1
|
Khalid F, Azmat H. Restoration of skin mucosal immune responses, cyto-genotoxicity and histological alterations in arsenic exposed Labeo rohita by Moringa oleifera supplementation. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110237. [PMID: 40015492 DOI: 10.1016/j.fsi.2025.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Arsenic (As) residue is present predominantly in aquatic ecosystem and fishery products globally, which is critically hazardous to both fish and consumer health beyond its permissible limit. Therefore, finding effective ways to mitigate As toxicity has become a priority. Hence, Moringa oleifera (M. oleifera), a medicinal plant containing several pharmacological properties, was evaluated for reducing adverse effects of sub-lethal concentration of As (1/3rd of 96 h LC50 = 6.75 mgL-1) in Labeo rohita (Rahu). Briefly, healthy acclimatized individual of L. rohita were allotted into four aquariums and named as T1, T2, T3 and T4. Each group had three replicates (10 fish in each aquarium). T1 group served as control, exposed with no As and fed with basal diet. T2, T3 and T4 groups were exposed to As and treated with 0, 2 and 4 % M. oleifera leaf extract supplemented diet respectively, for 28 days. Fish exposed to As and fed a diet with 0 % M. oleifera leaf extract exhibited increased histological alterations, elevated levels of liver enzymes, cortisol, antioxidant status, and relative expression of the cytochrome P450 gene, while showing significant decreases in skin mucosal immune responses (lysozyme, protease, antiprotease, and peroxidase activities). However, As exposed fish group fed with diets containing 2 % or 4 % M. oleifera leaf extract, the histological alterations were reduced, level of liver enzymes, cortisol, upregulation of anti-oxidant enzyme, relative expression of cytochrome P450 gene and skin mucosal immune responses were normalized, with (4 %) M. oleifera leaf extract supplemented diet showing more prominent effects. These results suggest the protective and therapeutic roles of M. oleifera as a feed supplement in L. rohita against As induced toxicity.
Collapse
Affiliation(s)
- Fakhira Khalid
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Zhao Y, Ren J, Chen W, Gao X, Yu H, Li X, Zheng Y, Yang J. Effects of polyphenols on non-alcoholic fatty liver disease: a case study of resveratrol. Food Funct 2025; 16:2926-2946. [PMID: 40094314 DOI: 10.1039/d4fo04787g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The primary etiology of liver disease is non-alcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The efficacy of plant-derived polyphenolic compounds has been extensively demonstrated with respect to various aspects and recently proved to be effective at preventing and treating NAFLD. To describe the sources and functions of polyphenolic constituents and clarify the therapeutic effects of polyphenolic constituents on NAFLD, resveratrol (RSV), which has significant therapeutic effects, was selected for a comprehensive analysis. Bibliometric and network pharmacology analyses revealed a strong correlation between insulin resistance (IR), oxidative stress, steatosis, and NAFLD, as well as the significance of intestinal flora and therapeutic interventions for NAFLD. This study reviewed the mechanisms by which RSV acted against NAFLD and explored techniques to enhance its bioavailability. These findings offer new insights into the treatment of NAFLD and the development of innovative RSV formulations.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weisan Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchen Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongjian Yu
- Hefei Hechen Biotechnology Co., Ltd, Hefei 230011, China
| | - Xiankuan Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yanchao Zheng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jinlong Yang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Hematulin S, Krobthong S, Yingchutrakul Y, Tachapermpon Y, Treesubsuntorn C. Developing Light-Emitting Plants (LEPs) with SrAl 2O 4: Eu 2+, Dy 3+ by Using Pressure Infiltration, Optimal Conditions for Glowing and Plant Stress Response. Chem Biodivers 2025:e202500071. [PMID: 40220350 DOI: 10.1002/cbdv.202500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Developing light-emitting plants (LEPs) using SrAl2O4 has been working for the past few years because SrAl2O4 is a phosphorescent material with long-lasting and bright glowing properties. The six plant species (Episcia cupreata, Tabebuia argentea, Syngonium hybrid, Mimusops elengi, Schefflera arboricola, and Pilea cadierei) were infused with SrAl2O4, which has a particle size of 2.7 µm. The E. cupreata exhibited the highest phosphorescence (a relative phosphorescence value of 36.93) compared to other plant species. The optimal pressure to infuse SrAl2O4 into the plant is 7 × 104 N/m2 exposed for 60 min while 17.5 g/L SrAl2O4 is the best concentration. After infusion, the plants did not show physical abnormalities. However, the amount of MDA and antioxidants in plants was increased. Based on metabolomics analysis, SrAl2O4 might stress plants, but plants might be able to respond by producing antioxidant compounds. Therefore, using SrAl2O4 to LEPs did not kill the plants and provided high light output.
Collapse
Affiliation(s)
- Supreeya Hematulin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Thailand
| | - Yordkhuan Tachapermpon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
4
|
Yapeng L, Yu Z, Lele D, Yanzhen W, Xuelin L, Fan H, Du C. Influence of phloem lectin CsPP2-A1 on aphid development via mediation of phenylpropanoid and flavonoid biosynthesis in cucumber. PEST MANAGEMENT SCIENCE 2025. [PMID: 40197847 DOI: 10.1002/ps.8823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Aphid, Aphis gossypii Glover, is a pest that significantly affects cucumbers (Cucumis sativus L.). Phloem protein 2 (PP2) is a conserved phloem lectin. Our previous study showed that the expression of CsPP2-A1 under aphid attack affected the accumulation of flavonoids and total phenolics in cucumber. The novel mechanism of lectin CsPP2-A1 mediating secondary metabolites affecting aphid resistance in cucumbers needs to be investigated. RESULTS The weight and length of aphids on CsPP2-A1 overexpression (CsPP2-A1-OE) cucumber plants significantly reduced compared to wild-type (WT). Conversely, aphids on CsPP2-A1 RNA interference (CsPP2-A1-RNAi) plants showed the opposite trend. Using secondary metabolomics, small molecular weight secondary metabolites were qualitatively and quantitatively assessed in WT and transgenic cucumber plants after aphid inoculation. The overexpression of CsPP2-A1 resulted in the up-regulation of differential metabolites (DMs) in phenylpropanoid biosynthesis, whereas interference expression of CsPP2-A1 led to a down-regulation of DMs in the flavonoid biosynthesis. Concurrently, it was observed that the CAD activity and the expression of the CsPAL, and CsCAD in OE-2 were up-regulated significantly. A significant reduction in the activities of CHI, F3H, and the expression of CsF3H, CsCHS, CsFLS, and CsCCR was noted in RNAi-2. CONCLUSION CsPP2-A1 indirectly affects the growth and development of aphids via mediation of phenylpropanoid and flavonoid biosynthesis. The indirect effects of the interaction of CsPP2-A1 with aphids offer insights into plant-insect interaction studies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Yapeng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhu Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Dong Lele
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Wen Yanzhen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Lv Xuelin
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Delgado Rodríguez F, Azofeifa G, Quesada S, Weng Huang NT, Loría Gutiérrez A, Morales Rojas MF. Influence of Plant Part Selection and Drying Technique: Exploration and Optimization of Antioxidant and Antibacterial Activities of New Guinea Impatiens Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:1092. [PMID: 40219160 PMCID: PMC11991338 DOI: 10.3390/plants14071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Impatiens L. plants are sources of polyphenols with antioxidant and antimicrobial activities. There are scarce data about these effects in the case of Impatiens hawkeri W. Bull, a relevant species in ornamental plant industry with ethnobotanical backgrounds. The aim of this study is to provide information regarding the antioxidant and the antibacterial properties of the ethanol extracts of I. hawkeri to support new applications. HPTLC was used to estimate the concentration of seven known bioactive metabolites reported among Impatiens plants. Total phenolics, flavonoids, and monomeric anthocyanins were also measured. An orthogonal platform with chemical and biological in vitro assays was used to evaluate the antioxidant activity of the extracts. Antibacterial activity was determined by broth microdilution assay on human pathogenic bacteria. The results were integrated by correlation and principal component analysis to identify the most promissory plant part and drying technique to optimize the evaluated activities. Data suggest the tentative identification of bioactive chemical markers for the antioxidant and antibacterial activities of the extracts (quercetin and rutin). Freeze-dried leaves and flowers are the most promissory parts of I. hawkeri for the development of antioxidant nutraceuticals or preservatives. The results demonstrate that phenolic compounds play a major role in the antioxidant and antibacterial activities of I. hawkery extracts.
Collapse
Affiliation(s)
- Fabián Delgado Rodríguez
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (G.A.); (S.Q.)
| | - Silvia Quesada
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (G.A.); (S.Q.)
| | - Nien Tzu Weng Huang
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - Arlene Loría Gutiérrez
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - María Fernanda Morales Rojas
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| |
Collapse
|
6
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
7
|
Haridas ESH, Varma MKR, Chandra GK. Bioactive silver nanoparticles derived from Carica papaya floral extract and its dual-functioning biomedical application. Sci Rep 2025; 15:9001. [PMID: 40089549 PMCID: PMC11910587 DOI: 10.1038/s41598-025-93864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Replacing synthetic phytochemicals with natural plant extracts for metal nanoparticle synthesis enable cost-effective, large-scale production with reduced environmental and health risks while enhancing biomedical efficacy. This study presents the green synthesis of silver nanoparticles (AgNPs) using a flavonol-enriched extract from male papaya flowers (KQE), an underutilized agricultural waste. Using 20% (v/v) KQE, highly stable, spherical KQ-AgNPs (12.3 ± 3.0 nm) were synthesized via in-situ generation of free radicals, such as ortho-quinones, which reduced Ag+ ions. KQ-AgNPs exhibit superior antibacterial activity against both gram-positive and gram-negative bacteria compared to chemically synthesized AgNPs (AgNPs-Chem) and KQE alone. In vitro anticancer assays reveal enhanced cytotoxicity against breast carcinoma cells (MCF-7) with an IC50 of 21.25 ± 1.14 µg/mL, significantly lower than AgNPs-Chem (33.05 ± 3.13 µg/mL), while maintaining high biocompatibility with normal cells (HEK-293) with a greater IC50 of 169.96 ± 2.3 µg/mL. This study highlights the dual therapeutic potential of KQ-AgNPs, emphasizing their enhanced antibacterial and anticancer efficacy while exemplifying an innovative waste-to-wealth approach.
