1
|
Kamath AJ, Donadkar AD, Nair B, Kumar AR, Sabitha M, Sethi G, Chauhan AS, Nath LR. Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review. Phytother Res 2025; 39:698-713. [PMID: 39661005 DOI: 10.1002/ptr.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like "FDA-approved biomaterials," "stimuli-responsive polymer," "smart biomaterial," and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.
Collapse
Affiliation(s)
- Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Asawari Dilip Donadkar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - M Sabitha
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhay Singh Chauhan
- Biopharmaceutical Science Department, School of Pharmacy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
2
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
3
|
Bedogni GR, Lima AL, Gross IP, Menezes TP, Talvani A, Cunha-Filho M, Salomon CJ. 3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti- Trypanosoma cruzi Studies. Pharmaceutics 2025; 17:80. [PMID: 39861728 PMCID: PMC11768318 DOI: 10.3390/pharmaceutics17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand. Methods: Different pharmaceutical-grade polymers were evaluated through film casting, and those with promising nifurtimox amorphization capacity were further used to prepare filaments by hot melt extrusion. The printability of the obtained filaments was tested, and the polyvinyl alcohol filament was further used for printing tablets containing 120 and 60 mg of nifurtimox. Results: Three-dimensional tablets showed a remarkable improvement in the drug dissolution rate compared to commercial tablets and a dissolution efficiency 2.8 times higher. In vivo studies were carried out on Swiss mice. Parasitemia curves of nifurtimox printed tablets were significantly superior to the pure drug. Moreover, NFX 3D tablets provided a similar Trypanosoma cruzi reduction in plasmatic concentration to benznidazole, the gold-standard drug for acute-phase treatment of the Chagas disease. Conclusions: The findings of this work showed that hot melt extrusion coupled with 3D printing is a promising alternative for increasing nifurtimox biopharmaceutical properties and an attractive approach for personalized medicine.
Collapse
Affiliation(s)
- Giselle R. Bedogni
- Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina;
| | - Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Idejan P. Gross
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Biological Science Department/ICEB, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (T.P.M.); (A.T.)
| | - Andre Talvani
- Laboratory of Immunobiology of Inflammation, Biological Science Department/ICEB, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (T.P.M.); (A.T.)
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Claudio J. Salomon
- Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina;
- Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario (UNR), Rosario 2000, Argentina
| |
Collapse
|
4
|
Tópor Nunes AA, Veras FF, Cacciatore FA, Silveira RD, Malheiros PDS, Welke JE. Nanoencapsulation with Eudragit® and chia mucilage increases the stability and antifungal efficacy of carvacrol against Aspergillus spp. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:75-91. [PMID: 39556117 DOI: 10.1080/19440049.2024.2427670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Carvacrol is a consolidated natural antimicrobial. However, its use in food is a challenge due to characteristic odour and high volatility. Nanoencapsulation has emerged to overcome these drawbacks. Aspergillus spp. represent a concern in grapes for causing rot and producing mycotoxins. This study aimed to evaluate the effect of carvacrol (unencapsulated and loaded into Eudragit® and chia nanocapsules) on the growth of Aspergillus species. Spore germination and mycelial growth of Aspergillus spp. were evaluated using the agar dilution culture method. The stability of nanocapsules during storage was monitored monthly by evaluating the particle size distribution, polydispersity index, and zeta potential. Antifungal and antitoxigenic effectiveness of nanocapsules were assessed by counting fungal colony-forming units and determining mycotoxin levels in grapes. A dose-dependent effect of carvacrol (unencapsulated and encapsulated forms) on spore germination and mycelial growth was observed. During 180 days of storage, carvacrol into Eudragit® nanocapsules preserved their nanometric dimensions, whereas chia nanocapsules maintained this characteristic for 30 days. The antifungal effectiveness of both encapsulated forms persisted for 210 days. No mycotoxin was found, even when fungal growth was not completely suppressed. Nanoencapsulated carvacrol proved to be a new promising antifungal product to ensure quality and safety in the grape production chain.
Collapse
Affiliation(s)
- Athos Aramis Tópor Nunes
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Diogo Silveira
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Nyavanandi D, Mandati P, Vidiyala N, Parupathi P, Kolimi P, Mamidi HK. Enhancing Patient-Centric Drug Development: Coupling Hot Melt Extrusion with Fused Deposition Modeling and Pressure-Assisted Microsyringe Additive Manufacturing Platforms with Quality by Design. Pharmaceutics 2024; 17:14. [PMID: 39861666 PMCID: PMC11769097 DOI: 10.3390/pharmaceutics17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines. Depending on the age, sex, and disease state, each patient might need a different dose, combination of medicines, and drug release pattern from the medications. By employing traditional practices, developing patient-centric medications remains challenging and unaddressed. Over the last few years, much research has been conducted exploring various additive manufacturing techniques for developing on-demand, complex, and patient-centric medications. Among all the techniques, nozzle-based additive manufacturing platforms such as pressure-assisted microsyringe (PAM) and fused deposition modeling (FDM) have been investigated thoroughly to develop various medications. Both nozzle-based techniques involve the application of thermal energy. However, PAM can also be operated under ambient conditions to process semi-solid materials. Nozzle-based techniques can also be paired with the hot melt extrusion (HME) process for establishing a continuous manufacturing platform by employing various in-line process analytical technology (PAT) tools for monitoring critical process parameters (CPPs) and critical material attributes (CMAs) for delivering safe, efficacious, and quality medications to the patient population without compromising critical quality attributes (CQAs). This review covers an in-depth discussion of various critical parameters and their influence on product quality, along with a note on the continuous manufacturing process, quality by design, and future perspectives.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | - Nithin Vidiyala
- Small Molecule Drug Product Development, Cerevel Therapeutics, Cambridge, MA 02141, USA;
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; (P.M.); (P.K.)
| | | |
Collapse
|
6
|
Park SJ, Kim GL, Han HK. Sustained-Release Solid Dispersions of Fenofibrate for Simultaneous Enhancement of the Extent and Duration of Drug Exposure. Pharmaceutics 2024; 16:1617. [PMID: 39771594 PMCID: PMC11676638 DOI: 10.3390/pharmaceutics16121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure. METHODS Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit® RSPO at varied ratios via solvent evaporation. In vitro/in vivo characteristics of FNSDs were examined in comparison with untreated drugs. RESULTS Based on dissolution profiles of FNSDs in aqueous media, the weight ratio of fenofibrate: poloxamer 407: Eudragit® RSPO at 1:1:4 (FNSD2) was selected as the optimal composition for achieving sustained drug release while maximizing the drug dissolution. The enhanced and sustained drug release of FNSD2 was also confirmed in a buffer transition system mimicking the pH change in the gastrointestinal tract. FNSD2 achieved approximately 66% drug release over 12 h, while pure drug exhibited only 12%. Furthermore, FNSD2 maintained similar release rates under fed and fasted conditions, while the entire drug dissolution slightly increased in the fed state. Structural analysis by x-ray diffraction showed that fenofibrate remained crystalline in FNSD2. Pharmacokinetic studies in rats revealed that orally administered FNSD2 significantly improved the extent and duration of systemic drug exposure. Compared to pure drugs, the FNSD2 formulation increased the oral bioavailability of fenofibrate by 22 folds with the delayed Tmax of 4 h in rats. CONCLUSION FNSD2 formulation is effective in improving the extent and duration of drug exposure simultaneously.
