1
|
Gholipour F, Entezar M, Amini M, Vandghanooni S, Baradaran B, Eskandani M, Mokhtarzadeh AA. In vitro effects of crocin on the possible anticancer properties of Lactococcus lactis against colorectal adenocarcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5729-5741. [PMID: 39607550 DOI: 10.1007/s00210-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Probiotics have been suggested to contribute to cancer prevention through various mechanisms. Additionally, recent studies have established a connection between diet, microbiota, and overall health. In this respect, the current study aims to understand the impact of crocin on possible anti-cancer and antibacterial effects of Lactococcus lactis (L. lactis) in colorectal cancer cells and pathogenic bacteria. The study involved collecting cell-free supernatants (CFSs) from untreated bacteria as a control group and bacteria treated with crocin, and then examining their ability to prevent the growth of HCT-116 colon cancer cells. It was demonstrated that L. lactis, when treated with crocin, can effectively combat against various types of pathogenic bacteria and can survive in acidic conditions. Both CFS and cro-CFS exhibited a dose-dependent inhibition of HCT-116 cell growth but crocin-treated bacteria showed more significant effects. The half-maximal inhibitory concentration (IC50) for cell growth inhibition was 97.41 µL/mL in CSF group and 72.07 µL/mL in cro-CFS group. The results of flow cytometry tests confirmed the MTT assay findings, showing that cro-CFS group had a significantly higher rate of apoptosis compared to CFS of control group. The results obtained from qPCR also showed that the Caspase 9 and BAX genes were upregulated, and the BCL-2 expression level was reduced in cells treated with cro-CFS compared to the CFS group. Overall, these findings suggest that crocin may alter the composition of CFS from probiotics that are present in the gut, potentially impacting their ability to combat cancer.
Collapse
Affiliation(s)
- Faranak Gholipour
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahdi Entezar
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
2
|
Canak HN, Bas K, Yağmur EA, Karakurt S. Mesobuthus eupeus venom modulates colorectal carcinoma signaling pathways and induces apoptosis. Med Oncol 2025; 42:163. [PMID: 40229568 PMCID: PMC11996983 DOI: 10.1007/s12032-025-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Colorectal cancer (CRC) is a significant global health concern, often challenging to treat effectively with conventional methods and burdened by adverse effects. Scorpion venoms offer a unique avenue for exploration, given their ability to disrupt the cell cycle, inhibit growth, and trigger apoptosis. This study delves into the impact of Mesobuthus eupeus (M. eupeus) scorpion venom on the proliferation and progression of colorectal cancer at the molecular level. The total protein concentration in the venom (607.5 µg/mL) also emphasized the rich composition and potential for therapeutic applications. The study reveals that M. eupeus venom effectively reduced the proliferation of DLD-1 and HT-29 colorectal cancer cells in a dose-dependent manner with IC50 values of 4.32 and 7.61 µg/mL, respectively. The venom also impedes cell migration, diminishes colony formation, and triggers apoptosis in the cancer cells. The venom also induced early and late apoptosis in the two cancer cell lines. The human colorectal cancer and apoptotic pathways were clarified at the molecular level using pathway panels, which revealed that 16 genes involved in colorectal cancer increased while 23 decreased. In the HT-29 cell line, 57 genes increased, and 1 decreased following venom treatment. Besides, the mRNA expression of 19 genes involved in the apoptotic pathway was increased, while 22 were reduced in DLD-1 cells. This study underscores the potential of M. eupeus venom as a natural therapeutic approach in the quest for cancer treatments.
Collapse
Affiliation(s)
- Havva Nur Canak
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Kemal Bas
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Ersen Aydın Yağmur
- Department of Plant and Animal Production, Alasehir Vocational High School, Manisa Celal Bayar University, Manisa, Türkiye
| | - Serdar Karakurt
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye.
| |
Collapse
|
3
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
4
|
Priyamvada P, Ashok G, Joshi T, Anbarasu S, Anbarasu A, Ramaiah S. Unravelling the molecular mechanistic pathway underlying the anticancer effects of kaempferol in colorectal cancer: a reverse pharmacology network approach. Mol Divers 2025; 29:1049-1067. [PMID: 38795259 DOI: 10.1007/s11030-024-10890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Colorectal cancer (CRC) is the third most diagnosed and highly fatal malignancy, presenting serious health concerns worldwide. The search for an effective cure for CRC is challenging and poses a serious concern. Kaempferol is a potent anti-cancerous bioactive compound often suggested for treating various cancers, including CRC. However, its underlying molecular mechanism against CRC remains unclear. The present study delves into kaempferol's molecular pathways and underlying molecular mechanisms against CRC targets. The target protein-coding genes for kaempferol were retrieved, and the CRC-associated genes were curated. Twelve common targets with a disease specificity index of > 0.6 were validated for their protein expression at different stages of CRC. Over-expressed USP1, SETD7, POLH, TDP1 and RACGAP1 were selected for further studies. The binding affinities of kaempferol to the corresponding proteins were evaluated using molecular docking and Molecular Dynamics (MD) simulations. SETD7 exhibited the highest binding affinity with the lowest binding energy (- 8.06 kcal/mol). Additionally, the MD simulation, and MM-PBSA conferred SETD7-kaempferol complex had the least root-mean-square deviation with lower interaction energy and higher conformational stability. The protein-protein interaction of SETD7 constructed revealed direct interactors, namely, DNMT1, FOXO1, FOXO3, FOXO4, H3-3B, H3-4, H3C12, H3C13, SETD7, SIRT1 and TP53, have a potential role in cancer progression through FOXO signalling. In summary, our study revealed kaempferol's multi-target and synergistic effect on multiple CRC targets and its underlying mechanisms. Finally, the study recommends in-vitro and in-vivo trials for validation of anti-cancerous drugs for CRC.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | - Gayathri Ashok
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | - Tushar Joshi
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | - Suvitha Anbarasu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
5
|
Benli Y, Arıkan H, Akbulut-Çalışkan Ö. HER2-targeted therapy in colorectal cancer: a comprehensive review. Clin Transl Oncol 2025:10.1007/s12094-025-03887-0. [PMID: 40087250 DOI: 10.1007/s12094-025-03887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Despite treatment advancements in the last decades, CRC remains heterogeneous with significant clinical and genetic diversity. Human epidermal growth factor receptor 2 (HER2) proto-oncogene plays a critical role, as its amplification or overexpression leading to abnormal cell proliferation and tumorigenesis. HER2 overexpression or amplification is identified in 2-4% of metastatic CRCs (mCRC) patients, representing a potential therapeutic target. It is also associated with resistance against epidermal growth factor receptor (EGFR)-targeted therapies like cetuximab and panitumumab, for treatment of RAS wild-type mCRC. Although HER2-positive mCRC is rare, assessing HER2 levels is important. Furthermore, anti-HER2 therapies exhibited non-toxic profile and high efficacy in chemorefractory cases. This review delves into modern management of anti-HER2 therapies in CRC with a particular focus on recent advances and current knowledge about the prognostic and predictive value of HER2.
Collapse
Affiliation(s)
- Yeliz Benli
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, 06790, Ankara, Turkey
| | - Helin Arıkan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, 06790, Ankara, Turkey
| | - Özge Akbulut-Çalışkan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Başkent University, 06790, Ankara, Turkey.
| |
Collapse
|
6
|
Zhang W, Hu Z, Yang W, Chen Y, Geng Z, Song C, Mao L. Reduced Thermal Damage Achieved by High-Conductivity Hydrogel in RF Energy Tissue Welding. ACS Biomater Sci Eng 2025; 11:1391-1401. [PMID: 39985434 DOI: 10.1021/acsbiomaterials.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Radiofrequency (RF) tissue welding is an innovative tissue anastomosis technique that utilizes bioimpedance to convert electrical energy into thermal energy, enabling the connection and reconstruction of tissues via the denaturation and crosslinking of proteins. However, the high temperatures generated in this process often lead to excessive thermal damage to tissues, thereby adversely impacting cellular activity and impeding tissue repair in practical applications. In this study, we developed a polyacrylamide/alginate (PAAm/Alg) hydrogel with high ionic conductivity (16.8 ± 1.2 S/m) achieved by introducing Ca2+ for the purpose of reducing thermal damage in RF tissue welding. The PAAm/Alg-Ca2+0.5M hydrogel possessed excellent mechanical properties with a stress of 315.6 ± 14.1 kPa and an elongation of 382.7 ± 89.0%. Additionally, the hydrogel exhibited a high water content (83.7 ± 0.3%) and excellent stability of swelling property in water. In addition, the hydrogel extract showed good biocompatibility with no significant adverse effects on cell activity in the cytotoxicity test. At last, we conducted ex vivo experiments to investigate the effectiveness of the hydrogel as a cooling agent during RF tissue welding. The result showed that the maximum temperature was effectively reduced from 137.9 ± 4.7 to 101.8 ± 2.5 °C, while the strength of the anastomotic stoma (12.0 ± 3.2 kPa) was not affected by the intervention of this hydrogel. Histological analysis also revealed that the anastomotic structure of the tissue with hydrogel intervention was more intact than that of the control. Thus, the PAAm/Alg-Ca2+0.5M hydrogel has been demonstrated to function effectively as a cooling agent, offering a new strategy for thermal damage control in RF tissue welding.
