1
|
Sampieri-Morán JM, Bravo-Alfaro DA, Uribe-Lam E, Luna-Barcenas G, Montiel-Sánchez M, Velasco-Rodríguez LDC, Acosta-Osorio AA, Ferrer M, García HS. Delivery of Magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of Honokiol and Magnolol. Eur J Pharm Biopharm 2025; 208:114627. [PMID: 39761833 DOI: 10.1016/j.ejpb.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/23/2025]
Abstract
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential. Nanoemulsions (NE) have been suggested to enhance their solubility in the oily core and enable passive diffusion through absorptive cells. Surfactants ensure stability by reducing surface tension between hydrophobic and hydrophilic compounds. In this study we report the preparation of NE containing HK and MG using high and low-energy methods (SNEDDS); we aimed to improve their absorption after oral administration. Results demonstrated that NE enhanced their bioavailability significantly. Compared to the free forms, HK bioavailability increased by 3.47 times, and MG by 3.03 times. SNEDDS further increased HK bioavailability by 3.98 times and MG by 7.97 times compared to their free forms.
Collapse
Affiliation(s)
- Jessica M Sampieri-Morán
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Diego A Bravo-Alfaro
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Gabriel Luna-Barcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, Mexico
| | - Mara Montiel-Sánchez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Luz Del C Velasco-Rodríguez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Andrés A Acosta-Osorio
- CONAHCYT-Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
2
|
Lee YH, Jeong EY, Kim YH, Park JH, Yoon JH, Lee YJ, Lee SH, Nam YK, Cha SY, Park JS, Kim SY, Byun Y, Shin SS, Park JT. Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient. Aging (Albany NY) 2025; 17:497-523. [PMID: 39992207 DOI: 10.18632/aging.206207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Reactive oxygen species (ROS) contribute to aging by mainly damaging cellular organelles and DNA. Although strategies to reduce ROS production have been proposed as important components of anti-aging therapy, effective mechanisms to lower ROS levels have not yet been identified. Here, we screened natural compounds frequently used as cosmetic ingredients to find substances that reduce ROS levels. Magnolia officinalis (M. officinalis) extract significantly lowered the levels of ROS in senescent fibroblasts. A novel mechanism by which M. officinalis extract restores mitochondrial function to reduce ROS, a byproduct of inefficient electron transport, was discovered. The reduction of ROS by M. officinalis extracts reversed senescence-associated phenotypes and skin aging. Then, honokiol was demonstrated as a core ingredient of M. officinalis extract that exhibits antioxidant effects. Honokiol functions as an oxygen radical scavenger through redox processes, also significantly reduced ROS levels by restoring mitochondrial function. In summary, our study identified a novel mechanism by which M. officinalis extract reverses aging and skin aging by reducing ROS through restoring mitochondrial function. These new findings will not only expand our understanding of aging and associated diseases, but also provide new approaches to anti-aging treatments.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Young Jeong
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ye Hyang Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - So Hun Lee
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Yeon Kyung Nam
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yoon Cha
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Jin Seong Park
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - So Yeon Kim
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Song Seok Shin
- Life Sciences R&D Center, Hyundai Bioland co. ltd, 22, Osongsaengmyeong 2–ro, Osong–eup, Heungdeok–gu, Cheongju–si, Chungcheongbuk–do, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
4
|
Sha’at M, Ochiuz L, Rusu CM, Agop M, Barsan (Bujor) A, Cretan MS, Hartan M, Spac AF. Experimental and Theoretical Design on the Development of Matrix Tablets with Multiple Drug Loadings Aimed at Optimizing Antidiabetic Medication. Pharmaceutics 2024; 16:1595. [PMID: 39771573 PMCID: PMC11676861 DOI: 10.3390/pharmaceutics16121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system. Methods: The tablets were formulated using hydrophilic polymers, such as Carbopol® 71G NF and Noveon® AA-1. The release kinetics of M-HCl and HNK were investigated through advanced mathematical models, including fractal and multifractal dynamics, to capture the non-linear and time-dependent release processes. Traditional kinetic models (zero-order, first-order, Higuchi equations) were also evaluated for comparison. In vitro dissolution studies were conducted to determine the release profiles of the active ingredients under varying polymer concentrations. Results: The study revealed distinct release profiles for the two active ingredients. M-HCl exhibited a rapid release phase, with 80% of the drug released within 4-7 h depending on polymer concentration. In contrast, HNK demonstrated a slower release profile, achieving 80% release after 9-10 h, indicating a greater sensitivity to polymer concentration. At shorter intervals, drug release followed classical kinetic models, while multifractal dynamics dominated at longer intervals. Higher polymer concentrations resulted in slower drug release rates due to the formation of a gel-like structure upon hydration, which hindered drug diffusion. The mechanical properties and stability of the matrix tablets confirmed their suitability for extended-release applications. Mathematical modeling validated the experimental findings and provided insights into the structural and time-dependent factors influencing drug release. Conclusions: This study successfully developed dual-drug extended-release matrix tablets containing metformin hydrochloride and honokiol, highlighting the potential of hydrophilic polymers to regulate drug release. The findings emphasize the utility of advanced mathematical models for predicting release kinetics and underscore the potential of these formulations to improve patient compliance and therapeutic outcomes in diabetes management.
