1
|
Nam YH, Ahn SM, Seo GJ, Kim NW, Shin SW, Nuankaew W, Murughanantham N, Pandian S, Hwang JS, Hong BN, Kang TH. Optimization of NADES-based green extraction of ellagitannins from rambutan peel with enhanced antioxidant activity. Food Chem 2025; 475:143308. [PMID: 39952176 DOI: 10.1016/j.foodchem.2025.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Rambutan (Nephelium lappaceum L.) peel contains bioactive compounds such as geraniin, corilagin, ellagic acid, and gallic acid, known for their antioxidant, anti-inflammatory, and anticancer properties. Traditional extraction methods involve toxic solvents like methanol and ethanol, posing environmental and safety concerns. This study optimized the extraction of ellagitannins from rambutan peel using Natural Deep Eutectic Solvents (NADES), which are sustainable, non-toxic, and cost-effective. The optimal conditions-water content (20 %), temperature (80 °C), and time (60 min)-were identified using Response Surface Methodology (RSM). The NADES system, composed of betaine (hydrogen bond acceptor) and 1,2-propanediol (donor) in a 1:2 M ratio, achieved the highest ellagitannin yield (54.29 μg/mg) and antioxidant activity (DPPH IC50 = 35.86 μg/mL, ABTS IC50 = 37.66 μg/mL). These findings demonstrate that NADES can be effectively tailored for bioactive compound extraction from rambutan peel, providing a greener alternative for the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Youn Hee Nam
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-Do, Republic of Korea
| | - Soo Mi Ahn
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-Do, Republic of Korea
| | - Gyeong Jin Seo
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Na Woo Kim
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-Do, Republic of Korea
| | - Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Wanlapa Nuankaew
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Nevedita Murughanantham
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Subha Pandian
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea
| | - Bin Na Hong
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-Do, Republic of Korea.
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
2
|
Fraterrigo Garofalo S, Mallen V, Fino D. Extraction of carotenoids from tomato pomace using deep eutectic solvents composed of short and medium-chain fatty acids and menthol. Food Chem 2025; 484:144342. [PMID: 40273866 DOI: 10.1016/j.foodchem.2025.144342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Tomatoes are rich in carotenoids, which remain in significant quantities in tomato pomace and can be sustainably extracted. This study aimed to develop a method for extracting carotenoids from tomato pomace using deep eutectic solvents composed of menthol and fatty acids (butyric, hexanoic, caprylic, lauric, and palmitic), as an alternative to toxic and polluting organic solvents. Preliminary screening identified the most effective deep eutectic solvent, while design of experiment and a kinetic study optimized the extraction process. Under optimal conditions, the DES extracted approximately 300 μg/g of carotenoids on a dry weight basis. HPLC analysis of the extract quantified 24 μg/g ± 5 of β-carotene and 52 μg/g ± 2 of lycopene. The menthol-butyric acid DES outperformed conventional organic solvents, emphasizing its sustainability and efficiency.
Collapse
Affiliation(s)
- Silvia Fraterrigo Garofalo
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy.
| | - Veronica Mallen
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy
| |
Collapse
|
3
|
Patil P, Kumar P. Exploring kudzu: Extraction, quantification, and health impacts of bioactive compounds. Fitoterapia 2025; 182:106453. [PMID: 40020789 DOI: 10.1016/j.fitote.2025.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Kudzu (Pueraria species) is a perennial plant within the Fabaceae family, native to China, Japan, and India. It is known for its therapeutic properties, mainly due to its high content of isoflavones, including puerarin, daidzein, daidzin, genistein, and genistin. These isoflavones are found throughout the plant and are important in developing pharmaceutical drugs. This review comprehensively analyzes naturally occurring isoflavones in Kudzu, focusing on advanced and green techniques for their extraction, purification, and identification. Additionally, it highlights their health benefits and the growing demand in the global food and pharmaceutical industries. Due to their superior efficiency, scalability, and cost-effectiveness, contemporary eco-friendly extraction methods like ultrasound, microwave, enzyme-assisted, and supercritical fluid extraction are gaining prominence in this endeavor. They are crucial in optimizing the extraction process, driving innovation within industries, and harnessing natural sources, ultimately boosting global economies. Scientific studies confirm that Kudzu isoflavones have various anti-diabetic, neuroprotective, anti-cancer, antioxidant, alcohol detoxification, and cardiovascular protective effects. This review encourages further exploration of Kudzu isoflavones as a nutritional food source. It also highlights advancements in extraction methods within pharmaceuticals and natural products, underscoring the superiority of modern techniques over conventional ones. Additionally, critical analysis of the trends, limitations, and scope of Kudzu-extracted isoflavones for novel food applications can further advance scientific understanding.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
4
|
Conta A, Simirgiotis MJ, Martínez Chamás J, Isla MI, Zampini IC. Extraction of Bioactive Compounds from Larrea cuneifolia Cav. Using Natural Deep Eutectic Solvents: A Contribution to the Plant Green Extract Validation of Its Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2025; 14:1016. [PMID: 40219084 PMCID: PMC11990737 DOI: 10.3390/plants14071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
A sustainable alternative to replace the use of toxic and non-biodegradable conventional solvents for the extraction of active principles from plants is natural deep eutectic solvents (NADESs). Larrea cuneifolia Cav. (Zygophyllaceae) is a plant widely distributed in semiarid areas of western Argentina. Several studies validate its popular medicinal use by demonstrating its biological activities such as antibacterial, antifungal, antioxidant, anti-inflammatory, and anticarcinogenic properties, among others. The aim of this work was to compare the bioactive compounds and the in vitro antioxidant and antibacterial activity of L. cuneifolia extracts using non-conventional vs. conventional solvents. Aqueous, ethanolic, and four NADES extracts were prepared. The extracts were phytochemically characterized, and extracted compounds were identified by UHPLC-MS/MS. Antioxidant activity was determined by evaluating the hydrogen peroxide and free radical scavenging capacity using ABTS•+. The antibacterial activity of the extracts and NADESs was evaluated against Gram-positive and Gram-negative multidrug-resistant strains. The extracts of L. cuneifolia presented a variable content of total phenolic compounds between 4163.4 and 24,371.63 µg GAE/mL. Phenolic acids, flavonoid glycosides, flavanones, flavones, flavonols, alkaloids, lignans (nordihydroguaiaretic acid and its derivatives), and other compounds were tentatively identified in extracts of L. cuneifolia obtained with conventional and non-conventional solvents. A heatmap cluster and a bubble plot were created to compare the diversity and relative abundance of identified compounds, and the extracts were classified into two major groups. All extracts were able to scavenge > 40% of hydrogen peroxide and the ABTS radical cation (ABTS•+) (CD50 = 3.15-5.13 µg GAE/mL). The LAS extract exhibited the highest bacterial growth inhibition (MIC = 75-37.5 µg GAE/mL). In conclusion, the results show that NADESs represent a sustainable alternative for the extraction of compounds with antioxidant and antibacterial activity and could therefore replace traditional solvents in the pharmaceutical, cosmetic, or food industries.
Collapse
Affiliation(s)
- Agostina Conta
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Martín 1545, San Miguel de Tucumán 4000, Tucumán, Argentina; (A.C.); (J.M.C.); (M.I.I.)
| | - Mario Juan Simirgiotis
- Instituto de Farmacia, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - José Martínez Chamás
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Martín 1545, San Miguel de Tucumán 4000, Tucumán, Argentina; (A.C.); (J.M.C.); (M.I.I.)
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Martín 1545, San Miguel de Tucumán 4000, Tucumán, Argentina; (A.C.); (J.M.C.); (M.I.I.)
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Martín 1545, San Miguel de Tucumán 4000, Tucumán, Argentina; (A.C.); (J.M.C.); (M.I.I.)
| |
Collapse
|
5
|
Tourabi M, Faiz K, Ezzouggari R, Louasté B, Merzouki M, Dauelbait M, Bourhia M, Almaary KS, Siddique F, Lyoussi B, Derwich E. Optimization of extraction process and solvent polarities to enhance the recovery of phytochemical compounds, nutritional content, and biofunctional properties of Mentha longifolia L. extracts. BIORESOUR BIOPROCESS 2025; 12:24. [PMID: 40128414 PMCID: PMC11933538 DOI: 10.1186/s40643-025-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The current study attempted to evaluate the influence of three extraction processes such as Soxhlet, ultrasound-assisted extraction (UAE,) and cold maceration on one hand and solvent polarities (ethanol 70%, ethyl acetate, and water) on the other hand, vs. phytoconstituents and biofunctional properties of Mentha longifolia L. Noteworthy, all extracts were examined in terms of their chemical components, phenolic and flavonoid content, antioxidant and antimicrobial potentials. Notably, high-performance liquid chromatography coupled with array detector analysis (HPLC-DAD) showed the existence of many phenolic compounds. Hydro-ethanol extract (ETOH 70% (v/v)) prepared with maceration and Soxhlet process showed the ultimate rate of phenolic compounds coupled with the most powerful antioxidant and antimicrobial capacity. Notably, ETOH extract obtained with UAE showed important nutritional properties, particularly soluble carbohydrate (50.1 ± 0.70 mg/g dry weight), and soluble protein (26.5 ± 0.5 mg/g dry weight), while aqueous extract obtained by use of UAE extraction maximized pigment content. The outcome of this work showed that Soxhlet and maceration extraction processes with many polar solvents are more appropriate for M. longifolia extraction. M. longifolia possesses promising phytochemicals, which can be used in different sectors like food, pharmaceutical, and cosmetic formulations.