Collapse
Affiliation(s)
- Wenwen Zhang
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongxin Hu
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wanwen Yang
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhaoning Geng
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengli Song
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Mao
- Shanghai Institute for Minimally Invasive Therapy, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Tahmasebi S, Farmanbordar H, Mohammadi R. Synthesis of magnetic bio-nanocomposite hydrogel beads based on sodium alginate and β-cyclodextrin: Potential pH-responsive oral delivery anticancer systems for colorectal cancer. Int J Biol Macromol 2025; 305:140748. [PMID: 39952529 DOI: 10.1016/j.ijbiomac.2025.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Developing an efficient treatment method is crucial in oral delivery systems due to its comfortable drug administration. This work aims to synthesize pH-responsive magnetic bio-nanocomposite hydrogel beads (MHBs) based on sodium alginate and β-cyclodextrin to deliver the doxorubicin (DOX) drug against colorectal cancer. The Fe3O4 NPs were used to increase the efficiency of the drug carriers in the tumor site and modified with green synthesized Ag NPs, which were reduced and stabilized by basil plant extract to increase anti-bacterial and anti-oxidant properties. FTIR, XRD, SEM, VSM, and TGA analysis confirmed the successful synthesis. The prepared MHBs were studied at different simulated digestive system pH values and represented pH-sensitive swelling behavior. The minimal and highest ratio of the drug releases from MHBs was seen at pH 1.2 < 1 % and pH 7.4 > 98 %, respectively. The antibacterial study revealed the highest activity of MHBs versus Staphylococcus aureus > 98.68 % and Escherichia coli > 99.2 %, respectively. The antioxidant study revealed the desired activity. The MTT assay of DOX-loaded MHBs on HT-29 cell lines revealed controlled release properties of MHBs with IC50 about 64 μL/mL, promising the controlled delivery of anticancer agents for colon cancer treatment.
Collapse
Affiliation(s)
- Shabnam Tahmasebi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Farmanbordar
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
8
|
Shabkhizan R, Avci ÇB, Haiaty S, Moslehian MS, Sadeghsoltani F, Bazmani A, Mahdipour M, Takanlou LS, Takanlou MS, Zamani ARN, Rahbarghazi R. Metformin exerted tumoricidal effects on colon cancer tumoroids via the regulation of autophagy pathway. Stem Cell Res Ther 2025; 16:45. [PMID: 39901295 PMCID: PMC11792360 DOI: 10.1186/s13287-025-04174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Despite the existence of promising outcomes from standard 2D culture systems, these data are not completely akin to in vivo tumor parenchyma. Therefore, the development and fabrication of various 3D culture systems can in part mimic intricate cell-to-cell interaction within the real tumor mass. Here, we aimed to evaluate the tumoricidal impacts of metformin (MTF) on colorectal cancer (CRC) tumoroids in an in vitro system via the modulation of autophagy. METHODS CRC tumoroids were developed using human umbilical vein endothelial cells (HUVECs), adenocarcinoma HT29 cells, and fibroblasts (HFFF2) in a ratio of 1: 2: 1 and 2.5% methylcellulose. Tumoroids were exposed to different concentrations of MTF, ranging from 20 to 1000 mM, for 72 h. The survival rate was detected using an LDH release assay. The expression and protein levels of autophagy-related factors were measured using PCR array and western blotting, respectively. Using H & E, and immunofluorescence staining (Ki-67), the integrity and proliferation rate of CRC tumoroids were examined. RESULTS The current protocol yielded typical compact tumoroids with a dark central region. Despite slight changes in released LDH contents, no statistically significant differences were achieved in terms of cell toxicity in MTF-exposed groups compared to the control tumoroids, indicating the insufficiency of MTF in the induction of tumor cell death (p > 0.05). Western blotting indicated that the LC3II/I ratio was reduced in tumoroids exposed to 120 mM MTF (p < 0.05). These data coincided with the reduction of intracellular p62 content in MTF 120 mM-treated tumoroids compared to MTF 40 mM and control groups (p < 0.05). PCR array analysis confirmed the up-regulation, and down-regulation of several genes related to various signaling transduction pathways associated with autophagy machinery and shared effectors between autophagy and apoptosis in 40 and 120 mM MTF groups compared to the non-treated control group (p < 0.05). These changes were more prominent in tumoroids incubated with 120 mM MTF. Histological examination confirmed the loosening integrity of tumoroids in MTF-treated groups, especially 120 mM MTF, with the increase in cell death via the induction of apoptosis (chromatin marginalization) and necrotic (pyknotic nuclei) changes. In the 120 mM MTF group, spindle-shaped cells with the remnants of a fibrillar matrix were detected. Data indicated the reduction of proliferating Ki-67+ cells within the tumoroids by increasing the MTF concentration from 40 to 120 mM. CONCLUSIONS Different shared autophagy/apoptosis genes were modulated in CRC tumoroids after MTF treatment coinciding with both typical necrotic and apoptotic cells within the tumoroid structure. MTF can inhibit the integrity and proliferation of CRC tumoroids in dose-dependent manner.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
10
|
Zafari J, Omidi Sarajar B, Assar N, Moshaii A, Jafarzadeh E, Javani Jouni F. The Effects of Photodynamic Therapy with Low-Level Diode Laser Compared with Doxorubicin on HT-29 Colorectal Adenocarcinoma Cells Viability. Photobiomodul Photomed Laser Surg 2025; 43:24-30. [PMID: 39324276 DOI: 10.1089/photob.2024.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Background and Objective: Colorectal adenocarcinoma is considered one of the major causes of cancer-related lethality among other type of malignancies. Given the several limitations and adverse outcomes of conventional therapeutic regimens against colorectal cancer, the focus of many investigations has been attributed to the introduction of a novel combined regimen with harmless agents. The purpose of the present study was to investigate the effect of combined doxorubicin (DOX) treatment and photodynamic therapy (PDT) on colorectal adenocarcinoma cells. Material and Methods: HT-29 cells were exposed to different concentrations of DOX, low-level (630 nm) diode laser, and methylene blue (MB) as a photosensitizer substrate separately and a combination of them. The cytotoxic effect of the DOX, laser, MB, and their combination and the IC50 value for each treatment group were calculated by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT). The malondialdehyde (MDA) content as a biomarker of the lipid peroxidation process and liberated lactate dehydrogenase (LDH) enzyme into supernatant was determined. Results: The results of our study evidenced that a combination of photodynamic light (laser plus MB) and DOX caused a significant reduction in the percentage of HT-29 viable cells compared with control and other treatment groups. In addition, this mentioned combination led to a considerable decrease in IC50 of DOX. Increased cell membrane lipid peroxidation and cell destruction processes in the combination therapy group were proven through significant elevation of MDA content and LDH activity in the medium, respectively. Conclusion: The findings of the present study suggested that DOX combined with PDT had a better therapeutic impact on HT-29 colorectal adenocarcinoma cells. Hence, the simultaneous application of PDT along with antineoplastic drugs improves the chemosensitivity of cancerous cells via the disruption of their membrane and triggering death processes that lead to the decrease of chemotherapeutic agents required doses and undesirable effects.