Collapse
Affiliation(s)
- Mousa Sha’at
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (M.S.); (M.S.C.)
| | - Lacramioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (M.S.); (M.S.C.)
| | - Cristina Marcela Rusu
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iasi, Romania; (C.M.R.); (M.A.)
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iasi, Romania; (C.M.R.); (M.A.)
- Romanian Scientists Academy, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alexandra Barsan (Bujor)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (M.S.); (M.S.C.)
| | - Monica Stamate Cretan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (M.S.); (M.S.C.)
| | - Mihaela Hartan
- Independent Researcher, 57 Canta Street, 700530 Iasi, Romania;
| | - Adrian Florin Spac
- Department of Physico-Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| |
Collapse
|
5
|
Liu Y, Zhang S, Tan Y. Honokiol induces apoptosis and autophagy in dexamethasone-resistant T-acute lymphoblastic leukemia CEM-C1 cells. Hematology 2024; 29:2337307. [PMID: 38573223 DOI: 10.1080/16078454.2024.2337307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Objective: To study whether and, if so, how honokiol overcome dexamethasone resistance in DEX-resistant CEM-C1 cells. Methods: We investigated the effect of honokiol (0-20 µM) on cell proliferation, cell cycle, cell apoptosis and autophagy in DEX-resistant CEM-C1 cells and DEX-sensitive CEM-C7 cells. We also determined the role of c-Myc protein and mRNA in the occurrence of T-ALL associated dexamethasone resistance western blot and reverse transcription-qPCR (RT-qPCR) analysis. Results: Cell Counting Kit (CCK)-8 assay shows that DEX-resistant CEM-C1 cell lines were highly resistant to dexamethasone with IC50 of 364.1 ± 29.5 µM for 48 h treatment. However, upon treatment with dexamethasone in combination with 1.5 µM of honokiol for 48 h, the IC50 of CEM-C1 cells significantly decreased to 126.2 ± 12.3 µM, and the reversal fold was 2.88. Conversely, the IC50 of CEM-C7 cells was not changed combination of dexamethasone and honokiol as compared to that of CEM-C7 cells treated with dexamethasone alone. It has been shown that honokiol induced T-ALL cell growth inhibition by apoptosis and autophagy via downregulating cell cycle-regulated proteins (Cyclin E, CDK4, and Cyclin D1) and anti-apoptotic proteins BCL-2 and upregulating pro-apoptotic proteins Bax and led to PARP cleavage. Honokiol may overcome dexamethasone resistance in DEX-resistant CEM-C1 cell lines via the suppression of c-Myc mRNA expression. Conclusion: The combination of honokiol and DEX were better than DEX alone in DEX-resistant CEM-C1 cell lines. Honokiol may regulate T-ALL-related dexamethasone resistance by affecting c-Myc.
