1
|
Du K, Zhang D, Dan Z, Bao L, Mu W, Zhang J. Identification of Long-Distance Mobile mRNAs Responding to Drought Stress in Heterografted Tomato Plants. Int J Mol Sci 2025; 26:3168. [PMID: 40243940 PMCID: PMC11989872 DOI: 10.3390/ijms26073168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Grafting is widely used as an effective strategy to enhance tolerance to biotic and abiotic stresses and improve fruit quality in horticultural crops. However, the molecular mechanisms of transcription and the regulatory functions in response to drought stress of mobile mRNAs remain poorly understood. In this study, we developed a grafting system based on the "one grafted plant-three samples" approach using the cultivated tomato/Solanum pennellii (Heinz 1706/LA 0716) heterografting system. A bioinformatics pipeline was developed based on RNA-seq to identify mobile mRNAs in the heterografting systems. A total of 61 upwardly and 990 downwardly mobile mRNAs were identified. Furthermore, we found that the mobility of mRNAs was not correlated with their abundance. The functional annotation and enrichment analysis indicated that mobile mRNAs were mainly involved in RNA binding, photosynthesis, photosystem, response to heat, and translation processes, and ultimately increased the drought tolerance of grafted plants. In addition, we also analyzed the RNA-binding proteins (RBPs) of downwardly mobile mRNAs and found that RBPs were conserved among species. Further, mobile mRNAs may be degraded during transportation. This study provides a pipeline for detecting mobile mRNAs in plant heterografting systems and offers new insights into future studies on long-distance mRNAs transport and regulatory mechanisms involved in drought stress responses.
Collapse
Affiliation(s)
- Kanghua Du
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Da Zhang
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Zhong Dan
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Lingfeng Bao
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Wanfu Mu
- Tropical Eco-agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Yuanmou 651300, China; (K.D.); (D.Z.); (Z.D.); (L.B.); (W.M.)
| | - Jie Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Vegetable Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Riseh RS, Fathi F, Vazvani MG, Tarkka MT. Plant Colonization by Biocontrol Bacteria and Improved Plant Health: A Review. FRONT BIOSCI-LANDMRK 2025; 30:23223. [PMID: 39862070 DOI: 10.31083/fbl23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control. The present review deals with the in-depth understanding of steps involved in host colonization by biocontrol bacteria. The colonization process starts from the root zone, where biocontrol bacteria establish initial interactions with the plant's root system. Moving beyond the roots, biocontrol bacteria migrate and colonize other plant organs, including stems, leaves, and even flowers. Also, the present review attempts to explore the mechanisms facilitating bacterial movement within the plant such as migrating through interconnected spaces such as vessels or in the apoplast, and applying quorum sensing or extracellular enzymes during colonization and what is needed to establish a long-term association within a plant. The impacts on microbial community dynamics, nutrient cycling, and overall plant health are discussed, emphasizing the intricate relationships between biocontrol bacteria and the plant's microbiome and the benefits to the plant's above-ground parts, the biocontrol 40 bacteria confer. By unraveling these mechanisms, researchers can develop targeted strategies for enhancing the colonization efficiency and overall effectiveness of biocontrol bacteria, leading to more sustainability and resilience.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mika Tapio Tarkka
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| |
Collapse
|
3
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
4
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
5
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
7
|
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. THE NEW PHYTOLOGIST 2024; 241:1415-1420. [PMID: 38058221 DOI: 10.1111/nph.19456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| | - Marco Incarbone
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Kirov I. Toward Transgene-Free Transposon-Mediated Biological Mutagenesis for Plant Breeding. Int J Mol Sci 2023; 24:17054. [PMID: 38069377 PMCID: PMC10706983 DOI: 10.3390/ijms242317054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic diversity is a key factor for plant breeding. The birth of novel genic and genomic variants is also crucial for plant adaptation in nature. Therefore, the genomes of almost all living organisms possess natural mutagenic mechanisms. Transposable elements (TEs) are a major mutagenic force driving genetic diversity in wild plants and modern crops. The relatively rare TE transposition activity during the thousand-year crop domestication process has led to the phenotypic diversity of many cultivated species. The utilization of TE mutagenesis by artificial and transient acceleration of their activity in a controlled mode is an attractive foundation for a novel type of mutagenesis called TE-mediated biological mutagenesis. Here, I focus on TEs as mutagenic sources for plant breeding and discuss existing and emerging transgene-free approaches for TE activation in plants. Furthermore, I also review the non-randomness of TE insertions in a plant genome and the molecular and epigenetic factors involved in shaping TE insertion preferences. Additionally, I discuss the molecular mechanisms that prevent TE transpositions in germline plant cells (e.g., meiocytes, pollen, egg and embryo cells, and shoot apical meristem), thereby reducing the chances of TE insertion inheritance. Knowledge of these mechanisms can expand the TE activation toolbox using novel gene targeting approaches. Finally, the challenges and future perspectives of plant populations with induced novel TE insertions (iTE plant collections) are discussed.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
9
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
10
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
11
|
Heeney M, Frank MH. The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. THE PLANT CELL 2023; 35:1817-1833. [PMID: 36881847 DOI: 10.1093/plcell/koad063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Organismal communication entails encoding a message that is sent over space or time to a recipient cell, where that message is decoded to activate a downstream response. Defining what qualifies as a functional signal is essential for understanding intercellular communication. In this review, we delve into what is known and unknown in the field of long-distance messenger RNA (mRNA) movement and draw inspiration from the field of information theory to provide a perspective on what defines a functional signaling molecule. Although numerous studies support the long-distance movement of hundreds to thousands of mRNAs through the plant vascular system, only a small handful of these transcripts have been associated with signaling functions. Deciphering whether mobile mRNAs generally serve a role in plant communication has been challenging, due to our current lack of understanding regarding the factors that influence mRNA mobility. Further insight into unsolved questions regarding the nature of mobile mRNAs could provide an understanding of the signaling potential of these macromolecules.