Collapse
Affiliation(s)
- Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Assar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Moshaii
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Lamparelli EP, Marino M, Scognamiglio MR, D'Auria R, Santoro A, Della Porta G. PLA/PLGA nanocarriers fabricated by microfluidics-assisted nanoprecipitation and loaded with Rhodamine or gold can be efficiently used to track their cellular uptake and distribution. Int J Pharm 2024; 667:124934. [PMID: 39532275 DOI: 10.1016/j.ijpharm.2024.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
This study represents a pioneering investigation into using microfluidic technology for manufacturing PLA and PLGA nanocarriers (NCs) loaded with tracer molecules or metals through a co-precipitation protocol that involves saturating the water phase. The effects of total flow rate (TFR), flow rate ratio (FRR), surfactant amount, and polymer concentration on particle sizes and distributions were examined. The average size of PLA-NCs varied from 349 ± 175 nm to 170 ± 64 nm, with surface charges ranging from -13 to -6 mV. In contrast, PLGA-NCs had an average size between 192 ± 46 nm and 100 ± 34 nm, with surface charges from -23 mV to -53 mV. Increasing the TFR from 6 to 10 mL/min with a fixed FRR of 1:1 and reducing polymer concentrations in the organic phase from 20 to 5 mg/mL generally resulted in smaller NC sizes and distributions (monodispersed), with PLGA-NCs consistently exhibiting smaller dimensions. Under these specific conditions, Rhodamine B (Rhod) and gold (Au) were successfully loaded, achieving encapsulation efficiencies exceeding 50 %. Electron microscopy analysis confirmed that the nanocarriers exhibited a consistent spherical shape with smooth surface morphology. X-ray energy-dispersive spectroscopy (EDX) revealed a uniform distribution of gold within the polymer matrix. PLA-NCs were effectively internalized by various cell types, including human Peripheral Blood Mononuclear Cells (PBMCs), HT-29 colon cancer cells, and C6 glioma cells. Uptake occurred in a dose-dependent manner for PLA-NCs sized at 260 ± 51 nm, with only 30 % internalization at 2 mg/mL concentration after 24 to 48 h. Notably, smaller PLA-NCs with a mean size of 170 ± 64 nm achieved nearly 100 % uptake across all tested cell types after 48 h, indicating that particle size significantly influenced cellular uptake.
Collapse
Affiliation(s)
- E P Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy
| | - M Marino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy
| | - M R Scognamiglio
- Department of Industrial Engineering, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, SA, Italy
| | - R D'Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy
| | - A Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, SA, Italy
| | - G Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, SA, Italy.
| |
Collapse
|
12
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
13
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Pannerchelvan S, Rios-Solis L, Wasoh H, Sobri MZM, Faizal Wong FW, Mohamed MS, Mohamad R, Halim M. Functional yogurt: a comprehensive review of its nutritional composition and health benefits. Food Funct 2024; 15:10927-10955. [PMID: 39446126 DOI: 10.1039/d4fo03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Functional yogurt, renowned for its enhanced nutritional profile and potential health benefits, has emerged as a promising functional food. This review meticulously examines the nutritional composition of functional yogurt, highlighting its enriched content of probiotics, prebiotics, synbiotics, antioxidants, vitamins, minerals, proteins, and other bioactive compounds, which contribute to its health-promoting properties. Functional yogurt has positively affected digestive health, immune function, metabolic health, and mental well-being. It benefits digestive health by alleviating diarrhoeal symptoms, constipation, colon cancer, irritable bowel syndrome (IBS), Helicobacter pylori infection, and digestive-related allergies. Moreover, the immune-boosting properties of functional yogurt play a pivotal role in reducing the risk of infections and inflammation. In addition, functional yogurt has the potential to improve metabolic health, leading to decreased cholesterol levels and enhanced blood sugar regulation. Emerging research also suggests functional yogurt may positively influence mood, behavior, and cognitive function. Functional yogurt is a valuable addition to the human diet, holding significant implications for public health. In addition to its numerous health benefits, functional yogurt also faces limitations, such as the stability of functional compounds, sensory alterations, potential digestive discomfort, and inconsistent efficacy across populations, highlighting the need for further research and optimization.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Leonardo Rios-Solis
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, 6.07, WC1E 6BT, United Kingdom
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Zulfazli Mohd Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
15
|
Patharia P, Sethy PK, Nanthaamornphong A. Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review. Cancer Inform 2024; 23:11769351241290608. [PMID: 39483315 PMCID: PMC11526153 DOI: 10.1177/11769351241290608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Image-based diagnosis has become a crucial tool in the identification and management of various cancers, particularly lung and colon cancer. This review delves into the latest advancements and ongoing challenges in the field, with a focus on deep learning, machine learning, and image processing techniques applied to X-rays, CT scans, and histopathological images. Significant progress has been made in imaging technologies like computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), which, when combined with machine learning and artificial intelligence (AI) methodologies, have greatly enhanced the accuracy of cancer detection and characterization. These advances have enabled early detection, more precise tumor localization, personalized treatment plans, and overall improved patient outcomes. However, despite these improvements, challenges persist. Variability in image interpretation, the lack of standardized diagnostic protocols, unequal access to advanced imaging technologies, and concerns over data privacy and security within AI-based systems remain major obstacles. Furthermore, integrating imaging data with broader clinical information is crucial to achieving a more comprehensive approach to cancer diagnosis and treatment. This review provides valuable insights into the recent developments and challenges in image-based diagnosis for lung and colon cancers, underscoring both the remarkable progress and the hurdles that still need to be overcome to optimize cancer care.
Collapse
Affiliation(s)
- Pragati Patharia
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Prabira Kumar Sethy
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
- Department of Electronics, Sambalpur University, Burla, Odisha, India
| | | |
Collapse
|
16
|
Al Azzam KM, Al-Areer NW, Al Omari RH, Al-Deeb I, Bounoua N, Negim ES, Al-Samydai A, Aboalroub AA, Said R. Assessment of the anticancer potential of certain phenolic and flavonoid components in ginger capsules using colorectal cancer cell lines coupled with quantitative analysis. Biomed Chromatogr 2024; 38:e5993. [PMID: 39152776 DOI: 10.1002/bmc.5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of malignant tumor death. The development of novel, more effective drugs is desperately needed to treat CRC. Zingiber officinale is believed to possess anticancer properties due to its flavonoids and phenols. Using Soxhlet (SOXT) and maceration (MACR) techniques, the present study aimed to evaluate the amounts of quercetin, gallic acid, rutin, naringin, and caffeic acid in ginger capsules of Z. officinale. High-performance liquid chromatography (HPLC)/ultraviolet was used for separation and quantitation. In vitro toxicity evaluation of ginger capsules on the CRC cell line HT-29 was also conducted to assess the anticancer activity of the supplement. The cell line HT-29 (HTB-38) colorectal adenocarcinoma was utilized for the antiproliferative effect of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Ginger herbal supplement extract at dosages of 200 and 100 μg had strong cytotoxic effects (IC50 < 50 μg/mL) on HT-29 CRC cells via MACR. This extract is comparable to the SOXT extract, which has an IC50 of less than 50 μg/mL. The anticancer effect of ginger herbal supplement formulations against CRC lines was investigated, and the results obtained from both the MACR and SOXT extraction procedures were noteworthy. The quercetin content was the highest of all the extracts according to the HPLC data.