Collapse
Affiliation(s)
- Yang Liu
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| | - Suqian Zhang
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| | - Yajuan Tan
- Pediatric Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei, People's Republic of China
| |
Collapse
|
6
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
7
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Li N, Liang Y, Zhang L, Xu C, Wang L. Neolignans in Magnolia officinalis as natural anti-Alzheimer's disease agents: A systematic review. Ageing Res Rev 2024; 99:102398. [PMID: 38955265 DOI: 10.1016/j.arr.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aβ generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
9
|
Atef B, Ishak RAH, Badawy SS, Osman R. Novel composite fatty acid vesicles-in-Pluronic lecithin organogels for enhanced magnolol delivery in skin cancer treatment. Eur J Pharm Biopharm 2024; 201:114379. [PMID: 38908488 DOI: 10.1016/j.ejpb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
10
|
He Y, Guo J, Ding H, Lin M, Wu Y, He Z, Wang Z, Xia Q, Zhu C, Zhang Y, Feng N. Glutathione-responsive CD-MOFs co-loading honokiol and indocyanine green biomimetic active targeting to enhance photochemotherapy for breast cancer. Int J Pharm 2024; 660:124310. [PMID: 38848796 DOI: 10.1016/j.ijpharm.2024.124310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer has now replaced lung cancer as the most prevalent malignant tumor worldwide, posing a serious health risk to women. We have recently designed a promising option strategy for the treatment of breast cancer. In this work, cyclodextrin metal-organic frameworks with high drug-carrying properties were endo-crosslinked by 3,3'dithiodipropionyl chloride to form cubic phase gel nanoparticles, which were drug-loaded and then coated by MCF-7 cell membranes. After intravenous injection, this multifunctional nanomedicine achieved dramatically homologous targeting co-delivery of honokiol and indocyanine green to the breast tumor. Further, the disulfide bonds in the nanostructures achieved glutathione-responsive drug release, induced tumor cells to produce reactive oxygen species and promoted apoptosis, resulting in tumor necrosis, and at the same time, inhibited Ki67 protein expression, which enhanced photochemotherapy, and resulted in a 94.08 % in vivo tumor suppression rate in transplanted tumor-bearing mice. Thereby, this nanomimetic co-delivery system may have a place in breast cancer therapy due to its simple fabrication process, excellent biocompatibility, efficient targeted delivery of insoluble drugs, and enhanced photochemotherapy.
Collapse
Affiliation(s)
- Yuanzhi He
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Guo
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huining Ding
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Lin
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihan Wu
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- School of Parmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Zhao D, Guo X, Lin B, Huang R, Li H, Wang Q, Zeng Y, Shang Y, Wu Y. Magnolol against enterovirus 71 by targeting Nrf2-SLC7A11-GSH pathway. Biomed Pharmacother 2024; 176:116866. [PMID: 38876045 DOI: 10.1016/j.biopha.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Enterovirus 71 (EV71), a prominent pathogen associated with hand, foot, and mouth disease (HFMD), has been reported worldwide. To date, the advancement of effective drugs targeting EV71 remains in the preliminary experimental stage. In this study, magnolol demonstrated a significant dose-dependent inhibition of EV71 replication in vitro. It upregulated the overall expression level of nuclear factor erythroid 2 - related factor 2 (Nrf2) and facilitated its nucleus translocation, resulting in the increased expression of various ferroptosis inhibitory genes. This process led to a reduction in reactive oxygen species (ROS) accumulation induced by viral infection. Additionally, magnolol exhibited a broad-spectrum antiviral effect against enteroviruses. Notably, treatment with magnolol substantially enhanced the survival rate of EV71-infected mice, attenuated viral load in heart, liver, brain, and limb tissues, and mitigated tissue inflammation. Taken together, magnolol emerges as a promising candidate for the development of anti-EV71 drugs.
Collapse
Affiliation(s)
- Dingran Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Xueyang Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Binbin Lin
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Rui Huang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Hanyu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Yunlong Zeng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Dominiak K, Gostyńska A, Szulc M, Stawny M. The Anticancer Application of Delivery Systems for Honokiol and Magnolol. Cancers (Basel) 2024; 16:2257. [PMID: 38927963 PMCID: PMC11201421 DOI: 10.3390/cancers16122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a leading cause of death worldwide, and the effectiveness of treatment is consistently not at a satisfactory level. This review thoroughly examines the present knowledge and perspectives of honokiol (HON) in cancer therapeutics. The paper synthesizes critical insights into the molecular mechanisms underlying the observed anticancer effects, emphasizing both in vitro and in vivo studies. The effects of HON application, primarily in the common types of cancers, are presented. Because the therapeutic potential of HON may be limited by its physicochemical properties, appropriate delivery systems are sought to overcome this problem. This review discusses the effect of different nanotechnology-based delivery systems on the efficiency of HON. The data presented show that HON exhibits anticancer effects and can be successfully administered to the site of action. Honokiol exerts its anticancer activity through several mechanisms. Moreover, some authors used the combinations of classical anticancer drugs with HON. Such an approach is very interesting and worth further investigation. Understanding HON's multiple molecular mechanisms would provide valuable insights into how HON might be developed as an effective therapeutic. Therefore, further research is needed to explore its specific applications and optimize its efficacy in diverse cancer types.
