1
|
Cruz-Zabalegui A, Tirado-Cantú P, Alvarado-Muñoz EJ, Alcantar-Peña JJ, Martínez-Saucedo G, Chávez-Urbiola IR. Microfabricated Ti/Ni electrodes for non-enzymatic glucose detection: Mechanistic insights and interference analysis in blood-mimicking conditions. Talanta 2025; 293:128050. [PMID: 40188674 DOI: 10.1016/j.talanta.2025.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 05/14/2025]
Abstract
Accurate glucose monitoring is essential for diabetes management, and while enzymatic sensors dominate the market, their limitations in stability and reliability under extreme conditions require alternative approaches. This study presents a non-enzymatic glucose sensor based on Ti/Ni electrodes fabricated via microfabrication techniques, designed to operate across a broad glucose concentration range (0-30 mM) and under physiological conditions. Electrochemical evaluations using cyclic voltammetry and chronoamperometry confirm the catalytic oxidation of glucose on Ni surfaces, demonstrating high sensitivity and selectivity. The sensor achieves a LoD of 1.29 mM, a LoQ of 3.93 mM, in alkaline solution. Interference analysis with common blood analytes such as uric acid, acetaminophen, and ascorbic acid, reveals that Ti/Ni electrodes outperform copper-based alternatives in minimizing cross-reactivity, meeting ISO 15197 standards for selectivity. Integrating NaOH-modified cellulose fibers for pH stabilization further supports the sensor's adaptability for in situ applications. These findings underscore the potential of Ti/Ni electrodes to enhance the development of stable, reliable, and non-enzymatic glucose sensors for clinical and wearable technologies.
Collapse
Affiliation(s)
- A Cruz-Zabalegui
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - P Tirado-Cantú
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - E J Alvarado-Muñoz
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - J J Alcantar-Peña
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - G Martínez-Saucedo
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico
| | - I R Chávez-Urbiola
- Centro de Ingeniería y Desarrollo Industrial, Avenida Playa Pie de la Cuesta #702, Santiago de Querétaro, 76125, Querétaro, Mexico.
| |
Collapse
|
2
|
Ajdari B, Madrakian T, Afkhami A. Development of an electrochemical sensor utilizing MWCNs-poly(2-aminothiophenol) @AgNPs nanocomposite for the simultaneous determination of Pb 2+ and Cd 2+ in food samples. Food Chem 2025; 477:143529. [PMID: 40023026 DOI: 10.1016/j.foodchem.2025.143529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
This study focuses on the synthesis and characterization of the Multiwall Carbon Nanotubes-Poly(2-aminothiophenol) @silver nanoparticles nanocomposite (MWCNTs-PATP@AgNPs) using different analytical methods. The synthesized MWCNTs-PATP@AgNPs served as an electrocatalytic modifier, enabling the highly selective and sensitive detection of Pb2+ and Cd2+ ions at nanomolar levels using square wave anodic stripping voltammetry. The concentration of MWCNTs- PATP @AgNPs, the type and concentration of the electrolyte, the solution's pH, and the preconcentration conditions, were systematically optimized. A linear response was observed for Pb2+ and Cd2+ within the ranges of 0.5-60.0 nmolL-1 and 8.0-50.0 nmol L-1, respectively, with detection limits of 0.125 nmol L-1 for Pb2+ and 1.47 nmol L-1 for Cd2+. Furthermore, the MWCNTs-PATP@AgNPs sensor demonstrated the capability to selectively detect these target metals in the presence of various common interfering species. The sensor was effectively utilized for the detection of Pb2+ and Cd2+ ions across various real samples.
Collapse
Affiliation(s)
- Beheshteh Ajdari
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
3
|
Ramasamy S, Madhu S, Choi J. Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood. Bioelectrochemistry 2025; 163:108902. [PMID: 39798421 DOI: 10.1016/j.bioelechem.2025.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO2-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including E. coli, P. aeruginosa, S. aureus, and E. faecalis. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 102-108 CFU/mL for E. coli and S. aureus, and 103-108 CFU/mL for P. aeruginosa and E. faecalis, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.