Collapse
Affiliation(s)
- Michelle Heeney
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 14853 Ithaca, NY, USA
| |
Collapse
|
12
|
Muhammad D, Clark NM, Haque S, Williams CM, Sozzani R, Long TA. POPEYE intercellular localization mediates cell-specific iron deficiency responses. PLANT PHYSIOLOGY 2022; 190:2017-2032. [PMID: 35920794 PMCID: PMC9614487 DOI: 10.1093/plphys/kiac357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/01/2022] [Indexed: 05/28/2023]
Abstract
Plants must tightly regulate iron (Fe) sensing, acquisition, transport, mobilization, and storage to ensure sufficient levels of this essential micronutrient. POPEYE (PYE) is an iron responsive transcription factor that positively regulates the iron deficiency response, while also repressing genes essential for maintaining iron homeostasis. However, little is known about how PYE plays such contradictory roles. Under iron-deficient conditions, pPYE:GFP accumulates in the root pericycle while pPYE:PYE-GFP is localized to the nucleus in all Arabidopsis (Arabidopsis thaliana) root cells, suggesting that PYE may have cell-specific dynamics and functions. Using scanning fluorescence correlation spectroscopy and cell-specific promoters, we found that PYE-GFP moves between different cells and that the tendency for movement corresponds with transcript abundance. While localization to the cortex, endodermis, and vasculature is required to manage changes in iron availability, vasculature and endodermis localization of PYE-GFP protein exacerbated pye-1 defects and elicited a host of transcriptional changes that are detrimental to iron mobilization. Our findings indicate that PYE acts as a positive regulator of iron deficiency response by regulating iron bioavailability differentially across cells, which may trigger iron uptake from the surrounding rhizosphere and impact root energy metabolism.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Samiul Haque
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cranos M Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
13
|
Matz TW, Wang Y, Kulshreshtha R, Sampathkumar A, Nikoloski Z. Topological properties accurately predict cell division events and organization of shoot apical meristem in Arabidopsis thaliana. Development 2022; 149:276347. [DOI: 10.1242/dev.201024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cell division and the resulting changes to the cell organization affect the shape and functionality of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell division is a key question in developmental biology. Here, we use a network representation of live cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell division events and their consequences at the tissue level. We show that a support vector machine classifier based on the SAM network properties is predictive of cell division events, with test accuracy of 76%, which matches that based on cell size alone. Furthermore, we demonstrate that the combination of topological and biological properties, including cell size, perimeter, distance and shared cell wall between cells, can further boost the prediction accuracy of resulting changes in topology triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule-mediated cell-to-cell growth coordination in influencing tissue-level topology. Together, the results from our network-based analysis demonstrate a feedback mechanism between tissue topology and cell division in A. thaliana SAMs.
Collapse
Affiliation(s)
- Timon W. Matz
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| | - Yang Wang
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Ritika Kulshreshtha
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Arun Sampathkumar
- Plant Cell Biology and Microscopy, Max Planck Institute of Molecular Plant Physiology 3 , 14476 Potsdam , Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam 1 , 14476 Potsdam , Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology 2 , 14476 Potsdam , Germany
| |
Collapse
|
14
|
Jin T, Wu H, Deng Z, Cai T, Li J, Liu Z, Waterhouse PM, White RG, Liang D. Control of root-to-shoot long-distance flow by a key ROS-regulating factor in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2476-2491. [PMID: 35689480 DOI: 10.1111/pce.14375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Inter-tissue communication is instrumental to coordinating the whole-body level behaviour for complex multicellular organisms. However, little is known about the regulation of inter-tissue information exchange. Here we carried out genetic screens for root-to-shoot mobile silencing in Arabidopsis plants with a compromised small RNA-mediated gene silencing movement rate and identified radical-induced cell death 1 (RCD1) as a critical regulator of root-shoot communication. RCD1 belongs to a family of poly (ADP-ribose) polymerase proteins, which are highly conserved across land plants. We found that RCD1 coordinates symplastic and apoplastic movement by modulating the sterol level of lipid rafts. The higher superoxide production in rcd1-knockout plants resulted in lower plasmodesmata (PD) frequency and altered PD structure in the symplasm of the hypocotyl cortex. Furthermore, the mutants showed increased lateral area of tracheary pits, which reduced axial movement. Our study highlights a novel mechanism through which root-to-shoot long-distance signalling can be modulated both symplastically and apoplastically.