Collapse
Affiliation(s)
- Katarzyna Dominiak
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Aleksandra Gostyńska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
13
|
Li X, Yuan Z, Wang Y, Wang W, Shi J. Recent advances of honokiol:pharmacological activities, manmade derivatives and structure-activity relationship. Eur J Med Chem 2024; 272:116471. [PMID: 38704945 DOI: 10.1016/j.ejmech.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Wenjing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
14
|
Liu N, Yue Z, Hu S, Xing R, Wang R, Yang L, Chen X. Screening and separation of natural anticancer active ingredients related to phospholipase C. J Sep Sci 2024; 47:e2300898. [PMID: 38726747 DOI: 10.1002/jssc.202300898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 06/14/2024]
Abstract
Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Zili Yue
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Rongrong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Runqin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
15
|
Chu Y, Gui S, Zheng Y, Zhao J, Zhao Y, Li Y, Chen X. The natural compounds, Magnolol or Honokiol, promote adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur J Pharmacol 2024; 969:176438. [PMID: 38402928 DOI: 10.1016/j.ejphar.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with the body's energy metabolism. A potential strategy to regulate energy metabolism, combat obesity, and reduce NAFLD is by enhancing adipocyte thermogenesis and increasing energy expenditure. In this study, our objective was to examine the effects of phenolic extracts derived from Magnolia officinalis on the regulation of NAFLD. Specifically, we investigated the impact of Magnolol or Honokiol treatment on high-fat diet (HFD)-induced obese C57BL6/J male mice. Firstly, we monitored energy metabolism, dissected tissues, and analyzed tissue sections. Additionally, we conducted experiments on HepG2 and primary adipocytes to gain insights into the roles of Magnolol or Honokiol. To further understand the effects of these compounds on related signaling pathways and marker genes, we performed molecular docking, dual-luciferase assays, and interfered with target genes. Our findings revealed that Magnolol or Honokiol activate the peroxisome proliferator activated receptor alpha (PPARα) signaling pathway, leading to the alleviation of NAFLD. This activation promotes fatty acid oxidation, reduces lipogenesis, and enhances the expression and secretion of FGF21. Notably, Fibroblast growth factor 21 (FGF21), secreted by the liver, plays a crucial role in improving communication between the liver and adipocytes while also promoting the browning of adipose tissue. Additionally, Magnolol or Honokiol activate the peroxisome proliferator activated receptor gamma (PPARγ) signaling pathway, resulting in increased uncoupling protein 1 (UCP1) expression, heightened heat production in adipose tissue, and anti-obesity. Therefore, Magnolol or Honokiol alleviate NAFLD, promote adipose tissue browning and resist obesity through dual activation of PPARα/γ.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Wang X, Fu L, Cheng W, Chen J, Zhang H, Zhu H, Zhang C, Fu C, Hu Y, Zhang J. Oral administration of Huanglian-Houpo herbal nanoemulsion loading multiple phytochemicals for ulcerative colitis therapy in mice. Drug Deliv 2023; 30:2204207. [PMID: 37139554 DOI: 10.1080/10717544.2023.2204207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
How to achieve stable co-delivery of multiple phytochemicals is a common problem. This study focuses on the development, optimization and characterization of Huanglian-HouPo extract nanoemulsion (HLHPEN), with multiple components co-delivery, to enhance the anti-ulcerative colitis (UC) effects. The formulation of HLHPEN was optimized by pseudo-ternary phase diagram combined with Box-Behnken design. The physicochemical properties of HLHPEN were characterized, and its anti-UC activity was evaluated in DSS-induced UC mice model. Based on preparation process optimization, the herbal nanoemulsion HLHPEN was obtained, with the droplet size, PDI value, encapsulation efficiency (EE) for 6 phytochemicals (berberine, epiberberine, coptisine, bamatine, magnolol and honokiol) of 65.21 ± 0.82 nm, 0.182 ± 0.016, and 90.71 ± 0.21%, respectively. The TEM morphology of HLHPEN shows the nearly spheroidal shape of particles. The optimized HLHPEN showed a brownish yellow milky single-phase and optimal physical stability at 25 °C for 90 days. HLHPEN exhibited the good particle stability and gradual release of phytochemicals in SGF and SIF, to resist the destruction of simulated stomach and small intestine environment. Importantly, the oral administration of HLHPEN significantly restored the shrunk colon tissue length and reduced body weight, ameliorated DAI value and colon histological pathology, decreased the levels of inflammatory factors in DSS-induced UC mice model. These results demonstrated that HLHPEN had a significant therapeutic effect on DSS-induced UC mice, as a potential alternative UC therapeutic agent.