1
|
Li JK, Veeraperumal S, Aweya JJ, Liu Y, Cheong KL. Fucoidan modulates gut microbiota and immunity in Peyer's patches against inflammatory bowel disease. Carbohydr Polym 2024; 342:122421. [PMID: 39048206 DOI: 10.1016/j.carbpol.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Although fucoidan has potential use as an anti-inflammatory agent, the specific mechanisms by which it influences signaling and immunomodulatory pathways between gut microbiota and Peyer's patches remain unclear. Therefore, the aim of this study was to investigate the therapeutic potential of fucoidan in a dextran sulfate sodium (DSS)-induced mouse model of inflammatory bowel disease (IBD) by examining the effects on gut microbiota and the underlying anti-inflammatory mechanisms. Purified fucoidan, which upon characterization revealed structural fragments comprising →3)-β-D-Galp-(1→, →4)-α-L-Fucp-(1→, and →3)-α-L-Fucp-(1→ residues with a sulfation at position C2 was used. Treatment of the mice with fucoidan significantly alleviated the symptoms of IBD and restored the diversity of gut microbiota by enhancing the abundance of Bacteroidetes and reducing the proportion of Firmicutes. The administration of fucoidan also elevated levels of short-chain fatty acids while reducing the levels of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Most importantly, fucoidan attenuated the expression of integrin α4β7/MAdCAM-1 and CCL25/CCR9, which are involved in homing intestinal lymphocytes within Peyer's patches. These findings indicate that fucoidan is a promising gut microbiota modulator and an anti-inflammatory agent for IBD.
Collapse
Affiliation(s)
- Jia-Kang Li
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yang Liu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Kit-Leong Cheong
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
2
|
Ersoydan S, Rustemeyer T. Investigating the Anti-Inflammatory Activity of Various Brown Algae Species. Mar Drugs 2024; 22:457. [PMID: 39452865 PMCID: PMC11509244 DOI: 10.3390/md22100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
This literature review investigated the anti-inflammatory properties of brown algae, emphasizing their potential for dermatological applications. Due to the limitations and side effects associated with corticosteroids and immunomodulators, interest has been growing in harnessing therapeutic qualities from natural products as alternatives to traditional treatments for skin inflammation. This review explored the bioactive compounds in brown algae, specifically looking into two bioactive compounds, namely, fucoidans and phlorotannins, which are widely known to exhibit anti-inflammatory properties. This review synthesized the findings from various studies, highlighting how these compounds can mitigate inflammation by mechanisms such as reducing oxidative stress, inhibiting protein denaturation, modulating immune responses, and targeting inflammatory pathways, particularly in conditions like atopic dermatitis. The findings revealed species-specific variations influenced by the molecular weight and sulphate content. Challenges related to skin permeability were addressed, highlighting the potential of nanoformulations and penetration enhancers to improve delivery. While the in vivo results using animal models provided positive results, further clinical trials are necessary to confirm these outcomes in humans. This review concludes that brown algae hold substantial promise for developing new dermatological treatments and encourages further research to optimize extraction methods, understand the molecular mechanisms, and address practical challenges such as sustainability and regulatory compliance. This review contributes to the growing body of evidence supporting the integration of marine-derived compounds into therapeutic applications for inflammatory skin diseases.
Collapse
Affiliation(s)
- Selin Ersoydan
- Faculty of Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Thomas Rustemeyer
- Amsterdam University Medical Center, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zheng Z, Li M, Yang J, Zhou X, Chen Y, Silli EK, Tang J, Gong S, Yuan Y, Zong Y, Kong J, Chen P, Yu L, Luo S, Wang Y, Tan C. Growth inhibition of pancreatic cancer by targeted delivery of gemcitabine via fucoidan-coated pH-sensitive liposomes. Int J Biol Macromol 2024; 277:134517. [PMID: 39111497 DOI: 10.1016/j.ijbiomac.2024.134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Fucoidan-coated pH sensitive liposomes were designed for targeted delivery of gemcitabine (FU-GEM PSL) to treat pancreatic cancer (PC). FU-GEM PSL had a particle size of 175.3 ± 4.9 nm, zeta potential of -19.0 ± 3.7 mV, encapsulation efficiency (EE) of 74.05 ± 0.17 %, and drug loading (DL) of 21.27 ± 0.05 %. Cell experiments in vitro showed that FU-GEM PSL could increase the release of GEM and drug concentration, and could inhibit tumor cell proliferation by affecting the cell cycle. FU-GEM PSL entered cells through macropinocytosis and caveolin-mediated endocytosis to exert effects. Meanwhile, the expression of P-selectin was detected in human tissues, demonstrating the feasibility of targeting FU. Moreover, combined with animal experiments in vivo, FU-GEM PSL could inhibit the development of PC. Furthermore, anti-tumor experiments in vivo carried on BALB/c mice indicated that FU-GEM PSL had tumor suppression abilities and safety. Therefore, FU-GEM PSL is a promising formulation for PC therapy.
Collapse
Affiliation(s)
- Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xintao Zhou
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jiali Tang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Songlin Gong
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yuan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihao Zong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jianping Kong
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Pu Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingxi Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shujun Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Lakshmana Senthil S. A comprehensive review to assess the potential, health benefits and complications of fucoidan for developing as functional ingredient and nutraceutical. Int J Biol Macromol 2024; 277:134226. [PMID: 39074709 DOI: 10.1016/j.ijbiomac.2024.134226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polysaccharides from seaweeds or macroalgae are garnering significant interest from pharmaceutical and food industries due to their bioactivities and promising therapeutic effects. Among the diverse agal polysaccharides, fucoidan is a well-documented and stands out as a well-researched sulphated heteropolysaccharide found in brown seaweeds. It primarily consists of l-fucose and sulfate ester groups, along with other monosaccharides like xylose, mannose, uronic acid, rhamnose, arabinose, and galactose. Recent scientific investigations have unveiled the formidable inhibitory prowess of fucoidan against SARS-CoV-2, offering a promising avenue for therapeutic intervention in our current landscape. Moreover, fucoidan has demonstrated remarkable abilities in safeguarding the gastrointestinal tract, regulating angiogenesis, mitigating metabolic syndrome, and fortifying bone health. Despite the abundance of studies underscoring fucoidan's potential as a vital component sourced from nature, its exploitation remains constrained by inherent limitations. Thus, the primary objective of this article is to furnish a comprehensive discourse on the structural attributes, health-enhancing properties, safety parameters, and potential toxicity associated with fucoidan. Furthermore, the discourse extends to elucidating the practical applications and developmental prospects of fucoidan as a cornerstone in the realm of functional foods and nutraceuticals.
Collapse
|
6
|
Barboza MGL, Dyna AL, Lima TF, Tavares ER, Yamada-Ogatta SF, Deduch F, Orsato A, Toledo KA, Cunha AP, Ricardo NMPS, Galhardi LCF. In vitro antiviral effect of sulfated pectin from Mangifera indica against the infection of the viral agent of childhood bronchiolitis (Respiratory Syncytial Virus - RSV). Int J Biol Macromol 2024; 280:135387. [PMID: 39260645 DOI: 10.1016/j.ijbiomac.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The Human Respiratory Syncytial Virus (RSV) is the leading cause of acute respiratory infections in children. Currently, no safe, effective, or feasible option for pharmacological management of RSV exists. Hence, plant-derived natural compounds have been explored as promising antiviral agents. Mangifera indica is a globally distributed plant with reported anti-inflammatory, cardioprotective, and antiviral activities. Our study investigated the antiviral potential of a novel pectin from M. indica peels (PMi) and its chemically sulfated derivative (PSMi) against RSV in HEp-2 cells. The compounds were characterized using Fourier-transform infrared spectroscopy and nuclear magnetic resonance (NMR). NMR analysis revealed the presence of ester and carboxylic acid groups in PMi, and sulfation resulted in a sulfation degree of 0.5. PMi and PSMi showed no cytotoxic effects even at concentrations as high as 2000 μg/mL. PSMi completely inhibited RSV infectivity (100-1.56 μg/mL, 50 % inhibitory concentration of viral infectivity = 0.77 ± 0.11 μg/mL). The mechanism of action was investigated using the 50 % tissue culture infectious dose assay. PSMi displayed virucidal activity at concentrations from 100 to 6.25 μg/mL, and a significant reduction in viral infection was observed at all treatment times. Overall, PSMi is antiviral, cell-safe, and exhibits promising potential as an RSV treatment.