Collapse
Affiliation(s)
- E S Harsha Haridas
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - M K Ravi Varma
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India
| | - Goutam Kumar Chandra
- Department of Physics, National Institute of Technology, Kozhikode, Kerala, 673601, India.
| |
Collapse
|
8
|
Yang J, Zhang W, Wang T, Xu J, Wang J, Huang J, Sun Y, Ni Y, Guo Y. Enhancing sweet sorghum emergence and stress resilience in saline-alkaline soils through ABA seed priming: insights into hormonal and metabolic reprogramming. BMC Genomics 2025; 26:241. [PMID: 40075293 PMCID: PMC11905452 DOI: 10.1186/s12864-025-11420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Sweet sorghum (Sorghum bicolor Moench) seedling emergence and growth are significantly impeded by physical soil crusts (PSCs) in saline-alkaline soils. Abscisic acid (ABA) is a potent seed priming agent known for modulating plant physiological and metabolic responses under salinity stress. However, the influence of ABA priming on seedling emergence in PSCs remains unclear. This study conducted both pot and field experiment to examine the effects of ABA priming on enhancing seedling emergence under PSC conditions. ABA priming altered the balance of at least 24 endogenous phytohormones, including abscisic acid, jasmonic acid, gibberellins, ethylene, auxins, and cytokinins. Additionally, it reprogrammed starch and sucrose metabolism, resulting in the differential expression of genes encoding key enzymes such as AMY, BAM, and INV, which are crucial for converting complex sugars into readily available energy sources, thereby supporting seedling growth. Furthermore, 52 differentially expressed metabolites (DEMs) of flavonoids were identified in germinating seedlings, including 15 anthocyanins, 3 flavones, 7 flavonols, 6 isoflavones, 7 flavanones, and 14 other flavonoids. Genetic and metabolic co-expression network analysis, along with flavonoid biosynthesis pathway exploration, revealed that the biosynthesis of 17 key DEMs-including liquiritigenin, apigenin, kaempferide, syringetin, phloretin, formononetin, dihydrokaempferol, and xanthohumol-was regulated by 10 differentially expressed genes (DEGs) associated with flavonoid biosynthesis. These DEGs encoded 7 enzymes critical for this pathway, including chalcone synthase, shikimate O-hydroxycinnamoyltransferase, bifunctional dihydroflavonol 4-reductase, naringenin 7-O-methyltransferase, and anthocyanidin reductase. This regulation, along with reduced levels of superoxide anion (O2-) and malondialdehyde and increased antioxidant enzyme activities, suggested that flavonoids played a vital role in mitigating oxidative stress. These findings demonstrate that ABA priming can effectively enhance sweet sorghum seedling emergence in PSCs by accelerating emergence and boosting stress resistance.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlan Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiawei Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinjing Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiahao Huang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingpeng Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Guo
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
- Qingdao key laboratory of specialty plant germplasm innovation and utilization in saline soils of coastal beach, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Kozhantayeva A, Iskakova Z, Ibrayeva M, Sapiyeva A, Arkharbekova M, Tashenov Y. Phytochemical Insights and Therapeutic Potential of Chamaenerion angustifolium and Chamaenerion latifolium. Molecules 2025; 30:1186. [PMID: 40076409 PMCID: PMC11901623 DOI: 10.3390/molecules30051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The Chamaenerion genus, particularly Chamaenerion angustifolium and Chamaenerion latifolium, is recognized for its rich phytochemical composition and extensive medicinal properties. These species are abundant in polyphenols, flavonoids, and tannins, which contribute to their potent antioxidant, antimicrobial, and anticancer activities. This review provides a comprehensive analysis of their phytochemical constituents, with an emphasis on how processing methods, including fermentation, influence bioactivity. Notably, fermentation enhances the levels of key bioactive compounds, such as oenothein B, gallic acid, and ellagic acid, thereby increasing their pharmacological potential. Additionally, this review evaluates the biological activities of Chamaenerion species in relation to their chemical composition, while also considering the limitations of current studies, such as the lack of in vivo or clinical trials. The literature for this review was sourced from scientific databases, including PubMed, Scopus, and ScienceDirect, covering research from 2010 to 2024. Future studies should focus on optimizing extraction methods, elucidating synergistic bioactivities, and conducting in-depth clinical trials to validate their efficacy and safety.
Collapse
Affiliation(s)
- Akmaral Kozhantayeva
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
| | - Zhanar Iskakova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
| | - Manshuk Ibrayeva
- Faculty of Science and Technology, Yessenov University, Aktau 130000, Kazakhstan
| | - Ardak Sapiyeva
- Department of General and Biological Chemistry, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Moldir Arkharbekova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
| | - Yerbolat Tashenov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan
| |
Collapse
|
10
|
Xu C, Li J, Liu J, Ma Y, Wang X, Xie Y, Chen C, Ji W. Rapid construction of interfacial plasmonic nanoarray for SERS sensing of flavonoids. Biosens Bioelectron 2025; 271:117044. [PMID: 39653010 DOI: 10.1016/j.bios.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025]
Abstract
A rapid, low-cost and reliable interfacial plasmonic nanoarray is presented as surface-enhanced Raman scattering (SERS) sensing platform for preliminary quantification and identification of flavonoids. Here, CTAB-modified Au colloidal nanoparticles self-assemble at the cyclohexane/acetone-water interface to form a uniform interfacial plasmonic nanoarray. The target hydrophobic analytes including organic dye methyl red and water-insoluble flavonoids, are effectively captured at the air-water interface and enter the "hot spots" between nanoparticles during the evaporation of the oil phase, which contributes to sensitive and reproducible SERS signals. Furthermore, this remarkable SERS performance enables the quantitative determination of water-insoluble flavonoids such as kaempferol, luteolin and naringenin with low detection limits of 10-10 M, and an approximately linear correlation between SERS signals and analytical concentrations, as well as rapid multiplex analysis of flavonoids with similar structural characteristics. Additionally, directly relative content detection of crude extracts from lingonberry (Vaccinium vitis-idaea L.) is achieved on the plasmonic nanoarray, serving as a proof-of-concept demonstration for practical applications. Compared to conventional analyses of flavonoids, the proposed SERS platform circumvents complex and time-consuming pretreatments, thereby opening avenues for the analysis of oil-soluble samples and other secondary metabolites, which will facilitate widespread evaluation of quality and medical value.
Collapse
Affiliation(s)
- Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| | - Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yaxin Ma
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoshuai Wang
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Chunxia Chen
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
11
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
12
|
Srivastava R, Jaiswal N, Kharkwal H, Dubey NK, Srivastava R. Phytomedical Properties of Carica papaya for Boosting Human Immunity Against Viral Infections. Viruses 2025; 17:271. [PMID: 40007026 PMCID: PMC11861161 DOI: 10.3390/v17020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Carica papaya, a tropical fruit-bearing plant, has attracted significant attention for its diverse phytomedical properties and its ability to regulate both innate and adaptive immunity, making it a promising natural therapeutic agent. C. papaya is rich in bioactive compounds that play a multifaceted role in immunomodulation. These bioactive constituents have demonstrated efficacy not only against the dengue virus but also against other viral infections, including COVID-19 (Corona Virus Disease 2019), Human Immunodeficiency Virus (HIV), Zika virus, and others. The antiviral effects of C. papaya are achieved through its ability to enhance host immunity, mitigate inflammation, reduce oxidative stress, inhibit viral replication, and modulate immune responses. These mechanisms highlight its potential as a candidate for antiviral therapies, paving the way for further exploration of its pharmacological applications and promoting eco-friendly, accessible healthcare solutions for combating viral diseases. This review highlights the antiviral potential of C. papaya extracts in inhibiting viral replication and modulating immune responses, emphasizing the need for further studies and clinical trials to validate their efficacy against other medically significant viruses causing human diseases.