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huanjun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Gostyńska A, Czerniel J, Kuźmińska J, Żółnowska I, Brzozowski J, Krajka-Kuźniak V, Stawny M. The Development of Magnolol-Loaded Intravenous Emulsion with Low Hepatotoxic Potential. Pharmaceuticals (Basel) 2023; 16:1262. [PMID: 37765070 PMCID: PMC10537714 DOI: 10.3390/ph16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a severe liver injury occurring due to factors related to intestinal failure and parenteral nutrition administration. Different approaches are studied to reduce the risk or ameliorate the course of IFALD, including providing omega-3 fatty acids instead of soybean oil-based lipid emulsion or administering active compounds that exert a hepatoprotective effect. This study aimed to develop, optimize, and characterize magnolol-loaded intravenous lipid emulsion for parenteral nutrition. The preformulation studies allowed for chosen oils mixture of the highest capacity of magnolol solubilization. Then, magnolol-loaded SMOFlipid was developed using the passive incorporation method. The Box-Behnken design and response surface methodology were used to optimize the entrapment efficiency. The optimal formulation was subjected to short-term stress tests, and its effect on normal human liver cells and erythrocytes was determined using the MTT and hemolysis tests, respectively. The optimized magnolol-loaded SMOFlipid was characterized by the mean droplet diameter of 327.6 ± 2.9 nm with a polydispersity index of 0.12 ± 0.02 and zeta potential of -32.8 ± 1.2 mV. The entrapment efficiency of magnolol was above 98%, and pH and osmolality were sufficient for intravenous administration. The magnolol-loaded SMOFlipid samples showed a significantly lower toxic effect than bare SMOFlipid in the same concentration on THLE-2 cells, and revealed an acceptable hemolytic effect of 8.3%. The developed formulation was characterized by satisfactory stability. The in vitro studies showed the reduced cytotoxic effect of MAG-SMOF applied in high concentrations compared to bare SMOFlipid and the non-hemolytic effect on human blood cells. The magnolol-loaded SMOFlipid is promising for further development of hepatoprotective lipid emulsion for parenteral nutrition.
Collapse
Affiliation(s)
- Aleksandra Gostyńska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| | - Joanna Czerniel
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| | - Joanna Kuźmińska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| | - Izabela Żółnowska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| | - Jakub Brzozowski
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Swiecickiego, 60-781 Poznan, Poland;
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznan, Poland; (J.C.); (J.K.); (I.Ż.); (J.B.); (M.S.)
| |
Collapse
|
18
|
Ming-Xin Guo MM, Wu X, Feng YF, Hu ZQ. Research Progress on the Structural Modification of Magnolol and Honokiol and the Biological Activities of Their Derivatives. Chem Biodivers 2023; 20:e202300754. [PMID: 37401658 DOI: 10.1002/cbdv.202300754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Magnolol and Honokiol are the primary active components that have been identified and extracted from Magnolia officinalis, and several investigations have demonstrated that they have significant pharmacological effects. Despite their therapeutic benefits for a wide range of illnesses, research on and the implementation of these compounds have been hindered by their poor water solubility and low bioavailability. Researchers are continually using chemical methods to alter their structures to make them more effective in treating and preventing diseases. Researchers are also continuously developing derivative drugs with high efficacy and few adverse effects. This article summarizes and analyzes derivatives with significant biological activities reported in recent research obtained by structural modification. The modification sites have mainly focused on the phenolic hydroxy groups, benzene rings, and diene bonds. Changes to the allyl bisphenol structure will result in unexpected benefits, including high activity, low toxicity, and good bioavailability. Furthermore, alongside earlier experimental research in our laboratory, the structure-activity relationships of magnolol and honokiol were preliminarily summarized, providing experimental evidence for improving their development and utilization.