Collapse
Affiliation(s)
- Khaldun M Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Nadeen Waleed Al-Areer
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Rima H Al Omari
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Department of Biopharmaceutics and Clinical Pharmacy, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nadia Bounoua
- Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Department of Exact Sciences, Normal Higher School of Bechar, Bechar, 8000, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), Bechar, Algeria, 8000
| | - El-Sayed Negim
- School of Petroleum Engineering, Satbayev University, 22 Satpayev Street, Almaty, 050013, Kazakhstan
- School of Materials Science and Green Technologies, Kazakh-British Technical University, 59 Tole bi St., Almaty, 050000, Kazakhstan
| | - Ali Al-Samydai
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Adam A Aboalroub
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Rana Said
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
17
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Chung KC, Wu KL, Su YL, Cheng KC, Tang CE, Song LC, Chen HH, Lee KC. Outcomes of Robot-Assisted Versus Laparoscopic Surgery for Colorectal Cancer in Adults Aged 75 Years and Older: A Propensity Score-Matched Analysis of the US Nationwide Inpatient Sample. Dis Colon Rectum 2024; 67:1121-1130. [PMID: 38848125 DOI: 10.1097/dcr.0000000000003374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Robot-assisted surgery has been increasingly adopted in colorectal cancer resection. OBJECTIVE The study aimed to compare the inpatient outcomes of robot-assisted versus conventional laparoscopic colorectal cancer resection in patients aged 75 years and older. DESIGN A retrospective, population-based study. SETTINGS This study analyzed data from the United States Nationwide Inpatient Sample from 2005 to 2018. PATIENTS Patients with colorectal cancer aged 75 years and older and who underwent robot-assisted or conventional laparoscopic resection. MAIN OUTCOME MEASURES Postoperative complications, prolonged length of stay, and total hospital costs were assessed. RESULTS Data from 14,108 patients were analyzed. After adjustment, any postoperative complications (adjusted OR = 0.87; 95% CI, 0.77-0.99; p = 0.030) and prolonged length of stay (adjusted OR = 0.78; 95% CI, 0.67-0.91; p = 0.001) were significantly less in the robotic than the laparoscopic group. In addition, robotic surgery was associated with significantly higher total hospital costs (26.06 USD greater cost; 95% CI, 21.35-30.77 USD; p < 0.001). LIMITATIONS The analysis was limited by its retrospective and observational nature, potential coding errors, and the lack of intraoperative factors, such as operative time, laboratory measures, and information on surgeons' experience. CONCLUSIONS In the United States, in patients with colorectal cancer aged 75 years and older who were undergoing tumor resections, compared to conventional laparoscopic surgery, robotic surgery is associated with better inpatient outcomes in terms of complication rate and risk of prolonged length of stay. This finding is especially true among patients with colon cancer. However, robotic surgery is associated with higher total hospital costs. See Video Abstract . RESULTADOS DE LA CIRUGA ASISTIDA POR ROBOT FRENTE A LA CIRUGA LAPAROSCPICA PARA EL CNCER COLORRECTAL EN ADULTOS AOS DE EDAD UN ANLISIS EMPAREJADO POR PUNTUACIN DE PROPENSIN DE LA MUESTRA NACIONAL DE PACIENTES HOSPITALIZADOS DE ESTADOS UNIDOS ANTECEDENTES:La cirugía asistida por robot se ha adoptado cada vez más en la resección del cáncer colorrectal.OBJETIVO:El estudio tuvo como objetivo comparar los resultados hospitalarios de la resección del cáncer colorrectal asistida por robot versus la laparoscópica convencional en pacientes ≥ 75 años.DISEÑO:Estudio retrospectivo de base poblacional.AJUSTES:Este estudio analizó datos de la Muestra Nacional de Pacientes Hospitalizados de Estados Unidos de 2005 a 2018.PACIENTES:Pacientes con cáncer colorrectal ≥ 75 años y sometidos a resección laparoscópica convencional o asistida por robot.PRINCIPALES MEDIDAS DE RESULTADO:Se evaluaron las complicaciones posoperatorias, la duración prolongada de la estancia hospitalaria y los costos hospitalarios totales.RESULTADOS:Se analizaron datos de 14.108 pacientes. Después del ajuste, cualquier complicación posoperatoria (aOR = 0,87; IC del 95 %: 0,77-0,99, p = 0,030) y duración prolongada de la estancia hospitalaria (aOR = 0,78; IC del 95 %: 0,67-0,91, p = 0,001) fueron significativamente menores en el grupo robótico que el grupo laparoscópico. Además, la cirugía robótica se asoció con costos hospitalarios totales significativamente mayores ($26,06 USD mayor costo; IC 95%: 21,35-30,77 USD, p < 0,001).LIMITACIONES:El análisis estuvo limitado por su naturaleza retrospectiva y observacional, posibles errores de codificación y la falta de factores intraoperatorios como el tiempo operatorio, medidas de laboratorio e información sobre la experiencia de los cirujanos.CONCLUSIONES:En Estados Unidos, los pacientes con cáncer colorrectal ≥ 75 años que se sometieron a resecciones tumorales, en comparación con la cirugía laparoscópica convencional, la cirugía robótica se asocia con mejores resultados hospitalarios en términos de tasa de complicaciones y riesgo de estadía prolongada, especialmente entre pacientes con cáncer de colon. Sin embargo, la cirugía robótica se asocia a costes hospitalarios totales más elevados. (Traducción-Yesenia Rojas-Khalil ).
Collapse
Affiliation(s)
- Kuan-Chih Chung
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Kuen-Lin Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chien-En Tang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Ling-Chiao Song
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Abedin K, Lean QY, Wheelwright S. Nutritional self-management in colorectal cancer patients and survivors: A scoping review. Colorectal Dis 2024; 26:1662-1679. [PMID: 39080848 DOI: 10.1111/codi.17108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 10/26/2024]
Abstract
AIM Colorectal cancer (CRC) patients need CRC-specific dietary guidance, but often lack access to adequate nutritional information and support. This scoping review identified study interventions, online resources, which have been produced to support nutritional care self-management for CRC patients from diagnosis, through treatment and into survivorship and guidelines to underpin these. METHODS The review was carried out in accordance with the JBI method for Scoping Reviews. Study interventions, online resources that support the self-management of nutrition and diet in CRC patients were eligible for inclusion, along with CRC-specific guidelines. Searches up to February 2023, were carried out via MEDLINE, CINAHL, PsycInfo, Embase, and Web of Science for published literature and ProQuest Dissertations, Theses Global, TRIP Medical Database, and Google search engines for grey literature. Two reviewers independently screened titles and abstracts, and relevant full texts for inclusion. Data were analysed descriptively. RESULTS Eight study interventions, 74 online resources and three guidelines specifically aimed at CRC patients were included in the review. Study interventions were heterogenous with respect to duration, whether it was personalized, who supported delivery and which guidelines underpinned the intervention. Three study interventions resulted in improved quality of life and one lengthened survival. A total of 36 (48.6%) online resources were produced by UK charity organizations. Most of the included information was for patients after completing treatment. Specific advice for patients with a stoma was lacking. Some of the online resources provided conflicting advice. The three guidelines explained how dietary adjustments can help address symptoms related to cancer or treatment and two provided more specific guidance on making dietary changes, with specific examples of how to tailor dietary advice to patient needs. CONCLUSION This scoping review of study interventions, online resources, and guidelines highlighted the need for reliable, detailed, and personalized information to help CRC patients to self-manage their nutritional care.
Collapse
Affiliation(s)
- Khadijah Abedin
- Brighton & Sussex Medical School, University of Sussex, Brighton, UK
| | - Qi Ying Lean
- Sussex Health Outcomes Research & Education in Cancer (SHORE-C), Brighton & Sussex Medical School, University of Sussex, Brighton, UK
| | - Sally Wheelwright
- Sussex Health Outcomes Research & Education in Cancer (SHORE-C), Brighton & Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
20
|
Xu J, Gan T. Best practices in wound care for gastrointestinal stoma and colorectal cancer patients from a nursing perspective: A meta-analysis. Int Wound J 2024; 21:e14908. [PMID: 39099185 PMCID: PMC11298617 DOI: 10.1111/iwj.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 08/06/2024] Open
Abstract
Colorectal cancer, a type of colon or bowel cancer, poses a major challenge in the treatment of colorectal lesions. Colorectal endoscopic mucosal resection (EMR) is a minimally invasive technique, but the risk of wound infections remains a significant concern. These infections can impede the healing process, affecting daily activities and patient satisfaction. To mitigate the risk of wound infections, various prophylactic measures have been explored, including medication, vaccines, lifestyle adjustments and hygiene practices. This study aims to investigate the prevention of wound infections through prophylactic measures in colorectal EMR. A comprehensive literature review was conducted to identify prophylactic measures that can prevent wound infections. A systematic literature search was conducted using both free words and search terms. The data extraction was performed after a comprehensive literature screening. The meta-analysis was performed using the metabin function of the meta library in R to evaluate the infection incidences in intervention and control groups. A total of 599 infection incidences were considered, with 267 in intervention and 332 in the control group. The results of meta analysis demonstrated significant reduction of wound incidences following the prophylactic measures (risk ratio [RR] = 0.77, 95% confidence interval [CI]: 0.6747; 0.9016, I2 = 78.5%, p < 0.01). The wound infection ratio analysis also exhibited an approximate 6.6% less infection rate in the intervention group, demonstrating significantly less wound infection following the implementation of prophylactic measures. This study highlights the crucial significance of prevention of wound infections by prophylactic measures in colorectal EMR.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastrointestinal Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tianyu Gan
- Department of CardiologyNanxiang Branch of Ruijin HospitalShanghaiChina
| |
Collapse
|
21
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
22
|
Zhou X, Zhang Q, Zhu H, Zhao J, Cai Y. The application of graphene oxide and ferroptosis in the diagnosis and treatment of colorectal cancer: a narrative review. J Gastrointest Oncol 2024; 15:1297-1308. [PMID: 38989438 PMCID: PMC11231853 DOI: 10.21037/jgo-23-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
Background and Objective Colorectal cancer (CRC), a leading global malignancy, continues to challenge the medical community. Despite advancements in surgical, chemotherapeutic, radiation, targeted, and immunotherapeutic strategies, issues like resistance and side effects persist. This review illuminates the potential of ferroptosis, an emerging non-apoptotic cell death form, and graphene oxide (GO), with its distinctive physicochemical properties, in CRC therapy. Methods The databases search included PubMed, Medline and Web of Science. Search terms focused on CRC, graphene, GO, ferroptosis, and related aspects in therapy and drug delivery. The time frame for literature retrieval was up to April 2024. Studies in languages other than English were excluded. Key Content and Findings Ferroptosis has been recognized for its role in addressing treatment resistance, a notable hurdle in effective CRC management. This form of cell death offers a promising avenue for enhancing the effectiveness of existing treatments. However, understanding its mechanisms and clinical implications in CRC remains an area of active research, with significant progress required for its practical application. Simultaneously, GO, a versatile two-dimensional material, has demonstrated substantial potential in biomedical applications, especially in cancer therapy. Its high specific surface area and unique π-electron domains facilitate the effective binding of chemotherapy drugs, target genes, and photosensitizers. This makes GO a promising candidate in cancer diagnosis and treatment, particularly through tumor photothermal and photodynamic therapy (PDT). Despite these advancements, GO's clinical application faces challenges, including in vitro cytotoxicity and decreased biodegradability, necessitating further research. Conclusions This review focuses on the characteristics of GO and ferroptosis, as well as their applications in tumor diagnosis and treatment, with a particular emphasis on their potential in CRC.