Collapse
Affiliation(s)
- Mario Gabriel Lopes Barboza
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - André Luiz Dyna
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Thiago Ferreira Lima
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Eliandro Reis Tavares
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Londrina, Paraná 86067-000, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Flávia Deduch
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Alexandre Orsato
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Karina Alves Toledo
- Departamento de Ciências Biológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Assis, São Paulo 19806-900, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará 60455-760, Brazil
| | | | - Ligia Carla Faccin Galhardi
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil.
| |
Collapse
|
7
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
8
|
Lee SG, Rod-in W, Jung JJ, Jung SK, Lee SM, Park WJ. Lipids Extracted from Aptocyclus ventricosus Eggs Possess Immunoregulatory Effects on RAW264.7 Cells by Activating the MAPK and NF-κB Signaling Pathways. Mar Drugs 2024; 22:368. [PMID: 39195484 PMCID: PMC11355579 DOI: 10.3390/md22080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
This study was conducted to evaluate the potential anti-inflammatory and immune-enhancement properties of lipids derived from Aptocyclus ventricosus eggs on RAW264.7 cells. Firstly, we determined the fatty acid compositions of A. ventricosus lipids by performing gas chromatography analysis. The results showed that A. ventricosus lipids contained saturated fatty acids (24.37%), monounsaturated fatty acids (20.90%), and polyunsaturated fatty acids (54.73%). They also contained notably high levels of DHA (25.91%) and EPA (22.05%) among the total fatty acids. Our results for the immune-associated biomarkers showed that A. ventricosus lipids had immune-enhancing effects on RAW264.7 cells. At the maximum dose of 300 µg/mL, A. ventricosus lipids generated NO (119.53%) and showed greater phagocytosis (63.69%) ability as compared with untreated cells. A. ventricosus lipids also upregulated the expression of iNOS, IL-1β, IL-6, and TNF-α genes and effectively upregulated the phosphorylation of MAPK (JNK, p38, and ERK) and NF-κB p65, indicating that these lipids could activate the MAPK and NF-κB pathways to stimulate macrophages in the immune system. Besides their immune-enhancing abilities, A. ventricosus lipids significantly inhibited LPS-induced RAW264.7 inflammatory responses via the NF-κB and MAPK pathways. The results indicated that these lipids significantly reduced LPS-induced NO production, showing a decrease from 86.95% to 38.89%. Additionally, these lipids downregulated the expression of genes associated with the immune response and strongly suppressed the CD86 molecule on the cell surface, which reduced from 39.25% to 33.80%. Collectively, these findings imply that lipids extracted from A. ventricosus eggs might have biological immunoregulatory effects. Thus, they might be considered promising immunomodulatory drugs and functional foods.
Collapse
Affiliation(s)
- Seul Gi Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Jun Jae Jung
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Seok Kyu Jung
- Department of Horticultural Science, Kongju National University, Yesan-gun 32439, Chungcheonnam-do, Republic of Korea;
| | - Sang-min Lee
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- KBIoRANCh Co., Ltd., Gangwon-do, Gangneung 25457, Republic of Korea
| |
Collapse
|
9
|
Song Y, Singh A, Feroz MM, Xu S, Zhang F, Jin W, Kumar A, Azadi P, Metzger DW, Linhardt RJ, Dordick JS. Seaweed-derived fucoidans and rhamnan sulfates serve as potent anti-SARS-CoV-2 agents with potential for prophylaxis. Carbohydr Polym 2024; 337:122156. [PMID: 38710572 PMCID: PMC11157668 DOI: 10.1016/j.carbpol.2024.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 μg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.
Collapse
Affiliation(s)
- Yuefan Song
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Amit Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Maisha M Feroz
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Shirley Xu
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Fuming Zhang
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zheijiang University of Technology, Hangzhou 310014, China
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States of America
| | - Dennis W Metzger
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Jonathan S Dordick
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America.
| |
Collapse
|
10
|
Nosik MN, Krylova NV, Usoltseva RV, Surits VV, Kireev DE, Shchelkanov MY, Svitich OA, Ermakova SP. In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae. Mar Drugs 2024; 22:355. [PMID: 39195471 DOI: 10.3390/md22080355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Due to the developing resistance and intolerance to antiretroviral drugs, there is an urgent demand for alternative agents that can suppress the viral load in people living with human immunodeficiency virus (HIV). Recently, there has been increased interest in agents of marine origin such as, in particular, fucoidans to suppress HIV replication. In the present study, the anti-HIV-1 activity of fucoidans from the brown algae Alaria marginata, Alaria ochotensis, Laminaria longipes, Saccharina cichorioides, Saccharina gurianovae, and Tauya basicrassa was studied in vitro. The studied compounds were found to be able to inhibit HIV-1 replication at different stages of the virus life cycle. Herewith, all fucoidans exhibited significant antiviral activity by affecting the early stages of the virus-cell interaction. The fucoidan from Saccharina cichorioides showed the highest virus-inhibitory activity by blocking the virus' attachment to and entry into the host's cell, with a selectivity index (SI) > 160.
Collapse
Affiliation(s)
- Marina N Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Natalya V Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Dmitry E Kireev
- Central Research Institute of Epidemiology, Rospotrebnadzor, 111123 Moscow, Russia
| | - Mikhail Yu Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Oxana A Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
11
|
Szatmáry Z, Bardet SM, Mounier J, Janot K, Cortese J, Perrin ML, Couquet C, Deniau G, Hauquier F, Migneret R, Guenin E, Maire M, Michel JB, Forestier G, Le Flahec A, Leger-Bretou C, Mounayer C, Chaubet F, Rouchaud A. Fucoidan-coated coils improve healing in a rabbit elastase aneurysm model. J Neurointerv Surg 2024; 16:824-829. [PMID: 37491380 DOI: 10.1136/jnis-2023-020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Recanalization of coiled aneurysms remains unresolved. To limit aneurysm recanalization after embolization with coils, we propose an innovative approach to optimize aneurysm healing using fucoidan-coated coils. OBJECTIVE To evaluate the short-term efficacy and long-term safety of the new coil system with conventional angiography, histology, and multiphoton microscopy for follow-up of fibrosis and neointima formation. METHODS We conducted a feasibility study on rabbit elastase-induced aneurysms. Embolization was carried out with bare platinum coils, fucoidan-coated coils, or dextran-coated coils. Aneurysms were controlled after 1 month by digital subtraction angiography (DSA). Aneurysm samples were collected and processed for histological analysis. Aneurysm healing and fibrosis were measured by quantifying collagen according to the histological healing score by combining standard light microscopy and multiphoton imaging. We divided 27 rabbits into three groups: bare platinum group, fucoidan group, and dextran group as controls. RESULTS Angiographic grading showed a trend toward less recanalization in the fucoidan group, although there were no significant differences among the three groups (P=0.21). Histological healing was significantly different according to the presence of more collagen in the neck area of aneurysms in the fucoidan group versus the bare platinum group (P=0.011), but not in the dextran group. Histological index was significantly better at the aneurysm neck in the fucoidan group than in the bare platinum group (P=0.004). Collagen organization index was also significantly better in the fucoidan group than in the bare platinum group (P=0.007). CONCLUSION This proof-of-concept study demonstrated the feasibility and efficacy of treatment with fucoidan-coated coils to improve aneurysm healing. The results in this rabbit in vivo model showed that fucoidan-coated coils have the potential to improve healing following endovascular treatment.