Collapse
Affiliation(s)
- M M Ming-Xin Guo
- Department of pharmacy, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, Yixing, 214200, China
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Wu
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi-Fan Feng
- New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Qiang Hu
- Department of pharmacy, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, Yixing, 214200, China
| |
Collapse
|
19
|
Atef B, Ishak RAH, Badawy SS, Osman R. 10-Hydroxy Decanoic Acid-Based Vesicles as a Novel Topical Delivery System: Would It Be a Better Platform Than Conventional Oleic Acid Ufasomes for Skin Cancer Treatment? Pharmaceutics 2023; 15:pharmaceutics15051461. [PMID: 37242703 DOI: 10.3390/pharmaceutics15051461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
10-hydroxy decanoic acid (HDA), a naturally derived fatty acid, was used for the preparation of novel fatty acid vesicles for comparison with oleic acid (OA) ufasomes. The vesicles were loaded with magnolol (Mag), a potential natural drug for skin cancer. Different formulations were prepared using the thin film hydration method and were statistically evaluated according to a Box-Behnken design in terms of particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The ex vivo skin permeation and deposition were assessed for Mag skin delivery. In vivo, an assessment of the optimized formulae using 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer in mice was also conducted. The PS and ZP of the optimized OA vesicles were 358.9 ± 3.2 nm and -82.50 ± 7.13 mV compared to 191.9 ± 6.28 nm and -59.60 ± 3.07 mV for HDA vesicles, respectively. The EE was high (>78%) for both types of vesicles. Ex vivo permeation studies revealed enhanced Mag permeation from all optimized formulations compared to a drug suspension. Skin deposition demonstrated that HDA-based vesicles provided the highest drug retention. In vivo, studies confirmed the superiority of HDA-based formulations in attenuating DMBA-induced skin cancer during treatment and prophylactic studies.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
20
|
Magnolol Loaded on Carboxymethyl Chitosan Particles Improved the Antimicrobial Resistance and Storability of Kiwifruits. Foods 2023; 12:foods12061149. [PMID: 36981076 PMCID: PMC10048129 DOI: 10.3390/foods12061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Magnolol is a natural compound extracted from the traditional Chinese medicine Magnolia officinalis, which exhibits antimicrobial properties. However, magnolol is insoluble in water and consists of a phenolic hydroxyl group, which is volatile; these factors hinder its application. In this study, a safe and environmentally friendly method to improve the microbial resistance and storability of harvested fruits is developed using the water-soluble carrier carboxymethyl chitosan (CMCS) and magnolol. Magnolol was loaded on CMCS particles to form Magnolol@CMCS antimicrobial particles, a preservation coating agent. Magnolol@CMCS particles effectively solved the problems of water insolubility and agglomeration of magnolol and reduced the size distribution D50 value of magnolol from 0.749 to 0.213 μm. Magnolol@CMCS particles showed greater toxicity against Staphylococcus aureus, Escherichia coli, and Botryosphaeria dothidea than that of magnolol alone, with effective medium concentration (EC50) values of 0.9408, 142.4144, and 8.8028 μg/mL, respectively. Kiwifruit treated with the Magnolol@CMCS solution showed delayed changes in fruit hardness and soluble solid and dry matter contents and significantly higher ascorbic acid (vitamin C) and soluble total sugar contents and sugar:acid ratios compared with that of the control fruit. In addition, no disease spots were observed on fruit treated with the Magnolol@CMCS solution within 7 days after inoculation with B. dothidea. In conclusion, Magnolol@CMCS particles showed antimicrobial activity on harvested fruits, effectively delayed the hardness and nutritional changes of fruits during storage, and improved the storability of kiwifruit.
Collapse
|
21
|
Fontana R, Mattioli LB, Biotti G, Budriesi R, Gotti R, Micucci M, Corazza I, Marconi P, Frosini M, Manfredini S, Buzzi R, Vertuani S. Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target. Phytother Res 2023. [PMID: 36879409 DOI: 10.1002/ptr.7786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H1 -, β2 - and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy.,Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences - DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Ren S, Yang Y, Xia M, Deng Y, Zuo Y, Lei L, Hu T. A Chinese herb preparation, honokiol, inhibits Streptococcus mutans biofilm formation. Arch Oral Biol 2023; 147:105610. [PMID: 36603516 DOI: 10.1016/j.archoralbio.2022.105610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the antibiofilm and anticariogenic effects of honokiol, a traditional Chinese medicine, on the cariogenic bacterium Streptococcus mutans (S. mutans). DESIGN The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of honokiol on S. mutans UA159 were measured. Then, S. mutans were treated with honokiol at concentrations of 1/2 MIC and 1/4 MIC. Extracellular polysaccharide (EPS) synthesis was assessed with confocal laser scanning microscopy (CLSM) and the anthrone-sulfuric method. Crystal violet staining and scanning electron microscopy (SEM) were used to demonstrate the characteristics and morphology of S. mutans biofilms. Colony-forming unit (CFU) assay was performed to observe the antibacterial effect of honokiol. Lactic acid production of 24-h biofilms was measured by the lactic acid assay. The expression level of caries-related genes (gtfB/C/D, comD/E and ldh) was identified by quantitative real-time PCR (qRTPCR) to explore the relevant mechanism. And the cytotoxic effect on human gingival fibroblasts (HGFs) was evaluated by the Cell Counting Kit-8 (CCK-8) assay. RESULTS The MIC and MBC of honokiol on S. mutans were 30 μg/mL and 60 μg/mL, respectively. Honokiol inhibited biofilm formation, EPS synthesis and lactic acid production. It also decreased the expression of glucosyltransferases (Gtfs) and quorum sensing (QS) system encoding genes. Moreover, honokiol showed favorable biocompatibility with HGFs. CONCLUSIONS Honokiol has an inhibitory effect on S. mutans and favorable biocompatibility, with application potential as a novel anticaries agent.