Collapse
Affiliation(s)
| | - Sekar Madhu
- Department of Mechanical Engineering, Ajou University, South Korea
| | - Jungil Choi
- Department of Mechanical Engineering, Ajou University, South Korea.
| |
Collapse
|
4
|
Lo TC, Wang WJ, Chen CY, Chang JC, Li WP. Serine-Grafted Cu 2O Electrode Enabling Specific β-Hydroxybutyrate Detection by Surface Sensitization-Promoted Electrolysis in Amperometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12022-12029. [PMID: 40334235 PMCID: PMC12100702 DOI: 10.1021/acs.langmuir.5c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
As the global prevalence of diabetes continues to rise, the home health testing market has experienced rapid growth. Although blood glucose monitoring is widespread among diabetic patients, there remains a significant lack of testing methods for diabetic ketoacidosis. The present study developed a feasible electrochemical technique for ketoacid detection using serine-immobilized copper(I) oxide nanoparticles (Cu2O NPs) as the primary electrode material. Given that the serine on the nanoparticle surface enables conjugation with β-hydroxybutyrate (β-HBA) through an esterification reaction between the hydroxyl group of serine and carboxylic acid of β-HBA and another intramolecular nucleophilic acyl substitution between amine and ester groups to form irreversible amide bonding, thus resulting in the β-HBA deposition on the surface of the Cu2O NP-coated electrode. The quantification of β-HBA can be determined through current variations in amperometry measurement. The results showed a highly linear relationship between reductive current and β-HBA concentration at 0-20 mM, with a reasonable detection limit of 0.1 mM. Moreover, a reasonable mechanism involving the NP surface covering-mediated electrolysis enhancement was proposed. The present method reveals a promising direction in developing sensors for small molecule detection with high specificity and sensitivity.
Collapse
Affiliation(s)
- Ting-Chi Lo
- Department of Medicinal
and Applied Chemistry, Kaohsiung Medical
University, Kaohsiung807, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal
and Applied Chemistry, Kaohsiung Medical
University, Kaohsiung807, Taiwan
| | - Chih-Yen Chen
- Department of Electrophysics, National
Yang Ming Chiao Tung University, Hsinchu300, Taiwan
| | - Jui-Cheng Chang
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan320, Taiwan
| | - Wei-Peng Li
- Department of Medicinal
and Applied Chemistry, Kaohsiung Medical
University, Kaohsiung807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung807, Taiwan
- Drug Development and Value
Creation Research Center, Kaohsiung Medical
University, Kaohsiung807, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan701, Taiwan
| |
Collapse
|
5
|
Terzapulo X, Dyussupova A, Ilyas A, Boranova A, Shevchenko Y, Mergenbayeva S, Filchakova O, Gaipov A, Bukasov R. Detection of Cancer Biomarkers: Review of Methods and Applications Reported from Analytical Perspective. Crit Rev Anal Chem 2025:1-46. [PMID: 40367278 DOI: 10.1080/10408347.2025.2497868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
One in five deaths in developed countries is related to cancer. The cancer prevalence is likely to grow with aging population. The affordable and accurate early diagnostics of cancer based on detection of cancer biomarkers at low concentration during its early stages is one of the most efficient way to decrease mortality and human suffering from cancer. The data from 201 analytical papers are tabulated in 9 tables, illustrated in 8 figures and used for comparative analysis of methods applied for cancer biomarker detection, including polymerase chain reaction, Loop-mediated isothermal amplification (LAMP), mass spectrometry, enzyme-linked immunosorbent assay, electroanalytical methods, immunoassays, surface enhanced Raman scattering, Fourier Transform Infrared and others in terms of above-mentioned performance parameters. Median and/or average limit of detection (LOD) are calculated and compared between different analytical methods. We also described and compared LOD of the methods used for detection of three frequently detected cancer biomarkers: carcinoembryonic antigen, prostate-specific antigen and alpha-fetoprotein. Among those methods of detection, the reported electrochemical sensors often demonstrate relatively high sensitivity/low LOD while they often have a moderate instrumental cost and fast time to results. The review tabulates, compares and discusses analytical papers, which report LOD of cancer biomarkers and comprehensive quantitative comparison of various analytical methods is made. The discussion of those techniques applied for cancer biomarker detection included brief summary of pro and cons for each of those methods.