Collapse
Affiliation(s)
- Zoltán Szatmáry
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | | | - Jérémy Mounier
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Kevin Janot
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
- Department of Interventional Neuroradiology, CHRU Tours CPU, Tours, France
| | - Jonathan Cortese
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
- Department of Interventional Neuroradiology-NEURI Brain Vascular Center APHP, Hospital Bicetre, Le Kremlin-Bicêtre, France
| | | | - Cladue Couquet
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Guy Deniau
- UMR CEA, CNRS 3685, NIMBE, LICSEN, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fanny Hauquier
- UMR CEA, CNRS 3685, NIMBE, LICSEN, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Chemistry and Health and Life Sciences, CNAM, Paris, France
| | - Rodolphe Migneret
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | - Erwann Guenin
- Laboratoire TIMR, Centre de Recherche Royallieu Rue du Dr Schweitzer - CS 6031960200, Compiègne, France
| | - Murielle Maire
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | | | - Géraud Forestier
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | | | | | - Charbel Mounayer
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| | - Frederic Chaubet
- INSERM, UMRS 1148, LVTS, Paris, France
- Institut Galilée, Sorbonne North Paris University, Villetaneuse, France
| | - Aymeric Rouchaud
- Department of Interventional Neuroradiology, Limoges University, Limoges, France
- CNRS, XLIM, UMR 7252, Limoges University, Limoges, France
| |
Collapse
|
12
|
Wang H, Wei W, Liu F, Wang M, Zhang Y, Du S. Effects of fucoidan and synbiotics supplementation during bismuth quadruple therapy of Helicobacter pylori infection on gut microbial homeostasis: an open-label, randomized clinical trial. Front Nutr 2024; 11:1407736. [PMID: 39010853 PMCID: PMC11246856 DOI: 10.3389/fnut.2024.1407736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background The eradication regimen for Helicobacter pylori (H. pylori) infection can induce gut dysbiosis. In this open-label, prospective, and randomized clinical trial, we aimed to assess the effects of fucoidan supplementation on the eradication rate and gut microbial homeostasis in the context of quadruple therapy, as well as to investigate the combined effects of fucoidan and synbiotics supplementations. Methods Eighty patients with H. pylori infection were enrolled and randomly assigned to one of four treatment groups: the QT (a 2-week quadruple therapy alone), QF (quadruple therapy plus a 6-week fucoidan supplementation), QS (quadruple therapy plus a 6-week synbiotics supplementation), and QFS (quadruple therapy with a 6-week fucoidan and synbiotics supplementation), with 20 patients in each group. The QT regimen included rabeprazole, minocycline, amoxicillin, and bismuth potassium citrate. The synbiotics supplementation contained three strains of Bifidobacterium, three strains of Lactobacillus, along with three types of dietary fiber. All of the patients underwent 13C-urea breath test (13C-UBT) at baseline and at the end of the 6th week after the initiation of the interventions. Fresh fecal samples were collected at baseline and at the end of the 6th week for gut microbiota analysis via 16S rRNA gene sequencing. Results The eradication rates among the four groups showed no significant difference. In the QT group, a significant reduction in α-diversity of gut microbiota diversity and a substantial shift in microbial composition were observed, particularly an increase in Escherichia-Shigella and a decrease in the abundance of genera from the Lachnospiraceae and Ruminococcaceae families. The Simpson index was significantly higher in the QF group than in the QT group. Neither the QS nor QFS groups exhibited significant changes in α-diversity or β-diversity. The QFS group was the only one that did not show a significant increase in the relative abundance of Escherichia-Shigella, and the relative abundance of Klebsiella significantly decreased in this group. Conclusion The current study provided supporting evidence for the positive role of fucoidan and synbiotics supplementation in the gut microbiota. The combined use of fucoidan and synbioticss might be a promising adjuvant regimen to mitigate gut dysbiosis during H. pylori eradication therapy.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Wei
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Jang H, Woo H, Corvino O, Kang H, Kim MB, Lee JY, Park YK. Dietary sugar kelp ( Saccharina latissima) consumption did not attenuate atherosclerosis in low-density lipoprotein receptor knockout mice. Food Funct 2024; 15:6684-6691. [PMID: 38819217 DOI: 10.1039/d4fo01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.
Collapse
Affiliation(s)
- Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| |
Collapse
|
14
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
15
|
Geng L, Zhang Q, Li Q, Zhang Q, Wang C, Song N, Xin W. Fucoidan from the cell wall of Silvetia siliquosa with immunomodulatory effect on RAW 264.7 cells. Carbohydr Polym 2024; 332:121883. [PMID: 38431404 DOI: 10.1016/j.carbpol.2024.121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Silvetia siliquosa, the only species of the family Fucaceae in China, is used as a medicine food homology. Fucoidan from S. siliquosa was extracted by hot water twice thoroughly (13 % of total yield), and a purified fucoidan SSF with a molecular weight of 93 kD was obtained. Chemical composition analysis demonstrated that SSF was primarily composed of sulfate (21.68 wt%) and fucose (84 % of all neutral monosaccharides). IR, methylation analysis, NMR and ESI-MS results indicated SSF had the backbone of mainly (1 → 3)-α-L-fucopyranose and minor (1 → 4)-α-L-fucopyranose, with little 1,3 and 1,4 branched β-D-Xylp and β-D-Galp. The in vitro immunomodulatory test on RAW 264.7 cells showed that SSF could up-regulate the expression of immune related factors and proteins in a concentration-dependent manner, but the immunomodulatory effect disappeared from desulfated SSF. This research indicated that highly sulfated fucan possessed immunomodulatory effect and the importance of sulfate groups in the activity of SSF.
Collapse
Affiliation(s)
- Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qiong Li
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, China
| | - Qian Zhang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Public Technology Service Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Cong Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ni Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
16
|
Chiang YF, Huang KC, Wang KL, Huang YJ, Chen HY, Ali M, Shieh TM, Hsia SM. Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection. Mar Drugs 2024; 22:211. [PMID: 38786602 PMCID: PMC11123468 DOI: 10.3390/md22050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Deh Yu College of Nursing and Health, Keelung 203301, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710301, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Li Z, Li L, Cai S, Xu X, Zhang X, Du K, Wei B, Wang X, Zhao X, Han W. The STING-mediated antiviral effect of fucoidan from Durvillaea antarctica. Carbohydr Polym 2024; 331:121899. [PMID: 38388047 DOI: 10.1016/j.carbpol.2024.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Fucoidans have attracted increasing attention due to their minimal toxicity and various biological activities, such as antioxidant, anti-inflammatory, anti-tumor and immunomodulatory effects. In this study, the antiviral effect and mechanism of fucoidan (FU) derived from Durvillaea antarctica were explored in vitro. The results demonstrated that FU effectively inhibited the infection of both RNA virus (VSV) and DNA virus (HSV-1). The potential antiviral mechanism of FU is to trigger the production of type I IFN (IFN-I) and IFN-stimulated genes dependent on the cytoplasmic DNA adaptor STING (stimulator of interferon genes), and to enhance innate immune response via activating the STING-TBK1-IRF3 pathway. FU possesses the potential to be an antiviral and immunomodulatory agent in the future.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Li
- School of Pharmacy, Hainan university, Haikou 570228, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kaixin Du
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Wenwei Han
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266071, China.
| |
Collapse
|
18
|
Adouane E, Mercier C, Mamelle J, Willocquet E, Intertaglia L, Burgunter-Delamare B, Leblanc C, Rousvoal S, Lami R, Prado S. Importance of quorum sensing crosstalk in the brown alga Saccharina latissima epimicrobiome. iScience 2024; 27:109176. [PMID: 38433891 PMCID: PMC10906538 DOI: 10.1016/j.isci.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.
Collapse
Affiliation(s)
- Emilie Adouane
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Camille Mercier
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Jeanne Mamelle
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emma Willocquet
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, Bio2Mar, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Bertille Burgunter-Delamare
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sylvie Rousvoal
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, UAR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes LBBM, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Soizic Prado
- Muséum National d’Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes MCAM, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
19
|
Zhu Z, Luo J, Li L, Wang D, Xu Q, Teng J, Zhou J, Sun L, Yu N, Zuo D. Fucoidan suppresses proliferation and epithelial-mesenchymal transition process via Wnt/β-catenin signalling in hemangioma. Exp Dermatol 2024; 33:e15027. [PMID: 38514926 DOI: 10.1111/exd.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied β-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/β-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/β-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/β-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.