Collapse
Affiliation(s)
- Shirui Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuling Zuo
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Province, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Honokiol-Loaded Nanoemulsion for Glioblastoma Treatment: Statistical Optimization, Physicochemical Characterization, and an In Vitro Toxicity Assay. Pharmaceutics 2023; 15:pharmaceutics15020448. [PMID: 36839769 PMCID: PMC9959519 DOI: 10.3390/pharmaceutics15020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely invasive and heterogenous malignant brain tumor. Despite advances in current anticancer therapy, treatment options for glioblastoma remain limited, and tumor recurrence is inevitable. Therefore, alternative therapies or new active compounds that can be used as adjuvant therapy are needed. This study aimed to develop, optimize, and characterize honokiol-loaded nanoemulsions intended for intravenous administration in glioblastoma therapy. METHODS Honokiol-loaded nanoemulsion was developed by incorporating honokiol into Lipofundin MCT/LCT 20% using a horizontal shaker. The Box-Behnken design, coupled with response surface methodology, was used to optimize the incorporation process. The effect of the developed formulation on glioblastoma cell viability was determined using the MTT test. Long-term and short-term stress tests were performed to evaluate the effect of honokiol on the stability of the oil-in-water system and the effect of different stress factors on the stability of honokiol, respectively. Its physicochemical properties, such as MDD, PDI, ZP, OSM, pH, and loading efficiency (LE%), were determined. RESULTS The optimized honokiol-loaded nanoemulsion was characterized by an MDD of 201.4 (0.7) nm with a PDI of 0.07 (0.02) and a ZP of -28.5 (0.9) mV. The LE% of honokiol was above 95%, and pH and OSM were sufficient for intravenous administration. The developed formulation was characterized by good stability and a satisfactory toxicity effect of the glioblastoma cell lines. CONCLUSIONS The honokiol-loaded nanoemulsion is a promising pharmaceutical formulation for further development in the adjuvant therapy of glioblastoma.
Collapse
|
24
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Magnolia officinalis Bark Extract Prevents Enterocyte Death in a Colitis Mouse Model by Inhibiting ROS-Mediated Necroptosis. Antioxidants (Basel) 2022; 11:antiox11122435. [PMID: 36552643 PMCID: PMC9774795 DOI: 10.3390/antiox11122435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Necroptosis is a form of programmed cell death with features of necrosis and apoptosis that occurs in the intestinal epithelium of patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease. In addition, necroptosis has also been observed in enterocytes in animal models of dextran sulfate sodium (DSS)-induced colitis. Thus, the discovery of natural products for regulating necroptosis may represent an important therapeutic strategy for improving IBD. We found that Magnolia officinalis bark extract (MBE) prevented weight loss and suppressed the activation of the proinflammatory cytokine IL6 in DSS-induced colitis. Furthermore, MBE restored the length of the damaged colon and decreased the expression of necroptosis markers in mice with DSS-induced colitis. In vitro, necroptosis-induced reactive oxygen species (ROS) production was reduced by MBE, and the expression of COX2, a target protein of ROS, was simultaneously suppressed. Both magnolol and honokiol, the two major bioactive compounds in MBE, inhibited necroptosis in human primary intestinal epithelial cells and colorectal adenocarcinoma cells. Our findings highlight the effectiveness of MBE in modulating enterocyte necroptosis and suggest that MBE may be developed as a natural, disease-targeting drug for the treatment of colitis.