Collapse
Affiliation(s)
- Xiecheng Zhou
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qixing Zhang
- Department of Pediatrics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Haoran Zhu
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaying Zhao
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Azevedo A, Coelho MP, Pinho JO, Soares PIP, Reis CP, Borges JP, Gaspar MM. An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil. Life Sci 2024; 344:122558. [PMID: 38471621 DOI: 10.1016/j.lfs.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
AIMS Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.
Collapse
Affiliation(s)
- Afonso Azevedo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Mariana P Coelho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina P Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - João P Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
24
|
Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF, Paiva-Santos AC, Neisiany RE, Makvandi P, Iravani S, Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr Polym 2024; 330:121839. [PMID: 38368115 DOI: 10.1016/j.carbpol.2024.121839] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | | | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Seyedeh Farnaz Ziaei
- Department of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000 Quzhou, Zhejiang, China; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
25
|
Garvey M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024; 12:740. [PMID: 38672096 PMCID: PMC11048178 DOI: 10.3390/biomedicines12040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The human gastrointestinal tract houses a diverse range of microbial species that play an integral part in many biological functions. Several preclinical studies using germ-free mice models have demonstrated that the gut microbiome profoundly influences carcinogenesis and progression. Colorectal cancer appears to be associated with microbial dysbiosis involving certain bacterial species, including F. nucleatum, pks+ E. coli, and B. fragilis, with virome commensals also disrupted in patients. A dysbiosis toward these pro-carcinogenic species increases significantly in CRC patients, with reduced numbers of the preventative species Clostridium butyicum, Roseburia, and Bifidobacterium evident. There is also a correlation between Clostridium infection and CRC. F. nucleatum, in particular, is strongly associated with CRC where it is associated with therapeutic resistance and poor outcomes in patients. The carcinogenic mode of action of pathogenic bacteria in CRC is a result of genotoxicity, epigenetic alterations, ROS generation, and pro-inflammatory activity. The aim of this review is to discuss the microbial species and their impact on colorectal cancer in terms of disease initiation, progression, and metastasis. The potential of anticancer peptides as anticancer agents or adjuvants is also discussed, as novel treatment options are required to combat the high levels of resistance to current pharmaceutical options.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
26
|
Rajabi A, Nejati M, Homayoonfal M, Arj A, Razavi ZS, Ostadian A, Mohammadzadeh B, Vosough M, Karimi M, Rahimian N, Hamblin MR, Anoushirvani AA, Mirzaei H. Doxorubicin-loaded zymosan nanoparticles: Synergistic cytotoxicity and modulation of apoptosis and Wnt/β-catenin signaling pathway in C26 colorectal cancer cells. Int J Biol Macromol 2024; 260:128949. [PMID: 38143055 DOI: 10.1016/j.ijbiomac.2023.128949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Zymosan is a β-glucan isolated from Saccharomyces cerevisiae that could be employed for drug delivery. We synthesized zymosan nanoparticles and measured their structural and morphological properties using XRD, UV-Vis spectroscopy, TEM and AFM. The loading of doxorubicin (DOX) onto the nanoparticles was confirmed by FT-IR, and the DOX release was shown to be pH-dependent. The effect of these agents on C26 cell viability was evaluated by MTT tests and the expression of genes connected with the Wnt/β-catenin pathway and apoptosis were analyzed by RT-qPCR and Western blotting. Treatments were able to suppress the proliferation of C26 cells, and the zymosan nanocarriers loaded with DOX enhanced the anti-proliferative effect of DOX in a synergistic manner. Zymosan nanoparticles were able to suppress the expression of cyclin D1, VEGF, ZEB1, and Twist mRNAs. Treatment groups upregulated the expression of caspase-8, while reducing the Bax/Bcl-2 ratio, thus promoting apoptosis. In conclusion, zymosan nanoparticles as DOX nanocarriers could provide a more targeted drug delivery through pH-responsiveness, and showed synergistic cytotoxicity by modifying Wnt/β-catenin signaling and apoptosis.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abbas Arj
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Internal Medicine, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ali Arash Anoushirvani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Cho E, Mun SJ, Kim HK, Ham YS, Gil WJ, Yang CS. Colon-targeted S100A8/A9-specific peptide systems ameliorate colitis and colitis-associated colorectal cancer in mouse models. Acta Pharmacol Sin 2024; 45:581-593. [PMID: 38040838 PMCID: PMC10834475 DOI: 10.1038/s41401-023-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023]
Abstract
The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn's disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 μM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 μg/kg, i.p., every 3 days for 24-30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.
Collapse
Affiliation(s)
- Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yu Seong Ham
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea.
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
- Department of Medicinal and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
28
|
Khan M, Shah S, Shah W, Khan I, Ali H, Ali I, Ullah R, Wang X, Mehmood A, Wang Y. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol 2024; 43:229-247. [PMID: 38343353 DOI: 10.1080/08830185.2024.2312294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The gut microbiome plays a role in the development and progression of colorectal cancer (CRC). AIM AND OBJECTIVE This review focuses on whether the gut microbiome is involved in the development and regulation of the host immune system. METHODS The gut microbiome can influence the production and activity of immune cells and molecules that help to maintain the integrity of the intestinal barrier and prevent inflammation. Gut microbiota modulates the anti-cancer immune response. The gut microbiota can influence the function of immune cells, like T cells, that recognize and eliminate cancer cells. Gut microbiota can affect various aspects of cancer progression and the efficacy of various anti-cancer treatments. RESULTS Gut microbiota provide promise as a potential biomarker to identify the effect of immunotherapy and as a target for modulation to improve the efficacy of immunotherapy in CRC treatment. CONCLUSION The potential synergistic effect between the gut microbiome and anti-cancer treatment modalities provides an interest in developing strategies to modulate the gut microbiome to improve the efficacy of anti-cancer treatment.
Collapse
Affiliation(s)
- Murad Khan
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ikram Khan
- School of Basic Medical Sciences, Department of Genetics, Lanzhou University, Lanzhou, Gansu, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, P.R. China
| | - Yanli Wang
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
29
|
Abdellatif AAH, Alshubrumi AS, Younis MA. Targeted Nanoparticles: the Smart Way for the Treatment of Colorectal Cancer. AAPS PharmSciTech 2024; 25:23. [PMID: 38267656 DOI: 10.1208/s12249-024-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Colorectal cancer (CRC) is a widespread cancer that starts in the digestive tract. It is the third most common cause of cancer deaths around the world. The World Health Organization (WHO) estimates an expected death toll of over 1 million cases annually. The limited therapeutic options as well as the drawbacks of the existing therapies necessitate the development of non-classic treatment approaches. Nanotechnology has led the evolution of valuable drug delivery systems thanks to their ability to control drug release and precisely target a wide variety of cancers. This has also been extended to the treatment of CRC. Herein, we shed light on the pertinent research that has been performed on the potential applications of nanoparticles in the treatment of CRC. The various types of nanoparticles in addition to their properties, applications, targeting approaches, merits, and demerits are discussed. Furthermore, innovative therapies for CRC, including gene therapies and immunotherapies, are also highlighted. Eventually, the research gaps, the clinical potential of such delivery systems, and a future outlook on their development are inspired.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452, Buraydah, Al Qassim, Saudi Arabia.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| | | | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
30
|
Dong Y, Ye S, Li H, Li J, Liu R, Zhu Y. The Role of SPEN Mutations as Predictive Biomarkers for Immunotherapy Response in Colorectal Cancer: Insights from a Retrospective Cohort Analysis. J Pers Med 2024; 14:131. [PMID: 38392565 PMCID: PMC10890329 DOI: 10.3390/jpm14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the leading cause of cancer deaths, and treatment, especially in the metastatic stage, is challenging. Immune checkpoint inhibitors (ICIs) have revolutionized CRC treatment, but response varies, emphasizing the need for effective biomarkers. This study explores SPEN mutations as potential biomarkers. METHODS Using data from the Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA)-Colorectal Cancer, this research applied bioinformatics tools and statistical analysis to SPEN (Split Ends) mutant and wild-type CRC patients treated with ICIs. Focus areas included mutation rates, immune cell infiltration, and DNA damage response pathways. RESULTS The SPEN mutation rate was found to be 13.8% (15/109 patients) in the MSKCC cohort and 6.65% (35/526 patients) in the TCGA cohort. Our findings indicate that CRC patients with SPEN mutations had a longer median overall survival (OS) than the wild-type group. These patients also had higher tumor mutational burden (TMB), microsatellite instability (MSI) scores, and programmed death-ligand 1 (PD-L1) expression. SPEN mutants also exhibited increased DNA damage response (DDR) pathway mutations and a greater presence of activated immune cells, like M1 macrophages and CD8+ T cells, while wild-type patients had more resting/suppressive immune cells. Furthermore, distinct mutation patterns, notably with TP53, indicated a unique molecular subtype in SPEN-mutated CRC. CONCLUSIONS We conclude that SPEN mutations might improve ICI efficacy in CRC due to increased immunogenicity and an inflammatory tumor microenvironment. SPEN mutations could be predictive biomarkers for ICI responsiveness, underscoring their value in personalized therapy and highlighting the importance of genomic data in clinical decisions. This research lays the groundwork for future precision oncology studies.