Collapse
Affiliation(s)
- Meryem Tourabi
- Laboratory of Biotechnology, Conservation and Valorization of Bioresources, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Khaoula Faiz
- Laboratory of Biotechnology, Environment, Agri-Food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Rachid Ezzouggari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknès, Morocco
| | - Bouchra Louasté
- Laboratory of Biotechnology, Environment, Agri-Food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Merzouki
- Laboratory of Biotechnology, Environment, Agri-Food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Musaab Dauelbait
- University of Bahr el Ghazal, Freedowm Stree, Wau, 91113, South Sudan.
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, 11451, Riyadh, Saudi Arabia
| | - Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Badiaa Lyoussi
- Laboratory of Biotechnology, Conservation and Valorization of Bioresources, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Elhoussine Derwich
- Laboratory of Biotechnology, Conservation and Valorization of Bioresources, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unity of GC/MS and GC-FID, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
Anuța V, Nica MA, Prisada RM, Popa L, Velescu BȘ, Marinas IC, Gaboreanu DM, Ghica MV, Cocoș FI, Nicolae CA, Dinu-Pîrvu CE. Novel Buccal Xanthan Gum-Hyaluronic Acid Eutectogels with Dual Anti-Inflammatory and Antimicrobial Properties. Gels 2025; 11:208. [PMID: 40136913 PMCID: PMC11942315 DOI: 10.3390/gels11030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Buccal drug delivery systems often struggle with poor drug solubility, limited adhesion, and rapid clearance, leading to suboptimal therapeutic outcomes. To address these limitations, we developed a novel hybrid eutectogel composed of xanthan gum (XTG), hyaluronic acid (HA), and a Natural Deep Eutectic Solvent (NADES) system (choline chloride, sorbitol, and glycerol in 2:1:1 mole ratio), incorporating 2.5% ibuprofen (IBU) as a model drug. The formulation was optimized using a face-centered central composite design to enhance the rheological, textural, and drug release properties. The optimized eutectogels exhibited shear-thinning behavior (flow behavior index, n = 0.26 ± 0.01), high mucoadhesion (adhesiveness: 2.297 ± 0.142 N·s), and sustained drug release over 24 h, governed by Higuchi kinetics (release rate: 237.34 ± 13.61 μg/cm2/min1/2). The ex vivo residence time increased substantially with NADES incorporation, reaching up to 176.7 ± 23.1 min. An in vivo anti-inflammatory evaluation showed that the eutectogel reduced λ-carrageenan-induced paw edema within 1 h and that its efficacy was sustained in the kaolin model up to 24 h (p < 0.05), achieving comparable efficacy to a commercial 5% IBU gel, despite a lower drug concentration. Additionally, the eutectogel presented a minimum inhibitory concentration for Gram-positive bacteria of 25 mg/mL, and through direct contact, it reduced microbial viability by up to 100%. Its efficacy against Bacillus cereus, Enterococcus faecium, and Klebsiella pneumoniae, combined with its significant anti-inflammatory properties, positions the NADES-based eutectogel as a promising multifunctional platform for buccal drug delivery, particularly for inflammatory conditions complicated by bacterial infections.
Collapse
Affiliation(s)
- Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Bruno Ștefan Velescu
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
| | - Diana-Madalina Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
- Departament of Botany and Microbiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Florentina Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Cristian Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| |
Collapse
|
7
|
Ariestanti DM, Mun'im A, Hartrianti P, Nadia B, Chriscensia E, Rattu SA, Fadhila R, Harianto A, Simamora A, Ramadon D, James RJ, Saputri FC, Kato M, Puteri MU. Ultrasonic-assisted extraction (UAE) of Javanese turmeric rhizomes using natural deep eutectic solvents (NADES): Screening, optimization, and in vitro cytotoxicity evaluation. ULTRASONICS SONOCHEMISTRY 2025; 114:107271. [PMID: 39955874 PMCID: PMC11872070 DOI: 10.1016/j.ultsonch.2025.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Javanese turmeric (Curcuma xanthorrhiza Roxb.) is known for its diverse pharmacological activities due to its rich phytoconstituents, including curcuminoids and xanthorrhizol. Typically, these compounds are extracted using organic solvents, which pose health and environmental risks. Therefore, safer and more environmentally friendly green extraction methods are being developed. This study investigated the effect of ultrasound-assisted extraction (UAE) combined with natural deep eutectic solvents (NADES) based on choline chloride and organic acids (lactic, malic, and citric acid) to find the best combination for extracting curcuminoids and xanthorrhizol from Javanese turmeric. Results showed that UAE using choline chloride and malic acid (1:1) (ChCl-MA) yielded the best results. The Box-Behnken Design optimized water addition, solvent-to-powder ratio, and extraction time, with optimal conditions being 25 % water addition, a 20 mL/g ratio, and a 15-minute extraction time. This method yielded 4.58 mg/g of curcuminoids and 12.93 mg/g of xanthorrhizol. Furthermore, the ChCl-MA NADES with UAE extraction showed more cytoselective activity towards the HeLa cancer cell line compared to the non-cancer HaCaT cell line. In contrast, traditional ethanol extraction was non-selective, as indicated by similar cell viability reductions in both HeLa and HaCaT cells at 6.25 ppm. Collectively, this study is the first to report the optimal NADES combination with UAE, based on salts and organic acids, for the extraction of Javanese turmeric rhizomes with selective cytotoxic effects against cancer cells. These findings may contribute to the development of novel, naturally derived anticancer agents using green extraction techniques.
Collapse
Affiliation(s)
- Donna Maretta Ariestanti
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Abdul Mun'im
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Basmah Nadia
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Erika Chriscensia
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Shereen Angelina Rattu
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Redhalfi Fadhila
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Anastacia Harianto
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Adelina Simamora
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Richard Johari James
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam, Selangor, Malaysia
| | - Fadlina Chany Saputri
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Meidi Utami Puteri
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia.
| |
Collapse
|
8
|
Sitthisak C, Jomrit J, Chunglok W, Putalun W, Kanchanapoom T, Juengwatanatrakul T, Yusakul G. Effect of honey, as a natural deep eutectic solvent, on the phytochemical stability and anti-inflammatory activity of Eurycoma longifolia Jack. RSC Adv 2025; 15:5252-5263. [PMID: 39967879 PMCID: PMC11833601 DOI: 10.1039/d4ra05005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
The use of Eurycoma longifolia Jack (EL) in combination with honey is widely recognized in conventional medicine because of its aphrodisiac and pyretic properties. However, the effects of honey, a natural deep eutectic solvent (NADES), on the phytochemical stability and anti-inflammatory activity of EL remain unknown. This study aimed to investigate the effect of honey on phytochemical and anti-inflammatory effects of EL. The stabilities of bioactive compounds, including eurycomanone (EU), 9-hydroxycanthine-6-one (9HCO), and 9-methoxycanthine-6-one (9MCO), were evaluated after treating EL with honey. The anti-inflammatory activity was assessed by measuring the inhibition of NO production in lipopolysaccharide-induced RAW264.7 macrophages. The EL formulations treated with honey exhibited significantly higher yields of EU and 9HCO; however, a decrease in 9MCO was observed. After a 90 day infusion, the anti-inflammatory activities of honey-treated EL (9.19-68.73% NO inhibition) and simulated honey-NADES-treated EL (5.37-66.68% NO inhibition) were slightly lower than that of the non-treated EL extract (10.34-77.93% NO inhibition). Nonsugar honey constituents also exhibited anti-inflammatory effects. The combination of EL extract and honey resulted in a slightly lower anti-inflammatory activity (11.66-68.55% NO inhibition) compared with the EL extract. Honey and NADES enhanced the extraction and stabilization of bioactive compounds from EL. The anti-inflammatory properties of EL were preserved after honey treatment, indicating that honey-treated EL is a potential natural treatment for inflammatory conditions.