Collapse
Affiliation(s)
- Tianling Jin
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Huiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhuying Deng
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Tingting Cai
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Junkai Li
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhangyong Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetlandy, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rosemary G White
- Department of Plant Sciences, Australian National University, Canberra, ACT, Australia
| | - Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Engineering Research Center of Ecology and Agricultural Use of Wetlandy, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
15
|
Niñoles R, Ruiz-Pastor CM, Arjona-Mudarra P, Casañ J, Renard J, Bueso E, Mateos R, Serrano R, Gadea J. Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:915184. [PMID: 35845633 PMCID: PMC9284063 DOI: 10.3389/fpls.2022.915184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
Seed longevity is modulated by multiple genetic factors in Arabidopsis thaliana. A previous genome-wide association study using the Elevated Partial Pressure of Oxygen (EPPO) aging assay pinpointed a genetic locus associated with this trait. Reverse genetics identified the transcription factor DOF4.1 as a novel seed longevity factor. dof4.1 loss-of-function plants generate seeds exhibiting higher germination after accelerated aging assays. DOF4.1 is expressed during seed development and RNAseq data show several putative factors that could contribute to the dof4.1 seed longevity phenotype. dof4.1 has reduced seed permeability and a higher levels of seed storage proteins mRNAs (cruciferins and napins) in developing seeds, as compared to wild-type seeds. It has been reported that mutant lines defective in cruciferins or napins present reduced seed longevity. The improved longevity of dof4.1 is totally lost in the quadruple mutant dof4.1 cra crb crc, but not in a dof4.1 line depleted of napins, suggesting a prominent role for cruciferins in this process. Moreover, a negative regulation of DOF4.1 expression by the transcription factor DOF1.8 is suggested by co-inoculation assays in Nicotiana benthamiana. Indeed, DOF1.8 expression anticorrelates with that of DOF4.1 during seed development. In summary, modulation of DOF4.1 levels during seed development contributes to regulate seed longevity.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Valencia, Spain
| | | | | | | | | | | | | | | | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Valencia, Spain
| |
Collapse
|
16
|
A Forward Genetic Approach to Identify Plasmodesmal Trafficking Regulators Based on Trichome Rescue. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:393-407. [PMID: 35349156 DOI: 10.1007/978-1-0716-2132-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasmodesmata (PD) are channels in the walls of plant cells which enable cell-to-cell information transfer. This includes the selective transport of specific transcription factors that control cell fate during plant development. KNOTTED1 (KN1) homeobox (KNOX) family transcription factors that are essential for the maintenance and function of stem cells in shoot meristems use this trafficking pathway, but its mechanism is largely unknown. Here we describe a forward genetic approach to the identification of regulators of selective KN1 trafficking through PD, using a trichome rescue system that permits simple visual analysis in Arabidopsis leaves. A KN1 trafficking regulator identified in this approach had the capacity to regulate the transport not only of KN1 but also of another mobile regulatory protein, TRANSPARENT TESTA GLABRA1 (TTG1). Our system could be easily adapted to reveal the mechanism underlying the selective transport of additional mobile signals through PD.
Collapse
|
17
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
18
|
Han H, Zhou Y. Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing. Int J Mol Sci 2022; 23:2544. [PMID: 35269685 PMCID: PMC8910752 DOI: 10.3390/ijms23052544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
MicroRNA171 (miR171), a group of 21-nucleotide single-strand small RNAs, is one ancient and conserved microRNA family in land plants. This review focuses on the recent progress in understanding the role of miR171 in plant stem cell homeostasis and developmental patterning, and the regulation of miR171 by developmental cues and environmental signals. Specifically, miR171 regulates shoot meristem activity and phase transition through repressing the HAIRYMERISTEM (HAM) family genes. In the model species Arabidopsis, miR171 serves as a short-range mobile signal, which initiates in the epidermal layer of shoot meristems and moves downwards within a limited distance, to pattern the apical-basal polarity of gene expression and drive stem cell dynamics. miR171 levels are regulated by light and various abiotic stresses, suggesting miR171 may serve as a linkage between environmental factors and cell fate decisions. Furthermore, miR171 family members also demonstrate both conserved and lineage-specific functions in land plants, which are summarized and discussed here.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Kitagawa M, Wu P, Balkunde R, Cunniff P, Jackson D. An RNA exosome subunit mediates cell-to-cell trafficking of a homeobox mRNA via plasmodesmata. Science 2022; 375:177-182. [PMID: 35025667 DOI: 10.1126/science.abm0840] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Messenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog. Our findings suggest that AtRRP44A promotes mRNA trafficking through plasmodesmata to control stem cell–dependent processes in plants.
Collapse
Affiliation(s)
| | - Peipei Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Patrick Cunniff
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
20
|
Suwińska A, Wasąg P, Bednarska-Kozakiewicz E, Lenartowska M, Lenartowski R. Calreticulin expression and localization in relation to exchangeable Ca 2+ during pollen development in Petunia. BMC PLANT BIOLOGY 2022; 22:24. [PMID: 34998378 PMCID: PMC8742381 DOI: 10.1186/s12870-021-03409-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pollen development in the anther in angiosperms depends on complicated cellular interactions associated with the expression of gametophytic and sporophytic genes which control fundamental processes during microsporo/gametogenesis, such as exo/endocytosis, intracellular transport, cell signaling, chromatin remodeling, and cell division. Most if not all of these cellular processes depend of local concentration of calcium ions (Ca2+). Work from our laboratory and others provide evidence that calreticulin (CRT), a prominent Ca2+-binding/buffering protein in the endoplasmic reticulum (ER) of eukaryotic cells, may be involved in pollen formation and function. Here, we show for the first time the expression pattern of the PhCRT1 gene and CRT accumulation in relation to exchangeable Ca2+ in Petunia hybrida developing anther, and discuss probable roles for this protein in the male gametophyte development. RESULTS Using northern hybridization, western blot analysis, fluorescent in situ hybridization (FISH), immunocytochemistry, and potassium antimonate precipitation, we report that PhCRT1 is highly expressed in the anther and localization pattern of the CRT protein correlates with loosely bound (exchangeable) Ca2+ during the successive stages of microsporo/gametogenesis. We confirmed a permanent presence of both CRT and exchangeable Ca2+ in the germ line and tapetal cells, where these factors preferentially localized to the ER which is known to be the most effective intracellular Ca2+ store in eukaryotic cells. In addition, our immunoblots revealed a gradual increase in CRT level from the microsporocyte stage through the meiosis and the highest CRT level at the microspore stage, when both microspores and tapetal cells show extremely high secretory activity correlated with the biogenesis of the sporoderm. CONCLUSION Our present data provide support for a key role of CRT in developing anther of angiosperms - regulation of Ca2+ homeostasis during pollen grains formation. This Ca2+-buffering chaperone seems to be essential for pollen development and maturation since a high rate of protein synthesis and protein folding within the ER as well as intracellular Ca2+ homeostasis are strictly required during the multi-step process of pollen development.