Collapse
Affiliation(s)
- Zhengyumeng Zhu
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Luo
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Qishan Xu
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianan Teng
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ledong Sun
- Department of Dermatology, Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nansheng Yu
- Department of Dermatology, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, Guangdong, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Immunology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zhang Y, Liu T, Qu ZJ, Wang X, Song WG, Guo SD. Laminaria japonica Aresch-Derived Fucoidan Ameliorates Hyperlipidemia by Upregulating LXRs and Suppressing SREBPs. Cardiovasc Ther 2024; 2024:8649365. [PMID: 38375358 PMCID: PMC10876302 DOI: 10.1155/2024/8649365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and hyperlipidemia is one major inducing factor of CVD. It is worthy to note that fucoidans are reported to have hypolipidemic activity with species specificity; however, the underlying mechanisms of action are far from clarification. This study is aimed at investigating the plasma lipid-lowering mechanisms of the fucoidan from L. japonica Aresch by detecting the levels of hepatic genes that are involved in lipid metabolism. Our results demonstrated that the fucoidan F3 significantly lowered total cholesterol and triglyceride in C57BL/6J mice fed a high-fat diet. In the mouse liver, fucoidan F3 intervention significantly increased the gene expression of peroxisome proliferator-activated receptor (PPAR) α, liver X receptor (LXR) α and β, and ATP-binding cassette transporter (ABC) G1 and G8 and decreased the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, cholesterol 7 alpha-hydroxylase A1, and sterol regulatory element-binding protein (SREBP) 1c and SREBP-2. These results demonstrated that the antihyperlipidemic effects of fucoidan F3 are related to its activation of PPARα and LXR/ABC signaling pathways and inactivation of SREBPs. In conclusion, fucoidan F3 may be explored as a potential compound for prevention or treatment of lipid disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang 550018, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ze-Jie Qu
- Cardiology Department, Qingzhou People's Hospital, Weifang 262500, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
21
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
22
|
Hwang YY, Sudirman S, Wei EY, Kong ZL, Hwang DF. Fucoidan from Cladosiphon okamuranus enhances antioxidant activity and prevents reproductive dysfunction in polystyrene microplastic-induced male rats. Biomed Pharmacother 2024; 170:115912. [PMID: 38056235 DOI: 10.1016/j.biopha.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Plastic pollution, including microplastic, has emerged as a severe environmental and public health problem. The health risks, especially in the case of reproductive damage caused by polystyrene microplastic (PS-MP) exposure, are emerging problems that need to be solved. This study aimed to investigate the effects of fucoidan extracted from Cladosiphon okamuranus on the polystyrene microplastic-induced oxidative stress of the Leydig (LC540) cells and reproductive damage in male rats. The oxidative stress of the LC540 cells and reproductive damage in the rats were induced by PS-MP. The fucoidan treatment reduces nitric oxide (NO) and reactive oxygen species generation in the LC540 cells. In the animal study, fucoidan treatment enhanced enzymatic antioxidant activities (glutathione peroxidase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase) and reduced malondialdehyde and nitric oxide production. Fucoidan supplementation also downregulates tumor necrosis factor-alpha, interleukin-6, and caspase-3 expression. Additionally, fucoidan upregulates testosterone levels, prevents the reduction of epithelium thickness, and reduces the area of the seminiferous tubule lumen. According to these conditions, fucoidan from Cladosiphon okamuranus prevents reproductive damage by downregulating oxidative stress and pro-inflammatory cytokines. Therefore, fucoidan can be used as a source of food supplements or functional food ingredients for reproductive or testicular damage management.
Collapse
Affiliation(s)
- Yi-Yuh Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30862, Indonesia
| | - En-Yu Wei
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Deng-Fwu Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
23
|
Gao H, Zhou Y, Yu C, Wang G, Song W, Zhang Z, Lu L, Xue M, Liang H. Fucoidan alleviated autoimmune diabetes in NOD mice by regulating pancreatic autophagy through the AMPK/mTOR1/TFEB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:31-38. [PMID: 38164477 PMCID: PMC10722478 DOI: 10.22038/ijbms.2023.68739.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/30/2023] [Indexed: 01/03/2024]
Abstract
Objectives The present study investigated the effect and its underlying mechanisms of fucoidan on Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. Materials and Methods Twenty 7-week-old NOD mice were used in this study, and randomly divided into two groups (10 mice in each group): the control group and the fucoidan treatment group (600 mg/kg. body weight). The weight gain, glucose tolerance, and fasting blood glucose level in NOD mice were detected to assess the development of diabetes. The intervention lasted for 5 weeks. The proportions of Th1/Th2 cells from spleen tissues were tested to determine the anti-inflammatory effect of fucoidan. Western blot was performed to investigate the expression levels of apoptotic markers and autophagic markers. Apoptotic cell staining was visualized through TdT-mediated dUTP nick-end labeling (TUNEL). Results The results suggested that fucoidan ameliorated T1DM, as evidenced by increased body weight and improved glycemic control of NOD mice. Fucoidan down-regulated the Th1/Th2 cells ratio and decreased Th1 type pro-inflammatory cytokines' level. Fucoidan enhanced the mitochondrial autophagy level of pancreatic cells and increased the expressions of Beclin-1 and LC3B II/LC3B I. The expression of p-AMPK was up-regulated and p-mTOR1 was inhibited, which promoted the nucleation of transcription factor EB (TFEB), leading to autophagy. Moreover, fucoidan induced apoptosis of pancreatic tissue cells. The levels of cleaved caspase-9, cleaved caspase-3, and Bax were up-regulated after fucoidan treatment. Conclusion Fucoidan could maintain pancreatic homeostasis and restore immune disorder through enhancing autophagy via the AMPK/mTOR1/TFEB pathway in pancreatic cells.
Collapse
Affiliation(s)
- Haiqi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
- These authors contributed eqully to this work
| | - Yifan Zhou
- Qingdao No.17 Middle School, 80 Hangzhou Road, Qingdao 266031, Shandong Province, PR China
- These authors contributed eqully to this work
| | - Chundong Yu
- Department of Laboratory, Women and Children’s Hospital of Qingdao, Qingdao, Shandong 266034, PR China
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | - Wenwei Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | - Zixu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, PR China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
24
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
McFadden BA, Vincenty CS, Chandler AJ, Cintineo HP, Lints BS, Mastrofini GF, Arent SM. Effects of fucoidan supplementation on inflammatory and immune response after high-intensity exercise. J Int Soc Sports Nutr 2023; 20:2224751. [PMID: 37331983 DOI: 10.1080/15502783.2023.2224751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
INTRODUCTION High-intensity exercise (HIE) can damage the musculotendon complex and impact the immune response, resulting in post-exercise inflammation. Sufficient rest and recovery will improve muscular resilience against future damaging bouts; however, HIE with minimal durations of rest is common in athletic competitions that facilitate persistent inflammation and immune dysregulation. Fucoidans are fucose-rich sulfated polysaccharides with demonstrated anti-inflammatory and pro-immune responses. Fucoidans may improve inflammation and immune responses, which may prove beneficial for individuals who regularly engage in repeated HIE. The research purpose was to investigate the safety and efficacy of fucoidans on inflammatory and immune markers following HIE. METHODS Eight male and eight female participants were randomized into a double-blind, placebo-controlled, counterbalanced, crossover design study and supplemented with 1 g/day fucoidan from Undaria pinnatifida (UPF) or placebo (PL) for 2 weeks. Supplementation periods concluded with HIE testing, followed by 1 week of washout. HIE involved one > 30 s Wingate anaerobic test (WAnT) and eight 10 s WAnT intervals. Blood was drawn pre-exercise, immediately post-exercise, 30 min, and 60 min post-exercise to assess immune and inflammatory markers. Blood markers, peak power (PP), and mean power (MP) were analyzed using a 2 (condition) × 4 (time) design. Significance was set at α = .05. RESULTS A time-by-condition interaction was observed for interleukin-6 (p = .01) and interleukin-10 (p = .008). Post hoc analysis revealed greater interleukin-6 and interleukin-10 concentrations at 30 min post HIE with UPF supplementation (p = .002 and p = .005, respectively). No effects of condition were observed for all blood markers or performance outcomes with UPF supplementation (p > .05). Main effects of time were observed for white blood cells, red blood cells, red cell distribution width, mean platelet volume, neutrophils, lymphocytes, monocytes, eosinophils, basophils, natural killer cells, B and T-lymphocytes, CD4 and CD8 cells (p < .05). DISCUSSION No adverse events were reported throughout the study period, indicating a positive safety profile of UPF. While notable changes in biomarkers occurred up to 1 hr post HIE, few differences were observed between supplementation conditions. There did appear to be a modest effect of UPF on inflammatory cytokines potentially warranting further investigation. However, fucoidan supplementation did not influence exercise performance.