Collapse
|
26
|
Zhang J, Li H, Hou L, Sun J, Wang W, Li H, Yang W, Rong P, Nan T, Kang L, Yang B. Pharmacokinetics and metabolites of glycosides and lignans of the stem bark of Magnolia officinalis in functional dyspepsia and normal rats using LC-MS/MS. J Sep Sci 2022; 45:3663-3678. [PMID: 35908283 DOI: 10.1002/jssc.202100982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
The stem bark of Magnolia officinalis is a traditional Chinese medicine for the treatment of abdominal distention and functional dyspepsia. The pharmacokinetics of three glycosides (magnoloside A, magnoloside B, and syringin) and two lignans (honokiol and magnolol) in both of normal and functional dyspepsia rats were firstly investigated by ultra-performance liquid chromatography-triple quadrupole mass spectrometry method and the influences of the coexisting compounds on the pharmacokinetic parameters of honokiol and magnolol were also studied. It was found that all of the five target compounds were quickly absorbed and eliminated in both of normal and functional dyspepsia rats, while, their residence time was significantly decreased in pathological states except magnoloside A. The coexisting compounds in the stem bark of M. officinalis significantly reduced absorption and increased elimination of honokiol in vivo. It's worth noticing that the volume of distribution of lignan was quite lower than that of glycoside. Moreover, the metabolic profiling of magnoloside A, honokiol, and magnolol in vivo was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method, from which three prototypes were identified and thirty five metabolites were putatively characterized, and eighteen unknown metabolites were reasonably characterized for the first time. The results indicated that sulfation and glucuronidation were the main metabolic pathways of honokiol and magnolol. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jidan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hongmei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Liwei Hou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jianhui Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Weihao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hua Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Tiegui Nan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Liping Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| |
Collapse
|
27
|
Chen F, Zhang H, Zhao N, Du E, Jin F, Fan Q, Guo W, Huang S, Wei J. Effects of magnolol and honokiol blend on performance, egg quality, hepatic lipid metabolism, and intestinal morphology of hens at late laying cycle. Animal 2022; 16:100532. [DOI: 10.1016/j.animal.2022.100532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
|
28
|
Tao W, Hu Y, Chen Z, Dai Y, Hu Y, Qi M. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153692. [PMID: 34411834 DOI: 10.1016/j.phymed.2021.153692] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Magnolol (MA) exhibits anti-depressant effect by inhibiting inflammation. However, its effect on microglia polarization remains not fully understood. Herein, our study was performed to evaluate the effect of MA on microglia polarization in chronic unpredictable mild stress (CUMS)-induced depression and explore its potential mechanism. STUDY DESIGN The CUMS procedure was conducted, and the mice were intragastrically treated with MA. BV2 cells were pretreated with MA prior to LPS/ATP challenge. METHODS The levels of TNF-α, IL-1β, IL-6 and IL-4, IL-10 in brain and BV2 cells were examined by ELISA. The mRNA expressions of Arg1, Ym1, Fizz1 and Klf4 in brains were measured. ROS content was determined using flow cytometry. Immunofluorescence was employed to evaluate Iba-1 level, Nrf2 nuclear translocation, Iba-1+CD16/32+ and Iba-1+CD206+ cell population. The protein expressions of Nrf2, HO-1, NLRP3, caspase-1 p20 and IL-1β in brains and BV2 cells were investigated by western blot. Nrf2 siRNA was induced in experiments to explore the role of Nrf2 in MA-mediated microglia polarization. The ubiquitination of Nrf2 was visualized by Co-IP. RESULTS The treatment with MA notably relieved depressive like behaviors, suppressed pro-inflammatory cytokines, promoted anti-inflammatory cytokines and the transcription of M2 phenotype microglia-specific indicators. MA upregulated the expression of Nrf2, HO-1, downregulated the expression of NLRP3, caspase-1 p20, IL-1β both in vivo and in vitro. MA also reduced ROS concentration, promoted Nrf2 nucleus translocation and prevented Nrf2 ubiquitination. Nrf2 Knockdown by siRNA abolished the MA-mediated microglia polarization. CONCLUSION The present research demonstrated that MA attenuated CUMS-stimulated depression by inhibiting M1 polarization and inducing M2 polarization via Nrf2/HO-1/NLRP3 signaling.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China
| | - Yuwen Hu
- Jiangsu Medical Device Testing Institute, Nanjing 220023, China
| | - Zhaoyang Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Dai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|