Collapse
Affiliation(s)
- Yuanmei Dong
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Sisi Ye
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Huizi Li
- Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Juan Li
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Rongrui Liu
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| | - Yanyun Zhu
- Department of Medical Oncology, The Fifth Medical Center of People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
31
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
32
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
33
|
Karbalaee R, Mehdizadeh S, Ghaleh HEG, Izadi M, Kondori BJ, Dorostkar R, Hosseini SM. The Effects of Mesenchymal Stem Cells Loaded with Oncolytic Coxsackievirus A21 on Mouse Models of Colorectal Cancer. Curr Cancer Drug Targets 2024; 24:967-974. [PMID: 38310465 DOI: 10.2174/0115680096273465231201115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Cancer is a major cause of death worldwide. Colorectal cancer is the second most common type. Additional treatments like chemotherapy and radiation therapy may be recommended. Developing new techniques is vital due to drug resistance and a lack of targeted therapies. OBJECTIVE In this study, the effects of mesenchymal stem cells (MSCs) loaded with oncolytic Coxsackievirus A21 (CVA21) on a mouse model of CRC were investigated. METHODS The therapeutic potency of MSCs loaded with oncolytic CVA21 were evaluated in an experimental mouse model of colorectal cancer which received an injection CT26 cells per mouse subcutaneously. Splenocyte proliferation index, lactate dehydrogenase (LDH) assay, nitric oxide (NO) production assessment, and cytokine assay (IFN-γ, IL-4, IL-10, and TGF-β) in the splenocyte supernatant were all used to evaluate the impact of MSCs loaded with CVA21. RESULTS The results of this study showed that the treatment of a mouse model of colorectal cancer with MSCs loaded with oncolytic CVA21 could significantly suppress the tumor growth, which was accompanied by stimulation of splenocytes proliferation index, an increase of NO and LDH. Also, MSCs loaded with oncolytic CVA21 increased the secretion of IFN-γ and decreased the secretion of IL-4, IL-10, and TGF-β. CONCLUSION The results of the current study suggest that MSCs loaded with oncolytic CVA21 therapy for the CRC mouse model may have some potential advantages. On the other hand, the results of the study showed that, in addition to activating the acquired immune system, the use of MSCs loaded with oncolytic CVA21 also stimulates the innate immune system by increasing level of nitric oxide.
Collapse
Affiliation(s)
- Reza Karbalaee
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Hosseini
- Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Chauhan S, Sharma S. Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review. Curr Pharm Biotechnol 2024; 25:1969-1985. [PMID: 38275054 DOI: 10.2174/0113892010270975231208113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 01/27/2024]
Abstract
Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Sonia Chauhan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| | - Sakshi Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P, 201306, India
| |
Collapse
|
35
|
Karimi F, Karimi-Maleh H, Rouhi J, Zare N, Karaman C, Baghayeri M, Fu L, Rostamnia S, Dragoi EN, Ayati A, Krivoshapkin P. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. ENVIRONMENTAL RESEARCH 2023; 239:117368. [PMID: 37827366 DOI: 10.1016/j.envres.2023.117368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Ceren Karaman
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Mehdi Baghayeri
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. B 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania
| | - Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
36
|
Bajracharya R, Baral KC, Lee SH, Song JG, Han HK. Organometallic Phyllosilicate-Gold Nanocomplex: An Effective Oral Delivery System of Methotrexate for Enhanced in vivo Efficacy Against Colorectal Cancer. Int J Nanomedicine 2023; 18:7257-7266. [PMID: 38076733 PMCID: PMC10710251 DOI: 10.2147/ijn.s437860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Oral administration, although convenient and preferred for treating colorectal cancer (CRC), faces challenges due to limited CRC-related intestinal positioning and a dense mucus barrier. In the present study, a gold-nanoparticle decorated-organometallic phyllosilicate nanocomposite (AC-Au), with a pH-dependent surface coating, was employed for more effective oral delivery of anticancer drugs to treat CRC. Methods The organometallic AC-Au was synthesized using the in-situ sol-gel method. Subsequently, methotrexate (MTX) was loaded into AC-Au, and the complex (AC-Au/MTX) was surface-coated with poly (methacrylic acid-co-methyl methacrylate) (1:2), a pH-dependent polymer (E/AC-Au /MTX). The in vitro characteristics of nanoparticles were examined using various analytical methods. In vivo efficacy studies were also conducted using an HCT-116 orthotopic colorectal cancer model. Results AC-Au emerged as a spherical nanoparticle with a mean size of 26.5 ± 0.43 nm, displaying a positive charge over the pH range of 2-10. Both the uncoated and coated drug-loaded nanocomplexes (AC-Au/MTX and E/AC-Au/MTX) were fabricated with high entrapment efficiency (> 80%). Various analyses, including ultraviolet-visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy, confirmed the formation of the nanocomplexes. While AC-Au/MTX achieved rapid and extensive drug release at the pH range of 1.2-7.4, E/AC-Au/MTX exhibited pH-dependent drug release, with approximately 23% at pH 1.2 and 74% at pH 7.4. Relative to free MTX, the AC-Au-based nanocomplex significantly enhanced the cytotoxicity of MTX in HCT-116 cells. Furthermore, orally administered E/AC-Au/MTX significantly improved the anti-tumor activity of MTX in an HCT-116 orthotopic colorectal cancer model, resulting in approximately 60% suppression of tumor mass compared with the positive control. Conclusion The organometallic AC-Au nanocomplex coated with a pH-dependent polymer has the potential to be an effective colonic drug delivery system of MTX, enhancing in vivo efficacy against colorectal cancer.
Collapse
Affiliation(s)
| | | | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
37
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
38
|
Alshahrani SH, Al-Hadeithi ZSM, Almalki SG, Malviya J, Hjazi A, Mustafa YF, Alawady AHR, Alsaalamy AH, Joshi SK, Alkhafaji AT. LncRNA-miRNA interaction is involved in colorectal cancer pathogenesis by modulating diverse signaling pathways. Pathol Res Pract 2023; 251:154898. [PMID: 37924797 DOI: 10.1016/j.prp.2023.154898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
LncRNAs function as molecular sponges for miRNAs to control their availability for targeting mRNA molecules. This procedure indirectly regulates the expression of cancer-related genes. Some lncRNAs also directly interact with miRNAs, leading to their degradation or sequestration, which can negatively impact gene expression. miRNAs, on the other hand, play a critical role in controlling the expression of genes, including oncogenes and tumor suppressor genes. Multiple types of cancer have been linked to the onset and progression of miRNA dysregulation. Even though there is a lot of potential for treating CRC by targeting the LncRNA-miRNA axis, several challenges remain to be overcome. The specificity of the targeting approach, delivery methods, resistance, safety, and cost-effectiveness are critical research areas that must be addressed to advance this field and improve treatment outcomes for people with CRC.