Collapse
Affiliation(s)
| | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Tantawy MA, Elsabbagh HM, Saleh NM. Modified release, enriched biocompatibility, and enhanced oral bioavailability as precious features of nitrofurantoin-loaded polymeric nanoparticles. J Drug Deliv Sci Technol 2024; 101:106130. [DOI: 10.1016/j.jddst.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Alshammari ND, Elkanayati R, Vemula SK, Al Shawakri E, Uttreja P, Almutairi M, Repka MA. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024; 25:236. [PMID: 39379609 DOI: 10.1208/s12249-024-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application's advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.
Collapse
Affiliation(s)
- Nouf D Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, 91431, Arar, Saudi Arabia
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Esraa Al Shawakri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
9
|
Oh HS, Park JB. Development of 3D-printed dual-release fixed-dose combination through double-melt extrusion. Int J Pharm 2024; 661:124407. [PMID: 38955239 DOI: 10.1016/j.ijpharm.2024.124407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
This study aimed to develop a 3D-printed fixed-dose combination tablet featuring differential release of two drugs using double-melt extrusion (DME). The hot-melt extrusion (HME) process was divided into two steps to manufacture a single filament containing the two drugs. In Step I, a sustained-release matrix of acetaminophen (AAP) was obtained through HME at 190 °C using Eudragit® S100, a pH-dependent polymer with a high glass transition temperature. In Step II, a filament containing both sustained-release AAP from Step I and solubilized ibuprofen (IBF) was fabricated via HME at 110 °C using a mixture of hydroxy propyl cellulose (HPC-LF) and Eudragit® EPO, whose glass transition temperatures make them suitable for use in a 3D printer. A filament manufactured using DME was used to produce a cylindrical 3D-printed fixed-dose combination tablet with a diameter and height of 9 mm. To evaluate the release characteristics of the manufactured filament and 3D-printed tablet, dissolution tests were conducted for 10 h under simulated gastrointestinal tract conditions using the pH jump method with the United States Pharmacopeia apparatus II paddle method at 37 ± 0.5 °C and 50 rpm. Dissolution tests confirmed that both the sustained-release and solubilized forms of AAP and IBF within the filament and 3D-printed tablet exhibited distinct drug-release behaviors. The physicochemical properties of the filament and 3D-printed tablet were confirmed by thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. HME transforms crystalline drugs into amorphous forms, demonstrating their physicochemical stability. Scanning electron microscopy and confocal laser scanning microscopy indicated the presence of sustained AAP granules within the filament, confirming that the drugs were independently separated within the filament and 3D-printed tablets. Finally, sustained-release AAP and solubilized IBF were independently incorporated into the filaments using DME technology. Therefore, a dual-release 3D-printed fixed-dose combination was prepared using the proposed filament.
Collapse
Affiliation(s)
- Hye-Sung Oh
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea.
| |
Collapse
|
10
|
Liu Z, Huang J, Fang D, Feng B, Luo J, Lei P, Chen X, Xie Q, Chen M, Chen P. Material extrusion 3D-printing technology: A new strategy for constructing water-soluble, high-dose, sustained-release drug formulations. Mater Today Bio 2024; 27:101153. [PMID: 39081462 PMCID: PMC11287018 DOI: 10.1016/j.mtbio.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The advantage of low-temperature forming through direct ink writing (DIW) 3D printing is becoming a strategy for the construction of innovative drug delivery systems (DDSs). Optimization of the complex formulation, including factors such as the printing ink, presence of solvents, and potential low mechanical strength, are challenges during process development. This study presents an application of DIW to fabricate water-soluble, high-dose, and sustained-release DDSs. Utilizing poorly compressible metformin hydrochloride as a model drug, a core-shell delivery system was developed, featuring a core composed of 96 % drug powder and 4 % binder, with a shell structure serving as a drug-release barrier. This design aligns with the sustained-release profile of traditional processes, achieving a 25.8 % reduction in volume and enhanced mechanical strength. The strategy facilitates sustained release of high-dose water-soluble formulations for over 12 h, potentially improving patient compliance by reducing formulation size. Process optimization and multi-batch flexibility were also explored in this study. Our findings provide a valuable reference for the development of innovative DDSs and 3D-printed drugs.
Collapse
Affiliation(s)
- Zhiting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaying Huang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- YUEBEI People’s Hospital, Shaoguan, 512026, China
| | - Danqiao Fang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bohua Feng
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Jianxu Luo
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Peixuan Lei
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoling Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peihong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Yehia RM, Lamie C, Attia DA. Microsponges-mediated targeted topical delivery of rosemary oil for hair growth promotion: optimization and in-vivo studies. Pharm Dev Technol 2024; 29:604-617. [PMID: 38958230 DOI: 10.1080/10837450.2024.2372572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Individuals experiencing hair loss, irrespective of gender, confront significant psychological challenges. This study explores the untapped potential of rosemary oil (ROS) to stimulate hair growth, addressing its limited permeability. The focus is on innovating ROS-loaded microsponges (MS) for enhanced topical application. Utilizing Box-Behnken design (33), the study optimizes ROS-MS compositions by varying solvent volume, polymer mix, and drug concentration. The optimized ROS-MS formulation exhibits noteworthy attributes: a 94% ± 0.04 production yield, 99.6% ± 0.5 encapsulation efficiency, and 96.4% ± 1.6 cumulative ROS release within 24 h. These microsponges exhibit uniformity with a particle size of 14.1 µm ± 4.5. The OPT-ROSMS-gel showcases favorable characteristics in appearance, spreadability, pH, drug content, and extrudability. Ex-vivo skin deposition tests highlight heightened permeability of OPT-ROSMS-gel compared to pure ROS-gel, resulting in three-fold increased follicular retention. In-vivo studies underscore the superior efficacy of OPT-ROSMS-gel, revealing enhanced hair development in length, thickness, and bulb diameter, surpassing ROS-gel and minoxidil by approximately 1.2 and 1.5 times, respectively, along with nearly two-fold increase in β-catenin levels. In conclusion, microsponges emerge as a promising ROS delivery method, effectively addressing hair loss. This research advances hair loss treatments and underscores the significance of this innovative paradigm in fostering hair growth.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
12
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
13
|
Santhanes D, Zhang H, Wilkins A, John Aitken R, Gannon AL, Liang M. Engineering pH-sensitive dissolution of lipid-polymer nanoparticles by Eudragit integration impacts plasmid DNA (pDNA) transfection. Eur J Pharm Biopharm 2024; 199:114299. [PMID: 38643953 DOI: 10.1016/j.ejpb.2024.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.