Collapse
Affiliation(s)
- Rashmi Srivastava
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Neeshma Jaiswal
- School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida 201313, Uttar Pradesh, India
| | - Neeraj Kumar Dubey
- Botany Department, Rashtriya PG College, Jaunpur 222003, Uttar Pradesh, India
| | - Rakesh Srivastava
- Research and Development, Helix Biosciences, New Delhi 110028, Delhi, India
| |
Collapse
|
13
|
Hosaflioglu I. Phytochemical Analysis and Biological Activity of Astragalus onobrychis: Quantitative Analysis of Phenolic Compounds, Antioxidants, and Antibacterial Activities. Food Sci Nutr 2025; 13:e70025. [PMID: 39898121 PMCID: PMC11786015 DOI: 10.1002/fsn3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Plants play an essential role in the food and pharmaceutical industries. Plants show broad-spectrum biological activity due to the bioactive compound contents. Hence, plants provide an essential contribution to drug invention and progress. In this study, phytochemical analysis and antioxidant effects of the Astragalus onobrychis plant were investigated. The flower, leaf, and stem parts of Astragalus onobrychis were extracted with methanol. The quantitative analysis of corresponding parts was conducted by LC-ESI-MS/MS, and it was detected that the flowers, leaves, and stems contained 12, 19, and 17 compounds, respectively. The flowers were determined to contain kaempferol-3-glucoside (0.395 mg/g extract) as a major product. Additionally, routine (0.132) was defined as the leading product in the leaf parts of the plant. The main product of the stem part of the plant was detected as coumarin (0.068). Antioxidant activity tests of flower, leaf, and stem extracts of the Astragalus onobrychis plant were performed. It was determined that the flowers showed the highest antioxidants among them. DPPH activity of flowers was determined as 4.56 ± 0.42 (IC50, μg/mL). Moreover, the antibacterial activity of flowers, leaves, and stem was performed using B.subtilis, S. aureus, E. coli, and P. aeruginosa, and flowers displayed excellent antibacterial activity against B. subtilis and E. coli with a value of 10.5 μg/mL.
Collapse
Affiliation(s)
- Ibrahim Hosaflioglu
- Research Laboratory Practice and Research CenterIgdir UniversityIgdirTurkiye
| |
Collapse
|
14
|
Pei J, Kumarasamy RV, Jayaraman S, Kanniappan GV, Long Q, Palanisamy CP. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management. Ageing Res Rev 2025; 104:102665. [PMID: 39824363 DOI: 10.1016/j.arr.2025.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in nanotechnology have paved the way for quercetin-functionalized nanomaterials, offering solutions to these challenges. These nanostructures enhance quercetin's solubility, stability, and targeted brain delivery, thereby augmenting its therapeutic potential. In this review, nanocarriers (like liposomes, polymeric nanoparticles, and metal-based nanosystems) are explored for their potential application in optimizing quercetin delivery in AD management. It discusses the mechanisms by which these nanostructures enhance BBB penetration and exert neuroprotective effects. Furthermore, the review examines the outcomes of preclinical and in vitro studies, while addressing the challenges of scaling these approaches for clinical application. By merging the fields of nanotechnology and neurotherapeutics, the importance of quercetin-functionalized nanomaterials in advancing AD management strategies is underscored in this review.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Pro-cessing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guang-dong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Gopalakrishnan Velliyur Kanniappan
- Department of physiology, Saveetha Medical College & Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, PR China.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Dong Y, Wei W, Li M, Qian T, Xu J, Chu X, Ye BC. De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield. BIORESOUR BIOPROCESS 2025; 12:5. [PMID: 39841399 PMCID: PMC11754545 DOI: 10.1186/s40643-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids. We designed a kaempferol biosynthetic pathway by integrating multiple-copy fusion enzyme expression modules, F3H-(GGGGS)2-FLS, into the genome with an optimized linker (GGGGS)2 to enhance kaempferol production from naringenin. To synthesize quercetin de novo, we introduced the FMOCPR gene into the kaempferol-synthesizing strain using the optimized pFBAin promoter. Notably, increasing glucose concentration effectively boosted the production of both flavonoids. Our results demonstrated kaempferol and quercetin titers reaching 194.30 ± 7.69 and 278.92 ± 11.58 mg/L, respectively, in shake-flask cultures. These findings suggest that Y. lipolytica is a promising platform for the efficient production of flavonoid-derived products.
Collapse
Affiliation(s)
- Yuxing Dong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Mengfan Li
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jiayun Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
16
|
Rao MJ, Zheng B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants (Basel) 2025; 14:74. [PMID: 39857408 PMCID: PMC11761259 DOI: 10.3390/antiox14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways. This review summarizes our current understanding of polyphenol-mediated stress adaptations in plants, emphasizing the regulation and function of key phenylpropanoid pathway compounds. We discussed how various abiotic stresses, including heat and chilling stress, drought, salinity, light stress, UV radiation, nanoparticles stress, chemical stress, and heavy metal toxicity, modulate phenylpropanoid metabolism and trigger the accumulation of specific polyphenolic compounds. The antioxidant properties of these metabolites, including phenolic acids, flavonoids, anthocyanins, lignin, and polyphenols, and their roles in reactive oxygen species scavenging, neutralizing free radicals, membrane stabilization, and osmotic adjustment are discussed. Understanding these mechanisms and metabolic responses is crucial for developing stress-resilient crops and improving agricultural productivity under increasingly challenging environmental conditions. This review provides comprehensive insights into integrating phenylpropanoid metabolism with plant stress adaptation mechanisms, highlighting potential targets for enhancing crop stress tolerance through metabolic adjustment.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
18
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
19
|
Masood N, Younes KM, Alshammari RS, Abunayyan NM, Alanazi TYA, Magam S. Phytochemical Screening and Biological Activities of Convolvulus oxyphyllus Extracts. Chem Biodivers 2024:e202402302. [PMID: 39665866 DOI: 10.1002/cbdv.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
As a member of the Convolvulaceae family, Convolvulus oxyphyllus is used in many medicinal contexts. The purpose of this study was to investigate the biological potency of plant methanolic extracts and determine the main bioactive components that give them their potencies. Using in vitro biological tests, the effects of plant extracts on cytotoxicity, antioxidant, and antibacterial activity were investigated. The results showed that C. oxyphyllus methanolic extracts exhibited potent antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Proteus vulgaris, as well as good antioxidant activity comparable to ascorbic acid. Methanolic leaf extract exhibited maximum cytotoxic activity against HepG2 cancer cells, producing cell cycle arrest at the S phase. In addition, gas chromatography-mass spectrometry (GC-MS) was used to further analyze chemical makeup of leaf extract. 3-Hydroxyphenyl acetic acid, quercetin, myricetin, and kaempferol were among the bioactive substances discovered. In conclusion, C. oxyphyllus leaves extract showed encouraging antioxidant, antibacterial, and cytotoxic properties. More research is needed to determine C. oxyphyllus's therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Najat Masood
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Kareem M Younes
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Tahani Y A Alanazi
- Chemistry Department, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sami Magam
- Basic science Department, Preparatory Year, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
20
|
Latif S, Sameeullah M, Abbasi HQ, Masood Z, Demiral Sert T, Aslam N, Pekdemir T, Imren M, Çiftçi V, Saba K, Malik MS, Ijaz F, Batool N, Mirza B, Waheed MT. Broccoli ( Brassica oleracea var. italica) leaves exhibit significant antidiabetic potential in alloxan-induced diabetic rats: the putative role of ABC vacuolar transporter for accumulation of Quercetin and Kaempferol. Front Pharmacol 2024; 15:1421131. [PMID: 39737071 PMCID: PMC11683327 DOI: 10.3389/fphar.2024.1421131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Background The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045). Plants can be a cost-effective source of flavonoids like quercetin and kaempferol with anti-diabetic properties. Methodology We aimed to assess the antidiabetic potential of leaves of Brassica oleracea cvs. Green Sprout and Marathon. Further, flavonoid contents were measured in broccoli leaves grown under light and dark conditions. The methanolic extracts of Green Sprout (GSL-M) and Marathon (ML-M) were first evaluated in vitro for their α-amylase and α-glucosidase inhibitory potential and then for antidiabetic activity in vivo in alloxan-induced diabetic rat models. Results Treatment with plant extracts promoted the reduced glutathione (GSH) content and CAT, POD, and SOD activities in the pancreas, liver, kidney, heart, and brain of diabetic rats, whereas lowered lipid peroxidation, H2O2, and nitrite concentrations. The histopathological studies revealed the protective effect of plant extracts at high dose (300 mg/kg), which could be due to broccoli's rich content of chlorogenic acid, quercetin, and kaempferol. Strikingly, etiolated leaves of broccoli manifested higher levels of quercetin and kaempferol than green ones. The putative role of an ABC transporter in the accumulation of quercetin and kaempferol in etiolated leaves was observed as evaluated by qRT-PCR and in silico analyses. Conclusion In conclusion, the present study shows a strong link between the antidiabetic potential of broccoli due to the presence of chlorogenic acid, quercetin, and kaempferol and the role of an ABC transporter in their accumulation within the vacuole.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | | | - Zainab Masood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Turgay Pekdemir
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Department of Chemical Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mustafa Imren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | - Fatima Ijaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
21
|
Chakraborty J, Pakrashi S, Bandyopadhyay J. Copper-induced pro-apoptotic response and its alleviation by Quercetin through autophagic modulation in HEPG2 cells. J Trace Elem Med Biol 2024; 86:127508. [PMID: 39178556 DOI: 10.1016/j.jtemb.2024.127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recent studies indicated that the liver is susceptible to Cu-induced stress as it stores and distributes the metal to other cellular organelles. To counteract the hepatocytic damage, a known polyphenol, quercetin, was employed for its remarkable antioxidant properties. Thus, the study aimed to assess quercetin's potency against Cu-induced toxicity in HEPG2 cells. METHODS The cellular viability of HEPG2 cells was carried out by MTT assay. All the cellular experiments were divided into control, Cu 100 µM, Cu 100 µM (with Q μM), Cu 300 µM, Cu 300 µM (with Q 50 nM), and only quercetin (50 nM). Following this, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in co-exposure studies. Moreover, rhodamine-123, Hoechst stain, monodansylcadaverine (MDC), and acridine orange (AO) stain were used to visualize the morphological changes under bright field and fluorescent microscopy. Subsequently, western blotting was adopted to determine the expression level of apoptotic and autophagic marker proteins. RESULTS Copper increased intracellular ROS, resulted in morphological abnormalities, nuclear condensation, and disrupted MMP. Moreover, Cu caused apoptotic cell deaths characterized by overexpressed pro-apoptotic proteins such as poly (ADP-ribose) polymerase (PARP), cysteine-dependent aspartate-specific proteases 3 (Caspase 3), and Bcl-2-associated X protein (Bax) and downregulated anti-apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), respectively. However, quercetin restored overexpressed pro-apoptotic proteins and induced autophagosome-bound microtubule-associated protein light chain-3 (LC3II) conversion from LC3I. Furthermore, Cu-modulated autophagy marker proteins, including sequestosome-1 (p62), heat shock cognate proteins (Hsc 70, Hsc 90), lysosome-associated membrane protein (LAMP-2A), and AMP-associated protein kinase (AMPK). CONCLUSION This study promotes the nutraceutical ability of quercetin to combat Cu-induced hepatotoxicity by understanding the intricate biological signaling pathways within cells.