Collapse
Affiliation(s)
- Bridget A McFadden
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
- Queens College, City University of New York, Department of Family, Nutrition, and Exercise Sciences, New York, NY, USA
| | - Caroline S Vincenty
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Alexa J Chandler
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Harry P Cintineo
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
- Lindenwood University, Department of Kinesiology, Saint Charles, MO, USA
| | - Blaine S Lints
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Gianna F Mastrofini
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Shawn M Arent
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| |
Collapse
|
26
|
Puigmal AC, Ayran M, Ulag S, Altan E, Guncu MM, Aksu B, Durukan BK, Sasmazel HT, Perez RA, Koc E, O'Callaghan D, Gunduz O. Fucoidan-loaded electrospun Polyvinyl-alcohol/Chitosan nanofibers with enhanced antibacterial activity for skin tissue engineering. J Mech Behav Biomed Mater 2023; 148:106163. [PMID: 37832172 DOI: 10.1016/j.jmbbm.2023.106163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The polymeric nanofiber may interact and control certain regeneration processes at the molecular level to repair damaged tissues. This research focuses on the development of characterization and antibacterial capabilities of polyvinyl alcohol (PVA)/chitosan (CS) nanofibres containing fucoidan (FUC) for tissue engineering as a skin tissue substitute. A control group consisting of 13% PVA/(0.1)% CS nanofiber was prepared. To confer antibacterial properties to the nanofiber, 10, 20, and 30 mg of FUC were incorporated into this control group. The scanning electron microscope (SEM) proved the homogeneous and beadless structures of the nanofibers. The antibacterial activity of the 13% PVA/(0.1)% CS/(10, 20, 30) FUC was tested against the S.aureus and E.coli and the results showed that with FUC addition, the antibacterial activities of the nanofibers increased. The biocompatibility test was performed with a fibroblast cell line for 1, 3, and 7 days of incubation and the results demonstrated that FUC addition enhanced the bioactivity of the 13% PVA/(0.1)% CS nanofibers. In addition, the biocompatibility results showed that 13% PVA/(0.1)% CS/10 FUC had the highest viability value for all incubation periods compared to the others. In addition, the tensile test results showed that; the maximum tensile strength value was observed for 13% PVA/(0.1)% CS/10 FUC nanofibers.
Collapse
Affiliation(s)
- Arnau Cuesta Puigmal
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Barcelona, 08017, Spain
| | - Musa Ayran
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Institute of Pure and Applied Sciences, Marmara University, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Eray Altan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Institute of Pure and Applied Sciences, Marmara University, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Mehmet Mucahit Guncu
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Barkan Kagan Durukan
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
| | | | - Roman A Perez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Barcelona, 08017, Spain
| | - Erhan Koc
- Pharma-Assist Ltd, Unit 16, Carrigeen Business Park, Powerstown, Clonmel Co., Tipperary, Ireland
| | - Desmond O'Callaghan
- Pharma-Assist Ltd, Unit 16, Carrigeen Business Park, Powerstown, Clonmel Co., Tipperary, Ireland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey.
| |
Collapse
|
27
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
28
|
Dubey A, Dasgupta T, Devaraji V, Ramasamy T, Sivaraman J. Investigating anti-inflammatory and apoptotic actions of fucoidan concentrating on computational and therapeutic applications. 3 Biotech 2023; 13:355. [PMID: 37810192 PMCID: PMC10558419 DOI: 10.1007/s13205-023-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fucoidan is linked to a variety of biological processes. Differences in algae species, extraction, seasons, and locations generate structural variability in fucoidan, affecting its bioactivities. Nothing is known about fucoidan from the brown alga Dictyota bartayresiana, its anti-inflammatory properties, or its inherent mechanism. This study aimed to investigate the anti-inflammatory properties of fucoidan isolated from D. bartayresiana against LPS-induced RAW 264.7 macrophages and to explore potential molecular pathways associated with this anti-inflammatory effects. Fucoidan was first isolated and purified from D. bartayresiana, and then, MTT assay was used to determine the effect of fucoidan on cell viability. Its effects on reactive oxygen species (ROS) formation and apoptosis were also studied using the ROS assay and acridine orange/ethidium bromide fluorescence labelling, respectively. Molecular docking and molecular dynamics simulation studies were performed on target proteins NF-κB and TNF-α to identify the route implicated in these inflammatory events. It was observed that fucoidan reduced LPS-induced inflammation in RAW 264.7 cells. Fucoidan also decreased the LPS-stimulated ROS surge and was found to induce apoptosis in the cells. Molecular docking and molecular dynamics simulation studies revealed that fucoidan's potent anti-inflammatory action was achieved by obstructing the NF-κB signalling pathway. These findings were particularly noteworthy and novel because fucoidan isolated from D. bartayresiana had not previously been shown to have anti-inflammatory properties in RAW 264.7 cells or to exert its activity by obstructing the NF-κB signalling pathway. Conclusively, these findings proposed fucoidan as a potential pharmaceutical drug for inflammation-related diseases.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Tiasha Dasgupta
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Vinod Devaraji
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Tamizhselvi Ramasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Jayanthi Sivaraman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| |
Collapse
|
29
|
Silva AKA, Souza CRDM, Silva HMD, Jales JT, Gomez LADS, da Silveira EJD, Rocha HAO, Souto JT. Anti-Inflammatory Activity of Fucan from Spatoglossum schröederi in a Murine Model of Generalized Inflammation Induced by Zymosan. Mar Drugs 2023; 21:557. [PMID: 37999381 PMCID: PMC10672204 DOI: 10.3390/md21110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Fucans from marine algae have been the object of many studies that demonstrated a broad spectrum of biological activities, including anti-inflammatory effects. The aim of this study was to verify the protective effects of a fucan extracted from the brown algae Spatoglossum schröederi in animals submitted to a generalized inflammation model induced by zymosan (ZIGI). BALB/c mice were first submitted to zymosan-induced peritonitis to evaluate the treatment dose capable of inhibiting the induced cellular migration in a simple model of inflammation. Mice were treated by the intravenous route with three doses (20, 10, and 5 mg/kg) of our fucan and, 1 h later, were inoculated with an intraperitoneal dose of zymosan (40 mg/kg). Peritoneal exudate was collected 24 h later for the evaluation of leukocyte migration. Doses of the fucan of Spatoglossum schröederi at 20 and 10 mg/kg reduced peritoneal cellular migration and were selected to perform ZIGI experiments. In the ZIGI model, treatment was administered 1 h before and 6 h after the zymosan inoculation (500 mg/kg). Treatments and challenges were administered via intravenous and intraperitoneal routes, respectively. Systemic toxicity was assessed 6 h after inoculation, based on three clinical signs (bristly hair, prostration, and diarrhea). The peritoneal exudate was collected to assess cellular migration and IL-6 levels, while blood samples were collected to determine IL-6, ALT, and AST levels. Liver tissue was collected for histopathological analysis. In another experimental series, weight loss was evaluated for 15 days after zymosan inoculation and fucan treatment. The fucan treatment did not present any effect on ZIGI systemic toxicity; however, a fucan dose of 20 mg/kg was capable of reducing the weight loss in treated mice. The treatment with both doses also reduced the cellular migration and reduced IL-6 levels in peritoneal exudate and serum in doses of 20 and 10 mg/kg, respectively. They also presented a protective effect in the liver, with a reduction in hepatic transaminase levels in both doses of treatment and attenuated histological damage in the liver at a dose of 10 mg/kg. Fucan from S. schröederi presented a promising pharmacological activity upon the murine model of ZIGI, with potential anti-inflammatory and hepatic protective effects, and should be the target of profound and elucidative studies.