Collapse
Affiliation(s)
| | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Ahmed Hussien Radie Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - S K Joshi
- Mechanical Engineering Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | |
Collapse
|
39
|
Raikar PR, Dandagi PM, Kazi T. Development and Validation of Novel RP-HPLC Method for the Simultaneous Estimation of Capecitabine and Thymoquinone in the Biodegradable Nanoparticles using Full Factorial Design. J Chromatogr Sci 2023; 61:773-783. [PMID: 36946313 DOI: 10.1093/chromsci/bmad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/28/2022] [Indexed: 03/23/2023]
Abstract
An innovative RP-HPLC technique was devised to simultaneously quantify thymoquinone (TQ) and capecitabine (CAP) in newly designed polymeric nanoparticles. A unique chromatographic approach was created, optimized and validated using Design-Expert® (design of experiment) in compliance with ICH requirements. A 24 factorial design examined the influence of variables on method responses. The method found linear between 0.25 and 16 μg/mL, with an R2 value of 0.999. The detection and quantification limits for CAP were 0.05 and 0.16 μg/mL, respectively, and 0.12 and 0.38 μg/mL for TQ, respectively, and 97-100% recovery in plain drug solution and 100-102% in nanoformulation were achieved. A purposeful modification examined by analysis of variance revealed that the experimental model was significant (P = 0.0001). The total drug content in nanoformulation was 8.68 mg, and the entrapment efficiency was 84.79%. Based on the findings, it is possible to infer that the use of the Quality by Design methodology resulted in the development of a more accurate technique capable of producing consistent, dependable, high-quality data and precise in quantifying CAP and TQ in bulk and nanoparticulate systems.
Collapse
Affiliation(s)
- Prasiddhi R Raikar
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC CAMPUS, Nehru Nagar, Belagavi, Karnataka 590010, India
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, JNMC CAMPUS, Nehru Nagar, Belagavi, Karnataka 590010, India
| | - Panchaxari M Dandagi
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC CAMPUS, Nehru Nagar, Belagavi, Karnataka 590010, India
| | - Taufik Kazi
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC CAMPUS, Nehru Nagar, Belagavi, Karnataka 590010, India
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, JNMC CAMPUS, Nehru Nagar, Belagavi, Karnataka 590010, India
| |
Collapse
|
40
|
Maki MAA, Teng MS, Tan KF, Kumar PV. Polyamidoamine-stabilized and hyaluronic acid-functionalized gold nanoparticles for cancer therapy. OPENNANO 2023; 13:100182. [DOI: 10.1016/j.onano.2023.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Cheraghi-shavi T, Jalal R, Minuchehr Z. TGM2, HMGA2, FXYD3, and LGALS4 genes as biomarkers in acquired oxaliplatin resistance of human colorectal cancer: A systems biology approach. PLoS One 2023; 18:e0289535. [PMID: 37535601 PMCID: PMC10399784 DOI: 10.1371/journal.pone.0289535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Acquired resistance to oxaliplatin is considered as the primary reason for failure in colorectal cancer (CRC) therapy. Identifying the underlying resistance mechanisms may improve CRC treatment. The present study aims to identify the key genes involved in acquired oxaliplatin-resistant in CRC by confirming the oxaliplatin resistance index (OX-RI). To this aim, two public microarray datasets regarding oxaliplatin-resistant CRC cells with different OX-RI, GSE42387, and GSE76092 were downloaded from GEO database to identify differentially expressed genes (DEGs). The results indicated that the OX-RI affects the gene expression pattern significantly. Then, 54 common DEGs in both datasets including 18 up- and 36 down-regulated genes were identified. Protein-protein interaction (PPI) analysis revealed 13 up- (MAGEA6, TGM2, MAGEA4, SCHIP1, ECI2, CD33, AKAP12, MAGEA12, CALD1, WFDC2, VSNL1, HMGA2, and MAGEA2B) and 12 down-regulated (PDZK1IP1, FXYD3, ALDH2, CEACAM6, QPRT, GRB10, TM4SF4, LGALS4, ALDH3A1, USH1C, KCNE3, and CA12) hub genes. In the next step, two novel up-regulated hub genes including ECI2 and SCHIP1 were identified to be related to oxaliplatin resistance. Functional enrichment and pathway analysis indicated that metabolic pathways, proliferation, and epithelial-mesenchymal transition may play dominant roles in CRC progression and oxaliplatin resistance. In the next procedure, two in vitro oxaliplatin-resistant sub-lines including HCT116/OX-R4.3 and HCT116/OX-R10 cells with OX-IR 3.93 and 10.06 were established, respectively. The results indicated the up-regulation of TGM2 and HMGA2 in HCT116/OX-R10 cells with high OX-RI and down-regulation of FXYD3, LGALS4, and ECI2 in both cell types. Based on the results, TGM2, HMGA2, FXYD3, and LGALS4 genes are related to oxaliplatin-resistant CRC and may serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Tayebeh Cheraghi-shavi
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Razieh Jalal
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Novel Diagnostics and Therapeutics Research Group, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
42
|
Ghorbani Alvanegh A, Mirzaei Nodooshan M, Dorostkar R, Ranjbar R, Jalali Kondori B, Shahriary A, Parastouei K, Vazifedust S, Afrasiab E, Esmaeili Gouvarchinghaleh H. Antiproliferative effects of mesenchymal stem cells carrying Newcastle disease virus and Lactobacillus Casei extract on CT26 Cell line: synergistic effects in cancer therapy. Infect Agent Cancer 2023; 18:46. [PMID: 37525229 PMCID: PMC10391864 DOI: 10.1186/s13027-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal Cancer (CRC) is a frequent malignancy with a high mortality rate. Specific inherited and environmental influences can affect CRC. Oncolytic viruses and bacteria in treating CRC are one of the innovative therapeutic options. This study aims to determine whether mesenchymal stem cells (MSCs) infected with the Newcastle Disease Virus (NDV) in combination with Lactobacillus casei extract (L. casei) have a synergistic effects on CRC cell line growth. MATERIALS AND METHODS MSCs taken from the bone marrow of BALB/c mice and were infected with the 20 MOI of NDV. Then, using the CT26 cell line in various groups as a single and combined treatment, the anticancer potential of MSCs containing the NDV and L. casei extract was examined. The evaluations considered the CT26 survival and the rate at which LDH, ROS, and levels of caspases eight and nine were produced following various treatments. RESULTS NDV, MSCs-NDV, and L. casei in alone or combined treatment significantly increased apoptosis percent, LDH, and ROS production compared with the control group (P˂0.05). Also, NDV, in free or capsulated in MSCs, had anticancer effects, but in capsulated form, it had a delay compared with free NDV. The findings proved that L. casei primarily stimulates the extrinsic pathway, while NDV therapy promotes apoptosis through the activation of both intrinsic and extrinsic apoptosis pathways. CONCLUSIONS The results suggest that MSCs carrying oncolytic NDV in combination with L. casei extract as a potentially effective strategy for cancer immunotherapy by promoting the generation of LDH, ROS, and apoptosis in the microenvironment of the CT26 cell line.
Collapse
Affiliation(s)
| | | | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheil Vazifedust
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
43
|
Vieira IRS, Tessaro L, Lima AKO, Velloso IPS, Conte-Junior CA. Recent Progress in Nanotechnology Improving the Therapeutic Potential of Polyphenols for Cancer. Nutrients 2023; 15:3136. [PMID: 37513554 PMCID: PMC10384266 DOI: 10.3390/nu15143136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphenols derived from fruits, vegetables, and plants are bioactive compounds potentially beneficial to human health. Notably, compounds such as quercetin, curcumin, epigallocatechin-3-gallate (EGCG), and resveratrol have been highlighted as antiproliferative agents for cancer. Due to their low solubility and limited bioavailability, some alternative nanotechnologies have been applied to encapsulate these compounds, aiming to improve their efficacy against cancer. In this comprehensive review, we evaluate the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer using in vitro studies and in vivo preclinical models, highlighting recent advancements in the field. It was found that polymeric nanomaterials, lipid-based nanomaterials, inorganic nanomaterials, and carbon-based nanomaterials are the most used classes of nanocarriers for encapsulating polyphenols. These delivery systems exhibit enhanced antitumor activity and pro-apoptotic effects, particularly against breast, lung, prostate, cervical, and colorectal cancer cells, surpassing the performance of free bioactive compounds. Preclinical trials in xenograft animal models have revealed decreased tumor growth after treatment with polyphenol-loaded delivery systems. Moreover, the interaction of polyphenol co-delivery systems and polyphenol-drug delivery systems is a promising approach to increase anticancer activity and decrease chemotherapy side effects. These innovative approaches hold significant implications for the advancement of clinical cancer research.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biology (IB), Department of Genetics and Morphology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Isabela Portella Silva Velloso
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Bio-Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
44
|
Fang Y, Wu F, Shang G, Yin C. SCARA5 in bone marrow stromal cell-derived exosomes inhibits colorectal cancer progression by inactivating the PI3K/Akt pathway. Genomics 2023; 115:110636. [PMID: 37150230 DOI: 10.1016/j.ygeno.2023.110636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Bone marrow stromal cells (BMSCs) play an essential role in tumor development by secreting exosomes. Scavenger receptor class A member 5 (SCARA5) is a newly identified tumor suppressor. This study aimed to investigate the effects of BMSCs-derived exosomes (BMSCs-Exos) on CRC development and to explore their regulatory mechanisms. BMSCs-Exos showed an oval-shaped, bilayer membrane structure. BMSCs-Exos inhibited growth and motility of CRC cells, while BMSCs-Exos with SCARA5 knockdown significantly promoted cell proliferation and movement. Exosomal SCARA5 also effectively suppressed colorectal tumor growth in mouse xenografts. Further analysis revealed that exosomal SCARA5 inhibited the phosphorylation of protein kinase B and phosphoinositide 3-kinase in both CRC cells and tumors. In conclusion, SCARA5 in BMSCs-Exos inhibited CRC progression by inactivating PI3K/Akt, thus suggesting the potential clinical application of SCARA5-containing BMSCs-Exos for CRC treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Phase I Oncology Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Guoyin Shang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, PR China
| | - Changqing Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province,PR China.