Collapse
Affiliation(s)
- Joyeeta Chakraborty
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India
| | - Sourav Pakrashi
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India; Bidhannagar College, Department of Microbiology, Kolkata, West Bengal 700064, India
| | - Jaya Bandyopadhyay
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India.
| |
Collapse
|
22
|
Oravetz K, Diaconeasa Z, Carpa R, Rakosy-Tican E, Cruceriu D. The Antioxidant, Antimicrobial, and Antitumor Proprieties of Flavonol-Rich Extracts from Allium ursinum (Wild Garlic) Leaves: A Comparison of Conventional Maceration and Ultrasound-Assisted Extraction Techniques. Int J Mol Sci 2024; 25:12799. [PMID: 39684509 DOI: 10.3390/ijms252312799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Despite the growing interest in using natural compounds for disease prevention and treatment, Allium ursinum (wild garlic), known for its therapeutic properties, has not been extensively studied for its chemical composition and biological activities. Therefore, this study aims to explore the in vitro antioxidant, antibacterial, and antitumor activities of A. ursinum extracts according to their functional phytochemical profile, while assessing whether ultrasound-assisted extraction (UAE) enhances bioactive properties in comparison to conventional maceration (CM). Both extracts were characterized by spectrophotometric methods and LC-ESI+-MS. The antioxidant activity was assessed via the CUPRAC and hydrogen peroxide scavenging assays, the antimicrobial properties via the disk-diffusion method against five pathogenic strains, and the antitumor activity via the MTT assay on four cancer cell lines. The major constituents of the methanolic extracts from leaves were kaempferol derivatives and alliin. The quercetin derivative rutin was also found. Maceration assisted using UAE yielded 20% more bioactive compounds in comparison to CM alone. Employing UAE in the extraction significantly increased antioxidant and antimicrobial proprieties, in line with its chemical composition. The antitumor cytotoxic activity was low to moderate, regardless of method, as explained by the absence of highly cytotoxic compounds. Wild garlic extracts possessed strong antioxidant and substantial antibacterial activities.
Collapse
Affiliation(s)
- Kinga Oravetz
- Centre for Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| | - Rahela Carpa
- Centre for Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Centre for Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Daniel Cruceriu
- Centre for Systems Biology, Biodiversity and Bioresources, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Mamy D, Boateng ID, Chen X. Metabolomic changes in Citrus reticulata peel after conventional and ultrasound-assisted solid-state fermentation with Aspergillus niger: A focus on flavonoid metabolism. Food Chem 2024; 467:142224. [PMID: 39632168 DOI: 10.1016/j.foodchem.2024.142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
This study explored the changes in nutrients, metabolites, and enzyme activity in Citrus reticulata peel powders (CRPP) under conventional or ultrasound-assisted solid-state fermentation (SSF) using Aspergillus niger CGMCC 3.6189. Compared to nonfermented CRPP (NF-CRPP), ultrasound-assisted fermented CRPP (UIS-CRPP) significantly increased total protein and carotenoid levels by 85.26 % and 179.68 %, respectively, surpassing conventionally-fermented CRPP (FO-CRPP). Among the 521 identified differential metabolites, organic acids, lipids, and flavonoids were predominant. Flavonoid accumulation was primarily driven by the flavone and flavonol biosynthesis pathway, with 90.47 % and 90.00 % of differential flavonoids upregulated in FO-CRPP and UIS-CRPP, respectively. SSF significantly increased phenylalanine, tyrosine, and methionine levels, and tyrosine ammonia-lyase and β-D-glucosidase activities, with higher levels in UIS-CRPP. These findings suggest that conventional and ultrasound-assisted fermentation enhances flavonoid levels in CRPP by modulating key enzyme activities in flavonoid biosynthesis and biotransformation. Our study offers a feasible approach for producing value-added products from citrus peel waste.
Collapse
Affiliation(s)
- Daniel Mamy
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Higher Institutes of Sciences and Veterinary Medicine (ISSMV) of Dalaba, Dalaba, Tangama P.O. Box 09, Guinea
| | - Isaac Duah Boateng
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, China; International Joint Research Laboratories of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
24
|
Zhang S, Wang X, Zeng W, Zhong L, Yuan X, Ouyang Z, Li R. Colletotrichum gloeosporioides Swiftly Manipulates the Transcriptional Regulation in Citrus sinensis During the Early Infection Stage. J Fungi (Basel) 2024; 10:805. [PMID: 39590724 PMCID: PMC11595579 DOI: 10.3390/jof10110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Citrus spp. represent an economically important fruit tree crop worldwide. However, molecular mechanisms underlying the interaction between citrus and the Colletotrichum gloeosporioides remain largely unexplored. In this study, we analyzed the physiological and transcriptomic changes in Citrus sinensis at different stages of incubation with C. gloeosporioides. The results indicated that C. gloeosporioides infection rapidly triggered necrosis in the epicarp of C. sinensis fruits, decreased the total flavonoid contents, and suppressed the activity of catalase, peroxidase, and superoxide dismutase enzymes. Upon inoculation with C. gloeosporioides, there were 4600 differentially expressed genes (DEGs) with 1754 down-regulated and 2846 up-regulated after six hours, while there were only 580 DEGs with 185 down-regulated and 395 up-regulated between six and twelve-hours post-inoculation. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DEGs, which exhibited consistent up-regulation, were associated with metabolic processes and stress responses. Through Weighted Gene Co-Expression Network Analysis, 11 key genes have been identified that could potentially play a role in the transcriptional regulation of this process, including the transcription factor bHLH189. Furthermore, the infection of C. gloeosporioides had a notable effect on both the flavonoid metabolism and the metabolic pathways related to reactive oxygen species. Our findings help to understand the interaction between citrus and C. gloeosporioides and unveil how new insights into how C. gloeosporioides circumvents citrus defense mechanisms.
Collapse
Affiliation(s)
- Siyu Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Wei Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Leijian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
| | - Xiaoyong Yuan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (S.Z.); (X.W.); (W.Z.); (L.Z.); (X.Y.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| |
Collapse
|
25
|
Dong H, Chen Q, Xu Y, Li C, Bai W, Zeng X, Wu Q, Xu H, Deng J. Effect and mechanism of polyphenols containing m-dihydroxyl structure on 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) formation in chemical models and roast pork patties. Food Chem X 2024; 23:101672. [PMID: 39139490 PMCID: PMC11321440 DOI: 10.1016/j.fochx.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) is a prevalent heterocyclic amine (HAA) found in heated processed meat. This study investigated the inhibitory impact of eight different types of polyphenols containing m-dihydroxyl structure on PhIP formation through a chemical model system. The structure-activity relationship and potential sites of action of polyphenols containing m-dihydroxyl structure were also analyzed. Then, the mechanism of inhibiting PhIP formation by kaempferol, naringenin and quercetin was speculated by UPLC-MS. Results showed that 8 kinds of polyphenols containing m-dihydroxyl structure had significant (P < 0.05) inhibition on the formation of PhIP in the chemical model system in a dose-dependent manner. In addition, PhIP was most significantly inhibited by naringenin at the same concentration, followed by kaempferol and quercetin (83.27%, 80.81% and 79.26%, respectively). UPLC-MS results speculated that kaempferol, naringenin, and quercetin formed a new admixture via an electrophilic aromatic substitution reaction with the intermediate product phenylacetaldehyde, preventing the formation of PhIP.