Collapse
Affiliation(s)
- Ana Katarina Andrade Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Cássio Ricardo de Medeiros Souza
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Biochemistry and Molecular Biology Post-Graduation Program, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil
| | - Hylarina Montenegro Diniz Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Jéssica Teixeira Jales
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Lucas Alves de Souza Gomez
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Ericka Janine Dantas da Silveira
- Department of Dentistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, 1787, Lagoa Nova, Natal 59056-000, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Janeusa Trindade Souto
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| |
Collapse
|
30
|
Pai FT, Lin WJ. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma. BIOMATERIALS ADVANCES 2023; 153:213577. [PMID: 37572599 DOI: 10.1016/j.bioadv.2023.213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Functional polymeric nanoparticles (NPs) with antitumor potential were combined with the topoisomerase I inhibitor, irinotecan (IRT), to enhance cytotoxicity against colorectal cancers. The negatively charged γ-polyglutamic acid (γ-PGA) or fucoidan (FCD) was complexed with the positively charged chitosan (CS) to encapsulate IRT. The size of the γ-PGA/CS/IRT NPs and FCD/CS/IRT NPs were 146.0 ± 8.0 nm and 230.8 ± 2.5 nm, respectively, with polydispersity index ≤0.3. The cellular uptake ability of FCD/CS-FITC NPs was better than that of γ-PGA/CS-FITC NPs, especially in p-selectin positive HCT116 colorectal cancer cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL). The IC50 of FCD/CS/IRT NPs was 2.4 times lower than that of γ-PGA/CS/IRT NPs in HCT116 cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL), indicating its superior antitumor potential. The combination of irinotecan and fucoidan-based NPs exhibited a synergistic effect (CI <1), resulting in better anticancer activity of FCD/CS/IRT NPs than irinotecan alone. The apoptosis-related proteins, caspase 3, caspase 9, and poly(ADP-ribose) polymerase (PARP), were prominently increased in FCD/CS/IRT NPs-treated HCT116 cells by 2.3 folds, 3.5 folds, and 6.3 folds, respectively. All results support that fucoidan-based irinotecan-loaded nanoparticles possess the ability to effectively enhance cellular uptake and induce synergistic apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Fang-Ting Pai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
31
|
Jiang Y, Gong W, Xian Z, Xu W, Hu J, Ma Z, Dong H, Lin C, Fu S, Chen X. 16S full-length gene sequencing analysis of intestinal flora in breast cancer patients in Hainan Province. Mol Cell Probes 2023; 71:101927. [PMID: 37595804 DOI: 10.1016/j.mcp.2023.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Breast cancer has become the number one cancer in the world, and intestinal flora may be closely linked to it. Geographic location also has an important impact on human intestinal flora. We conducted the first study on the intestinal flora of breast cancer patients and non-breast cancer patients in a tropical region - Hainan Province in China. At the same time, Pacbio platform based on third-generation sequencing was used for the first time to conduct 16S full-length sequencing of fecal microorganism DNA. We completed the species diversity analysis and differential species analysis of the intestinal flora between the two groups, inferred their functional genetic composition and performed functional difference analysis. There were statistically significant differences in alpha diversity between the two groups in Hainan Province. By species composition difference analysis, at the phylum level, Bacteroidales (P = 0.006) and Firmicutes (P = 0.002) was differed between the two groups, and at the genus level, 17 breast cancer-related differential species such as Bacteroides were screened. According to the five grouping methods including ER level, PR level, HER2 status, Ki67 index and histological grade of breast cancer patients, 4, 1, 9, 6, 5 differential microbiota were screened out respectively, which were in total 25 (P < 0.05 for all subgroups) . The functional prediction and difference analysis revealed two functional metabolisms with significant differences between the two groups of microbes (P < 0.05). These results suggest that breast cancer is associated with changes in the composition and function of intestinal flora. These microflora and functional differences may become biomarkers or new targets for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yonglan Jiang
- Department of Clinical Laboratory, Changsha County People's Hospital (Xingsha Campus of Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Wei Gong
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan University, Haikou, Hainan, China
| | - Zhenyong Xian
- Department of Clinical Laboratory, Lingao County Traditional Chinese Medicine Hospital, Lingao, Hainan, China
| | - Weihua Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan Tropical Tumor Institute, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Junjie Hu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Zhichao Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China
| | - Huaying Dong
- Department of Breast Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Chong Lin
- Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shengmiao Fu
- Academician Innovation Platform of Hainan Province, Haikou, Hainan, China.
| | - Xinping Chen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Hainan Medical University, Hainan Cancer Hospital, Haikou, Hainan, China; Hainan Tropical Tumor Institute, Haikou, Hainan, China; Hainan University, Haikou, Hainan, China; Academician Innovation Platform of Hainan Province, Haikou, Hainan, China.
| |
Collapse
|
32
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
33
|
Lukova P, Apostolova E, Baldzhieva A, Murdjeva M, Kokova V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023; 11:2511. [PMID: 37760952 PMCID: PMC10526391 DOI: 10.3390/biomedicines11092511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 μM Trolox equivalent/g, respectively.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
34
|
Sanniyasi E, Gopal RK, Damodharan R, Arumugam A, Sampath Kumar M, Senthilkumar N, Anbalagan M. In vitro anticancer potential of laminarin and fucoidan from Brown seaweeds. Sci Rep 2023; 13:14452. [PMID: 37660108 PMCID: PMC10475116 DOI: 10.1038/s41598-023-41327-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Marine seaweeds are rich source of polysaccharides present in their cell wall and are cultivated and consumed in China, Japan, Korea, and South Asian countries. Brown seaweeds (Phaeophyta) are rich source of polysaccharides such as Laminarin and Fucoidan. In present study, both the laminarin and fucoidan were isolated was yielded higher in PP (Padina pavonica) (4.36%) and STM (Stoechospermum marginatum) (2.32%), respectively. The carbohydrate content in laminarin and fucoidan was 86.91% and 87.36%, whereas the sulphate content in fucoidan was 20.68%. Glucose and mannose were the major monosaccharide units in laminarin (PP), however, fucose, galactose, and xylose in fucoidan (STM). FT-IR down peaks represent the carbohydrate of laminarin and fucoidan except, for 1219 cm-1, and 843 cm-1, illustrating the sulphate groups of fucoidan. The molecular weight of laminarin was 3-5 kDa, and the same for fucoidan was 2-6 kDa, respectively. Both the Fucoidan and Laminarin showed null cytotoxicity on Vero cells. Contrastingly, the fucoidan possess cytotoxic activity on human liver cancer cells (HepG2) (IC50-24.4 ± 1.5 µg/mL). Simultaneously, laminarin also shown cytotoxicity on human colon cancer cells (HT-29) (IC50-57 ± 1.2 µg/mL). The AO/EB (Acriding Orange/Ethidium Bromide) assay significantly resulted in apoptosis and necrosis upon laminarin and fucoidan treatments, respectively. The DNA fragmentation results support necrotic cancer cell death. Therefore, laminarin and fucoidan from PP and STM were potential bioactive compounds for anticancer therapy.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Rajesh Damodharan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Arthi Arumugam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | | | | - Monisha Anbalagan
- Department of Biotechnology, Jeppiar Engineering College, Chennai, 600119, India
| |
Collapse
|
35
|
Yang Y, Wang P, Ji Z, Xu X, Zhang H, Wang Y. Polysaccharide‑platinum complexes for cancer theranostics. Carbohydr Polym 2023; 315:120997. [PMID: 37230639 DOI: 10.1016/j.carbpol.2023.120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zengrui Ji
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
36
|
Matsumoto K, Sugawara Y, Sone T, Kanemura S, Fukao A, Tsuji I. Seaweed consumption and the risk of prostate cancer: the Miyagi cohort study. Eur J Cancer Prev 2023; 32:423-430. [PMID: 37038991 DOI: 10.1097/cej.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Some laboratory studies have shown that fucoidan, which is contained in seaweed extract, has inhibitory effects on the invasion and angiogenesis of tumor cells; however, the association between seaweed consumption and prostate cancer incidence remains unclear. The purpose of the present study was to examine the association between seaweed consumption and the risk of prostate cancer incidence in the Japanese population. Data from 19 311 men in the Miyagi Cohort Study who were 40-64 years old at baseline in 1990 were examined. Seaweed consumption was assessed at baseline using a self-administered food frequency questionnaire. The participants were divided into three categories based on seaweed consumption at baseline. During 24.5 years of follow-up, we identified 815 incident cases of prostate cancer. Multivariate analysis showed that seaweed consumption was not associated with prostate cancer incidence. The multivariate hazard ratios and 95% confidence intervals for prostate cancer incidence in the highest tertile versus the other tertiles were 0.76 (0.60-0.96) and 0.78 (0.61-0.99) ( P -trend = 0.15). Furthermore, the null association was independent of whether their clinical stage was localized or advanced. In this population-based prospective cohort study conducted in Japan, we found no significant association between seaweed consumption and the incidence of prostate cancer.
Collapse
Affiliation(s)
- Koichi Matsumoto
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai
| | - Yumi Sugawara
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai
| | - Toshimasa Sone
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai
| | - Seiki Kanemura
- Division of Cancer Epidemiology and Prevention, Miyagi Prefectural Cancer Research Center, Natori
| | | | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University School of Public Health, Graduate School of Medicine, Sendai
| |
Collapse
|
37
|
Zheng W, Jia J, Zhang C, Zhang P, Song S, Ai C. Undaria pinnatifida fucoidan ameliorates dietary fiber deficiency-induced inflammation and lipid abnormality by modulating mucosal microbiota and protecting intestinal barrier integrity. Int J Biol Macromol 2023; 247:125724. [PMID: 37422247 DOI: 10.1016/j.ijbiomac.2023.125724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Dietary fiber deficiency (FD) is a new public health concern, with limited understanding of its impact on host energy requirements and health. In this study, the effect of fucoidan from Undaria pinnatifida (UPF) on FD-induced alterations of host physiological status was analyzed in mice. UPF increased colon length and cecum weight, reduced liver index, and modulated serum lipid metabolism primarily involving glycerophospholipid and linoleic acid metabolism in FD-treated mice. UPF protected against FD-induced destruction of intestinal barrier integrity by upregulating the expression levels of tight junction proteins and mucin-related genes. UPF alleviated FD-induced intestinal inflammation by reducing the levels of inflammation-related factors, such as interleukin-1β, tumor necrosis factor-α, and lipopolysaccharides, and relieving oxidative stress. The underlying mechanism can be closely associated with modulation of gut microbiota and metabolites, such as a reduction of Proteobacteria and an increase in short chain fatty acids. The in vitro model showed that UPF mitigated H2O2-induced oxidative stress and apoptosis in IEC-6 cells, indicating its potential as a therapeutic agent for inflammatory bowel disorders. This study suggests that UPF can be developed as a fiber supplement to benefit host health by modulating gut microbiota and metabolites and protecting intestinal barrier functions.