Collapse
Affiliation(s)
- Diviya Santhanes
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Huiming Zhang
- Electron Microscopy and X-ray Unit, Research and Innovation Division, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alex Wilkins
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anne-Louise Gannon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
14
|
Chachlioutaki K, Prazeres PHDM, Scalzo SRA, Bakirtzi P, Afewerki S, Guimaraes PPG, Bouropoulos N, Fatouros DG, Karavasili C. In situ triggered, floating delivery systems of capsaicin for prolonged gastroprotection. Eur J Pharm Biopharm 2024; 197:114212. [PMID: 38342421 DOI: 10.1016/j.ejpb.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Capsaicin (CAP) has been implicated as a gastroprotective agent in the treatment of peptic ulcers. However, its oral administration is hampered by its poor aqueous solubility and caustic effect at high administered doses. To address these limitations, we describe the development of gastric floating, sustained release electrospun films loaded with CAP. The nanofiber films were formulated using the polymers Eudragit RL/RS and sodium bicarbonate (SB) as the effervescent agent. The films were tested for their physicochemical properties, and film buoyancy and in vitro release of CAP were assessed in simulated gastric fluid. The cytocompatibility and anti-inflammatory properties of the films were evaluated in lipopolysaccharide (LPS)-stimulated Caco-2 cells. The amorphous films showed improved wettability, a short floating lag time (<1 s) and a total floating time of over 24 h accompanied by sustained CAP release for up to 24 h. CAP-loaded films demonstrated biocompatibility with Caco-2 cells and potential cytoprotective effects by attenuating inflammatory cytokine and reactive oxygen species (ROS) production in LPS-stimulated Caco-2 cells. The gastric floating electrospun films could serve as a platform for sustained and stomach-specific drug delivery applications.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Pedro H D M Prazeres
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sérgio R A Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Pelagia Bakirtzi
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pedro P G Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, GR-26504 Patras, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, Greece
| | - Christina Karavasili
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
15
|
Zhang P, Li J, Ashour EA, Chung S, Wang H, Vemula SK, Repka MA. Development of multiple structured extended release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing. Int J Pharm 2024; 653:123905. [PMID: 38355075 DOI: 10.1016/j.ijpharm.2024.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The study aims to fabricate extended release (ER) tablets using a dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing technology based on hot melt extrusion (HME), using caffeine as the model compound. Three different ER tablets were developed, which obtained "delayed-release", "rapid-sustained release", and "release-lag-release" properties. Each type of tablet was printed with two different formulations. A novel printing method was employed in this study, which is to push the HME filament from behind with polylactic acid (PLA) to prevent sample damage by gears during the printing process. Powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) results showed that caffeine was predominately amorphous in the final tablets. The dissolution of 3D printed tablets was assessed using a USP-II dissolution apparatus. ER tablets containing PVA dissolved faster than those developed with Kollicoat IR. Overall, this study revealed that ER tablets were successfully manufactured through HME paired with dual-nozzle FDM 3D printing and demonstrated the power of 3D printing in developing multi-layer tablets with complex structures.
Collapse
Affiliation(s)
- Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sooyeon Chung
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
16
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Homayouni-Rad A, Mortazavian AM, Pourjafar H, Moghadam SK. Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials. Curr Pharm Biotechnol 2024; 25:1986-2000. [PMID: 38275053 DOI: 10.2174/0113892010264234231219073231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024]
Abstract
Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.
Collapse
Affiliation(s)
- Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rastpeiman S, Panahi Z, Akrami M, Haririan I, Asadi M. Facile fabrication of an extended-release tablet of Ticagrelor using three dimensional printing technology. J Biomed Mater Res A 2024; 112:20-30. [PMID: 37695030 DOI: 10.1002/jbm.a.37603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
The objective of the study was to fabricate tailored extended-release tablets of blood thinner Ticagrelor as once-daily dosing using additive manufacturing for better compliance in heart failure therapy. The solid work design of the tablet was printed using hot melt extrusion (HME) based 3D printing by optimized mixture of Eudragit RS-100, plasticizer and drug for producing extrudable and printable filaments. FTIR and TGA results showed no covalent interaction among ingredients and no decomposition during HME process, respectively. Friability, weight variation, assay and content uniformity tests met USP requirements, while the mean hardness of the tablets was calculated in a value between 40 and 50 kg. According to DSC and XRD results, the crystallinity state of the Ticagrelor was converted to an amorphous one in the tablet matrix. Smooth surfaces with multiple deposited layers were observed using SEM. In comparison, the maximum Ticagrelor release of 100% after 120 min from Brilinta® tablets was decreased to 97% in 400 min from the 3D tablet at infill of 90%. Korsmeyer-Peppas kinetic model showed the drug release mechanism is affected by diffusion and swelling. In general, fabrication of the extended-release 3D printed tablet of Ticagrelor using HME-based-additive manufacturing has the potential to provide specific doses with tailored kinetic release for personalized medicine, improving adherence at point-of-care.
Collapse
Affiliation(s)
- Sama Rastpeiman
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Panahi
- Department of Obstetrics and Gynecology, School of Medicine, Vali Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Asadi
- Aachen-Maastricht Institute for Bio-based Materials, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Joshi P, Rao GSNK, Chatterjee B. Scope and Application of Hot Melt Extrusion in the Development of Controlled and Sustained Release Drug Delivery Systems. Curr Pharm Des 2024; 30:2513-2523. [PMID: 39108005 DOI: 10.2174/0113816128299356240626114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, etc. The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, etc. However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.