Collapse
Affiliation(s)
- Xeniya Terzapulo
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Dyussupova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Boranova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Yegor Shevchenko
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Saule Mergenbayeva
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Republic of Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
6
|
Shim JE, Kim YJ, Hahm E, Choe JH, Baek A, Kim RM, You EA. Ultrasensitive SERS nanoprobe-based multiplexed digital sensing platform for the simultaneous quantification of Alzheimer's disease biomarkers. Biosens Bioelectron 2025; 274:117216. [PMID: 39899917 DOI: 10.1016/j.bios.2025.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease that requires early diagnosis to manage its progression. Although the simultaneous detection of multiple AD biomarkers is expected to facilitate early assessment of AD risk, the lack of multiplexed sensing platforms for accurately quantifying multiple AD biomarkers remains a challenge. Here, we present a multiplexed digital sensing platform based on bumpy core-shell (BCS) surface-enhanced Raman spectroscopy (SERS) nanoprobes for ultrasensitive, quantitative, and simultaneous detection of Aβ42 and Aβ40 as AD biomarkers, enabling the accurate determination of the Aβ42/Aβ40 ratio. We synthesized BCS SERS nanoprobes with distinct Raman reporters to generate unique, intense, and reproducible SERS signals, offering single-nanoparticle sensitivity and quantification capabilities. These nanoprobes were subsequently employed in SERS-based immunoassays combined with digital SERS analysis for multiplexed quantification. The proposed platform accurately and quantitatively detected Aβ42 and Aβ40 across a range of five orders of magnitude, with a limit of detection of 8.7× 10-17 g/mL (1.9 × 10-17 M) for Aβ42 and 1.0 × 10-15 g/mL (2.3 × 10-16 M) for Aβ40, surpassing the performance of conventional enzyme-linked immunosorbent assays. Based on the exclusive detection of Aβ42 and Aβ40 using distinct SERS nanoprobes, the proposed sensing platform can also accurately quantify Aβ42 and Aβ40 at clinically relevant levels in both cerebrospinal fluid and blood plasma. Therefore, this sensing platform can be used to accurately and reliably determine the Aβ42/Aβ40 ratio, thus serving as an effective tool for the early diagnosis of AD.
Collapse
Affiliation(s)
- Jae-Eul Shim
- Medical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Young Jun Kim
- Medical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Eunil Hahm
- Medical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Jong-Ho Choe
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Ahruem Baek
- Nanobio Measurement Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Ryeong Myeong Kim
- Medical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Eun-Ah You
- Medical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Singh K, Maurya KK, Malviya M. Recent progress on nanomaterial-based electrochemical sensors for glucose detection in human body fluids. Mikrochim Acta 2025; 192:110. [PMID: 39878884 DOI: 10.1007/s00604-025-06972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately. Electrochemical biosensors are developing as a propitious solution for personalized health monitoring due to their accuracy, specificity, and affordability. This review article provides an observation of a variety of non-enzymatic glucose sensor resources, such as carbon nanomaterials, noble metals gold and silver, transition metal and their oxides, and porous material composites. Moreover, basic knowledge of the reaction mechanism of enzymatic and nonenzymatic glucose sensors are outlined and recent advancements in glucose sensors applications to various human body biofluids such as sweat, tears, urine, saliva, and blood are presented. Finally, this review summarizes electrochemical sensors for glucose detection in human body fluids, the challenges they faced, and their solutions.