Collapse
Affiliation(s)
- Chanakan Sitthisak
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
| | - Juntratip Jomrit
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University Nakhon Si Thammarat Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University Nakhon Si Thammarat Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University Khon Kaen Thailand
| | | | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand +66-75-67-2814 +66-75-67-2839
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Nakhon Si Thammarat Thailand
- Hub of Knowledge in Microwave Heating and Applications, Walailak University Nakhon Si Thammarat Thailand
| |
Collapse
|
9
|
Okeke UJ, Micucci M, Mihaylova D, Cappiello A. The effects of experimental conditions on extraction of polyphenols from African Nutmeg peels using NADESs-UAE: a multifactorial modelling technique. Sci Rep 2025; 15:4890. [PMID: 39930029 PMCID: PMC11811197 DOI: 10.1038/s41598-025-88233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Extraction of polyphenolic compounds from African nutmeg (Monodora myristica (Gaertn.)) peels using natural acidic deep eutectic solvents coupled to ultrasound-assisted extraction (NADESs-UAE) followed many factors at a time (MFAT) screening with response surface optimization was investigated. Fourteen different NADESs based on citric acid as hydrogen bond acceptor (HBA) were designed and tested. Sucrose, fructose, xylitol, glycerol, glycine, and glucose were used as hydrogen bond donors (HBDs). The responses studied are total phenolic compounds (TPC), total flavonoid compounds (TFC), and antioxidant activity (AA) based on cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). The UAE procedure was optimized with the most efficient NADES. Quadratic models produced satisfactory fitting of the experimental data regarding TPC (R2 = 0.9999, p < 0.0001), TFC (R2 = 0.9991, p < 0.0001), and AA- CUPRAC (R2 = 0.9988, p < 0.0001) and FRAP (R2 = 1.000, P < 0001). Ultrasound temperature 30°c, extraction time 5 min, solvent volume 25 ml, and solvent concentration 90% (v/v) were considered optimal conditions for the extraction models resulting in TPC 1290.9 ± 5.6 mg/g GAE db, TFC 2398.7 ± 23 µg/g QE db, CUPRAC 38.46 ± 0.4.4 µmol/g TE db, and FRAP 26.15 ± 0.11µmol/g TE db, respectively.
Collapse
Affiliation(s)
- Udodinma Jude Okeke
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Matteo Micucci
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy.
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Achile Cappiello
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
10
|
Marinaccio L, Gentile G, Zengin G, Pieretti S, Stefanucci A, Cichelli A, Mollica A. Ultrasound assisted deep eutectic solvent-based extraction of Montepulciano d' Abruzzo grape seeds for the recovery of the grape seed oil and its biological evaluation. Food Chem X 2025; 26:102273. [PMID: 40027111 PMCID: PMC11870214 DOI: 10.1016/j.fochx.2025.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Grape seeds are by-products of vinification process. In this work, a green ultrasound-assisted extraction of grape seeds oil was performed by using the natural volatile deep eutectic solvent (NADES) menthol: thymol 1:1. The obtained oil was compared to that deriving from UAE with n-hexane in terms of fatty acids composition and biological activities. The content of linoleic acid was low for the DES extracted oil; the content of linolenic acid increased from 0.53 % to 5.18 %. The grape seeds oil extracted with DES showed the best total phenolic (18.65 mg GAE/g) and flavonoid (0.73 mg RE/g) contents and the highest results in FRAP, CUPRAC, MCA and Phosphomolybdenum assays. The oil extracted by DES also showed a higher amylase inhibition (0.57 mmol ACAE/g) than n-hexane extract (0.47 mmol ACAE/g). Finally, the anti-inflammatory activity was assessed in vivo through tree different assays, suggesting that their different fatty acids composition could be partially responsible for the significant anti-inflammatory effect of the grape seed oil extracted by NADES.
Collapse
Affiliation(s)
- Lorenza Marinaccio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gentile
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- SCM Nutraceutici Universitari Srl, Strada degli Oliveti 73, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, “G. D'Annunzio” University of Chieti-Pescara, 65100 Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- SCM Nutraceutici Universitari Srl, Strada degli Oliveti 73, 66100 Chieti, Italy
| |
Collapse
|
11
|
Yaman Uzunoglu G, Yuksel R. Toward Green and Sustainable Zinc-Ion Batteries: The Potential of Natural Solvent-Based Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411478. [PMID: 39838768 DOI: 10.1002/smll.202411478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability. This review explores the potential of natural solvent-based electrolytes derived from renewable and biodegradable resources. Natural deep eutectic solvents (DES), bio-ionic liquids, and biomass-derived organic compounds present unique advantages, including a wider electrochemical stability window, reduced HER activity, and controlled zinc deposition. Examples include DESs based on choline chloride (ChCl), glycerol-based systems, and biomass-derived solvents such as γ-valerolactone (GVL) and aloe vera, demonstrating improved cycling stability and dendrite suppression. Despite their promise, challenges such as high viscosity, cost, and scalability remain critical barriers to commercialization. This review underscores the need for further research to optimize natural solvent formulations, enhance Zn anode compatibility, and integrate these systems into practical applications. By addressing these challenges, natural solvent-based electrolytes can pave the way for safer, high-performance, and environmentally sustainable ZIBs, particularly large-scale energy storage systems.
Collapse
Affiliation(s)
- Gulsah Yaman Uzunoglu
- Department of Chemical Engineering, Istanbul Health and Technology University (ISTUN), İstanbul, 34445, Turkey
| | - Recep Yuksel
- Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey
- Advanced Materials Technologies Application and Research Center (IMATEK), Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey
| |
Collapse
|
12
|
Fernandes CC, Paiva A, Haghbakhsh R, Duarte ARC. Application of Hansen solubility parameters in the eutectic mixtures: difference between empirical and semi-empirical models. Sci Rep 2025; 15:3862. [PMID: 39890925 PMCID: PMC11785947 DOI: 10.1038/s41598-025-87050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025] Open
Abstract
Hansen Solubility Parameters (HSPs) are widely used as a tool in solubility studies. Given the variety of existent approaches to predict these parameters, this investigation focused on estimating the HSPs of a set of Natural Deep Eutectic Systems (NADES), using empirical (EM) and semi-empirical models (SEM), and then understanding their differences/similarities. Although these theoretical models are designed and recommended mostly for simple molecules or simple solutions, they are still being used in eutectic systems studies, mainly empirical ones. Thus, a preliminary test was conducted with a set of conventional solvents, in which their experimental values of HSPs are known. Besides the confirmation of the EM as the most suitable for these kinds of regular solvents, the results found also showed a very similar behaviour to what was observed in NADES, i.e., in terms of suggesting the EM and SEM with the highest/lowest similarity. Furthermore, it was concluded that although there is a large discrepancy between the estimated values of the hydrogen bond parameter, especially for systems with a higher polar character, there is still a good similarity for the other parameters. In fact, it was observed that, when combining the semi-empirical models, it was possible to obtain a value of the hydrogen bond parameter more similar to the empirical ones.
Collapse
Affiliation(s)
- Cláudio C Fernandes
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516, Caparica, Portugal
| | - Alexandre Paiva
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516, Caparica, Portugal
| | - Reza Haghbakhsh
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516, Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516, Caparica, Portugal.
| |
Collapse
|
13
|
Guerrero-Higareda S, Carrillo-Nieves D. Green extraction cascade of UV-absorbing compounds, alginate, and fucoidan from Sargassum using ethanol and natural deep eutectic solvents. Heliyon 2025; 11:e41810. [PMID: 39897924 PMCID: PMC11783382 DOI: 10.1016/j.heliyon.2025.e41810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The objective of this study was to evaluate Caribbean Mexican seaweed as a raw material for the production of fucoidans, alginates, and bioactive extracts with antioxidant activity, total flavonoid content, total phenolic content, and UV absorbance. Extractions were first performed using varying ethanol concentrations and maceration times, with the optimal treatment selected based on its superior antioxidant activity, flavonoid and phenolic contents, and UV absorbance. The solid fraction from this treatment was then subjected to extraction using green solvents, specifically natural deep eutectic solvents (NADESs) and ultrasound-assisted extraction (UAE), to isolate alginate and fucoidan. The green extraction cascade enables the recovery of multiple value-added products from each fraction, showcasing both versatility and sustainability. The new DES combination yielded a high amount of crude fucoidan (0.4103 ± 0.0042 g g⁻1 dry algae), exceeding the yields reported in previous studies. FTIR-ATR analysis confirmed that the extracted fucoidan structure was consistent with that of Sargassum spp., although further purification and characterization are needed to determine whether its known bioactive properties are preserved. All treatments exhibited strong UV-B absorbance, highlighting the potential of Sargassum extracts as sunscreen filters, with polyphenolic compounds being the primary contributor to UV absorption. Additionally, UV-A absorbance was correlated with flavonoid and carotenoid content, particularly in 50 % ethanol extracts. Future research should explore the potential of Sargassum for sunscreen applications and polysaccharide extraction, offering a sustainable solution to the environmental and economic challenges posed by annual Sargassum blooms in Mexico.
Collapse
Affiliation(s)
- Santiago Guerrero-Higareda
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jalisco, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jalisco, Mexico
| |
Collapse
|
14
|
Acosta-Vega L, Cifuentes A, Ibáñez E, Galeano Garcia P. Exploring Natural Deep Eutectic Solvents (NADES) for Enhanced Essential Oil Extraction: Current Insights and Applications. Molecules 2025; 30:284. [PMID: 39860154 PMCID: PMC11767276 DOI: 10.3390/molecules30020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are highly valued in the cosmetic and food industries for their diverse properties. However, traditional extraction methods often result in low yields, inconsistent compositions, lengthy extraction times, and the use of potentially harmful solvents. Natural deep eutectic solvents (NADES) have emerged as promising alternatives, offering advantages such as higher efficiency, cost-effectiveness, biodegradability, and tunable properties. This review explores the application of NADES in enhancing EO extraction, focusing on current methodologies, key insights, and practical applications. It examines the factors that influence EO extraction with NADES, including the optimization of their physicochemical properties, extraction techniques, operational conditions, and the role of sample pretreatment in improving efficiency. Additionally, this review covers the chemical characterization and biological activities of EOs extracted using NADES. By providing a comprehensive overview, it highlights the potential of NADES to improve EO extraction and suggests directions for future research in this field.