Collapse
Affiliation(s)
- Parth Joshi
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - G S N Koteswara Rao
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Bappaditya Chatterjee
- School of Pharmacy, GITAM (Deemed to be University), Hyderabad, Telangana 502329, India
| |
Collapse
|
20
|
dos Santos J, Balbinot GDS, Buchner S, Collares FM, Windbergs M, Deon M, Beck RCR. 3D printed matrix solid forms: Can the drug solubility and dose customisation affect their controlled release behaviour? Int J Pharm X 2023; 5:100153. [PMID: 36632070 PMCID: PMC9827047 DOI: 10.1016/j.ijpx.2022.100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
The use of 3D printing in pharmaceutics has grown over the last years, along with the number of studies on the impact of the composition of these formulations on their pharmaceutical and biopharmaceutical properties. Recently, we reported the combined effect of the infill percentage and the presence of a pore former on the drug release behaviour of 3D printed matrix solid forms prepared by fused deposition modelling. However, there are some open questions about the effect of the drug solubility and the size of these dosage forms on their controlled release properties. Therefore, we produced poly(Ɛ-caprolactone) filaments containing different soluble forms of dexamethasone (free acid, DEX; acetate ester, DEX-A; and phosphate salt, DEX-P), which showed suitable mechanical properties and printability. 3D printed solid forms were produced in two different sizes. The formulations composed of DEX-P released about 50% of drug after 10 h, while those containing DEX or DEX-A released about 9%. The drug release profiles from the 3D printed forms containing the same drug form but with different sizes were almost completely overlapped. Therefore, these 3D printed matrix solid forms can have their drug content customised by adjusting their size, without changing their controlled release behaviour.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Silvio Buchner
- Laboratório de Altas Pressões e Materiais Avançados (LAPMA), Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabrício Mezzomo Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492/4th floor, Porto Alegre, RS, Brazil
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
21
|
Klueppelberg J, Handge UA, Thommes M, Winck J. Composition Dependency of the Flory-Huggins Interaction Parameter in Drug-Polymer Phase Behavior. Pharmaceutics 2023; 15:2650. [PMID: 38139992 PMCID: PMC10747291 DOI: 10.3390/pharmaceutics15122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
An innovative strategy to address recent challenges in the oral administration of poorly soluble drugs is the formulation of amorphous solid dispersions (ASDs), where the drug is dissolved in a highly soluble carrier polymer. Therefore, special knowledge of the drug-polymer phase behavior is essential for an effective product and process design, accelerating the introduction of novel efficacious ASD products. Flory-Huggins theory can be applied to model solubility temperatures of crystalline drugs in carrier polymers over the drug fraction. However, predicted solubility temperatures lack accuracy in cases of strong drug/polymer interactions that are not represented in the Flory-Huggins lattice model. Within this study, a modeling strategy is proposed to improve the predictive power through an extension of the Flory-Huggins interaction parameter by a correlation with the drug fraction. Therefore, the composition dependency of the Flory-Huggins interaction parameter was evaluated experimentally for various drug-polymer formulations that cover a wide variety of drug and polymer characteristics regarding molecular weights, glass transition temperatures and melting temperatures, as well as drug-polymer interactions of different strengths and effects. The extended model was successfully approved for nine exemplary ASD formulations containing the drugs acetaminophen, itraconazole, and griseofulvine, as well as the following polymers: basic butylated methacrylate copolymer, Soluplus®, and vinylpyrrolidone/vinyl acetate copolymer. A high correlation between the predicted solubility temperatures and experimental and literature data was found, particularly at low drug fractions, since the model accounts for composition dependent drug-polymer interactions.
Collapse
Affiliation(s)
- Jana Klueppelberg
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| | - Ulrich A. Handge
- Chair of Plastics Technology, Department of Mechanical Engineering, TU Dortmund University, Leonhard-Euler-Street 5, 44227 Dortmund, Germany;
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| | - Judith Winck
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| |
Collapse
|
22
|
Boldrini DE. Starch-based materials for drug delivery in the gastrointestinal tract-A review. Carbohydr Polym 2023; 320:121258. [PMID: 37659802 DOI: 10.1016/j.carbpol.2023.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
Starch is a natural copolymer with unique physicochemical characteristics. Historically, it has been physically, chemically, or enzymatically modified to obtain ad-hoc functional properties for its use in different applications. In this context, the use of starch-based materials in drug delivery systems (DDSs) has gained great attention mainly because it is cheap, biodegradable, biocompatible, and renewable. This paper reviews the state of the art in starch-based materials design for their use in drug-controlled release with internal stimulus responsiveness; i.e., pH, temperature, colonic microbiota, or enzymes; specifically, those orally administered for its release in the gastrointestinal tract (GIT). Physical-chemical principles in the design of these materials taking into account their response to a particular stimulus are discussed. The relationship between the type of DDSs structure, starch modification routes, and the corresponding drug release profiles are systematically analyzed. Furthermore, the challenges and prospects of starch-based materials for their use in stimulus-responsive DDSs are also debated.
Collapse
Affiliation(s)
- Diego E Boldrini
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
23
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
24
|
Shaw P, Klausen M, Lilienkampf A, Bradley M. Fluorophore-Tagged Poly-Lysine RAFT Agents: Controlled Synthesis of Trackable Cell-Penetrating Peptide-Polymers. ACS Macro Lett 2023; 12:1280-1285. [PMID: 37695265 PMCID: PMC10586461 DOI: 10.1021/acsmacrolett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The conjugation of a fluorophore and a variety of cell-penetrating peptides onto a RAFT agent allowed for the synthesis of polymers of defined sizes with quantifiable cell-uptake. Each peptide-RAFT agent was used to polymerize acrylamide, acrylate, and styrene monomers to form high or low molecular weight polymers (here 50 or 7.5 kDa) with the peptide having no influence on the RAFT agent's control. The incorporation of a single fluorophore per polymer chain allowed cellular analysis of the uptake of the size-specific peptide-polymers via flow cytometry and confocal microscopy. The cell-penetrating peptides had a direct effect on the efficiency of polymer uptake for both high and low molecular weight polymers, demonstrating the versatility of the strategy. These "all-in-one", synthetically accessible RAFT agents allow highly controlled preparation of synthetic peptide-polymer conjugates and subsequent quantification of their delivery into cells.
Collapse
Affiliation(s)
- Paige
A. Shaw
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Maxime Klausen
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Annamaria Lilienkampf
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Mark Bradley
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
- Precision
Healthcare University Research Institute, Queen Mary University of London, 65-67 New Road, E1 1HH London, U.K.
| |
Collapse
|
25
|
Solís-Cruz GY, Alvarez-Roman R, Rivas-Galindo VM, Galindo-Rodríguez SA, Silva-Mares DA, Marino-Martínez IA, Escobar-Saucedo M, Pérez-López LA. Formulation and optimization of polymeric nanoparticles loaded with riolozatrione: a promising nanoformulation with potential antiherpetic activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:457-473. [PMID: 37708959 DOI: 10.2478/acph-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 09/16/2023]
Abstract
Riolozatrione (RZ) is a diterpenoid compound isolated from a dichloromethane extract of the Jatropha dioica root. This compound has been shown to possess moderate antiherpetic activity in vitro. However, because of the poor solubility of this compound in aqueous vehicles, generating a stable formulation for potential use in the treatment of infection is challenging. The aim of this work was to optimize and physio-chemically characterize Eudragit® L100-55-based polymeric nanoparticles (NPs) loaded with RZ (NPR) for in vitro antiherpetic application. The NPs formulation was initially optimized using the dichloromethane extract of J. dioica, the major component of which was RZ. The optimized NPR formulation was stable, with a size of 263 nm, polydispersity index < 0.2, the zeta potential of -37 mV, and RZ encapsulation efficiency of 89 %. The NPR showed sustained release of RZ for 48 h with release percentages of 95 and 97 % at neutral and slightly acidic pH, respectively. Regarding in vitro antiherpetic activity, the optimized NPR showed a selectivity index for HSV-1 of ≈16 and for HSV-2 of 13.