Collapse
Affiliation(s)
- Kulveer Singh
- Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Manisha Malviya
- Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
8
|
Lima TM, Leal DM, Ferreira ZC, Souza FDJ, de Oliveira DB, Rocha-Vieira E, Martins HR, Pereira AC, Ferreira LF. Development and Optimization of a Cost-Effective Electrochemical Immunosensor for Rapid COVID-19 Diagnosis. BIOSENSORS 2025; 15:67. [PMID: 39996968 PMCID: PMC11853419 DOI: 10.3390/bios15020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
The coronavirus disease (COVID-19) pandemic has created an urgent need for rapid, accurate, and cost-effective diagnostic tools. In this study, an economical electrochemical immunosensor for the rapid diagnosis of COVID-19 was developed and optimized based on charge transfer resistance (Rct) values obtained by electrochemical impedance spectroscopy (EIS) from the interaction between antibodies (anti-SARS-CoV-2) immobilized as a bioreceptor and the virus (SARS-CoV-2). The sensor uses modified pencil graphite electrodes (PGE) coated with poly(4-hydroxybenzoic acid), anti-SARS-CoV-2, and silver nanoparticles. The immobilization of anti-SARS-CoV-2 antibodies was optimized at a concentration of 1:250 for 30 min, followed by blocking the surface with 0.01% bovine serum albumin for 10 min. The optimal conditions for virus detection in clinical samples were a 1:10 dilution with a response time of 20 min. The immunosensor responded linearly in the range of 0.2-2.5 × 106 particles/μL. From the relationship between the obtained signal and the concentration of the analyzed sample, the limit of detection (LOD) and limit of quantification (LOQ) obtained were 1.21 × 106 and 4.04 × 106 particles/μL, respectively. The device did not cross-react with other viruses, including Influenza A and B, HIV, and Vaccinia virus. The relative standard deviation (RSD) of the six immunosensors prepared using the shared-pool sample was 3.87. Decreases of 22.3% and 12.4% were observed in the response values of the ten immunosensors stored at 25 °C and 4.0 °C, respectively. The sensor provides timely and accurate results with high sensitivity and specificity, offering a cost-effective alternative to the existing diagnostic methods.
Collapse
Affiliation(s)
- Thaís Machado Lima
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Daiane Martins Leal
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Zirlane Coelho Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| | - Fernando de Jesus Souza
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Danilo Bretas de Oliveira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculty of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (F.d.J.S.); (D.B.d.O.); (E.R.-V.)
| | - Helen Rodrigues Martins
- Pharmacy Department, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil;
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei 36307-352, Minas Gerais, Brazil;
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Minas Gerais, Brazil; (T.M.L.); (D.M.L.); (Z.C.F.)
| |
Collapse
|
9
|
Sundaresan S, Vijaikanth V. Recent advances in electrochemical detection of common azo dyes. Forensic Toxicol 2025; 43:1-21. [PMID: 39093537 DOI: 10.1007/s11419-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Food forensics is an emerging field and the initial part of this review showcases the toxic effects and the instrumental methods applied for the detection of the most commonly used azo dyes. Electrochemical detection has a lot of advantages and hence the significance of the most important techniques used in the electrochemical detection is discussed. The major part of this review highlights the surface modified electrodes, utilized for the detection of the most important azo dyes to achieve low detection limit (LOD). METHODS A thorough literature study was conducted using scopus, science direct and other scientific databases using specific keywords such as toxic azo dyes, electrochemical detection, modified electrodes, LOD etc. The recent references in this field have been included. RESULTS From the published literature, it is observed that with the growing interests in the field of electrochemical techniques, a lot of importance have been given in the area of modifying the working electrodes. The results unambiguously show that the modified electrodes outperform bare electrodes and offer a lower LOD value. CONCLUSION According to the literature reports it can be concluded that, compared to other detection methods, electrochemical techniques are much dependable and reproducible. The fabrication of the electrode material with the appropriate modifications is the main factor that influences the sensitivity. Electrochemical sensors can be designed to be more sensitive, more reliable, and less expensive. These sensors can be effectively used by toxicologists to detect trace amounts of harmful dyes in food samples.