Collapse
Affiliation(s)
- Anna Suwińska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Wasąg
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
21
|
Abstract
Plants exhibit remarkable lineage plasticity, allowing them to regenerate organs that differ from their respective origins. Such developmental plasticity is dependent on the activity of pluripotent founder cells or stem cells residing in meristems. At the shoot apical meristem (SAM), the constant flow of cells requires continuing cell specification governed by a complex genetic network, with the WUSCHEL transcription factor and phytohormone cytokinin at its core. In this review, I discuss some intriguing recent discoveries that expose new principles and mechanisms of patterning and cell specification acting both at the SAM and, prior to meristem organogenesis during shoot regeneration. I also highlight unanswered questions and future challenges in the study of SAM and meristem regeneration. Finally, I put forward a model describing stochastic events mediated by epigenetic factors to explain how the gene regulatory network might be initiated at the onset of shoot regeneration. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
22
|
Band LR. Auxin fluxes through plasmodesmata. THE NEW PHYTOLOGIST 2021; 231:1686-1692. [PMID: 34053083 DOI: 10.1111/nph.17517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 05/27/2023]
Abstract
Characterising the processes that control auxin dynamics is essential to understanding how auxin regulates plant development. Over recent years, several studies have investigated auxin diffusion through plasmodesmata, characterising this cell-to-cell diffusion and demonstrating that it affects auxin distributions. Furthermore, studies have shown that plasmodesmatal auxin diffusion affects developmental processes, including phototropism, lateral root emergence and leaf hyponasty. This short Tansley Insight review describes how these studies have contributed to our understanding of auxin dynamics and discusses potential future directions in this area.
Collapse
Affiliation(s)
- Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
23
|
Bradamante G, Mittelsten Scheid O, Incarbone M. Under siege: virus control in plant meristems and progeny. THE PLANT CELL 2021; 33:2523-2537. [PMID: 34015140 PMCID: PMC8408453 DOI: 10.1093/plcell/koab140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing-or allowing-meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Marco Incarbone
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
24
|
Voitsekhovskaja OV, Melnikova AN, Demchenko KN, Ivanova AN, Dmitrieva VA, Maksimova AI, Lohaus G, Tomos AD, Tyutereva EV, Koroleva OA. Leaf Epidermis: The Ambiguous Symplastic Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:695415. [PMID: 34394148 PMCID: PMC8358407 DOI: 10.3389/fpls.2021.695415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.
Collapse
Affiliation(s)
- Olga V. Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
| | - Anna N. Melnikova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Kirill N. Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexandra N. Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Valeria A. Dmitrieva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Gertrud Lohaus
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
- Molecular Plant Research/Plant Biochemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - A. Deri Tomos
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Elena V. Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Koroleva
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
25
|
Beauchet A, Gévaudant F, Gonzalez N, Chevalier C. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5300-5311. [PMID: 33974684 DOI: 10.1093/jxb/erab207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The FW2.2 gene is associated with the major quantitative trait locus (QTL) governing fruit size in tomato, and acts by negatively controlling cell division during fruit development. FW2.2 belongs to a multigene family named the CELL NUMBER REGULATOR (CNR) family. CNR proteins harbour the uncharacterized PLAC8 motif made of two conserved cysteine-rich domains separated by a variable region that are predicted to be transmembrane segments, and indeed FW2.2 localizes to the plasma membrane. Although FW2.2 was cloned more than two decades ago, the molecular mechanisms of action remain unknown. In particular, how FW2.2 functions to regulate cell cycle and fruit growth, and thus fruit size, is as yet not understood. Here we review current knowledge on PLAC8-containing CNR/FWL proteins in plants, which are described to participate in organogenesis and the regulation of organ size, especially in fruits, and in cadmium resistance, ion homeostasis, and/or Ca2+ signalling. Within the plasma membrane FW2.2 and some CNR/FWLs are localized in microdomains, which is supported by recent data from interactomics studies. Hence FW2.2 and CNR/FWL could be involved in a transport function of signalling molecules across membranes, influencing organ growth via a cell to cell trafficking mechanism.
Collapse
Affiliation(s)
- Arthur Beauchet
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33882 Villenave d'Ornon, France
| |
Collapse
|
26
|
Godel-Jędrychowska K, Kulińska-Łukaszek K, Kurczyńska E. Similarities and Differences in the GFP Movement in the Zygotic and Somatic Embryos of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649806. [PMID: 34122474 PMCID: PMC8194063 DOI: 10.3389/fpls.2021.649806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.