Collapse
Affiliation(s)
- Guadalupe Y Solís-Cruz
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Rocío Alvarez-Roman
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Verónica M Rivas-Galindo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Sergio Arturo Galindo-Rodríguez
- Autonomous University of Nuevo Leon, Faculty of Biological Sciences, Department of Chemistry San Nicolás de los Garza, Nuevo León, México
| | - David A Silva-Mares
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Iván A Marino-Martínez
- Autonomous University of Nuevo Leon, Center for Research and Development in Health Sciences Monterrey 66460, Nuevo León, México
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Pathology, Monterrey 66460, Nuevo León, México
| | - Magdalena Escobar-Saucedo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Luis A Pérez-López
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| |
Collapse
|
26
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
27
|
Henry S, Descamps L, Vanhoorne V, Remon JP, Vervaet C. Exploiting common ion addition to accelerate zolpidem hemitartrate release from Eudragit EPO extrudates. Int J Pharm 2023; 642:123089. [PMID: 37263450 DOI: 10.1016/j.ijpharm.2023.123089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
The current study aimed at optimizing a previously developed non-clinical formulation for use in zolpidem deprescribing. The formulation under investigation consists of extruded zolpidem hemitartrate (30% w/w) and Eudragit EPO (70% w/w) mixtures which display unsatisfactory dissolution behavior. Both milled extrudates and physical mixtures were compressed to produce tablets with identical target weight and solid fraction. First, the susceptibility of zolpidem hemitartrate towards heat and shear degradation was identified utilizing thermal and HPLC-DAD analysis. The drug salt proved prone to thermally induced disproportionation. Moreover, the impurity content increased after applying hot melt extrusion although ICH guidelines were still attained. Secondly, extrudates and physical mixtures were subjected to FTIR analysis. As a result, interaction and protonation of the dimethyl aminoethyl group from Eudragit EPO resulting from zolpidem disproportionation was elucidated. As such, the formulations' slow dissolution kinetics in comparison to formulations containing non-ionizable polymers (e.g. Kollidon 12PF and Kollidon VA64) is explained. Finally, addition of tartaric acid, a microenvironmental pH modulator and common ion, proved a successful method to increase dissolution kinetics. The amount of drug released after 15 min increased drastically from 10 to 40% upon the addition of 5% tartaric acid. Immediate release behavior (80% within 15 min) was however not yet attained.
Collapse
Affiliation(s)
- S Henry
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium
| | - L Descamps
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, 9000 Ghent, Belgium
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium
| | - J P Remon
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Mansuroglu Y, Dressman J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023; 15:1996. [PMID: 37514182 PMCID: PMC10386192 DOI: 10.3390/pharmaceutics15071996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug loading, milling and hydrodynamics on the release of a model drug, flurbiprofen, from sustained-release hot-melt extrudates with Eudragit polymers. The choice of polymer and degree of particle size reduction of the extrudate by milling were the two key influences on the release profile: the percentage release after 12 h varied from 6% (2 mm threads) to 84% (particle size <125 µm) for Eudragit RL extrudates vs. 4.5 to 62% for the corresponding Eudragit RS extrudates. By contrast, the release profile was largely independent of drug loading and robust to hydrodynamics in the dissolution vessel. Thus, hot-melt extrusion offers the ability to tailor the release of the API to the therapeutic indication through a combination of particle size and polymer choice while providing robustness over a wide range of hydrodynamic conditions.
Collapse
Affiliation(s)
- Yaser Mansuroglu
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Senarat S, Tuntarawongsa S, Lertsuphotvanit N, Rojviriya C, Phaechamud T, Chantadee T. Levofloxacin HCl-Loaded Eudragit L-Based Solvent Exchange-Induced In Situ Forming Gel Using Monopropylene Glycol as a Solvent for Periodontitis Treatment. Gels 2023; 9:583. [PMID: 37504462 PMCID: PMC10379822 DOI: 10.3390/gels9070583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as a solvent for loading levofloxacin HCl for periodontitis treatment. The influence of Eudragit concentration was investigated in terms of apparent viscosity, rheological behavior, injectability, gel-forming behavior, and mechanical properties. Eudragit L-based formulation presented less viscosity, was easier to inject, and could form more gel than Eudragit S-based ISG. Levofloxacin HCl-loading diminished the viscosity of Eudragit L-based formulation but did not significantly change the gel formation ability. Higher polymer loading increased viscosity, force-work of injectability, and hardness. SEM photographs and µCT images revealed their scaffold formation, which had a denser topographic structure and less porosity attained owing to higher polymer loading and less in vitro degradation. By tracking with fluorescence dyes, the interface interaction study revealed crucial information such as solvent movement ability and matrix formation of ISG. They prolonged the drug release for 14 days with fickian drug diffusion kinetics and increased the release amount above the MIC against test microbes. The 1% levofloxacin HCl and 15% Eudragit L dissolved in monopropylene glycol (LLM15) was a promising ISG because of its appropriate viscosity (3674.54 ± 188.03 cP) with Newtonian flow, acceptable gel formation and injectability (21.08 ± 1.38 N), hardness (33.81 ± 2.3 N) and prolonged drug release with efficient antimicrobial activities against S. aureus (ATCC 6538, 6532, and 25923), methicillin-resistant S. aureus (MRSA) (S. aureus ATCC 4430), E. coli ATCC 8739, C. albicans ATCC 10231, P. gingivalis ATCC 33277, and A. actinomycetemcomitans ATCC 29522; thus, it is the potential ISG formulation for periodontitis treatment by localized periodontal pocket injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sarun Tuntarawongsa
- Pharmaceutical Intellectual Center "Prachote Plengwittaya", Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Takron Chantadee
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Biedrzycka K, Marcinkowska A. The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix. Polymers (Basel) 2023; 15:2912. [PMID: 37447557 DOI: 10.3390/polym15132912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, we report the use of the hot melt extrusion method in harsh extrusion conditions, i.e., screw rotation speed of 250 rpm, temperature above 100 °C, and two mixing zones, in order to obtain an amorphous dispersion of an active pharmaceutical ingredient (API) that is sparingly soluble in water. As a polymer matrix Eudragit EPO (E-EPO) and as an API ibuprofen (IBU) were used in the research. In addition, the plasticizer Compritol 888 ATO (COM) was tested as a factor potentially improving processing parameters and modifying the IBU release profile. In studies, 25% by weight of IBU, 10% of COM and various extrusion temperatures, i.e., 90, 100, 120, 130, and 140 °C, were used. Hot melt extrusion (HME) temperatures were selected based on the glass transition temperature of the polymer matrix (Tg = 42 °C) and the melting points of IBU (Tm = 76 °C) and COM (Tm = 73 °C), which were tested by differential scanning calorimetry (DSC). The thermal stability of the tested compounds, determined on the basis of measurements carried out by thermogravimetric analysis (TGA), was also taken into account. HME resulted in amorphous E-EPO/IBU solid dispersions and solid dispersions containing a partially crystalline plasticizer in the case of E-EPO/IBU/COM extrudates. Interactions between the components of the extrudate were also studied using infrared spectroscopy (FTIR-ATR). The occurrence of such interactions in the studied system, which improve the stability of the obtained solid polymer dispersions, was confirmed. On the basis of DSC thermograms and XRPD diffractograms, it was found that amorphous solid dispersions were obtained. In addition, their stability was confirmed in accelerated conditions (40 °C, 75% RH) for 28 days and 3 months. The release profiles of prepared tablets showed the release of 40% to 63% of IBU from the tablets within 180 min in artificial gastric juice solution, with the best results obtained for tablets with E-EPO/IBU extrudate prepared at a processing temperature of 140 °C.