Collapse
Affiliation(s)
- Hao Dong
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Qi Chen
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yan Xu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chao Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Huan Xu
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Jinhua Deng
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| |
Collapse
|
26
|
Chang S, Lee WH, Lee HJ, Oh TJ, Lee SM, Lee JH, Kang SH. Transcriptomic Analysis of the Combined Effects of Methyl Jasmonate and Wounding on Flavonoid and Anthraquinone Biosynthesis in Senna tora. PLANTS (BASEL, SWITZERLAND) 2024; 13:2944. [PMID: 39458891 PMCID: PMC11510977 DOI: 10.3390/plants13202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Jasmonates, including jasmonic acid (JA) and its derivatives such as methyl jasmonate (MeJA) or jasmonly isoleucine (JA-Ile), regulate plant responses to various biotic and abiotic stresses. In this study, we applied exogenous MeJA onto Senna tora leaves subjected to wounding and conducted a transcriptome deep sequencing analysis at 1 (T1), 3 (T3), 6 (T6), and 24 (T24) h after MeJA induction, along with the pretreatment control at 0 h (T0). Out of 18,883 mapped genes, we identified 10,048 differentially expressed genes (DEGs) between the T0 time point and at least one of the four treatment times. We detected the most DEGs at T3, followed by T6, T1, and T24. We observed the upregulation of genes related to JA biosynthesis upon exogenous MeJA application. Similarly, transcript levels of genes related to flavonoid biosynthesis increased after MeJA application and tended to reach their maximum at T6. In agreement, the flavonols kaempferol and quercetin reached their highest accumulation at T24, whereas the levels of the anthraquinones aloe-emodin, emodin, and citreorosein remained constant until T24. This study highlights an increase in flavonoid biosynthesis following both MeJA application and mechanical wounding, whereas no significant influence is observed on anthraquinone biosynthesis. These results provide insights into the distinct regulatory pathways of flavonoid and anthraquinone biosynthesis in response to MeJA and mechanical wounding.
Collapse
Affiliation(s)
- Saemin Chang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (W.-H.L.); (T.-J.O.)
| | - Hyo Ju Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (W.-H.L.); (T.-J.O.)
| | - Si-Myung Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, Republic of Korea;
| | - Sang-Ho Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Republic of Korea; (S.C.); (H.J.L.); (S.-M.L.)
| |
Collapse
|
27
|
Gumisiriza H, Olet EA, Mwikali L, Akatuhebwa R, Omara T, Lejju JB, Sesaazi DC. Antibacterial and Antioxidant Activities of Flavonoids, Phenolic and Flavonoid Glycosides from Gouania longispicata Leaves. MICROBIOLOGY RESEARCH 2024; 15:2085-2101. [DOI: 10.3390/microbiolres15040140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The leaves of Gouania longispicata Engl. (GLE) have been traditionally used to treat more than forty ailments in Uganda, including stomachache, lung and skin cancers, syphilis, toothache, and allergies. In this study, pure compounds were isolated from the methanolic extract of GLE leaves and their structures elucidated using ultraviolet visible spectroscopy, liquid chromatography–tandem mass spectrometry, high performance liquid chromatography, and 1D and 2D NMR techniques. The antibacterial and antioxidant activities of the compounds were assessed using the broth dilution and DPPH assays, respectively. Two known flavonoid glycosides (kaempferol-3-O-α-rhamnopyranoside and rutin), a phenolic glycoside (4,6-dihydroxy-3-methylacetophenone-2-O-β-D-glucopyranoside), and flavonoids (kaempferol and quercetin) were characterized. This is the first time that the kaempferol derivative, the acetophenone as well as free forms of quercetin, kaempferol, and rutin, are being reported in GLE and the Gouania genus. The compounds exhibited antibacterial activity against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentrations between 16 µg/mL and 125 µg/mL. The radical scavenging activities recorded half-minimum inhibitory concentrations (IC50) ranging from 18.6 ± 1.30 µg/mL to 28.1 ± 0.09 µg/mL. The IC50 of kaempferol and quercetin were not significantly different from that of ascorbic acid (p > 0.05), highlighting their potential as natural antioxidant agents. These results lend credence to the use of GLE leaves in herbal treatment of microbial infections and oxidative stress-mediated ailments.
Collapse
Affiliation(s)
- Hannington Gumisiriza
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Eunice Apio Olet
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Lydia Mwikali
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Racheal Akatuhebwa
- Department of Agriculture, Agribusiness, and Environment, Bishop Stuart University, Mbarara P.O. Box 09, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Julius Bunny Lejju
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Duncan Crispin Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| |
Collapse
|
28
|
Barbu IA, Toma VA, Moț AC, Vlase AM, Butiuc-Keul A, Pârvu M. Chemical Composition and Antioxidant Activity of Six Allium Extracts Using Protein-Based Biomimetic Methods. Antioxidants (Basel) 2024; 13:1182. [PMID: 39456436 PMCID: PMC11504208 DOI: 10.3390/antiox13101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Medicinal plants are a valuable reservoir of novel pharmacologically active compounds. ROS and free radicals are primary contributors to oxidative stress, a condition associated with the onset of degenerative diseases such as cancer, coronary heart disease, and vascular disease. In this study, we used different spectrophotometry methods to demonstrate the antioxidant properties of 6 Allium extracts: Allium fistulosum; Allium ursinum; Allium cepa: Arieș red cultivar of A. cepa, and white variety of A. cepa; Allium sativum; and Allium senescens subsp. montanum. HPLC-MS determined the chemical composition of the extracts. Among the tested extracts, the Arieș red cultivar of A. cepa stands out as having the best antioxidant activity, probably due to the high content of polyphenols and alliin (12.67 µg/mL and 3565 ng/mL, respectively). The results obtained in this study show that Allium extracts have antioxidant activity, but also free radical scavenging capabilities. Also, their interactions with cytochrome c and hemoglobin can be the basis of future studies to create treatments for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ioana Andreea Barbu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vlad Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., 400015 Cluj-Napoca, Romania
- “Maya and Nicolae Simionescu”, Romanian Society for Cell Biology, 050568 Bucharest, Romania
| | - Augustin Cătălin Moț
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Butiuc-Keul
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 400015 Cluj-Napoca, Romania
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 1, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (I.A.B.); (A.B.-K.); (M.P.)
- Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Baqer SH, Al-Shawi SG, Al-Younis ZK. Quercetin, the Potential Powerful Flavonoid for Human and Food: A Review. Front Biosci (Elite Ed) 2024; 16:30. [PMID: 39344383 DOI: 10.31083/j.fbe1603030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024]
Abstract
Flavonoids occur naturally in different types of fruits and vegetables, including tea, cabbage, cauliflower, elderberries, cranberries, red apples, lettuce, pears, spinach, green hot peppers, white and red onions, kale, blueberries, and nuts. Among these flavonoids is quercetin, a potent natural antioxidant and cytotoxic substance with a number of therapeutic functions. Nowadays, quercetin is a common ingredient in many nutraceutical and cosmeceutical products due to its antioxidant properties. Its antibacterial effects and possible action mechanisms have been explored in many studies. From these, it has been established that quercetin stops the activity of numerous Gram-negative and -positive bacteria, fungi, and viruses. This review clarifies the plant sources and extraction methods of quercetin, as well as its medicinal applications as an antibacterial, antifungal, antiviral, and antioxidant agent, with a particular emphasis on the underlying mechanisms of its biological activity. The mechanism of its antimicrobial effect involves damaging the cell membrane-e.g., by changing its permeability, preventing biofilm formation, reducing the mitochondrial expression of virulence factors, and inhibiting protein and nucleic-acid synthesis. Moreover, quercetin has been shown to impede the activity of a variety of drug-resistant bacterial strains, pointing to the possibility of using it as a strong antimicrobial substance against such strains. In addition, it has occasionally been demonstrated that specific structural alterations to quercetin can increase its antibacterial action in comparison to the parent molecule. Overall, this review synthesizes our understanding of the mode of action of quercetin and its prospects for use as a therapeutic material.
Collapse
Affiliation(s)
- Safa Hussein Baqer
- Food Science Department, Agriculture College, Basrah University, 61001 Basrah, Iraq
| | | | | |
Collapse
|
30
|
Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024; 38:4406-4423. [PMID: 38986681 DOI: 10.1002/ptr.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with an unknown underlying cause. There is no complete cure for IPF; however, two anti-fibrotic agents (Nintedanib and pirfenidone) are approved by the USFDA to extend the patient's life span. Therefore, alternative therapies supporting the survival of fibrotic patients have been studied in recent literature. The abundance of phenolic compounds, particularly flavonoids, has gathered attention due to their potential health benefits. Various flavonoids, like naringin, quercetin, baicalin, baicalein, puerarin, silymarin, and kaempferol, exhibit anti-inflammatory and anti-oxidant properties, which help decrease lung fibrosis. Various databases, including PubMed, EBSCO, ProQuest, and Scopus, as well as particular websites, such as the World Health Organisation and the National Institutes of Health, were used to conduct a literature search. Several mechanisms of action of flavonoids are reported with the help of in vivo and cell line studies emphasizing their ability to modulate oxidative stress, inflammation, and fibrotic processes in the lungs. They are reported for the restoration of biomarkers like hydroxyproline, cytokines, superoxide dismutase, malondialdehyde and others associated with IPF and for modulating various pathways responsible for the progression of pulmonary fibrosis. Yet, flavonoids have some drawbacks, such as poor solubility, challenging drug loading, stability issues, and scarce bioavailability. Therefore, novel formulations of flavonoids are explored, including liposomes, solid lipid microparticles, polymeric nanoparticles, nanogels, and nanocrystals, to enhance the therapeutic efficacy of flavonoids in pulmonary fibrosis. This review focuses on the role of flavonoids in mitigating idiopathic pulmonary fibrosis, their mode of action and novel formulations.
Collapse
Affiliation(s)
- Anju Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Tesoro C, Lelario F, Piscitelli F, Di Capua A, Della Sala P, Montoro P, Bianco G, Acquavia MA, Dell’Agli M, Piazza S, Ciriello R. Vicia faba L. Pod Valves: A By-Product with High Potential as an Adjuvant in the Treatment of Parkinson's Disease. Molecules 2024; 29:3943. [PMID: 39203021 PMCID: PMC11357479 DOI: 10.3390/molecules29163943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson's disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson's disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents.