Collapse
Affiliation(s)
- Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Panpan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
38
|
Graikini D, Soro AB, Sivagnanam SP, Tiwari BK, Sánchez L. Bioactivity of Fucoidan-Rich Extracts from Fucus vesiculosus against Rotavirus and Foodborne Pathogens. Mar Drugs 2023; 21:478. [PMID: 37755091 PMCID: PMC10532486 DOI: 10.3390/md21090478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 μg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.
Collapse
Affiliation(s)
- Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Arturo B. Soro
- Foodborne Pathogens Unit, Department of Infectious Diseases in Humans, Sciensano, 1050 Brussels, Belgium;
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Saravana P. Sivagnanam
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12P928 Cork Ireland
| | - Brijesh K. Tiwari
- Teagasc Ashtown Food Research Centre, D15 DY05 Dublin, Ireland; (S.P.S.); (B.K.T.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
39
|
He Y, Li Y, Shen P, Li S, Zhang L, Wang Q, Ren D, Liu S, Zhang D, Zhou H. Anti-Hyperlipidemic Effect of Fucoidan Fractions Prepared from Iceland Brown Algae Ascophyllum nodosum in an Hyperlipidemic Mice Model. Mar Drugs 2023; 21:468. [PMID: 37755081 PMCID: PMC10533094 DOI: 10.3390/md21090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Ascophyllum nodosum, a brown algae abundantly found along the North Atlantic coast, is recognized for its high polysaccharide content. In this study, we investigated the anti-hyperlipidemic effect of fucoidans derived from A. nodosum, aiming to provide information for their potential application in anti-hyperlipidemic therapies and to explore comprehensive utilization of this Iceland brown seaweed. The crude fucoidan prepared from A. nodosum was separated using a diethylethanolamine column, resulting in two fucoidan fractions, AFC-1 and AFC-2. Both fractions were predominantly composed of fucose and xylose. AFC-1 exhibited a higher sulfate content of 27.8% compared to AFC-2 with 17.0%. AFC-2 was primarily sulfated at the hydroxy group of C2, whereas AFC-1 was sulfated at both the hydroxy groups of C2 and C4. To evaluate the anti-hyperlipidemic effect, a hyperlipidemia mouse model was established by feeding mice a high-fat diet. The effects of AFC-1, AFC-2, and the crude extract were investigated, with the drug atorvastatin used as a positive comparison. Among the different fucoidan fractions and doses, the high dose of AFC-2 administration demonstrated the most significant anti-hyperlipidemic effect across various aspects, including physiological parameters, blood glucose levels, lipid profile, histological analysis, and the activities of oxidative stress-related enzymes and lipoprotein-metabolism-related enzymes (p < 0.05 for the final body weight and p < 0.01 for the rest indicators, compared with the model group), and its effect is comparable to the atorvastatin administration. Furthermore, fucoidan administration resulted in a lower degree of loss in gut flora diversity compared to atorvastatin administration. These findings highlight the significant biomedical potential of fucoidans derived from A. nodosum as a promising therapeutic solution for hypolipidemia.
Collapse
Affiliation(s)
- Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Peili Shen
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Linsong Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Demeng Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
40
|
Bose I, Roy S, Yaduvanshi P, Sharma S, Chandel V, Biswas D. Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4840. [PMID: 37445154 DOI: 10.3390/ma16134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Pallvi Yaduvanshi
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Somesh Sharma
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Vinay Chandel
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| |
Collapse
|
41
|
Guerrero-Wyss M, Yans C, Boscán-González A, Duran P, Parra-Soto S, Angarita L. Durvillaea antarctica: A Seaweed for Enhancing Immune and Cardiometabolic Health and Gut Microbiota Composition Modulation. Int J Mol Sci 2023; 24:10779. [PMID: 37445955 DOI: 10.3390/ijms241310779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Durvillaea antarctica is the seaweed that is the most consumed by the Chilean population. It is recognized worldwide for its high nutritional value in protein, vitamins, minerals, and dietary fiber. This is a narrative review in which an extensive search of the literature was performed to establish the immunomodulator, cardiometabolic, and gut microbiota composition modulation effect of Durvillaea antarctica. Several studies have shown the potential of Durvillaea antarctica to function as prebiotics and to positively modulate the gut microbiota, which is related to anti-obesity, anti-inflammatory, anticancer, lipid-lowering, and hypoglycemic effects. The quantity of Bacteroides was negatively correlated with that of inflammatory monocytes and positively correlated with the levels of several gut metabolites. Seaweed-derived polysaccharides modulate the quantity and diversity of beneficial intestinal microbiota, decreasing phenol and p-cresol, which are related to intestinal diseases and the loss of intestinal function. Additionally, a beneficial metabolic effect related to this seaweed was observed, mainly promoting the decrease in the glycemic levels, lower cholesterol levels and cardiovascular risk. Consuming Durvillaea antarctica has a positive impact on the immune system, and its bioactive compounds provide beneficial effects on glycemic control and other metabolic parameters.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Caroline Yans
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Puerto Montt 5480000, Chile
| | - Arturo Boscán-González
- Facultad de Medicina, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela
| | - Solange Parra-Soto
- Departamento de Nutrición y Salud Pública, Facultad Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
42
|
Flores-Contreras EA, Araújo RG, Rodríguez-Aguayo AA, Guzmán-Román M, García-Venegas JC, Nájera-Martínez EF, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldivar R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2445. [PMID: 37447006 DOI: 10.3390/plants12132445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Brown macroalgae represent one of the most proliferative groups of living organisms in aquatic environments. Due to their abundance, they often cause problems in aquatic and terrestrial ecosystems, resulting in health problems in humans and the death of various aquatic species. To resolve this, the application of Sargassum has been sought in different research areas, such as food, pharmaceuticals, and cosmetics, since Sargassum is an easy target for study and simple to obtain. In addition, its high content of biocompounds, such as polysaccharides, phenols, and amino acids, among others, has attracted attention. One of the valuable components of brown macroalgae is their polysaccharides, which present interesting bioactivities, such as antiviral, antimicrobial, and antitumoral, among others. There is a wide variety of methods of extraction currently used to obtain these polysaccharides, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical water extraction (SCWE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and microwave-assisted extraction (MAE). Therefore, this work covers the most current information on the methods of extraction, as well as the purification used to obtain a polysaccharide from Sargassum that is able to be utilized as alginates, fucoidans, and laminarins. In addition, a compilation of bioactivities involving brown algae polysaccharides in in vivo and in vitro studies is also presented, along with challenges in the research and marketing of Sargassum-based products that are commercially available.
Collapse
Affiliation(s)
- Elda A Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Muriel Guzmán-Román
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Erik Francisco Nájera-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
43
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
44
|
Dhara S, Chakraborty K. Immunomodulatory effect of sulfated galactofucan from marine macroalga Turbinaria conoides. Int J Biol Macromol 2023; 238:124021. [PMID: 36921815 DOI: 10.1016/j.ijbiomac.2023.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Sulfated polysaccharides are effective immunostimulating agents by activating several intracellular signaling pathways. A sulfated (1 → 3)/(1 → 4)-linked galactofucan TCP-3 with promising immunomodulatory effects was purified from a marine macroalga Turbinaria conoides. The immune-enhancing potential of TCP-3 (100-400 mg/kg BW) was evaluated on cyclophosphamide-induced immunosuppressed animals by increasing bone marrow cellularity (10-13 cells/femur/mL x 106), α-esterase activity (1200-1700 number of positive cells/4000 BMC), interferon-γ (1.31-1.49 pg/mL), interleukin-2 (3.49-3.99 pg/mL) secretion, and WBC count (> 3000 cells/cu mm). The proliferation of lymphocytes for in vitro and in vivo conditions was enhanced by administering TCP-3 besides regulating the secretion of pro-inflammatory cytokines (interleukin-6/1β/12, tumor necrosis factor-α, transforming growth factor-β), and an inducible isoform of nitric oxide synthase. A promising reduction of viral copy formation was observed by administering TCP-3 (< 2 × 107 number) on SARS CoV-2 (delta variant) induced Vero cells in comparison with the infected group (> 5 × 107 number).