Collapse
Affiliation(s)
- Kinga Biedrzycka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
- Applied Manufacturing Science Sp. z o.o, Krzemowa 1, 62-002 Złotniki, Poland
| | - Agnieszka Marcinkowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
31
|
Shahdadi Sardou H, Sadeghi F, Afrasiabi Garekani H, Akhgari A, Hossein Jafarian A, Abbaspour M, Nokhodchi A. Comparison of 5-ASA layered or matrix pellets coated with a combination of ethylcellulose and Eudragits L and S in the treatment of ulcerative colitis in rats. Int J Pharm 2023; 640:122981. [PMID: 37120124 DOI: 10.1016/j.ijpharm.2023.122981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
The aim of this study was to evaluate and optimize the combination of time and pH-dependent polymers as a single coating for the design of the colon-specific drug delivery system of 5-aminosalicylic acid (5-ASA) pellets. 5-ASA matrix pellets with a 70% drug load were prepared by the extrusion-spheronization method. The optimal coating formula which included Eudragit S (ES)+Eudragit L (EL)+Ethylcellulose (EC) was predicted for the targeted drug delivery to the colonic area by a 32 factorial design. The ratio of ES:EL:EC and coating level were considered as independent variables while the responses were the release of less than 10% of the drug within 2 h (Y1), the release of 60-70% within 10 h at pH 6.8 (Y2) and lag time of less than 1 h at pH 7.2 (Y3). Also, 5-ASA layered pellets were prepared by the powder layering of 5-ASA on nonpareils (0.4-0.6 mm) in a fluidized bed coater and then coated with the same optimum coating composition. The coated 5-ASA layered or matrix pellets were tested in a rat model of ulcerative colitis (UC) and compared with the commercial form of 5-ASA pellets (Pentasa®). The ratio of ES:EL:EC of 33:52:15 w/w at a coating level of 7% was discovered as the optimum coating for the delivery of 5-ASA matrix pellets to the colon. The coated 5-ASA pellets were spherical with uniform coating as shown by SEM and met all of our release criteria as predicted. In-vivo studies demonstrated that the optimum 5-ASA layered or matrix pellets had superior anti-inflammatory activities than Pentasa® in terms of colitis activity index (CAI), colon damage score (CDS), colon/body weight ratio and colon's tissue enzymes of glutathione (GSH) and malondialdehyde (MDA). The optimum coating formulation showed a high potential for colonic delivery of 5-ASA layered or matrix pellets and triggered drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- Lupin Research Inc, Coral Springs, Florida, USA; School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
32
|
Domsta V, Hänsch C, Lenz S, Gao Z, Matin-Mann F, Scheper V, Lenarz T, Seidlitz A. The Influence of Shape Parameters on Unidirectional Drug Release from 3D Printed Implants and Prediction of Release from Implants with Individualized Shapes. Pharmaceutics 2023; 15:1276. [PMID: 37111760 PMCID: PMC10143641 DOI: 10.3390/pharmaceutics15041276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.
Collapse
Affiliation(s)
- Vanessa Domsta
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Christin Hänsch
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Stine Lenz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Farnaz Matin-Mann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” EXC 1077/1, 30625 Hanover, Germany
| | - Anne Seidlitz
- Institute of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Wang Z, Lou H, Dening TJ, Hageman MJ. Biorelevant Dissolution Method Considerations for the Appropriate Evaluation of Amorphous Solid Dispersions: are Two Stages Necessary? J Pharm Sci 2023; 112:1089-1107. [PMID: 36529266 DOI: 10.1016/j.xphs.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Biorelevant dissolution testing has been widely used to better understand a drug or formulation's behavior in the human gastrointestinal (GI) tract. The successful evaluation of biorelevant dissolution behavior requires recognizing the importance of utilizing suitable biorelevant media in conjunction with an appropriate dissolution method, especially for supersaturating drug delivery systems, such as amorphous solid dispersions (ASDs). However, most conventional biorelevant dissolution testing methods are not able to accurately reflect the dissolution, supersaturation, and precipitation tendencies of a drug or formulation, which could misinform ASD formulation screening and optimization. In this study, we developed a single compartment 2-stage pH-shift dissolution testing method to simulate the changes in pH, media composition, and transit time in the GI tract, and results were compared against the conventional single compartment 1-stage dissolution method. Nine model drugs were selected based on their ionization properties (i.e. acid, base or neutral) and precipitation tendency (i.e. moderate or slow crystallizer). The dissolution results confirmed that 2-stage pH-shift dissolution is the preferred biorelevant dissolution method to assess non-ionized weak base (nifedipine) and neutral (griseofulvin) compounds exhibiting a moderate precipitation rate from solution when formulated as ASDs. Finally, we designed a flowchart guidance for the appropriate biorelevant dissolution performance characterization of different categories of ASD formulations.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Hao Lou
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA
| | - Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, McCollum Laboratories, The University of Kansas. Lawrence, Kansas 66047, USA.