| |
Collapse
|
45
|
Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol 2023; 13:1211603. [PMID: 37427139 PMCID: PMC10325729 DOI: 10.3389/fonc.2023.1211603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy that affects a large percentage of the global population. The conventional treatments for CRC have a number of limitations. Nanoparticles have emerged as a promising cancer treatment method due to their ability to directly target cancer cells and regulate drug release, thereby enhancing therapeutic efficacy and minimizing side effects. This compilation examines the use of nanoparticles as drug delivery systems for CRC treatment. Different nanomaterials can be used to administer anticancer drugs, including polymeric nanoparticles, gold nanoparticles, liposomes, and solid lipid nanoparticles. In addition, we discuss recent developments in nanoparticle preparation techniques, such as solvent evaporation, salting-out, ion gelation, and nanoprecipitation. These methods have demonstrated high efficacy in penetrating epithelial cells, a prerequisite for effective drug delivery. This article focuses on the various targeting mechanisms utilized by CRC-targeted nanoparticles and their recent advancements in this field. In addition, the review offers descriptive information regarding numerous nano-preparative procedures for colorectal cancer treatments. We also discuss the outlook for innovative therapeutic techniques in the management of CRC, including the potential application of nanoparticles for targeted drug delivery. The review concludes with a discussion of current nanotechnology patents and clinical studies used to target and diagnose CRC. The results of this investigation suggest that nanoparticles have great potential as a method of drug delivery for the treatment of colorectal cancer.
Collapse
|
46
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
47
|
Das A, Adhikari S, Deka D, Baildya N, Sahare P, Banerjee A, Paul S, Bisgin A, Pathak S. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040685. [PMID: 37109643 PMCID: PMC10143464 DOI: 10.3390/medicina59040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The most common cancer-related cause of death worldwide is colorectal cancer. It is initiated with the formation of polyps, which further cause the development of colorectal cancer in multistep phases. Colorectal cancer mortality is high despite recent treatment breakthroughs and a greater understanding of its pathophysiology. Stress is one of the major causes of triggering different cellular signalling cascades inside the body and which might turn toward the development of cancer. Naturally occurring plant compounds or phytochemicals are being studied for medical purposes. Phytochemicals' benefits are being analyzed for inflammatory illnesses, liver failure, metabolic disorders, neurodegenerative disorders, and nephropathies. Cancer treatment with fewer side effects and better outcomes has been achieved by combining phytochemicals with chemotherapy. Resveratrol, curcumin, and epigallocatechin-3-gallate have been studied for their chemotherapeutic and chemopreventive potentiality, but hydrophobicity, solubility, poor bioavailability, and target selectivity limit the clinical uses of these compounds. The therapeutic potential is maximized by utilizing nanocarriers such as liposomes, micelles, nanoemulsions, and nanoparticles to increase phytochemical bioavailability and target specificity. This updated literature review discusses the clinical limitations, increased sensitivity, chemopreventive and chemotherapeutic effects, and the clinical limitations of the phytochemicals.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar 799253, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla 76230, Querétaro, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo 76130, Querétaro, Mexico
| | - Atil Bisgin
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Medical Genetics Department of Medical Faculty, Cukurova University, Adana 01330, Turkey
- InfoGenom RD Laboratories of Cukurova Technopolis, Adana 01330, Turkey
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
48
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
49
|
Sripetthong S, Eze FN, Sajomsang W, Ovatlarnporn C. Development of pH-Responsive N-benzyl- N- O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer. Molecules 2023; 28:2693. [PMID: 36985665 PMCID: PMC10057334 DOI: 10.3390/molecules28062693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023] Open
Abstract
This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in size. The entrapment efficiency of CL in the micelles ranged from 13 to 39%. Drug release from pristine CL was less than 20% in PBS at pH 7.4, whereas the release from CL-NBSCh micelles was significantly higher. The release study of CL-NBSCh revealed that around 40% of CL content was released in simulated gastric fluid at pH 1.2; 79 and 85% in simulated intestinal fluids at pH 5.5 and 6.8, respectively; and 75% in simulated colonic fluid at pH 7.4. CL-NBSCh showed considerably high selective cytotoxicity towards mucosal epithelial human colon cancer (HT-29) cells and lower levels of toxicity towards mouse connective tissue fibroblasts (L929). CL-NBSCh was also more cytotoxic than the free CL. Furthermore, compared to free CL, CL-NBSCh micelles were found to be more efficient at arresting cell growth at the G2/M phase, and induced apoptosis earlier in HT-29 cells. Collectively, these results indicate the high prospective potential of CL-loaded NBSCh micelles as an oral therapeutic intervention for colon cancer.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Fredrick Nwude Eze
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, Phathum Thani 12120, Thailand;
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (S.S.); (F.N.E.)
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
50
|
Mostafa MM, Amin MM, Zakaria MY, Hussein MA, Shamaa MM, Abd El-Halim SM. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020606. [PMID: 36839928 PMCID: PMC9964659 DOI: 10.3390/pharmaceutics15020606] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Nutraceutical cranberry powder extract (CBPE) has distinct polyphenols inhibiting colon cancer growth and proliferation. However, its oral therapeutic efficacy is hindered because of its low permeability. This study aims to formulate chitosan surface-modified PLGA nanoparticles (CS-PLGA NPs) for encapsulating CBPE and modulating its release rate, permeation, cell targeting, and, therefore, its cytotoxicity. A full 23 factorial design is employed to scrutinize the effect of lactide/glycolide ratio, PLGA weight, and stabilizer concentrations on entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum formula (F4) shows spherical particles with a relatively high EE% (72.30 ± 2.86%), an appropriate size of 370.10 ± 10.31 nm, PDI; 0.398 ± 0.001, and ZP; -5.40 ± 0.21 mV. Alongside the ATR-FTIR outcomes, the chitosan surface-modified formula (CS-F4) demonstrates a significant increase in particle size (417.67 ± 6.77 nm) and a shift from negative to positive zeta potential (+21.63 ± 2.46 mV), confirming the efficiency of surface modification with chitosan. The intestinal permeability of F4 and CS-F4 is significantly increased by 2.19- and 3.10-fold, respectively, compared to the CBPE solution, with the permeability coefficient (Papp) being 2.05 × 10-4 cm/min and 2.91 × 10-4 cm/min, for F4 and CS-F4, respectively, compared to the CBPE solution, 9.36 × 10-5 cm/min. Moreover, CS-F4 evidences significant caspase-3 protein level expression stimulation and significant inhibition of vascular endothelial growth factor (VEGF) and signal transducer and activator of transcription-3 (STAT-3) protein expression levels, confirming the superiority of CS-F4 for targeting HT-29 cells. Briefly, CS-PLGA NPs could be regarded as a prosperous delivery system of CBPE with enhanced permeation, cell targeting, and antitumor efficacy.
Collapse
Affiliation(s)
- Mona M. Mostafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Maha M. Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.M.A.); (S.M.A.E.-H.); Tel.: +20-1221602540 (M.M.A.); +20-1119994874 (S.M.A.E.-H.)
| | - Mohamed Y. Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr 46612, South Sinai, Egypt
| | - Mohammed Abdalla Hussein
- Faculty of Applied Health Sciences Technology, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Marium M. Shamaa
- Biochemistry Department, Clinical and Biological Sciences Division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
- Correspondence: (M.M.A.); (S.M.A.E.-H.); Tel.: +20-1221602540 (M.M.A.); +20-1119994874 (S.M.A.E.-H.)
| |
Collapse
|