Collapse
Affiliation(s)
- Luis Acosta-Vega
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Paula Galeano Garcia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Romano E, Domínguez-Rodríguez G, Mannina L, Cifuentes A, Ibáñez E. Sequential Obtention of Blood-Brain Barrier-Permeable Non-Polar and Polar Compounds from Salvia officinalis L. and Eucalyptus globulus Labill. with Neuroprotective Purposes. Int J Mol Sci 2025; 26:601. [PMID: 39859317 PMCID: PMC11765258 DOI: 10.3390/ijms26020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Eucalyptus globulus Labill. and Salvia officinalis L. for neuroprotective purposes. A sequential extraction process was applied, starting with supercritical CO2 extraction (SC-CO2) to obtain non-polar terpenoids, followed by pressurized natural deep eutectic solvent extraction (PLE-NaDES) to recover phenolic compounds from the SC-CO2 residue. PLE-NaDES extracts exhibited higher antioxidant and anticholinergic capacities than SC-CO2 extracts for both plants, with S. officinalis extracts being more bioactive than E. globulus extracts. A total of 21 terpenoids were identified using gas chromatography-mass spectrometry from E. globulus while 24 were detected from S. officinalis SC-CO2 extracts. In addition, 25 different phenolic compounds were identified in both plants using high-performance liquid chromatography coupled with mass spectrometry from PLE-NaDES extracts. The study of the permeability across the BBB showed limited permeability for non-polar compounds obtained by SC-CO2 from both plants; however, the more polar compounds obtained by PLE-NaDES showed high permeability, particularly for flavonoids in E. globulus and rosmarinic acid in S. officinalis. This study revealed, for the first time, the antioxidant and neuroprotective potential of S. officinalis and E. globulus extracts obtained using SC-CO2 followed by PLE-NaDES, as well as the high permeability of PLE-NaDES extracts when crossing the BBB to exert their protective effects. This research opens a new pathway for exploring alternatives to current drugs used in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
16
|
Mavai S, Bains A, Sridhar K, Chawla P, Sharma M. Emerging deep eutectic solvents for food waste valorization to achieve sustainable development goals: Bioactive extractions and food applications. Food Chem 2025; 462:141000. [PMID: 39241686 DOI: 10.1016/j.foodchem.2024.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research, and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
17
|
de Souza Mesquita LM. The perfect match between macroalgae and eutectic solvents as a sustainable gateway to ready-to-use extracts towards a (blue + green) economy ─ A perspective review. BIORESOURCE TECHNOLOGY 2024; 414:131600. [PMID: 39389382 DOI: 10.1016/j.biortech.2024.131600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The article discusses how aligning with the Sustainable Development Goals (SDGs) can foster a sustainable economy, mainly through the (green + blue) economy, which involves valorizing macroalgae to produce ready-to-use extracts. It focuses on the potential of eutectic solvents (commonly known as deep eutectic solvents - DES) as promising candidates for this purpose. Traditional methods for extracting bioactive compounds from macroalgae, which rely on organic solvents and aqueous buffers, often involve harsh conditions and extensive processing. These factors can lead to reduced extract quality and/or low yields. In contrast, if properly designed, DES presents a green and sustainable alternative. They offer advantages such as low volatility, adjustable polarity, and negligible toxicity, making them a more environmentally friendly and efficient option for extraction processes. They can be customized to enhance both biological and technological properties, resulting in extracts with unique characteristics such as increased antioxidant activity, antiproliferative and anti-inflammatory effects, as well as improving the viscoelasticity of polysaccharides (fucoidans, alginates, and κ-carrageenan) from macroalgae. In this sense, the tunable nature of DES enables the optimization of extraction conditions to maximize yield, purity, and bioactivity, making it a smart alternative for producing bio-based products. Despite limited literature on DES for this purpose, the article highlights their potential and outlines the main advantages and challenges needed for macroalgae valorization.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 13484-350 Limeira, São Paulo, Brazil.
| |
Collapse
|
18
|
Sharma M, Urvashi, Gupta H, Anmol, Sharma U, Reddy SGE. Chemical Composition and Insecticidal Potential of Essential Oil from Murraya koenigii (L.) Obtained by Natural Deep Eutectic Solvents. NEOTROPICAL ENTOMOLOGY 2024; 53:1318-1331. [PMID: 39414752 DOI: 10.1007/s13744-024-01207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Aphis craccivora Koch and Planococcus lilacinus Cockerell are phloem feeders and act as vectors for transmitting plant viruses to agricultural and horticultural crops thereby damaging them. The persistent and widespread use of synthetic, wide-spectrum pesticides has resulted in resistance development that is detrimental to the environment, human health, and natural enemies of pests. The present investigation uses various extraction mediums to examine the insecticidal efficacy of essential oils (EOs) isolated from Murraya koenigii (L.) leaves. Increase in yield was observed in the EO extracted using NADES-AHD [0.16% (obtained with hydro-distillation)] to 0.30% [obtained with N-1 (glycerol:lactic acid)]. EO obtained with water was found more effective against A. craccivora (LD50 = 0.89 µL/insect) and followed by N-1 (glycerol:lactic acid), and N-3 (choline chloride:citric acid) (LD50 = 1.29-1.38 µL/insect). Similarly, EO isolated by water and N-4 (choline chloride:oxalic acid) was effective against P. lilacinus (LD50 = 2.63-3.06 µL/insect). Additionally, the EO prepared by water substantially reduced glutathione S-transferase (GST) and acetylcholinesterase (AChE) in target pests, suggesting that these enzymes may be the EOs' site of action. NADES-AHD has enhanced the EO yield as compared to the conventional method. The EO obtained with water showed promising toxicity against target pests and target site of action. Therefore, based on field and greenhouse bio-efficacy experiments, EOs/biopesticides/botanicals can be proposed for controlling the spread of mealy bugs and aphids.
Collapse
Affiliation(s)
- Mehak Sharma
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urvashi
- Entomology Lab, CSIR-Institute of Himalayan Bioresource Technology, Agrotechnology Division, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Present Address: Entomology Lab, Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, Karnataka, India
| | - Himanshi Gupta
- Entomology Lab, CSIR-Institute of Himalayan Bioresource Technology, Agrotechnology Division, Palampur, 176061, India
| | - Anmol
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - S G Eswara Reddy
- Entomology Lab, CSIR-Institute of Himalayan Bioresource Technology, Agrotechnology Division, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Present Address: Entomology Lab, Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, Karnataka, India.
| |
Collapse
|
19
|
Li R, Hsueh PH, Ulfadillah SA, Wang ST, Tsai ML. Exploring the Sustainable Utilization of Deep Eutectic Solvents for Chitin Isolation from Diverse Sources. Polymers (Basel) 2024; 16:3187. [PMID: 39599277 PMCID: PMC11598258 DOI: 10.3390/polym16223187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Deep eutectic solvents (DES) represent an innovative and environmentally friendly approach for chitin isolation. Chitin is a natural nitrogenous polysaccharide, characterized by its abundance of amino and hydroxyl groups. The hydrogen bond network in DES can disrupt the crystalline structure of chitin, facilitating its isolation from bioresources by dissolving or degrading other components. DES are known for their low cost, natural chemical constituents, and recyclability. Natural deep eutectic solvents (NADES), a subclass of DES made from natural compounds, offer higher biocompatibility, biodegradability, and the lowest biotoxicity, making them highly promising for the production of eco-friendly chitin products. This review summarized studies on chitin isolation by DES, including reviews of biomass resources, isolation conditions (raw materials, DES compositions, solid-liquid ratios, temperature, and time), and the physicochemical properties of chitin products. Consequently, we have concluded that tailoring an appropriate DES-based process on the specific composition of the raw material can notably improve isolation efficiency. Acidic DES are particularly effective for extracting chitin from materials with high mineral content, such as crustacean bio-waste; for instance, the choline chloride-lactic acid DES achieved purity levels comparable to those of commercial chemical methods. By contrast, alkaline DES are better suited for chitin isolation from protein-rich sources, such as squid pens. DES facilitate calcium carbonate removal through H+ ion release and leverage unique hydrogen bonding interactions for efficient deproteination. Among these, potassium carbonate-glycerol DES have demonstrated optimal efficacy. Nonetheless, further comprehensive research is essential to evaluate the environmental impact, economic feasibility, and safety of DES application in chitin production.
Collapse
Affiliation(s)
| | | | | | - Shang-Ta Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; (R.L.); (P.-H.H.); (S.A.U.)