Collapse
|
27
|
Do Plasmodesmata Play a Prominent Role in Regulation of Auxin-Dependent Genes at Early Stages of Embryogenesis? Cells 2021; 10:cells10040733. [PMID: 33810252 PMCID: PMC8066550 DOI: 10.3390/cells10040733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023] Open
Abstract
Plasmodesmata form intercellular channels which ensure the transport of various molecules during embryogenesis and postembryonic growth. However, high permeability of plasmodesmata may interfere with the establishment of auxin maxima, which are required for cellular patterning and the development of distinct tissues. Therefore, diffusion through plasmodesmata is not always desirable and the symplastic continuum must be broken up to induce or accomplish some developmental processes. Many data show the role of auxin maxima in the regulation of auxin-responsive genes and the establishment of various cellular patterns. However, still little is known whether and how these maxima are formed in the embryo proper before 16-cell stage, that is, when there is still a nonpolar distribution of auxin efflux carriers. In this work, we focused on auxin-dependent regulation of plasmodesmata function, which may provide rapid and transient changes of their permeability, and thus take part in the regulation of gene expression.
Collapse
|
28
|
Veerabagu M, Rinne PLH, Skaugen M, Paul LK, van der Schoot C. Lipid Body Dynamics in Shoot Meristems: Production, Enlargement, and Putative Organellar Interactions and Plasmodesmal Targeting. FRONTIERS IN PLANT SCIENCE 2021; 12:674031. [PMID: 34367200 PMCID: PMC8335594 DOI: 10.3389/fpls.2021.674031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Post-embryonic cells contain minute lipid bodies (LBs) that are transient, mobile, engage in organellar interactions, and target plasmodesmata (PD). While LBs can deliver γ-clade 1,3-β-glucanases to PD, the nature of other cargo is elusive. To gain insight into the poorly understood role of LBs in meristems, we investigated their dynamics by microscopy, gene expression analyzes, and proteomics. In developing buds, meristems accumulated LBs, upregulated several LB-specific OLEOSIN genes and produced OLEOSINs. During bud maturation, the major gene OLE6 was strongly downregulated, OLEOSINs disappeared from bud extracts, whereas lipid biosynthesis genes were upregulated, and LBs were enlarged. Proteomic analyses of the LB fraction of dormant buds confirmed that OLEOSINs were no longer present. Instead, we identified the LB-associated proteins CALEOSIN (CLO1), Oil Body Lipase 1 (OBL1), Lipid Droplet Interacting Protein (LDIP), Lipid Droplet Associated Protein1a/b (LDAP1a/b) and LDAP3a/b, and crucial components of the OLEOSIN-deubiquitinating and degradation machinery, such as PUX10 and CDC48A. All mRFP-tagged LDAPs localized to LBs when transiently expressed in Nicotiana benthamiana. Together with gene expression analyzes, this suggests that during bud maturation, OLEOSINs were replaced by LDIP/LDAPs at enlarging LBs. The LB fraction contained the meristem-related actin7 (ACT7), "myosin XI tail-binding" RAB GTPase C2A, an LB/PD-associated γ-clade 1,3-β-glucanase, and various organelle- and/or PD-localized proteins. The results are congruent with a model in which LBs, motorized by myosin XI-k/1/2, traffic on F-actin, transiently interact with other organelles, and deliver a diverse cargo to PD.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Päivi L. H. Rinne
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laju K. Paul
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan van der Schoot
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot
| |
Collapse
|
29
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 33959138 DOI: 10.1101/2020.12.10.420240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
Affiliation(s)
- Zhongpeng Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Haris Variz
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yani Chen
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Su-Ling Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kyaw Aung
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Li Z, Variz H, Chen Y, Liu SL, Aung K. Plasmodesmata-Dependent Intercellular Movement of Bacterial Effectors. FRONTIERS IN PLANT SCIENCE 2021; 12:640277. [PMID: 33959138 PMCID: PMC8095247 DOI: 10.3389/fpls.2021.640277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Pathogenic microorganisms deliver protein effectors into host cells to suppress host immune responses. Recent findings reveal that phytopathogens manipulate the function of plant cell-to-cell communication channels known as plasmodesmata (PD) to promote diseases. Several bacterial and filamentous pathogen effectors have been shown to regulate PD in their host cells. A few effectors of filamentous pathogens have been reported to move from the infected cells to neighboring plant cells through PD; however, it is unclear whether bacterial effectors can traffic through PD in plants. In this study, we determined the intercellular movement of Pseudomonas syringae pv. tomato (Pst) DC3000 effectors between adjoining plant cells in Nicotiana benthamiana. We observed that at least 16 Pst DC3000 effectors have the capacity to move from transformed cells to the surrounding plant cells. The movement of the effectors is largely dependent on their molecular weights. The expression of PD regulators, Arabidopsis PD-located protein PDLP5 and PDLP7, leads to PD closure and inhibits the PD-dependent movement of a bacterial effector in N. benthamiana. Similarly, a 22-amino acid peptide of bacterial flagellin (flg22) treatment induces PD closure and suppresses the movement of a bacterial effector in N. benthamiana. Among the mobile effectors, HopAF1 and HopA1 are localized to the plasma membrane (PM) in plant cells. Interestingly, the PM association of HopAF1 does not negatively affect the PD-dependent movement. Together, our findings demonstrate that bacterial effectors are able to move intercellularly through PD in plants.