Collapse
Affiliation(s)
- Carmen Tesoro
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| | - Filomena Lelario
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 80078 Pozzuoli, Italy;
| | - Angela Di Capua
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| | - Paolo Della Sala
- Department of Chemistry and Biology, University of the Study of Salerno, 84084 Fisciano, Italy;
| | - Paola Montoro
- Department of Pharmacy, University of the Study of Salerno, 84084 Fisciano, Italy;
| | - Giuliana Bianco
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| | - Maria Assunta Acquavia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (M.D.); (S.P.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (M.D.); (S.P.)
| | - Rosanna Ciriello
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (C.T.); (A.D.C.); (G.B.); (M.A.A.); (R.C.)
| |
Collapse
|
32
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
33
|
Kozhantayeva A, Tursynova N, Kolpek A, Aibuldinov Y, Tursynova A, Mashan T, Mukazhanova Z, Ibrayeva M, Zeinuldina A, Nurlybayeva A, Iskakova Z, Tashenov Y. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals (Basel) 2024; 17:996. [PMID: 39204101 PMCID: PMC11357188 DOI: 10.3390/ph17080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The study investigates the phytochemical profile, antioxidant capacity, and antimicrobial activities of ethanol (ChL-EtOH) and ethyl acetate (ChL-EtOAc) extracts from Chamaenerion latifolium L. (ChL) harvested in Kazakhstan. The ChL-EtOH extract exhibited higher total phenolic (267.48 ± 3.44 mg GAE/g DE) and flavonoid content (24.18 ± 1.06 mg QE/g DE) compared to ChL-EtOAc. HPLC-UV-ESI/MS identified key phenolic acids and flavonoids, including gallic acid, chlorogenic acid, and quercetin 3-glucoside. FT-IR analysis confirmed the presence of characteristic functional groups. Antioxidant assays revealed strong DPPH scavenging and FRAP activities, with ChL-EtOH showing superior results (IC50 = 21.31 ± 0.65 μg/mL and 18.13 ± 0.15 μg/mL, respectively). Additionally, ChL-EtOH displayed notable antimicrobial efficacy against Gram-positive and Gram-negative bacteria, as well as the fungal strain Candida albicans. These findings suggest that ethanol extraction is more efficient for isolating bioactive compounds from ChL, underscoring its potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Akmaral Kozhantayeva
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Nurgul Tursynova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Ainagul Kolpek
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yelaman Aibuldinov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Arailym Tursynova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Togzhan Mashan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Zhazira Mukazhanova
- Department of Chemistry, Graduate School of IT and Natural Sciences, East Kazakhstan University Named after S. Amanzholov, Ust-Kamenogorsk 010008, Kazakhstan;
| | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh.Yessenov, Aktau 130000, Kazakhstan;
| | - Aizhan Zeinuldina
- Department of General and Biological Chemistry, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan;
| | - Zhanar Iskakova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yerbolat Tashenov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| |
Collapse
|
34
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
35
|
Zheng Y, Ren X, Qi X, Song R, Zhao C, Ma J, Li X, Deng Q, He Y, Kong L, Qian L, Zhang F, Li M, Sun M, Liu W, Liu H, She G. Bao Yuan decoction alleviates fatigue by restraining inflammation and oxidative stress via the AMPK/CRY2/PER1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118058. [PMID: 38513778 DOI: 10.1016/j.jep.2024.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS In total, 114 compounds from the water extract of BYD were identified as major compounds. Na₂SO₃-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.
Collapse
Affiliation(s)
- Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaodan Qi
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingmei Kong
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Liyan Qian
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haibin Liu
- Dong'e Ejiao Co., Ltd., Liaocheng, 252200, China; Shandong Key Laboratory of Gelatine TCM Research and Development, Liaocheng, 252200, China; Shandong Technology Innovation Center of Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China; National Engineering Technology Research Center for Gelatin-based Traditional Chinese Medicine, Liaocheng, 252200, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
36
|
Ali M, Hassan M, Ansari SA, Alkahtani HM, Al-Rasheed LS, Ansari SA. Quercetin and Kaempferol as Multi-Targeting Antidiabetic Agents against Mouse Model of Chemically Induced Type 2 Diabetes. Pharmaceuticals (Basel) 2024; 17:757. [PMID: 38931424 PMCID: PMC11206732 DOI: 10.3390/ph17060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes, a multifactorial metabolic disorder, demands the discovery of multi-targeting drugs with minimal side effects. This study investigated the multi-targeting antidiabetic potential of quercetin and kaempferol. The druggability and binding affinities of both compounds towards multiple antidiabetic targets were explored using pharmacokinetic and docking software (AutoDock Vina 1.1.2). Our findings showed that quercetin and kaempferol obey Lipinski's rule of five and exhibit desirable ADMET (absorption, distribution, metabolism excretion, and toxicity) profiles. Both compounds showed higher binding affinities towards C-reactive protein (CRP), interleukin-1 (IL-1), dipeptidyl peptidase-4 (DPP-IV), peroxisome proliferator-activated receptor gamma (PPARG), protein tyrosine phosphatase (PTP), and sodium-glucose co-transporter-1 (SGLT-1) compared to metformin (the positive control). Both quercetin and kaempferol inhibited α-amylase activity (in vitro) up to 20.30 ± 0.49 and 37.43 ± 0.42%, respectively. Their oral supplementation significantly reduced blood glucose levels (p < 0.001), improved lipid profile (p < 0.001), and enhanced total antioxidant status (p < 0.01) in streptozotocin-nicotinamide (STZ-NA)-induced diabetic mice. Additionally, both compounds significantly inhibited the proliferation of Huh-7 and HepG2 (cancer cells) (p < 0.0001) with no effect on the viability of Vero cell line (non-cancer). In conclusion, quercetin and kaempferol demonstrated higher binding affinities towards multiple targets than metformin. In vitro and in vivo antidiabetic potential along with the anticancer activities of both compounds suggest promise for further development in diabetes management. The combination of both drugs did not show a synergistic effect, possibly due to their same target on the receptors.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad (UAF), Faisalabad 38040, Pakistan;
| | - Mudassir Hassan
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad (UAF), Faisalabad 38040, Pakistan;
- Department of Biotechnology, Akhuwat Faisalabad Institute of Research Science and Technology Faisalabad (A-FIRST), Faisalabad 38040, Pakistan
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.); (L.S.A.-R.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.); (L.S.A.-R.)
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.); (L.S.A.-R.)
| | - Shoeb Anwar Ansari
- Department of Drug Science, Technology University of Turin, 10124 Turin, Italy;
| |
Collapse
|
37
|
B S, R P, Jayaraman S. In Vitro Analysis of Camellia sinensis Leaf Extract Against Diabetes Mellitus. Cureus 2024; 16:e62794. [PMID: 39040717 PMCID: PMC11260662 DOI: 10.7759/cureus.62794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) poses a significant global health challenge, with its prevalence steadily increasing. Natural compounds derived from plants have garnered attention for their potential therapeutic effects in managing this metabolic disorder. Camellia sinensis, commonly known as tea, is rich in bioactive compounds exhibiting various pharmacological properties. This study investigates the potential anti-diabetic activity of C. sinensis leaf extract through in vitro analysis. MATERIALS AND METHODS Camella sinensis leaf extract was prepared by grinding the plant's leaf into a powder, mixing it with distilled water, and heating. The antidiabetic activity was assessed through α-Amylase and α-Glucosidase inhibitory assays, employing varying concentrations of the plant extract. Molecular docking analysis utilized Autodock 1.5.6 software (The Scripps Research Institute, California, US) to predict ligand-receptor interactions, guiding subsequent experimental validation. RESULT Camella sinensis leaf extract exhibited high phenolic content, suggesting potential in managing hyperglycemia. Tannins may aid glucose absorption and inhibit adipogenesis, making them promising for non-insulin-dependent DM (NIDDM). Terpenoids, with antioxidant activity, inhibit advanced glycation. Saponins and steroids were absent. Molecular docking revealed residues like IR, IRS1, and AS160 with significant impact on α-Amylase and α-Glucosidase, comparable to metformin. CONCLUSION The findings of this study highlight the promising potential of C. sinensis leaf extract in managing hyperglycemia associated with DM. The high phenolic content aids in glucose regulation. Specifically, the presence of tannins suggests a potential role in modulating glucose absorption and inhibiting adipogenesis, which could be particularly beneficial for individuals with NIDDM. These findings provide valuable insights into the molecular mechanisms underlying the potential therapeutic efficacy of C. sinensis leaf extract against DM, paving the way for further research and development of novel therapeutic interventions in diabetes management.