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; (R.L.); (P.-H.H.); (S.A.U.)
| |
Collapse
|
20
|
Domínguez-Rodríguez G, Amador-Luna VM, Benešová K, Pernica M, Parada-Alfonso F, Ibáñez E. Biorefinery approach with green solvents for the valorization of Citrus reticulata leaves to obtain antioxidant and anticholinergic extracts. Food Chem 2024; 456:140034. [PMID: 38870823 DOI: 10.1016/j.foodchem.2024.140034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Victor M Amador-Luna
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Karolína Benešová
- Research Institute of Brewing and Malting, Mostecká 7, 614 00 Brno, Czech Republic
| | - Marek Pernica
- Research Institute of Brewing and Malting, Mostecká 7, 614 00 Brno, Czech Republic
| | - Fabián Parada-Alfonso
- High Pressure Laboratory, Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321, Bogotá D.C., Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
21
|
Cokdinleyen M, Domínguez-Rodríguez G, Kara H, Ibáñez E, Cifuentes A. New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata. Mar Drugs 2024; 22:467. [PMID: 39452875 PMCID: PMC11509369 DOI: 10.3390/md22100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A biorefinery process was developed to isolate phycobiliproteins, sulfated polysaccharides, and phenolic compounds from Palmaria palmata. The extraction process was carried out in three stages using ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) integrated with different natural deep eutectic solvents (NaDESs). In general, PLE provided higher phycobiliprotein contents than UAE in the first step of the process. In fact, the hydrolysis product of the PLE-NaDES extracts achieved a higher antioxidant capacity than that of the UAE-NaDES extracts. Particularly, glycerol:glucose (2:1) with 50% water in combination with PLE was the most suitable NaDES to recover the highest phycobiliprotein, protein, and sulfated polysaccharide contents from Palmaria palmata in the first and second steps of the biorefinery process. Finally, a PLE-NaDES using choline chloride:glycerol (1:2) with 60% water as the NaDES was employed for the recovery of antioxidant and neuroprotective phenolic compounds from the residue of the second step, obtaining a higher total phenolic content than employing PLE with ethanol/water (70:30, v/v) as the extraction solvent. Moreover, a forced stability study revealed that the NaDESs provided a protective effect compared to the water extracts against the degradation of phycobiliproteins, preserving their color over time. This study contributes to the recovery of high-value components from an undervalued biomarine source through a sustainable biorefinery process.
Collapse
Affiliation(s)
- Melis Cokdinleyen
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (E.I.); (A.C.)
- Faculty of Sciences, Department of Chemistry, Selçuk University, Arciçh, Ismetpasa Cad, Selçuklu, Konya 42250, Turkey;
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (E.I.); (A.C.)
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Huseyin Kara
- Faculty of Sciences, Department of Chemistry, Selçuk University, Arciçh, Ismetpasa Cad, Selçuklu, Konya 42250, Turkey;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (E.I.); (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (M.C.); (E.I.); (A.C.)
| |
Collapse
|
22
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
23
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
24
|
Wu K, Zhang H, Lou X, Wu X, Wang Y, Zhao K, Du X, Xia X. Analysis of NADES and its water tailoring effects constructed from inulin and L-proline based on structure, physicochemical and antifreeze properties. Int J Biol Macromol 2024; 277:134049. [PMID: 39038572 DOI: 10.1016/j.ijbiomac.2024.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The structure, physicochemical and anti-freeze properties of natural deep eutectic solvent (NADES) composed of inulin and L-proline (molar ratio of 1:11) were investigated. Proton nuclear magnetic resonance (1H NMR), Fourier infrared spectroscopy (FTIR), and Raman spectroscopy revealed extensive hydrogen bonding in the pure NADES system, and the addition of water weakens the hydrogen bonding interactions between the components. The smaller transverse relaxation time (T2) represents the stronger hydrogen bond strength, and NADES+40 % H2O exhibited a large T2 (71.68 ms). When 10 % water was added, the viscosity decreased from 3620 mPa·s to 1777 mPa·s, but the conductivity increased to approximately twice the original value. Furthermore, adding 10 % water lowered the glass transition temperature (Tg) of NADES by 5.6 °C. NADES+10 % H2O exhibited favorable thermal stability and freezing resistance, as evidenced by the fact that approximately 82.61 % of the ice crystals area <200 μm2 after 30 min of crystallization. The changes in the structure, physicochemical, and anti-freezing properties of water-tailored NADES are expected to enable the design of novel antifreeze agents.
Collapse
Affiliation(s)
- Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinjiang Lou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Kuangyu Zhao
- Fang zheng comprehensive Product quality inspection and testing center, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
25
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
26
|
Yahaya N, Mohamed AH, Sajid M, Zain NNM, Liao PC, Chew KW. Deep eutectic solvents as sustainable extraction media for extraction of polysaccharides from natural sources: Status, challenges and prospects. Carbohydr Polym 2024; 338:122199. [PMID: 38763725 DOI: 10.1016/j.carbpol.2024.122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Deep eutectic solvents (DES) emerge as promising alternatives to conventional solvents, offering outstanding extraction capabilities, low toxicity, eco-friendliness, straightforward synthesis procedures, broad applicability, and impressive recyclability. DES are synthesized by combining two or more components through various synthesis procedures, such as heat-assisted mixing/stirring, grinding, freeze drying, and evaporation. Polysaccharides, as abundant natural materials, are highly valued for their biocompatibility, biodegradability, and sustainability. These versatile biopolymers can be derived from various natural sources such as plants, algae, animals, or microorganisms using diverse extraction techniques. This review explores the synthesis procedures of DES, their physicochemical properties, characterization analysis, and their application in polysaccharide extraction. The extraction optimization strategies, parameters affecting DES-based polysaccharide extraction, and separation mechanisms are comprehensively discussed. Additionally, this review provides insights into recently developed molecular guides for DES screening and the utilization of artificial neural networks for optimizing DES-based extraction processes. DES serve as excellent extraction media for polysaccharides from different sources, preserving their functional features. They are utilized both as extraction solvents and as supporting media to enhance the extraction abilities of other solvents. Continued research aims to improve DES-based extraction methods and achieve selective, energy-efficient processes to meet the demands of this expanding field.
Collapse
Affiliation(s)
- Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam Kepala Batas, Penang, Malaysia.
| | - Ahmad Husaini Mohamed
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia.
| | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam Kepala Batas, Penang, Malaysia
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
27
|
Singh PP, Anmol, Suresh PS, Sharma U. NADES extraction, UHPLC-ELSD-based quantification, and network pharmacology-guided target identification of fourteen specialised metabolites from Trillium govanianum Wall. ex D.Don. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1265-1277. [PMID: 38659229 DOI: 10.1002/pca.3357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Trillium govanianum Wall. ex D.Don is a folk medicinal herb rich in structurally diverse steroidal saponins. The annual demand for this herb in India is about 200-500 metric tons, highlighting the need for a thorough quality assessment. OBJECTIVE The objective of this study is to develop an easy and reliable ultrahigh-performance liquid chromatography-evaporative light scattering detector (UHPLC-ELSD)-based quality assessment method with 14 specialised metabolites of T. govanianum and identify the potential targets of this herb using network pharmacology. MATERIAL AND METHODS A UHPLC-ELSD method was developed and validated with 14 markers of T. govanianum. The developed method and natural deep eutectic solvent (NADES)-assisted extraction were utilised for the recovery enhancement study of targeted specialised metabolites from rhizome samples (collected from five geographically distinct areas). In addition, the network pharmacology approach was performed for these 14 markers to predict the plausible biological targets of T. govanianum. RESULT The developed method showed good linearity (r2: 0.940-0.998), limit of detection (LOD) (2.4-9.0 μg), limit of quantification (LOQ) (7.92-29.7 μg), precision (intra-day relative standard deviations [RSDs] 0.77%-1.96% and inter-day RSDs 2.19-4.97%), and accuracy (83.24%-118.90%). NADES sample TG-1* showed the highest recovery (yield: 167.66 ± 4.39 mg/g of dry weight) of total saponin content (TSC) as compared to its hydroethanolic extract (yield: 103.95 ± 5.36 mg/g of dry weight). Sample TG-1* was the most favourable (yield: 167.66 ± 4.39 mg/g) in terms of TSC as compared to other analysed samples (32.68 ± 1.04-88.22 ± 6.79 mg/g). Govanoside D (yield: 3.43-28.06 mg/g), 22β-hydroxyprotodioscin (yield: 3.22-114.79 mg/g), and dioscin (yield: 1.07-20.82 mg/g) were quantified as the major metabolites. Furthermore, network pharmacology analysis of targeted 14 markers indicated that these molecules could be possible therapeutic agents for managing neuralgia, diabetes mellitus, and hyperalgesia. CONCLUSION The current study represents the first report for the simultaneous quantification and a network pharmacology-based analysis of 14 chemical marker compounds isolated from T. govanianum.
Collapse
Affiliation(s)
- Prithvi Pal Singh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anmol
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Patil Shivprasad Suresh
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Upendra Sharma
- C-H Activation and Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
28
|
Mouffok A, Boublia A, Bellouche D, Zed SD, Tabhirt N, Alam M, Ernst B, Benguerba Y. Investigating the synergistic effects of apple vinegar and deep eutectic solvent as natural antibiotics: an experimental and COSMO-RS analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-22. [PMID: 38965904 DOI: 10.1080/09603123.2024.2370391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The present investigation examines the antimicrobial and antifungal characteristics of natural deep eutectic solvents (NADES) and apple vinegar in relation to a diverse array of bacterial and fungal strains. The clinical bacterial strains, including gram-negative and gram-positive, and the fungal pathogen Candida albicans, were subjected to solid medium diffusion to determine the inhibitory effects of these compounds. The results show that NADES has superior antimicrobial and antifungal action compared to apple vinegar. The observed inhibitory zones for apple vinegar and NADES varied in length from 16.5 to 24.2 and 16 to 52.5 mm, respectively. The results obtained indicate that no synergy is observed for this mixture (50% AV + 50% NADES). The range of values for bactericidal concentrations (MBC) and minimal inhibitory concentrations (MIC) was 0.0125 to 0.2 and 0.0125 to 0.4 µl/ml, respectively. Antibacterial and antifungal chemicals may be found in apple vinegar and NADES, with NADES offering environmentally safe substitutes for traditional antibiotics. Additional investigation is suggested to refine these compounds for a wide range of bacteria, which could create antimicrobial solutions that are both highly effective and specifically targeted, thereby offering extensive potential in medicine and the environment.