Collapse
Affiliation(s)
- Shubhajit Dhara
- Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| |
Collapse
|
45
|
Kirsten N, Ohmes J, Mikkelsen MD, Nguyen TT, Blümel M, Wang F, Tasdemir D, Seekamp A, Meyer AS, Fuchs S. Impact of Enzymatically Extracted High Molecular Weight Fucoidan on Lipopolysaccharide-Induced Endothelial Activation and Leukocyte Adhesion. Mar Drugs 2023; 21:339. [PMID: 37367664 DOI: 10.3390/md21060339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
The endothelial cell lining creates an interface between circulating blood and adjoining tissue and forms one of the most critical barriers and targets for therapeutical intervention. Recent studies suggest that fucoidans, sulfated and fucose-rich polysaccharides from brown seaweed, show multiple promising biological effects, including anti-inflammatory properties. However, their biological activity is determined by chemical characteristics such as molecular weight, sulfation degree, and molecular structure, which vary depending on the source, species, and harvesting and isolation method. In this study, we investigated the impact of high molecular weight (HMW) fucoidan extract on endothelial cell activation and interaction with primary monocytes (MNCs) in lipopolysaccharide (LPS)-induced inflammation. Gentle enzyme-assisted extraction combined with fractionation by ion exchange chromatography resulted in well-defined and pure fucoidan fractions. FE_F3, with a molecular weight ranging from 110 to 800 kDa and a sulfate content of 39%, was chosen for further investigation of its anti-inflammatory potential. We observed that along with higher purity of fucoidan fractions, the inflammatory response in endothelial mono- and co-cultures with MNCs was reduced in a dose-dependent manner when testing two different concentrations. This was demonstrated by a decrease in IL-6 and ICAM-1 on gene and protein levels and a reduced gene expression of TLR-4, GSK3β and NF-kB. Expression of selectins and, consequently, the adhesion of monocytes to the endothelial monolayer was reduced after fucoidan treatment. These data indicate that the anti-inflammatory effect of fucoidans increases with their purity and suggest that fucoidans might be useful in limiting the inflammatory response of endothelial cells in cases of LPS-induced bacterial infection.
Collapse
Affiliation(s)
- Nora Kirsten
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Julia Ohmes
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, 24118 Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sabine Fuchs
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| |
Collapse
|
46
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
47
|
Mirata S, Asnaghi V, Chiantore M, Salis A, Benvenuti M, Damonte G, Scarfì S. Photoprotective and Anti-Aging Properties of the Apical Frond Extracts from the Mediterranean Seaweed Ericaria amentacea. Mar Drugs 2023; 21:306. [PMID: 37233500 PMCID: PMC10224410 DOI: 10.3390/md21050306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
There is a growing interest in using brown algal extracts thanks to the bioactive substances they produce for adaptation to the marine benthic environment. We evaluated the anti-aging and photoprotective properties of two types of extracts (50%-ethanol and DMSO) obtained from different portions, i.e., apices and thalli, of the brown seaweed, Ericaria amentacea. The apices of this alga, which grow and develop reproductive structures during summer when solar radiation is at its peak, were postulated to be rich in antioxidant compounds. We determined the chemical composition and pharmacological effects of their extracts and compared them to the thallus-derived extracts. All the extracts contained polyphenols, flavonoids and antioxidants and showed significant biological activities. The hydroalcoholic apices extracts demonstrated the highest pharmacological potential, likely due to the higher content of meroditerpene molecular species. They blocked toxicity in UV-exposed HaCaT keratinocytes and L929 fibroblasts and abated the oxidative stress and the production of pro-inflammatory cytokines, typically released after sunburns. Furthermore, the extracts showed anti-tyrosinase and anti-hydrolytic skin enzyme activity, counteracting the collagenase and hyaluronidase degrading activities and possibly slowing down the formation of uneven pigmentation and wrinkles in aging skin. In conclusion, the E. amentacea apices derivatives constitute ideal components for counteracting sunburn symptoms and for cosmetic anti-aging lotions.
Collapse
Affiliation(s)
- Serena Mirata
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Mirko Benvenuti
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, 16132 Genova, Italy; (S.M.); (A.S.); (M.B.); (G.D.)
| | - Sonia Scarfì
- Centro 3R, Interuniversity Center for the Promotion of the Principles of the 3Rs in Teaching and Research, 56122 Pisa, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (V.A.); (M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
48
|
Wang L, Oliveira C, Li Q, Ferreira AS, Nunes C, Coimbra MA, Reis RL, Martins A, Wang C, Silva TH, Feng Y. Fucoidan from Fucus vesiculosus Inhibits Inflammatory Response, Both In Vitro and In Vivo. Mar Drugs 2023; 21:302. [PMID: 37233496 PMCID: PMC10221219 DOI: 10.3390/md21050302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Fucoidan has been reported to present diverse bioactivities, but each extract has specific features from which a particular biological activity, such as immunomodulation, must be confirmed. In this study a commercially available pharmaceutical-grade fucoidan extracted from Fucus vesiculosus, FE, was characterized and its anti-inflammatory potential was investigated. Fucose was the main monosaccharide (90 mol%) present in the studied FE, followed by uronic acids, galactose, and xylose that were present at similar values (3.8-2.4 mol%). FE showed a molecular weight of 70 kDa and a sulfate content of around 10%. The expression of cytokines by mouse bone-marrow-derived macrophages (BMDMs) revealed that the addition of FE upregulated the expression of CD206 and IL-10 by about 28 and 22 fold, respectively, in respect to control. This was corroborated in a stimulated pro-inflammatory situation, with the higher expression (60 fold) of iNOS being almost completely reversed by the addition of FE. FE was also capable of reverse LPS-caused inflammation in an in vivo mouse model, including by reducing macrophage activation by LPS from 41% of positive CD11C to 9% upon fucoidan injection. Taken together, the potential of FE as an anti-inflammatory agent was validated, both in vitro and in vivo.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Andreia S. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
49
|
Selim HM, Negm WA, Hawwal MF, Hussein IA, Elekhnawy E, Ulber R, Zayed A. Fucoidan mitigates gastric ulcer injury through managing inflammation, oxidative stress, and NLRP3-mediated pyroptosis. Int Immunopharmacol 2023; 120:110335. [PMID: 37201406 DOI: 10.1016/j.intimp.2023.110335] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
This study aimed to elucidate the gastro-protective effect of fucoidan against ethanol-induced gastric ulcer mediated via NLRP3-induced pyroptosis as an underlying mechanism, not yet assessed in prior research. Forty-eight male Albino mice were divided into six groups: Group I (normal control), group II (Ulcer/ethanol control), group III (Omeprazole + ethanol), group IV (fucoidan 25 mg + ethanol), group V (fucoidan 50 mg + ethanol) and group VI (fucoidan only). Fucoidan was administered orally for seven consecutive days followed by ulcer induction by a single oral dose of ethanol. Using colorimetric analysis, ELISA, qRT-PCR, histological assessment, and immunohistochemical studies, the results revealed that ethanol-induced ulcer exhibited an ulcer score of 42.5 ± 5.1 and a significant increase (p < 0.05) in malondialdehyde (MDA), nuclear factor kappa B (NF-κB), and interleukin 6 (IL-6) with a significant decrease in the gastro-protective mediators, prostaglandin E2 (PGE2), superoxide dismutase (SOD) and glutathione (GSH), accompanied with an increase in NLRP3, interleukin 1β (IL-1β), interleukin 18 (IL-18), caspase 1, caspase 11, gasdermin D, and toll-like receptor 4 (TLR4), compared with the normal control. Pre-treatment with fucoidan showed a comparable result with omeprazole. Additionally, pre-treatments elevated the levels of the gastro-protective mediators and lessened oxidative stress, relative to the positive control findings. Conclusively, fucoidan has a promising gastro-protective role by inhibiting inflammation and pyroptosis.
Collapse
Affiliation(s)
- Hend Mostafa Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ismail A Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| |
Collapse
|
50
|
Wu Y. Seaweed fucoidan targeting platelet Glycoprotein Ibα: hope from the ocean. J Thromb Haemost 2023; 21:1100-1101. [PMID: 37121616 DOI: 10.1016/j.jtha.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Yi Wu
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|