Collapse
|
31
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU. Symplasmic isolation marks cell fate changes during somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2612-2628. [PMID: 31974549 PMCID: PMC7210756 DOI: 10.1093/jxb/eraa041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
Collapse
Affiliation(s)
- Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Kulinska-Lukaszek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mercedes Soriano
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mengfan Li
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Karol Malota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in KatowiceKatowice, Poland
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Ewa U Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
33
|
Berckmans B, Kirschner G, Gerlitz N, Stadler R, Simon R. CLE40 Signaling Regulates Root Stem Cell Fate. PLANT PHYSIOLOGY 2020; 182:1776-1792. [PMID: 31806736 PMCID: PMC7140941 DOI: 10.1104/pp.19.00914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/20/2019] [Indexed: 05/02/2023]
Abstract
The quiescent center (QC) of the Arabidopsis (Arabidopsis thaliana) root meristem acts as an organizer that promotes stem cell fate in adjacent cells and patterns the surrounding stem cell niche. The stem cells distal from the QC, the columella stem cells (CSCs), are maintained in an undifferentiated state by the QC-expressed transcription factor WUSCHEL RELATED HOMEOBOX5 (WOX5) and give rise to the columella cells. Differentiated columella cells provide a feedback signal via secretion of the peptide CLAVATA3/ESR-RELATED40 (CLE40), which acts through the receptor kinases ARABIDOPSIS CRINKLY4 (ACR4) and CLAVATA1 (CLV1) to control WOX5 expression. Previously, it was proposed that WOX5 protein movement from the QC into CSCs is required for CSC maintenance, and that the CLE40/CLV1/ACR4 signaling module restricts WOX5 mobility or function. Here, these assumptions were tested by exploring the function of CLE40/CLV1/ACR4 in CSC maintenance. However, no role for CLE40/CLV1/ACR4 in constricting the mobility of WOX5 or other fluorescent test proteins was identified. Furthermore, in contrast to previous observations, WOX5 mobility was not required to inhibit CSC differentiation. We propose that WOX5 acts mainly in the QC, where other short-range signals are generated that not only inhibit differentiation but also promote stem cell division in adjacent cells. Therefore, the main function of columella-derived CLE40 signal is to position the QC at a defined distance from the root tip by repressing QC-specific gene expression via the ACR4/CLV1 receptors in the distal domain and promoting WOX5 expression via the CLV2 receptor in the proximal meristem.
Collapse
Affiliation(s)
- Barbara Berckmans
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Gwendolyn Kirschner
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Nadja Gerlitz
- Molecular Plant Physiology, University of Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, University of Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Tran TM, McCubbin TJ, Bihmidine S, Julius BT, Baker RF, Schauflinger M, Weil C, Springer N, Chomet P, Wagner R, Woessner J, Grote K, Peevers J, Slewinski TL, Braun DM. Maize Carbohydrate Partitioning Defective33 Encodes an MCTP Protein and Functions in Sucrose Export from Leaves. MOLECULAR PLANT 2019; 12:1278-1293. [PMID: 31102785 DOI: 10.1016/j.molp.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 05/29/2023]
Abstract
To sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility. Cpd33 encodes a protein containing multiple C2 domains and transmembrane regions. Subcellular localization experiments showed the CPD33 protein localized to plasmodesmata (PD), the plasma membrane, and the endoplasmic reticulum. We also found that a loss-of-function mutant of the CPD33 homolog in Arabidopsis, QUIRKY, had a similar carbohydrate hyperaccumulation phenotype. Radioactively labeled sucrose transport assays showed that sucrose export was significantly lower in cpd33 mutant leaves relative to wild-type leaves. However, PD transport in the adaxial-abaxial direction was unaffected in cpd33 mutant leaves. Intriguingly, transmission electron microscopy revealed fewer PD at the companion cell-sieve element interface in mutant phloem tissue, providing a possible explanation for the reduced sucrose export in mutant leaves. Collectively, our results suggest that CPD33 functions to promote symplastic transport into sieve elements.