Collapse
Affiliation(s)
- Abdenacer Mouffok
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Nature and Life Sciences, Ferhat Abbas University-Setif 1, Setif, Algeria
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Djedjiga Bellouche
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Nature and Life Sciences, Ferhat Abbas University-Setif 1, Setif, Algeria
| | - Siadj Dounia Zed
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Nature and Life Sciences, Ferhat Abbas University-Setif 1, Setif, Algeria
| | - Narimen Tabhirt
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Nature and Life Sciences, Ferhat Abbas University-Setif 1, Setif, Algeria
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat ABBAS University of Setif, Setif, Algeria
| |
Collapse
|
29
|
Cremasco G, Sutton AT, Funari CS, Arrua DR, Dussan KJ, Hilder EF, Bolzani VS, Rinaldo D. Sustainable and Biomimetic Methodology for Extraction of High-Value-Added Compounds in Almond Hulls. Molecules 2024; 29:3034. [PMID: 38998984 PMCID: PMC11243185 DOI: 10.3390/molecules29133034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
Almond trees are the most cultivated nut tree in the world. The production of almonds generates large amounts of by-products, much of which goes unused. Herein, this study aimed to develop a green chemistry approach to identify and extract potentially valuable compounds from almond by-products. Initially, a screening was performed with 10 different Natural Deep Eutectic Solvents (NADESs). The mixture lactic acid/glycerol, with a molar ratio 1:1 (1:50 plant material to NADES (w/v) with 20% v/v of water) was identified as the best extraction solvent for catechin, caffeoylquinic acid, and condensed tannins in almond hulls. Subsequently, a method was optimized by a Design of Experiment (DoE) protocol using a miniaturized extraction technique, Microwave-Assisted Extraction (MAE), in conjunction with the chosen NADESs. The optimal conditions were found to be 70 °C with 15 min irradiation time. The optimal extraction conditions determined by the DoE were confirmed experimentally and compared to methods already established in the literature. With these conditions, the extraction of metabolites was 2.4 times higher, according to the increase in total peak area, than the established literature methods used. Additionally, by applying the multiparameter Analytical Greenness Metric (AGREE) and Green Analytical Process Index (GAPI) metrics, it was possible to conclude that the developed method was greener than the established literature methods as it includes various principles of green analytical chemistry.
Collapse
Affiliation(s)
- Gabriela Cremasco
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Adam T Sutton
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), Av. Universitária, nº 3780-Altos do Paraíso, Botucatu 18610-034, SP, Brazil
| | - Dario R Arrua
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Kelly J Dussan
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Emily F Hilder
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Vanderlan S Bolzani
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Daniel Rinaldo
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru 17033-360, SP, Brazil
| |
Collapse
|
30
|
Song JE, Jun SH, Ryoo JY, Kang NG. Formulation of Ascorbic Acid and Betaine-based Therapeutic Deep Eutectic System for Enhanced Transdermal Delivery of Ascorbic Acid. Pharmaceutics 2024; 16:687. [PMID: 38794349 PMCID: PMC11124945 DOI: 10.3390/pharmaceutics16050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
L-ascorbic acid (AA), a potent antioxidant, is commonly used topically in the pharmaceutical and cosmetic fields. However, the incorporation of AA into topical formulations is difficult because of its highly unstable nature and relatively poor skin permeability. In this study, we propose an alternative strategy for improving the solubility and topical delivery of AA through its conversion to a therapeutic deep eutectic system (THEDES). AA and betaine (Bet)-based THEDESs were prepared at certain molar ratios and characterized using polarized optical microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Solubility tests showed that AA in the form of THEDES was readily soluble in various polyols (glycerin, 1,3-butylene glycol, dipropylene glycol, and 1,3-propanediol) at a high concentration (approximately 40%). Furthermore, compared to AA alone or the physical mixture of AA and Bet, AA-based THEDES significantly enhanced AA delivery through porcine skin. In an in vivo human study, THEDES-containing serum reduced the markers of aging and induced an even skin tone. These findings indicate the utility of AA and Bet-based THEDES as novel transdermal delivery systems for AA. Furthermore, our approach also showed good extension to developing gluconolactone, a well-known natural antioxidant, and Bet-based THEDES, showing potential application in transdermal delivery systems.
Collapse
Affiliation(s)
| | - Seung-Hyun Jun
- R&D Center, LG Household and Health Care (LG H&H), 70, Magokjungang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.-E.S.); (J.-Y.R.)
| | | | - Nae-Gyu Kang
- R&D Center, LG Household and Health Care (LG H&H), 70, Magokjungang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.-E.S.); (J.-Y.R.)
| |
Collapse
|
31
|
Mishra AK, Singh R, Rawat H, Kumar V, Jagtap C, Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. FOOD AND HUMANITY 2024; 2:100202. [DOI: 10.1016/j.foohum.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
32
|
Lazović MČ, Jović MD, Petrović M, Dimkić IZ, Gašić UM, Milojković Opsenica DM, Ristivojević PM, Trifković JĐ. Potential application of green extracts rich in phenolics for innovative functional foods: natural deep eutectic solvents as media for isolation of biocompounds from berries. Food Funct 2024; 15:4122-4139. [PMID: 38573168 DOI: 10.1039/d3fo05292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The health-promoting effects of berries have attracted attention due to the possible application of their extracts as functional ingredients in food products. Natural deep eutectic solvents (NADESs) are a new generation of environmentally friendly solvents for the extraction of natural products, and they are green alternatives to organic solvents, and they can improve the solubility, stability, and bioavailability of isolated biocompounds. In this study, an efficient eco-friendly method was used for the extraction of phenolic compounds from different berries: chokeberries, blueberries, and black goji berries with a range of eutectic solvents consisting of hydrogen bond acceptors (HBAs) such as choline chloride, L-proline, L-glycine, and L-lysine and hydrogen bond donors (HBDs) such as malic, citric, tartaric, lactic and succinic acids, glucose and glycerol. The obtained results indicated the ability of NADESs towards selective extraction of phenolics; the eutectic system choline chloride : malic acid showed selective extraction of anthocyanins, while choline chloride : glycerol and choline chloride : urea showed selectivity towards flavonoids and phenolic acids. The methodology for screening of the NADES extraction performance, which included chromatographic profiling via high-performance thin layer chromatography combined with chemometrics and spectrophotometric essays, allowed effective assessment of optimal eutectic solvents for isolation of different groups of phenolics. Great antioxidant and antimicrobial activities of extracts, along with the green nature of eutectic solvents, enable NADES berry extracts to be used as "green-labelled" functional foods or ingredients.
Collapse
Affiliation(s)
- Mila Č Lazović
- Innovation Centre of Faculty of Chemistry Ltd, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Marko D Jović
- Innovation Centre of Faculty of Chemistry Ltd, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Marija Petrović
- University of Belgrade - Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Ivica Z Dimkić
- University of Belgrade - Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
| | - Uroš M Gašić
- University of Belgrade - Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | | | - Petar M Ristivojević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Jelena Đ Trifković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| |
Collapse
|
33
|
Tho LH, Khuyen BX, Mai NXD, Tran NHT. Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:426-434. [PMID: 38655542 PMCID: PMC11035980 DOI: 10.3762/bjnano.15.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numerous advancements in the fabrication of silver nanoparticles (Ag NPs), but the potential of DESs in Ag NP synthesis was neither considered nor studied carefully. In this study, we present a novel strategy to fabricate Ag NPs in a DES (Ag NPs-DES). The DES composed of ᴅ-glucose, urea, and glycerol does not contain any anions to precipitate with Ag+ cations. Our Ag NPs-DES sample is used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and sulfadiazine (SDZ) whose residues can be traced down to 10-8 M. The highest enhancement factors (EFs) are competitive at 6.29 × 107 and 1.69 × 107 for NFT and SDZ, respectively. Besides, the linearity coefficients are extremely close to 1 in the range of 10-8 to 10-3 M of concentration, and the SERS substrate shows remarkable uniformity along with great selectivity. This powerful SERS performance indicates that DESs have tremendous potential in the synthesis of nanomaterials for biosensor substrate construction.