| |
Collapse
|
34
|
Lian G, Hu K, Zhou M, Liu Y, Jin G. Design and bioactivity of Eudragit® encapsulated pH-Sensitive enteric/gastric soluble fluorescent agent. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
35
|
Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur J Pharm Biopharm 2023; 183:102-111. [PMID: 36632906 DOI: 10.1016/j.ejpb.2023.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The model of core-shell structured tablets is gaining increased interest due to its advantages in controlled-release and combinational drug delivery. Through the encapsulation of the drug by the outer shell, this model exhibits huge potential for reduced administration frequency, improved taste-masking, and personalized medication strategy. Although different types of core-shell tablets have been recently developed, most of them focused on the embedding of the solid tablets. Therefore there is still a need to investigate an optimized model in which multiple dosage forms can be loaded. This work uses hot-melt extrusion and fused deposition modeling 3D printing (FDM 3DP) techniques to develop a multifunctional core-shell model for controlled drug delivery. Acetaminophen (APAP) was used as the model drug. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) was used as the matrix materials. Polyethylene oxide (PEO) and Eudragit RS PO (E RSPO) were used to adjust the printability while the E RSPO was expected to act as an extended-release agent due to its hydrophobicity. Liquid, semi-solid and solid dosage forms could be successfully loaded into the produced shells. The formulations were characterized by scanning electron microscopy, three point-bend tests, differential scanning calorimetry, and dissolution studies. The dissolution results suggested the modified-release character of the designed model. Overall, the designed core-shell model could be successfully produced via hot-melt extrusion paired with FDM 3DP techniques and could be utilized for the delivery of distinct dosage forms which improve the on-demand formulation development for patient-centered medication.
Collapse
|
36
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
37
|
Deon M, dos Santos J, de Andrade DF, Beck RCR. A critical review of traditional and advanced characterisation tools to drive formulators towards the rational development of 3D printed oral dosage forms. Int J Pharm 2022; 628:122293. [DOI: 10.1016/j.ijpharm.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
38
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
39
|
Evaluation of the therapeutic efficacy of dressings with ZnO nanoparticles in the treatment of diabetic foot ulcers. Biomed Pharmacother 2022; 155:113708. [PMID: 36162373 DOI: 10.1016/j.biopha.2022.113708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Type 2 diabetes (T2D) in developed countries have a prevalence of 11% with diabetic foot infections as the most common cause of hospitalization and amputation. To achieve healing of the diabetic foot ulcer wounds, appropriate dressings are essential and their effectiveness can be enhanced with nanoparticles, nevertheless ideal combinations of dressing composition and nanodrugs require further testing in humans. We have developed a calcium alginate dressings with ZnO nanoparticles (CAZnODs) for the treatment of diabetic foot ulcers in human patients. To test the efficacy of CAZnODs we designed a randomized controlled clinical experiment on 26 T2D patients with foot ulcers. The patients were randomized into two groups: G1 treatment with calcium alginate with NPs (G1; n = 16), and group 2 received the treatment without NPs (G2, n = 10). The bandage change was performed every 48 h The duration of the protocol was established at 10 weeks. Here, we report healing was achieved in patients, with 75% wound closure in G1 under treatment with NPs of calcium alginate versus 71% in G2 (calcium alginate without NPs) (p = 0.011). The average healing time was 48 days in G1 and 72 days in G2. Our data shows that CAZnODs were well tolerated and did not interfere with the wound healing process. The final wound area and time of healing support the hypothesis that the use of calcium alginate dressings with nanoparticles may induce better tissue regeneration while avoiding T2D complications such as secondary infections.
Collapse
|
40
|
Tagami T, Okamura M, Ogawa K, Ozeki T. Fabrication of Mucoadhesive Films Containing Pharmaceutical Ionic Liquid and Eudragit Polymer Using Pressure-Assisted Microsyringe-Type 3D Printer for Treating Oral Mucositis. Pharmaceutics 2022; 14:pharmaceutics14091930. [PMID: 36145678 PMCID: PMC9505851 DOI: 10.3390/pharmaceutics14091930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Oral mucositis in the oral cavity, caused by radiation therapy and chemotherapy, requires personalized care and therapy due to variations in the lesions of patients. In the present study, we fabricated a model of personalized oral film containing an ibuprofen/lidocaine ionic liquid (IL) for patients with oral mucositis using a pressure-assisted microsyringe-type 3D printer at room temperature. The film contained a Eudragit polymer (L100, EPO, or RSPO) to make the film solid, and the printer ink was composed of organo ink (organic solvent to dissolve both drugs and the Eudragit polymer). The viscosity of the printer ink was assessed to investigate its extrudability. The contact angle and the surface tension at the interface between each liquid printer ink and a solid polypropylene sheet were measured to determine the retention of the ink in 3D printing. The physical properties of IL-loaded Eudragit-based dry films were examined by X-ray diffraction and differential scanning calorimetry. Dissolution tests indicated that IL-loaded films containing a Eudragit polymer exhibited different drug release rates in phosphate buffer (pH 6.8; Eudragit L100 > IL alone > Eudragit EPO > Eudragit RSPO). These results provide useful information for the specific fabrication of IL-loaded polymer-based films using organo inks and pressure-assisted microsyringe-type 3D printers.
Collapse
Affiliation(s)
- Tatsuaki Tagami
- Correspondence: (T.T.); (T.O.); Tel.: +81-52-836-3463 (T.O.)
| | | | | | - Tetsuya Ozeki
- Correspondence: (T.T.); (T.O.); Tel.: +81-52-836-3463 (T.O.)
| |
Collapse
|
41
|
Funk NL, Fantaus S, Beck RCR. Immediate release 3D printed oral dosage forms: How different polymers have been explored to reach suitable drug release behaviour. Int J Pharm 2022; 625:122066. [PMID: 35926751 DOI: 10.1016/j.ijpharm.2022.122066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) printing has been gaining attention as a new technological approach to obtain immediate release (IR) dosage forms. The versatility conferred by 3D printing techniques arises from the suitability of using different polymeric materials in the production of solids with different porosities, geometries, sizes, and infill patterns. The appropriate choice of polymer can facilitate in reaching IR specifications and afford other specific properties to 3D printed solid dosage forms. This review aims to provide an overview of the polymers that have been employed in the development of IR 3D printed dosage forms, mainly considering their in vitro drug release behaviour. The physicochemical and mechanical properties of the IR 3D printed dosage forms will also be discussed, together with the manufacturing process strategies. Up to now, methacrylic polymers, cellulosic polymers, vinyl derivatives, glycols and different polymeric blends have been explored to produce IR 3D printed dosage forms. Their effects on drug release profiles are critically discussed here, giving a complete overview to drive formulators towards a rational choice of polymeric material and thus contributing to future studies in 3D printing of pharmaceuticals.