Collapse
Affiliation(s)
- Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; National Key Laboratory for Plant Cell Technology, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Tyler J McCubbin
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA; Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Saadia Bihmidine
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin T Julius
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | - R Frank Baker
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | - Martin Schauflinger
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO 65211, USA
| | - Clifford Weil
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Nathan Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Paul Chomet
- NRGene Inc., 8910 University Center Lane, ∖r∖nSuite 400, San Diego, CA 92122, USA
| | - Ruth Wagner
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | | | - Karen Grote
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | | | | | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
35
|
Uchida N, Torii KU. Stem cells within the shoot apical meristem: identity, arrangement and communication. Cell Mol Life Sci 2019; 76:1067-1080. [PMID: 30523363 PMCID: PMC11105333 DOI: 10.1007/s00018-018-2980-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Stem cells are specific cells that renew themselves and also provide daughter cells for organ formation. In plants, primary stem cell populations are nurtured within shoot and root apical meristems (SAM and RAM) for the production of aerial and underground parts, respectively. This review article summarizes recent progress on control of stem cells in the SAM from studies of the model plant Arabidopsis thaliana. To that end, a brief overview of the RAM is provided first to emphasize similarities and differences between the two apical meristems, which would help in better understanding of stem cells in the SAM. Subsequently, we will discuss in depth how stem cells are arranged in an organized manner in the SAM, how dynamically the stem cell identity is regulated, what factors participate in stem cell control, and how intercellular communication by mobile signals modulates stem cell behaviors within the SAM. Remaining questions and perspectives are also presented for future studies.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
36
|
Lamaoui M, Chakhchar A, Benlaouane R, El Kharrassi Y, Farissi M, Wahbi S, El Modafar C. Uprising the antioxidant power of Argania spinosa L. callus through abiotic elicitation. C R Biol 2019; 342:7-17. [PMID: 30595494 DOI: 10.1016/j.crvi.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
Abstract
This study was carried out in order to investigate the ability of tissues of Argania spinosa (L.) to undergo unlimited cell divisions by triggering their proliferative potential via callogenesis. Axenic cultures were efficiently established using axillary buds cultured on half-strength Murashige and Skoog (MS) medium after 20min of surface sterilization with sodium hypochlorite 6% (v/v). The highest callus rate was achieved with 1.0mgL-1 of naphthaleneacetic acid (NAA) and 1.0mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4D) or similarly with 0.01mgL-1 of 6-benzylaminopurine (BAP) and 1.0mgL-1 of 2,4D at pH of 5.8, under dark conditions. The results of this study show also a significant increase in the callus's antioxidant power under abiotic pressure induced by NaCl. Catalase (CAT), peroxidase (PO), and superoxide dismutase (SOD) activities were significantly triggered, which protected the cells from the stimulated oxidative stress, under hydrogen peroxide (H2O2) significant release. This reaction favors subsequently the tissue recover process linked to the low abundance of polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content. This work proves the efficiency of salt stress in boosting the argan cell's antioxidant status, which could be commercially applied in the field of cells regenerative therapy.
Collapse
Affiliation(s)
- Mouna Lamaoui
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco; AgroBioSciences Program Université Mohammed VI Polytechnique (UM6P), lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Abdelghani Chakhchar
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| | - Raja Benlaouane
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| | - Youssef El Kharrassi
- AgroBioSciences Program Université Mohammed VI Polytechnique (UM6P), lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Farissi
- Laboratoire de biotechnologie et développement durable des ressources naturelles, Faculté polydisciplinaire, 23000 Beni-Mellal, Morocco
| | - Said Wahbi
- Laboratoire de biotechnologie et physiologie des plantes, Faculté des sciences Semlalia, Université Cadi Ayad, 40000 Marrakech, Morocco
| | - Cherkaoui El Modafar
- Laboratoire de biotechnologie et bio-ingénierie moléculaire, Faculté des sciences et techniques, Université Cadi Ayad, Guéliz, 40000 Marrakech, Morocco
| |
Collapse
|
37
|
Wu SW, Kumar R, Iswanto ABB, Kim JY. Callose balancing at plasmodesmata. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5325-5339. [PMID: 30165704 DOI: 10.1093/jxb/ery317] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/20/2018] [Indexed: 05/19/2023]
Abstract
In plants, communication and molecular exchanges between different cells and tissues are dependent on the apoplastic and symplastic pathways. Symplastic molecular exchanges take place through the plasmodesmata, which connect the cytoplasm of neighboring cells in a highly controlled manner. Callose, a β-1,3-glucan polysaccharide, is a plasmodesmal marker molecule that is deposited in cell walls near the neck zone of plasmodesmata and controls their permeability. During cell differentiation and plant development, and in response to diverse stresses, the level of callose in plasmodesmata is highly regulated by two antagonistic enzymes, callose synthase or glucan synthase-like and β-1,3-glucanase. The diverse modes of regulation by callose synthase and β-1,3-glucanase have been uncovered in the past decades through biochemical, molecular, genetic, and omics methods. This review highlights recent findings regarding the function of plasmodesmal callose and the molecular players involved in callose metabolism, and provides new insight into the mechanisms maintaining plasmodesmal callose homeostasis.
Collapse
Affiliation(s)
- Shu-Wei Wu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ritesh Kumar
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science (CK1 program), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
38
|
Bassel GW. Information Processing and Distributed Computation in Plant Organs. TRENDS IN PLANT SCIENCE 2018; 23:994-1005. [PMID: 30219546 DOI: 10.1016/j.tplants.2018.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
The molecular networks plant cells evolved to tune their development in response to the environment are becoming increasingly well understood. Much less is known about how these programs function in the multicellular context of organs and the impact this spatial embedding has on emergent decision-making. Here I address these questions and investigate whether the computational control principles identified in engineered information processing systems also apply to plant development. Examples of distributed computing underlying plant development are presented and support the presence of shared mechanisms of information processing across these domains. The coinvestigation of computation across plant biology and computer science can provide novel insight into the principles of plant development and suggest novel algorithms for use in distributed computing.
Collapse
Affiliation(s)
- George W Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
39
|
Winter N, Kragler F. Conceptual and Methodological Considerations on mRNA and Proteins as Intercellular and Long-Distance Signals. PLANT & CELL PHYSIOLOGY 2018; 59:1700-1713. [PMID: 30020523 DOI: 10.1093/pcp/pcy140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
High-throughput studies identified approximately one-fifth of Arabidopsis protein-encoding transcripts to be graft transmissible and to move over long distances in the phloem. In roots, one-fifth of transcription factors were annotated as non-cell autonomous, moving between cells. Is this massive transport a way of interorgan and cell-cell communication or does it serve different purposes? On the tissue level, many microRNAs (miRNAs) and all small interfering RNAs (siRNAs) act non-cell autonomously. Why are these RNAs and proteins not just expressed in cells where they exert their function? Short- and long-distance transport of these macromolecules raises the question of whether all mobile mRNAs and transcription factors could be defined as signaling molecules. Since the answer is not clear yet, we will discuss in this review conceptual approaches to this phenomenon using a single mobile signaling macromolecule, FLOWERING LOCUS T, which has been characterized extensively. We conclude that careful individual studies of mobile macromolecules are necessary to uncover their biological function and the observed massive mobility. To stimulate such studies, we provide a review summarizing the resourceful wealth of experimental approaches to this intriguing question and discuss methodological scopes and limits.