Collapse
Affiliation(s)
- Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Xuan Dat Mai
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
34
|
Negi T, Kumar A, Sharma SK, Rawat N, Saini D, Sirohi R, Prakash O, Dubey A, Dutta A, Shahi NC. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024; 10:e28784. [PMID: 38617909 PMCID: PMC11015381 DOI: 10.1016/j.heliyon.2024.e28784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. Physicochemical properties such as polarity, viscosity, density and surface tension of DESs influenced their application. This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medicinal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection of illegal milk additive, purification of antibiotics and preparation of packaging film. Methodologies for separating bioactive compounds from DESs extracts are systematically examined. Further, safety regulations of DESs are briefly discussed and reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in cosmetics, indicating untapped potential of their application in the food industry.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Satish Kumar Sharma
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Neha Rawat
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Deepa Saini
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ranjna Sirohi
- Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
| | - Om Prakash
- Department of Chemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ashutosh Dubey
- Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anuradha Dutta
- Department of Foods & Nutrition, College of Community Sciences, Pantnagar, 263145, Uttarakhand, India
| | - Navin Chand Shahi
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
35
|
Kalyniukova A, Várfalvyová A, Płotka-Wasylka J, Majchrzak T, Makoś-Chełstowska P, Tomášková I, Pešková V, Pastierovič F, Jirošová A, Andruch V. Deep eutectic solvent-based shaking-assisted extraction for determination of bioactive compounds from Norway spruce roots. Front Chem 2024; 12:1385844. [PMID: 38629104 PMCID: PMC11018933 DOI: 10.3389/fchem.2024.1385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Polyphenolic compounds play an essential role in plant growth, reproduction, and defense mechanisms against pathogens and environmental stresses. Extracting these compounds is the initial step in assessing phytochemical changes, where the choice of extraction method significantly influences the extracted analytes. However, due to environmental factors, analyzing numerous samples is necessary for statistically significant results, often leading to the use of harmful organic solvents for extraction. Therefore, in this study, a novel DES-based shaking-assisted extraction procedure for the separation of polyphenolic compounds from plant samples followed by LC-ESI-QTOF-MS analysis was developed. The DES was prepared from choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and fructose (Fru) as the hydrogen bond donor (HBD) at various molar ratios with the addition of 30% water to reduce viscosity. Several experimental variables affecting extraction efficiency were studied and optimized using one-variable-at-a-time (OVAT) and confirmed by response surface design (RS). Nearly the same experimental conditions were obtained using both optimization methods and were set as follows: 30 mg of sample, 300 mg of ChCl:Fru 1:2 DES containing 30% w/w of water, 500 rpm shaking speed, 30 min extraction time, 10°C extraction temperature. The results were compared with those obtained using conventional solvents, such as ethanol, methanol and water, whereby the DES-based shaking-assisted extraction method showed a higher efficiency than the classical procedures. The greenness of the developed method was compared with the greenness of existing procedures for the extraction of polyphenolic substances from solid plant samples using the complementary green analytical procedure index (ComplexGAPI) approach, while the results for the developed method were better or comparable to the existing ones. In addition, the practicability of the developed procedure was evaluated by application of the blue applicability grade index (BAGI) metric. The developed procedure was applied to the determination of spruce root samples with satisfactory results and has the potential for use in the analysis of similar plant samples.
Collapse
Affiliation(s)
- Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Alica Várfalvyová
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vítězslava Pešková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Anna Jirošová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vasil Andruch
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
36
|
Herrero M. Towards green extraction of bioactive natural compounds. Anal Bioanal Chem 2024; 416:2039-2047. [PMID: 37787854 PMCID: PMC10951045 DOI: 10.1007/s00216-023-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The increasing interest in natural bioactive compounds is pushing the development of new extraction processes that may allow their recovery from a variety of different natural matrices and biomasses. These processes are clearly sought to be more environmentally friendly than the conventional alternatives that have traditionally been used and are closely related to the 6 principles of green extraction of natural products. In this trend article, the most critical aspects regarding the current state of this topic are described, showing the different lines followed to make extraction processes greener, illustrated by relevant examples. These include the implementation of new extraction technologies, the research on new bio-based solvents, and the development of new sequential process and biorefinery approaches to produce a full valorization of the natural sources. Moreover, the future outlook in the field is presented, in which the main areas of evolution are identified and discussed.
Collapse
Affiliation(s)
- Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research-CIAL (CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
37
|
Wang C, Li Q, Qiu D, Guo Y, Ding X, Jiang K. An efficient and environmentally-friendly extraction, characterization and activity prediction of polysaccharides from Rhizoma et Radix Notopterygii. Int J Biol Macromol 2024; 265:130907. [PMID: 38492707 DOI: 10.1016/j.ijbiomac.2024.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Traditional hot water reflux extraction, ultrasonic-water extraction (UW), ultrasonic-natural deep eutectic solvent (NADES) extraction (U-NADES), ultrasonic-water and enzyme extraction (U-W-E) and ultrasonic-NADES and enzyme extraction (U-NADES-E) are employed for the extraction of Rhizoma et Radix Notopterygii polysaccharides (RNP), in which, the U-NADES-E has being proved as the most effective method. Response Surface Methodology (RSM) was utilized to optimize the conditions for U-NADES-E method. Using the optimal extraction conditions, the yield of RNP can be enhanced by nearly two-fold in comparison to the traditional extraction method, achieving a yield of 7.38 %, with a mere 30-min treatment and low ultrasonic power at 240 W. The RNP's composition included Rhamnose, Arabinose, Galactose, Glucose and Galacturonic Acid by high-performance anion-exchange chromatography. The polysaccharides from two different species of Rhizoma et Radix Notopterygii have also been characterized and identified. Network pharmacology and molecular docking predict that RNP may exert its effects in vivo through binding to PPARA, ACE and REN proteins, thereby potentially impacting diabetes outcomes. This study proposes a new, efficient, energy-saving and environmentally-friendly method for the extraction of RNP.
Collapse
Affiliation(s)
- Chenyue Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Daiyu Qiu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yehong Guo
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqin Ding
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Kan Jiang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
38
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
39
|
Montuori E, Lima S, Marchese A, Scargiali F, Lauritano C. Lutein Production and Extraction from Microalgae: Recent Insights and Bioactive Potential. Int J Mol Sci 2024; 25:2892. [PMID: 38474137 PMCID: PMC10931717 DOI: 10.3390/ijms25052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Serena Lima
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Arima Marchese
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Francesca Scargiali
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
40
|
Liao Y, Chen F, Tang H, Dessie W, Qin Z. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Iridoids, Chlorogenic Acid, and Flavonoids from Eucommia ulmoides Leaves. Molecules 2024; 29:737. [PMID: 38338480 PMCID: PMC10856201 DOI: 10.3390/molecules29030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.
Collapse
Affiliation(s)
- Yunhui Liao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Feng Chen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
| | - Haishan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Provincial Key Laboratory for Comprehensive Utilization of Dominant Plant Resources in Southern Hunan, Yongzhou 425199, China
| | - Wubliker Dessie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Zuodong Qin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China; (Y.L.); (F.C.); (H.T.); (W.D.)
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
41
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
42
|
Colombo R, Moretto G, Barberis M, Frosi I, Papetti A. Rice Byproduct Compounds: From Green Extraction to Antioxidant Properties. Antioxidants (Basel) 2023; 13:35. [PMID: 38247461 PMCID: PMC10812773 DOI: 10.3390/antiox13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, rice (Oryza sativa L.) production and consumption is increasing worldwide, and many efforts to decrease the substantial impact of its byproducts are needed. In recent years, the interest in utilizing rice kernels, husk, bran, and germ for the recovery of different molecules, from catalysts (to produce biodiesel) to bioactive compounds, has grown. In fact, rice byproducts are rich in secondary metabolites (phenolic compounds, flavonoids, and tocopherols) with different types of bioactivity, mainly antioxidant, antimicrobial, antidiabetic, and anti-inflammatory, which make them useful as functional ingredients. In this review, we focus our attention on the recovery of antioxidant compounds from rice byproducts by using innovative green techniques that can overcome the limitations of traditional extraction processes, such as their environmental and economic impact. In addition, traditional assays and more innovative methodologies to evaluate the antioxidant activity are discussed. Finally, the possible molecular mechanisms of action of the rice byproduct antioxidant compounds (phenolic acids, flavonoids, γ-oryzanol, and vitamin E) are discussed as well. In the future, it is expected that rice byproduct antioxidants will be important food ingredients that reduce the risk of the development of several human disorders involving oxidative stress, such as metabolic diseases, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Marta Barberis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Ilaria Frosi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (M.B.); (I.F.)
- Center for Colloid and Surface Science (C.S.G.I.), Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
43
|
Nystedt HL, Grønlien KG, Rolfsnes RR, Winther-Larsen HC, Løchen Økstad OA, Tønnesen HH. Neutral natural deep eutectic solvents as anti-biofilm agents. Biofilm 2023; 5:100114. [PMID: 37020863 PMCID: PMC10067762 DOI: 10.1016/j.bioflm.2023.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Natural deep eutectic solvents (NADES) are a class of liquids with promising properties as components in pharmaceutical formulations, such as a low toxicity profile, biodegradability and versatility. Recently, their potential use as anti-biofilm agents has been proposed, due to their ability to solubilize and stabilize biological macromolecules. In the current work, the ability to break down biofilm matrix and the biofilm killing activity of three NADES of neutral pH were investigated against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 9027 biofilms. The tested NADES were choline chloride:xylitol (ChX), choline chloride:glycerol (ChG) and betaine:sucrose (BS). Two of the NADES (ChX and ChG) significantly reduced the number of remaining viable cells of both bacterial species in pre-formed biofilm by 4-6 orders of magnitude, while the average biofilm biomass removal for all NADES was 27-67% (S. aureus) and 34-49% (P. aeruginosa). The tested NADES also inhibited biofilm formation of both bacterial species at concentrations at or below 0.5 x the minimal inhibitory concentration (MIC), possibly in part due to observed restrictions imposed by NADES on planktonic growth. These results demonstrate the potential value of neutral NADES as anti-biofilm agents in future antimicrobial preparations.