Collapse
Affiliation(s)
- Srimathi B
- General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Priyadharshini R
- Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
38
|
Khalil AM, Sabry OM, El-Askary HI, El Zalabani SM, Eltanany BM, Pont L, Benavente F, Elshewy A, Fayek NM. Identification of cyclooxygenase-II inhibitory saponins from fenugreek wastes: Insights from liquid chromatography-tandem mass spectrometry metabolomics, molecular networking, and molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:690-707. [PMID: 38212263 DOI: 10.1002/pca.3322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION This research explores sustainable applications for waste generated from fenugreek (Trigonella foenum-graecum), a plant with both nutritional and medicinal uses. The study specifically targets waste components as potential sources of nutrients and bioactive compounds. OBJECTIVES The focus is to conduct detailed metabolic profiling of fenugreek waste, assess its anti-inflammatory properties by studying its cyclooxygenase (COX) inhibitory effect, and correlate this effect to the metabolite fingerprint. MATERIALS AND METHODS Ethanolic extracts of fenugreek fruit pericarp and a combination of leaves and stems were subjected to untargeted metabolic profiling using liquid chromatography-mass spectrometry integrated with online database searches and molecular networking as an effective dereplication strategy. The study also scrutinized the COX inhibitory capabilities of these extracts and saponin-rich fractions prepared therefrom. Molecular docking was employed to investigate the specific interactions between the identified saponins and COX enzymes. RESULTS The analysis led to the annotation of 81 metabolites, among which saponins were predominant. The saponin-rich fraction of the fruit pericarp extract displayed the strongest COX-II inhibitory activity in the in vitro inhibition assay (IC50 value of 81.64 ± 3.98 μg/mL). The molecular docking study supported the selectivity of the identified saponins towards COX-II. The two major identified saponins, namely, proto-yamogenin 3-O-[deoxyhexosyl (1 → 2)] [hexosyl (1 → 4)] hexoside 26-O-hexoside and trigofenoside A, were predicted to have the highest affinity to the COX-II receptor site. CONCLUSION In the present study, we focused on the identification of COX-II inhibitory saponins in fenugreek waste through an integrated approach. The findings offer valuable insights into potential anti-inflammatory and cancer chemoprotective applications of fenugreek waste.
Collapse
Affiliation(s)
- Asmaa M Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omar M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hesham I El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soheir M El Zalabani
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Basma M Eltanany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala, Egypt
| | - Nesrin M Fayek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
40
|
Dalla Costa V, Piovan A, Filippini R, Brun P. From Ethnobotany to Biotechnology: Wound Healing and Anti-Inflammatory Properties of Sedum telephium L. In Vitro Cultures. Molecules 2024; 29:2472. [PMID: 38893348 PMCID: PMC11173831 DOI: 10.3390/molecules29112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Sedum telephium is a succulent plant used in traditional medicine, particularly in Italy, for its efficacy in treating localized inflammation such as burns, warts, and wounds. Fresh leaves or freshly obtained derivatives are directly applied to the injuries for these purposes. However, challenges such as the lack of microbiologically controlled materials and product standardization prompted the exploration of more controlled biotechnological alternatives, utilizing in vitro plant cell cultures of S. telephium. In the present study, we used HPLC-DAD analysis to reveal a characteristic flavonol profile in juices from in vivo leaves and in vitro materials mainly characterized by several kaempferol and quercetin derivatives. The leaf juice exhibited the highest content in total flavonol and kaempferol derivatives, whereas juice from callus grown in medium with hormones and callus suspensions showed elevated levels of quercetin derivatives. The in vitro anti-inflammatory and wound-healing assays evidenced the great potential of callus and suspension cultures in dampening inflammation and fostering wound closure, suggesting quercetin may have a pivotal role in biological activities.
Collapse
Affiliation(s)
- Vanessa Dalla Costa
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (V.D.C.); (A.P.); (R.F.)
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
41
|
Stanković MM, Ristivojević PM, Ivković ĐD, Milutinović MG, Terzić JN, Stefanović OD. A comprehensive study on Geranium robertianum L. antibacterial potential. J Appl Microbiol 2024; 135:lxae106. [PMID: 38658191 DOI: 10.1093/jambio/lxae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
AIMS The research aimed to optimize the ultrasound-assisted extraction of secondary metabolites and the antibacterial activity of the plant species Geranium robertianum. The phytochemical profiles of the optimized extracts, as well as their antibacterial and synergistic activity with an antibiotic and their potential mechanisms of action and cytotoxicity, were examined. METHODS AND RESULTS Response Surface Methodology was used to optimize extraction conditions. Optimized ethanol and acetone extracts were tested via microdilution, checkerboard, time-kill kinetics, and cell membrane permeability methods. The extracts displayed broad antibacterial activity with minimum inhibitory concentrations ranging from 1.25 to 20 mg ml-1. In addition, the extract synergistically reacted with gentamicin against gentamicin-resistant strains of Escherichia coli and Staphylococcus aureus, enhancing the efficacy of the antibiotic up to 32-fold. The extracts demonstrated strain-dependent bactericidal activity in a 24-h time interval. They increase the permeability of the cell membrane, thus disrupting its normal functioning. The cytotoxic concentration (CC50) on human keratinocytes was 1771.24 ± 5.78 µg ml-1 for ethanol extract, and 958.01 ± 6.14 µg ml-1 for acetone extract. Kaempferol, ellagic acid, quercetin, and rutin were recognized as the main components in both extracts. CONCLUSIONS The findings of this study indicate that the extracts of G. robertianum can be considered as potential natural antibacterial agents in the control of microorganisms.
Collapse
Affiliation(s)
- Marina M Stanković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Petar M Ristivojević
- University of Belgrade, Faculty of Chemistry, Chair of Analytical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Đurđa D Ivković
- Innovation Centre of Faculty of Chemistry Ltd., Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena N Terzić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Olgica D Stefanović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
42
|
da Silva Antonio A, dos Santos GRC, Pereira HMG, da Veiga-Junior VF, Wiedemann LSM. Chemical Profile of Ocotea delicata (Lauraceae) Using Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry-Global Natural Products Social Molecular Networking Workflow. PLANTS (BASEL, SWITZERLAND) 2024; 13:859. [PMID: 38592892 PMCID: PMC10975221 DOI: 10.3390/plants13060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Ocotea, the largest genus in the Lauraceae family, encompasses numerous species of scientific interest. However, most Ocotea species have only been described morphologically. This study used an untargeted metabolomics workflow with UHPLC-HRMS and GNPS-FBMN to provide the first chemical evaluation of the polar specialized metabolites of O. delicata leaves. Leaves from three O. delicata specimens were extracted using ultrasound-assisted extraction with 70% ethanol. Among the examined samples, 44 metabolites, including alkaloids and flavonoids, were identified. In contrast to other Ocotea species, O. delicata has a wider diversity of kaempferol derivatives than quercetin. The biomass of the specimens showed a significant correlation with the chemical profile. The similarity among specimens was mostly determined by the concentrations of quinic acid, kaempferol glycosides, and boldine. The evaluated specimens exhibited chemical features similar to those of species classified as New World Ocotea, with the coexistence of aporphine and benzylisoquinoline alkaloids.
Collapse
Affiliation(s)
- Ananda da Silva Antonio
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Avenida Rodrigo Otávio, 6200, Coroado, Manaus 69077-000, AM, Brazil; (A.d.S.A.); (G.R.C.d.S.); (H.M.G.P.)
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Avenida Horácio Macedo, 1281—Polo de Química—Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-598, RJ, Brazil
| | - Gustavo Ramalho Cardoso dos Santos
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Avenida Rodrigo Otávio, 6200, Coroado, Manaus 69077-000, AM, Brazil; (A.d.S.A.); (G.R.C.d.S.); (H.M.G.P.)
| | - Henrique Marcelo Gualberto Pereira
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Avenida Rodrigo Otávio, 6200, Coroado, Manaus 69077-000, AM, Brazil; (A.d.S.A.); (G.R.C.d.S.); (H.M.G.P.)
| | - Valdir Florêncio da Veiga-Junior
- Department of Chemical Engineering, Military Institute of Engineering—IME, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, RJ, Brazil
| | - Larissa Silveira Moreira Wiedemann
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas, Avenida Rodrigo Otávio, 6200, Coroado, Manaus 69077-000, AM, Brazil; (A.d.S.A.); (G.R.C.d.S.); (H.M.G.P.)
| |
Collapse
|
43
|
Salamat A, Kosar N, Mohyuddin A, Imran M, Zahid MN, Mahmood T. SAR, Molecular Docking and Molecular Dynamic Simulation of Natural Inhibitors against SARS-CoV-2 Mpro Spike Protein. Molecules 2024; 29:1144. [PMID: 38474656 DOI: 10.3390/molecules29051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 virus and its mutations have affected human health globally and created significant danger for the health of people all around the world. To cure this virus, the human Angiotensin Converting Enzyme-2 (ACE2) receptor, the SARS-CoV-2 main protease (Mpro), and spike proteins were found to be likely candidates for the synthesis of novel therapeutic drug. In the past, proteins were capable of engaging in interaction with a wide variety of ligands, including both manmade and plant-derived small molecules. Pyrus communis L., Ginko bibola, Carica papaya, Syrian rue, and Pimenta dioica were some of the plant species that were studied for their tendency to interact with SARS-CoV-2 main protease (Mpro) in this research project (6LU7). This scenario investigates the geometry, electronic, and thermodynamic properties computationally. Assessing the intermolecular forces of phytochemicals with the targets of the SARS-CoV-2 Mpro spike protein (SP) resulted in the recognition of a compound, kaempferol, as the most potent binding ligand, -7.7 kcal mol-1. Kaempferol interacted with ASP-187, CYS-145, SER-144, LEU 141, MET-165, and GLU-166 residues. Through additional molecular dynamic simulations, the stability of ligand-protein interactions was assessed for 100 ns. GLU-166 remained intact with 33% contact strength with phenolic OH group. We noted a change in torsional conformation, and the molecular dynamics simulation showed a potential variation in the range from 3.36 to 7.44 against a 45-50-degree angle rotation. SAR, pharmacokinetics, and drug-likeness characteristic investigations showed that kaempferol may be the suitable candidate to serve as a model for designing and developing new anti-COVID-19 medicines.