Collapse
Affiliation(s)
- Nikola Winter
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Potsdam - Golm, Germany
| |
Collapse
|
40
|
Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat Commun 2018; 9:3107. [PMID: 30082703 PMCID: PMC6079027 DOI: 10.1038/s41467-018-05571-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023] Open
Abstract
Mobile small RNAs serve as local positional signals in development and coordinate stress responses across the plant. Despite its central importance, an understanding of how the cell-to-cell movement of small RNAs is governed is lacking. Here, we show that miRNA mobility is precisely regulated through a gating mechanism polarised at defined cell–cell interfaces. This generates directional movement between neighbouring cells that limits long-distance shoot-to-root trafficking, and underpins domain-autonomous behaviours of small RNAs within stem cell niches. We further show that the gating of miRNA mobility occurs independent of mechanisms controlling protein movement, identifying the small RNA as the mobile unit. These findings reveal gate-keepers of cell-to-cell small RNA mobility generate selectivity in long-distance signalling, and help safeguard functional domains within dynamic stem cell niches while mitigating a ‘signalling gridlock’ in contexts where developmental patterning events occur in close spatial and temporal vicinity. Movement of small RNA between cells is critical to plant development and stress responses. Here the authors uncover a gate-keeping mechanism that can restrict small RNA movement at cell-cell interfaces, providing selectivity in long-distance signalling and limiting the scope of local mobility.
Collapse
|
41
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
42
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
43
|
Symplasmic Intercellular Communication through Plasmodesmata. PLANTS 2018; 7:plants7010023. [PMID: 29558398 PMCID: PMC5874612 DOI: 10.3390/plants7010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
Communication between cells is an essential process for developing and maintaining multicellular collaboration during plant development and physiological adaptation in response to environmental stimuli. The intercellular movement of proteins and RNAs in addition to the movement of small nutrients or signaling molecules such as sugars and phytohormones has emerged as a novel mechanism of cell-to-cell signaling in plants. As a strategy for efficient intercellular communication and long-distance molecule movement, plants have evolved plant-specific symplasmic communication networks via plasmodesmata (PDs) and the phloem.
Collapse
|
44
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
45
|
Wasąg P, Suwińska A, Zakrzewski P, Walczewski J, Lenartowski R, Lenartowska M. Calreticulin localizes to plant intra/extracellular peripheries of highly specialized cells involved in pollen-pistil interactions. PROTOPLASMA 2018; 255:57-67. [PMID: 28620697 PMCID: PMC5756280 DOI: 10.1007/s00709-017-1134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/05/2017] [Indexed: 05/11/2023]
Abstract
Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.
Collapse
Affiliation(s)
- Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jakub Walczewski
- Department of Plant Pathology, Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
46
|
Cheval C, Faulkner C. Plasmodesmal regulation during plant-pathogen interactions. THE NEW PHYTOLOGIST 2018; 217:62-67. [PMID: 29083038 DOI: 10.1111/nph.14857] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/02/2017] [Indexed: 05/19/2023]
Abstract
Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions.
Collapse
Affiliation(s)
- Cecilia Cheval
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Christine Faulkner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
47
|
Kraner ME, Müller C, Sonnewald U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:696-709. [PMID: 28865150 DOI: 10.1111/tpj.13702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023]
Abstract
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication.
Collapse
Affiliation(s)
- Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Carmen Müller
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| |
Collapse
|
48
|
Wang X, Zhu P, Qu S, Zhao J, Singh PK, Wang W. Ectodomain of plasmodesmata-localized protein 5 in Arabidopsis: expression, purification, crystallization and crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2017; 73:532-535. [PMID: 28876233 PMCID: PMC5619746 DOI: 10.1107/s2053230x1701250x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022] Open
Abstract
Plasmodesmata-localized protein 5 (PDLP5) is a cysteine-rich receptor-like protein which is localized on the plasmodesmata of Arabidopsis thaliana. Overexpression of PDLP5 can reduce the permeability of the plasmodesmata and further affect the cell-to-cell movement of viruses and macromolecules in plants. The ectodomain of PDLP5 contains two DUF26 domains; however, the function of these domains is still unknown. Here, the ectodomain of PDLP5 from Arabidopsis was cloned and overexpressed using an insect expression system and was then purified and crystallized. X-ray diffraction data were collected to 1.90 Å resolution and were indexed in space group P1, with unit-cell parameters a = 41.9, b = 48.1, c = 62.2 Å, α = 97.3, β = 103.1, γ = 99.7°. Analysis of the crystal content indicated that there are two molecules in the asymmetric unit, with a Matthews coefficient of 2.51 Å3 Da-1 and a solvent content of 50.97%.
Collapse
Affiliation(s)
- Xiaocui Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - Peiyan Zhu
- Henan University Minsheng College, Kaifeng, Henan 475004, People’s Republic of China
| | - Shanshan Qu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - Jie Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - Prashant K. Singh
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - Wei Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| |
Collapse
|