Collapse
Affiliation(s)
- Helene Liepelt Nystedt
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Krister Gjestvang Grønlien
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Rebekka Rekkedal Rolfsnes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Ole Andreas Løchen Økstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316, Oslo, Norway
| | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316, Oslo, Norway
| |
Collapse
|
44
|
Ianni F, Scandar S, Mangiapelo L, Blasi F, Marcotullio MC, Cossignani L. NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants (Basel) 2023; 12:2048. [PMID: 38136168 PMCID: PMC10741060 DOI: 10.3390/antiox12122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coriandrum sativum L. seeds are widely recognized for their traditional use in medicine. Among the most investigated components, the terpenoid linalool and monounsaturated petroselinic acid have attracted interest for their nutritional value. Instead, minor attention was paid to the polyphenolic fraction, resulting still being incomplete today. This study aimed to develop a systematic approach in which green natural deep eutectic solvents (NADES) were combined with conventional (maceration, MAC) or non-conventional (ultrasound-assisted extraction, UAE) techniques in a one-step methodology to recover polyphenols from coriander seeds. The NADES system choline chloride-citric acid (ChCl:CA, 1:1) was firstly evaluated, coupled with MAC or UAE, and then compared with ChCl-Urea (ChCl:Ur, 1:1) and ChCl-Glucose (ChCl:Glu, 1:1) under optimal conditions (20 min extraction time). The system ChCl:Ur UAE significantly improved the extraction of chlorogenic acid and its isomer (453.90 ± 4.77 and 537.42 ± 1.27 µg/g, respectively), while the system ChCl:Glu UAE improved the extraction of protocatechuic, caffeic and p-coumaric acids (131.13 ± 6.16, 269.03 ± 4.15 and 57.36 ± 0.06 µg/g, respectively). The highest levels of rutin were obtained with ChCl:CA-based NADES when the MAC technique was applied (820.31 ± 28.59 µg/g). These findings indicate that the NADES composition could be appropriately modulated to tailor extraction towards higher levels of a desirable bioactive for further applications.
Collapse
Affiliation(s)
- Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Samir Scandar
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| |
Collapse
|
45
|
Kiene M, Zaremba M, Fellensiek H, Januschewski E, Juadjur A, Jerz G, Winterhalter P. In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods 2023; 12:4184. [PMID: 38002241 PMCID: PMC10670976 DOI: 10.3390/foods12224184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds.
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Malte Zaremba
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Hendrik Fellensiek
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Edwin Januschewski
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Andreas Juadjur
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| |
Collapse
|
46
|
Lai ZY, Yiin CL, Lock SSM, Chin BLF, Zauzi NSA, Sar-Ee S. A review on natural based deep eutectic solvents (NADESs): fundamentals and potential applications in removing heavy metals from soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116878-116905. [PMID: 36917382 DOI: 10.1007/s11356-023-26288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural based deep eutectic solvent (NADES) is a promising green solvent to replace the conventional soil washing solvent due to the environmental benign properties such as low toxicity, high biodegradability, high polarity or hydrophilicity, and low cost of fabrication process. The application of NADES is intensively studied in the extraction of organic compounds or natural products from vegetations or organic matters. Conversely, the use of the solvent in removing heavy metals from soil is severely lacking. This review focuses on the potential application of NADES as a soil washing agent to remove heavy metal contaminants. Hydrophilicity is an important feature of a NADES to be used as a soil washing solvent. In this context, choline chloride is often used as hydrogen bond acceptor (HBA) whereby choline chloride based NADESs showed excellent performance in the extraction of various solutes in the past studies. The nature of NADES along with its chemistry, preparation and designing methods as well as potential applications were comprehensively reviewed. Subsequently, related studies on choline chloride-based NADES in heavy metal polluted soil remediation were also reviewed. Potential applications in removing other soil contaminants as well as the limitations of NADES were discussed based on the current advancements of soil washing and future research directions were also proposed.
Collapse
Affiliation(s)
- Zhi Ying Lai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
- Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nur Syuhada Ahmad Zauzi
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Sherena Sar-Ee
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
47
|
Siddiqui SA, Ali Redha A, Salauddin M, Harahap IA, Rupasinghe HPV. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit Rev Anal Chem 2023; 55:139-160. [PMID: 37850880 DOI: 10.1080/10408347.2023.2266846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, Kolkata, India
| | - Iskandar Azmy Harahap
- Research Organization for Health, National Research and Innovation Agency, Jakarta, Indonesia
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
48
|
Meng Y, Sui X, Pan X, Yang Y, Sui H, Xu T, Zhang H, Liu T, Liu J, Ge P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. ULTRASONICS SONOCHEMISTRY 2023; 99:106588. [PMID: 37690261 PMCID: PMC10498307 DOI: 10.1016/j.ultsonch.2023.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
This study established an integrated process for the extraction and enrichment of chlorogenic acid(CGA)from Eucommia ulmoides leaves in a deep eutectic solvent system via ultrasonic wave-enhanced adsorption and desorption practices utilizing macroporous resins. Although deep eutectic solvents (DESs) have the advantages of chemical stability, good dissolving capacity, and nonvolatilization, routine solvent recovery operations are not suitable for subsequent separation in this solvent system. Based on the above characteristics, this study integrated the extraction and enrichment processes, in which DESs extracts directly loaded onto the macroporous adsorption resin, avoiding the loss of target components in solvent recovery and redissolution processes. The screening results of solvents and resin types further showed that choline chloride-malic acid (1:1) was the optimal DES, and the NKA-II resin had high adsorption and elution performance for CGA. The viscosities of the DESs were much higher than those of water and conventional organic solvents; thus, the mass transfer resistance was large, which could also affect the adsorption behaviour of the macroporous resin. The thermal and mechanical effects of ultrasound could effectively enhance the efficiency of the mass transfer, adsorption, and desorption in the DES systems. When compared to no sonication treatment, the CGA adsorption at various ultrasonic powers (120-600 W) was examined. At optimal ethanol concentration (60%), the effect of the ultrasonic treatment on the recovery of the DESs (water eluting process) and the desorption capability of CGA were confirmed. The use of three volumes of water elution could recover the DESs without loss of CGA. The adsorption process significantly differed depending on the ultrasonic settings, and the absorption balance time and experimental adsorption capacity at equilibrium were enhanced. Additionally, the adsorption procedure of the NKA-II macroporous resin for CGA under ultrasonic treatment could be clarified by the pseudo second order kinetic equation and the Freundlich isotherm model. Thermodynamic and dynamic parameters indicated that physical adsorption was the main process of the entire procedure, and it was a spontaneous, exothermic, and entropy-reducing physical adsorption process. This study potentially indicates that the use of ultrasonication, as a high-efficiency, environmentally friendly method, can enhance the features of the macroporous resin to better purify target chemicals from a DES extract.
Collapse
Affiliation(s)
- Yue Meng
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xu Pan
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Ying Yang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huimin Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tao Xu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China; Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Pengling Ge
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| |
Collapse
|
49
|
Santra S, Das M, Karmakar S, Banerjee R. NADES assisted integrated biorefinery concept for pectin recovery from kinnow (Citrus reticulate) peel and strategic conversion of residual biomass to L(+) lactic acid. Int J Biol Macromol 2023; 250:126169. [PMID: 37558023 DOI: 10.1016/j.ijbiomac.2023.126169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
The present study aims to establish an integrated strategy for valorization of kinnow peel waste. A total of ten natural deep eutectic solvents (NADESs) were exploited for extraction of pectin. The highest yield of pectin enriched material was reported 35.66 % w/dw using choline chloride-Maltose based NADES. The extraction process parameters and chemical composition of NADES influenced the yield and different associated physico-chemical attributes of the pectin enriched material. All the recovered pectin enriched materials found to be composed of low methoxy pectin (degree of methylation: 18.41-40.26 %) and galacturonic acid (GalA) content was in range of 67.56-78.22 %. The Principal Component Analysis (PCA) was used to categorise isolated pectin enriched materials based on similarities and differences. The liquid fraction upon pectin extraction presented a considerable amount of fermentable sugar which was further utilized for lactic acid production by microbial intervention. The microbial strain Lactobacillus amylophilus GV6 was exploited for lactic acid fermentation where the highest yield reached 55.59 g/L. A sustainable and straight-forward biorefinery concept was developed for extraction of pectin enriched material and lactic acid production from kinnow peel waste with potential application in food and biotechnological sectors.
Collapse
Affiliation(s)
- Sayantan Santra
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohan Das
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sandipan Karmakar
- Xavier Institute of Management, Xavier University, Xavier Square, Jayadev Vihar, Bhubaneswar 751013, India
| | - Rintu Banerjee
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
50
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|