Collapse
Affiliation(s)
- Aqsa Salamat
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, University of Management and Technology (UMT), C-II, Johar Town, Lahore 54770, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Nauman Zahid
- Department of Biology, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain
| |
Collapse
|
44
|
Wang Y, Jiang W, Li C, Wang Z, Lu C, Cheng J, Wei S, Yang J, Yang Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC PLANT BIOLOGY 2024; 24:132. [PMID: 38383312 PMCID: PMC10880279 DOI: 10.1186/s12870-024-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.
Collapse
Affiliation(s)
- Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chenlei Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Can Lu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiasong Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Qiang Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
45
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman. Foods 2024; 13:582. [PMID: 38397559 PMCID: PMC10887624 DOI: 10.3390/foods13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Muang, Rusamilae 94000, Pattani, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | |
Collapse
|
46
|
Villegas-Aguilar MDC, Sánchez-Marzo N, Fernández-Ochoa Á, Del Río C, Montaner J, Micol V, Herranz-López M, Barrajón-Catalán E, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Evaluation of Bioactive Effects of Five Plant Extracts with Different Phenolic Compositions against Different Therapeutic Targets. Antioxidants (Basel) 2024; 13:217. [PMID: 38397815 PMCID: PMC10886104 DOI: 10.3390/antiox13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts rich in phenolic compounds have been reported to exert different bioactive properties. Despite the fact that there are plant extracts with completely different phenolic compositions, many of them have been reported to have similar beneficial properties. Thus, the structure-bioactivity relationship mechanisms are not yet known in detail for specific classes of phenolic compounds. In this context, this work aims to demonstrate the relationship of extracts with different phenolic compositions versus different bioactive targets. For this purpose, five plant matrices (Theobroma cacao, Hibiscus sabdariffa, Silybum marianum, Lippia citriodora, and Olea europaea) were selected to cover different phenolic compositions, which were confirmed by the phytochemical characterization analysis performed by HPLC-ESI-qTOF-MS. The bioactive targets evaluated were the antioxidant potential, the free radical scavenging potential, and the inhibitory capacity of different enzymes involved in inflammatory processes, skin aging, and neuroprotection. The results showed that despite the different phenolic compositions of the five matrices, they all showed a bioactive positive effect in most of the evaluated assays. In particular, matrices with very different phenolic contents, such as T. cacao and S. marianum, exerted a similar inhibitory power in enzymes involved in inflammatory processes and skin aging. It should also be noted that H. sabdariffa and T. cacao extracts had a low phenolic content but nevertheless stood out for their bioactive antioxidant and anti-radical capacity. Hence, this research highlights the shared bioactive properties among phenolic compounds found in diverse matrices. The abundance of different phenolic compound families highlights their elevated bioactivity against diverse biological targets.
Collapse
Affiliation(s)
| | - Noelia Sánchez-Marzo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Carmen Del Río
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (C.D.R.); (J.M.)
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) Miguel Hernández University (UMH), 03202 Elche, Spain; (N.S.-M.); (V.M.); (M.H.-L.); (E.B.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, 18071 Granada, Spain; (M.d.C.V.-A.); (Á.F.-O.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
47
|
Pereira D, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. The Role of Natural and Synthetic Flavonoids in the Prevention of Marine Biofouling. Mar Drugs 2024; 22:77. [PMID: 38393048 PMCID: PMC10889971 DOI: 10.3390/md22020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
48
|
Wang M, Wang Y, Li X, Zhang Y, Chen X, Liu J, Qiua Y, Wang A. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. HORTICULTURE RESEARCH 2024; 11:uhad277. [PMID: 38344649 PMCID: PMC10857935 DOI: 10.1093/hr/uhad277] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/10/2023] [Indexed: 03/19/2025]
Abstract
Solanum habrochaites (SH), a wild species closely related to 'Ailsa Craig' (AC), is an important germplasm resource for modern tomato breeding. Trichomes, developed from epidermal cells, have a role in defense against insect attack, and their secretions are of non-negligible value. Here, we found that the glandular heads of type VI trichomes were clearly distinguishable between AC and SH under cryo-scanning electron microscopy, the difference indicating that SH could secrete more anti-insect metabolites than AC. Pest preference experiments showed that aphids and mites preferred to feed near AC compared with SH. Integration analysis of transcriptomics and metabolomics data revealed that the phenylpropanoid biosynthesis pathway was an important secondary metabolic pathway in plants, and SH secreted larger amounts of phenylpropanoids and flavonoids than AC by upregulating the expression of relevant genes in this pathway, and this may contribute to the greater resistance of SH to phytophagous insects. Notably, virus-induced silencing of Sl4CLL6 not only decreased the expression of genes downstream of the phenylpropanoid biosynthesis pathway (SlHCT, SlCAD, and SlCHI), but also reduced resistance to mites in tomato. These findings provided new genetic resources for the synthesis of phenylpropanoid compounds and anti-insect breeding in S. habrochaites and a new theoretical basis for the improvement of important traits in cultivated tomato.
Collapse
Affiliation(s)
- Meiliang Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yudan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xinzhi Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiua
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
49
|
Kaur S, Shams R, Dash KK, Pandey VK, Shaikh AM, Harsányi E, Kovács B. Phytochemical and pharmacological characteristics of phalsa ( Grewia asiatica L.): A comprehensive review. Heliyon 2024; 10:e25046. [PMID: 38312640 PMCID: PMC10835009 DOI: 10.1016/j.heliyon.2024.e25046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Phalsa is a tropical and subtropical fruit that is high in nutritional value and is primarily cultivated for its fruit. As, Phalsa fruit contain high number of vitamins (A and C), minerals (calcium, phosphorus, and iron), and fibre while being low in calories and fat. The fruit and seed of Phalsa contain 18 amino acids, the majority of which are aspartic acid, glutamic acid, and leucine. Based on in vivo and in vitro studies phalsa plant possess high antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic properties. However, antioxidant properties are found in the form of vitamin C, total phenolic, anthocyanin, flavonoid, and tannin. The phalsa plant's fruits and leaves have substantial anticancer action against cancer cell lines. Because of the presence of a broad range of physiologically active chemicals, investigations on phalsa plants revealed that some plant parts have radioprotective qualities. The anti-glycosidase and anti-amylase activity of aqueous fresh fruit extract was shown to be substantial. The phalsa plant contains an abundance of biologically active chemicals, allowing it to control microorganisms through a variety of processes. Phalsa methanolic leaf extract was revealed to have antimalarial and antiemetic effects. The hot and cold polysaccharide fractions extracted from the phalsa plant have potent hepatoprotective and therapeutic properties. Therefore, this review is based on the nutritional, bioactive, phytochemicals, and potential pharmacological uses of phalsa. The potential health benefits and economic potential of the phalsa berry's phytochemicals are promising areas for further study.
Collapse
Affiliation(s)
- Simrat Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, 732141 India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur, Uttar Pradesh, 209402, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Land Utilization, Engineering and Precision Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
50
|
Lin X, Chi W, Geng X, Jiang Q, Ma B, Dai B, Sui Y, Jiang J. Evaluation of the Mechanism of Yishan Formula in Treating Breast Cancer Based on Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:2583-2597. [PMID: 38178684 DOI: 10.2174/0113862073266004231105164321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Yishan formula (YSF) has a significant effect on the treatment of breast cancer, which can improve the quality of life and prolong the survival of patients with breast cancer; however, its mechanism of action is unknown. OBJECTIVE In this study, network pharmacology and molecular docking methods have been used to explore the potential pharmacological effects of the YSF, and the predicted targets have been validated by in vitro experiments. METHODS Active components and targets of the YSF were obtained from the TCMSP and Swiss target prediction website. Four databases, namely GeneCards, OMIM, TTD, and DisGeNET, were used to search for disease targets. The Cytoscape v3.9.0 software was utilized to draw the network of drug-component-target and selected core targets. DAVID database was used to analyze the biological functions and pathways of key targets. Finally, molecular docking and in vitro experiments have been used to verify the hub genes. RESULTS Through data collection from the database, 157 active components and 618 genes implicated in breast cancer were obtained and treated using the YSF. After screening, the main active components (kaempferol, quercetin, isorhamnetin, dinatin, luteolin, and tamarixetin) and key genes (AKT1, TP53, TNF, IL6, EGFR, SRC, VEGFA, STAT3, MAPK3, and JUN) were obtained. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the YSF could affect the progression of breast cancer by regulating biological processes, such as signal transduction, cell proliferation and apoptosis, protein phosphorylation, as well as PI3K-Akt, Rap1, MAPK, FOXO, HIF-1, and other related signaling pathways. Molecular docking suggested that IL6 with isorhamnetin, MAPK3 with kaempferol, and EGFR with luteolin have strong binding energy. The experiment further verified that YSF can control the development of breast cancer by inhibiting the expression of the hub genes. CONCLUSION This study showed that resistance to breast cancer may be achieved by the synergy of multiple active components, target genes, and signal pathways, which can provide new avenues for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyue Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wencheng Chi
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150000, China
| | - Xue Geng
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Qinghui Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Baozhu Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bowen Dai
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Jiakang Jiang
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150000, China
| |
Collapse
|