Collapse
Affiliation(s)
- Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Stephani Fantaus
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
42
|
Silicon Oxycarbide Porous Particles and Film Coating as Strategies for Tenofovir Controlled Release in Vaginal Tablets for HIV Prevention. Pharmaceutics 2022; 14:pharmaceutics14081567. [PMID: 36015193 PMCID: PMC9416175 DOI: 10.3390/pharmaceutics14081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sustained release of antiretroviral drugs is currently the most encouraging strategy for the prevention of the sexual transmission of HIV. Vaginal tablets based on hydrophilic gelling polymers are an interesting dosage form for this purpose, since they can be developed to modify the release of the drug depending on the tablet swelling. Tenofovir is a drug with proven activity in the prevention of HIV-1 infection, and it is possible to have it loaded in the surface of γ-aminopropyl trimethoxy silane-functionalized oxycarbide particles. These particles can be incorporated into the tablets, thus providing a sustained release of the drug. Moreover, the presence of the particles modifies the microstructure of the gel formed, as observed in scanning electron microscopy and Hg porosimetry studies, resulting into a gel with a narrow pore size distribution between 10 and 100 µm. This implies a lower volume of fluid incorporated into the gel during swelling studies, and therefore improved mucoadhesion times in ex vivo test. The coating of the formulations with Eudragit® RS modifies the swelling behavior of the tablets, which not only is decreased in magnitude but also extended in time, and as consequence the drug release is also prolonged for up to 7 days.
Collapse
|
43
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|
44
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
45
|
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022; 14:polym14091672. [PMID: 35566843 PMCID: PMC9102459 DOI: 10.3390/polym14091672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Yie Hang Tan
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ki Yan Lam
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| |
Collapse
|
46
|
Andrés Real D, Gagliano A, Sonsini N, Wicky G, Orzan L, Leonardi D, Salomon C. Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int J Pharm 2022; 617:121594. [PMID: 35182705 DOI: 10.1016/j.ijpharm.2022.121594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Design of Experiments (DoE) techniques were used to identify and optimize the parameters involved in the formulation of triclabendazole pH-sensitive Eudragit® nanoparticles (NPs). Using a Placket Burmann design, Eudragit® E, Eudragit® RS, and two stabilizers (PVP and PVA) were evaluated for NPs formulation by nanoprecipitation. Based on the screening results, Eudragit E 100® and PVP were selected as excipients, and their levels were studied and optimized using a central composite design, obtaining an optimum nanoparticulated system with a Size of 240 nm, a PDI of 0.420, and a ZP of 46.3 mV. Finally, a full characterization of the optimum system was carried out by XRD, DSC, equilibrium solubility, and dissolution rate in biorelevant mediums. As observed in XRD and DSC, the nanoencapsulation process produced a remarkable reduction in drug crystallinity that improved drug solubility and dissolution rate. Although more than 90% of TCBZ was dissolved in acidic mediums at 10 minutes, no increase in solubility or dissolution rate was observed in simulated saliva. Consequently, the development of pH-sensitive Eudragit® NPs would be a promising strategy in developing an immediate gastric release TCBZ formulation for oral delivery.
Collapse
Affiliation(s)
- Daniel Andrés Real
- Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santos Dumont 964, 8380494 Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile. Santos Dumont 964, Independencia, Santiago 8380494, Chile; Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Ailen Gagliano
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Nahuel Sonsini
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Gaspar Wicky
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Lucas Orzan
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Darío Leonardi
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000, Rosario, Argentina
| | - Claudio Salomon
- Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; Instituto de Química de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Suipacha 570, 2000, Rosario, Argentina
| |
Collapse
|
47
|
Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol 2022; 205:90-109. [PMID: 35182561 DOI: 10.1016/j.ijbiomac.2022.02.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to develop a colon-targeted tablet of oxaliplatin (OP) using the combination of nanotechnology and fused deposition modeling (FDM) 3D printing to improve its antitumor activity, tumor targetability, and safety profile. Eudragit L100-55 filament containing OP loaded alginate nanoparticles (OP-NPs) were fabricated using hot-melt extrusion method and printed by an FDM printer to 3D printed tablets with good uniformity in the drug content and selective release of OP in the colonic environment. The antitumor effect of 3D printed tablets containing OP-NPs in CT-26 tumor-bearing mice was evaluated compared to intravenous and oral administration of OP solution, and compressed tablets containing OP-NPs, which were prepared by direct compression method with the same formulation. The antitumor effect of 3D printed tablets containing OP-NPs was remarkable and comparable with intravenous OP solution (p ˃ 0.05) with a better safety profile, whereas compressed tablets did not show any significant antitumor effect, probably in terms of non-selective drug release in stomach and upper intestine environments. This study highlights the potential of the combination of nanotechnology and 3D printing in the preparation of colon-specific drug delivery systems of chemotherapeutic drugs with good antitumor activity, tumor targetability, and safety profile for colorectal cancer treatment.
Collapse
Affiliation(s)
- Seyedeh Zahra Mirdamadian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
48
|
Li J, Li C, Zhang H, Gao X, Wang T, Wang Z, Zheng A. Preparation of Azithromycin Amorphous Solid Dispersion by Hot-Melt Extrusion: An Advantageous Technology with Taste Masking and Solubilization Effects. Polymers (Basel) 2022; 14:polym14030495. [PMID: 35160485 PMCID: PMC8840525 DOI: 10.3390/polym14030495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023] Open
Abstract
Azithromycin (AZI) is one of the most commonly used macrolide antibiotics in children, but has the disadvantages of a heavy bitter taste and poor solubility. In order to solve these problems, hot-melt extrusion (HME) was used to prepare azithromycin amorphous solid dispersion. Preliminary selection of a polymer for HME was conducted by calculating Hansen solubility parameter to predict the miscibility of the drug and polymer. Eudragit® RL PO was chosen as the polymer due to its combination of taste-masking effect and dissolution. Moreover, the solubility was improved with this polymer. Design of experiments (DoE) was used to optimize the formulation and process, with screw speed, extrusion temperature, and drug percentage as independent variables, and content, dissolution, and extrudates diameter as dependent variables. The optimal extrusion parameters were obtained as follows: temperature-150 °C; screw speed-75 rpm; and drug percentage-25%. Differential scanning calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies of the powdered solid dispersions showed that the crystalline AZI transformed into the amorphous form. Fourier transform infrared spectroscopy (FTIR) results indicated that the formation of a hydrogen bond between AZI and the polymer led to the stabilization of AZI in its amorphous form. In conclusion, this work illustrated the importance of HME for the preparation of amorphous solid dispersion of AZI, which can solve the problems of bitterness and low solubility. It is also of great significance for the development of compliant pediatric AZI preparation.
Collapse
Affiliation(s)
- Jiale Li
- School of Pharmacy, Anhui Medical University, 81th Meishan Road, Hefei 230032, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Conghui Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81th Meishan Road, Hefei 230032, China;
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| |
Collapse
|
49
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|