyl chitosan cross-linked with sodium alginate hydrogels for drug delivery system, cell adhesion, and pain management. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Völs S, Kaisar-Iluz N, Shaul ME, Ryvkin A, Ashkenazy H, Yehuda A, Atamneh R, Heinberg A, Ben-David-Naim M, Nadav M, Hirsch S, Mitesser V, Salpeter SJ, Dzikowski R, Hayouka Z, Gershoni JM, Fridlender ZG, Granot Z. Targeted nanoparticles modify neutrophil function in vivo. Front Immunol 2022; 13:1003871. [PMID: 36275643 PMCID: PMC9580275 DOI: 10.3389/fimmu.2022.1003871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play critical roles in a broad spectrum of clinical conditions. Accordingly, manipulation of neutrophil function may provide a powerful immunotherapeutic approach. However, due to neutrophils characteristic short half-life and their large population number, this possibility was considered impractical. Here we describe the identification of peptides which specifically bind either murine or human neutrophils. Although the murine and human neutrophil-specific peptides are not cross-reactive, we identified CD177 as the neutrophil-expressed binding partner in both species. Decorating nanoparticles with a neutrophil-specific peptide confers neutrophil specificity and these neutrophil-specific nanoparticles accumulate in sites of inflammation. Significantly, we demonstrate that encapsulating neutrophil modifying small molecules within these nanoparticles yields specific modulation of neutrophil function (ROS production, degranulation, polarization), intracellular signaling and longevity both in vitro and in vivo. Collectively, our findings demonstrate that neutrophil specific targeting may serve as a novel mode of immunotherapy in disease.
Collapse
Affiliation(s)
- Sandra Völs
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Naomi Kaisar-Iluz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Merav E. Shaul
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arik Ryvkin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ronza Atamneh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Adina Heinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M. Gershoni
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Zvi G. Fridlender
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| |
Collapse
|
49
|
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Am J Cancer Res 2022; 12:6223-6241. [PMID: 36168632 PMCID: PMC9475455 DOI: 10.7150/thno.73421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the restriction or blockage of blood flow in specific tissues, including ischemic cardiac, ischemic cerebrovascular and ischemic peripheral vascular diseases. The regeneration of functional vasculature network in ischemic tissues is essential for treatment of ischemic diseases. Direct delivery of pro-angiogenesis factors, such as VEGF, has demonstrated the effectiveness in ischemic disease therapy but suffering from several obstacles, such as low delivery efficacy in disease sites and uncontrolled modulation. In this review, we summarize the molecular mechanisms of inducing vascular regeneration, providing the guidance for designing the desired nanomedicines. We also introduce the delivery of various nanomedicines to ischemic tissues by passive or active targeting manner. To achieve the efficient delivery of nanomedicines in various ischemic diseases, we highlight targeted delivery of nanomedicines and controllable modulation of disease microenvironment using nanomedicines.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.,Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
In vitro review of nanoparticles attacking macrophages: Interaction and cell death. Life Sci 2022; 307:120840. [PMID: 35905812 DOI: 10.1016/j.lfs.2022.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the wide application of nanoparticles (NPs) inevitably leads to environmental pollution and human exposure, and its safety has attracted more and more attention. Since macrophages are the cells most directly exposed to multi-pathway invading NPs in the body, it is necessary to assess of toxic effects of NPs in macrophages, clarify the potential mechanisms of NPs toxicity to improve our understanding about the interaction of NPs with macrophages in vivo, and avoid body damage. Currently, studies on the toxicity of NPs to macrophages are rare and mainly focused on in vitro, so this paper integrated the toxic effect of macrophages exposed to NPs and the macrophages cellular changes following the interaction with NPs, including NPs internalization, ROS production, cytokines alterations, DNA damage and cell death, and further explored the involved mechanisms. This review aims to provide some insights into the further toxicological studies of NPs.
Collapse
|