Collapse
Affiliation(s)
- Sumi Sundaresan
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India
| | - Vijendran Vijaikanth
- Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, Tamil Nadu, India.
| |
Collapse
|
10
|
Salih IL, Alshatteri AH, Omer KM. Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review. ANAL SCI 2024; 40:1969-1986. [PMID: 39093545 DOI: 10.1007/s44211-024-00635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.
Collapse
Affiliation(s)
- Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
- Department of Chemistry, College of Science, University of Raparin, RaniaSulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Azad H Alshatteri
- Department of Chemistry, University of Garmian, Darbandikhan Road, Kalar City, Sulaimaniyah, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
11
|
Utzinger B, Dixit DD, Lillehoj PB. Microfluidic finger-actuated mixer for ultrasensitive electrochemical measurements of protein biomarkers for point-of-care testing. LAB ON A CHIP 2024; 24:3802-3809. [PMID: 38979726 DOI: 10.1039/d4lc00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Current diagnostic tests for high sensitivity detection of protein biomarkers involve long incubation times or require bulky/expensive instrumentation, hindering their use for point-of-care testing. Here, we report a microfluidic electrochemical immunosensor that employs a unique finger-actuated mixer for rapid, ultrasensitive measurements of protein biomarkers. Mixing was implemented during the incubation steps, which accelerated biomolecular transport and promoted immunocomplex formation, leading to enhanced analytical sensitivity and a shortened detection time. Electrochemical measurements were performed using a handheld diagnostic device consisting of a smartphone and miniature potentiostat. Proof of principle was demonstrated by using this platform for quantitative measurements of C-X-C motif chemokine ligand 9 (CXCL9), a serological biomarker for autoimmune and inflammatory diseases, which could be detected in human plasma at concentrations as low as 4.7 pg mL-1 in <25 min. The ability to rapidly detect protein biomarkers with high sensitivity in a point-of-care format makes this device a promising tool for diagnostic testing, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Benjamin Utzinger
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
12
|
Sikaria S, Celshia S, Selvamani M, Suresh V, Hussein MA. Electrochemical Detection of Ascorbic Acid by Fe₂O₃ Nanoparticles Modified Glassy Carbon Electrode. Cureus 2024; 16:e64688. [PMID: 39156467 PMCID: PMC11327173 DOI: 10.7759/cureus.64688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Background The article delineates a strategy for detecting ascorbic acid (AA) through the use of iron oxide (Fe₂O₃) nanoparticles on an electrode. The Fe₂O₃ nanoparticles demonstrated effective electrocatalysis in the oxidation of AA, resulting in increased peak currents. The sensor showcased a wide linear detection range, a low detection limit, and high selectivity towards interferents, making it suitable for accurate AA measurement in food analysis and medical diagnostics applications. This emphasizes the potential of Fe₂O₃ nanoparticle-based sensors for precise AA detection. Aim The primary aim of this research is to develop an electrochemical sensing technique for the identification of ascorbic acid, with the use of Fe₂O₃ nanoparticles as the sensing matrix. Materials and methods The synthesis process involved the utilization of FeCl3.6H2O, ammonia solution, ethanol, and double-distilled water. FeCl3.6H2O was dissolved in ammonia water to produce a brown precipitate for the synthesis of Fe₂O₃ nanoparticles. Subsequently, the brown precipitate underwent hydrothermal treatment at 180 °C, resulting in the formation of a red product. Following centrifugation, washing, and drying steps, Fe₂O₃ nanoparticles were successfully synthesized. These nanoparticles were then utilized to modify the glassy carbon electrode (GCE). Prior to the modification, the GCE underwent polishing and cleaning procedures, after which it was coated with a suspension containing 5 mg of Fe₂O₃ nanoparticles in 10 mL of ethanol. The coated electrode was dried and deemed ready for application in electrochemical sensing. Results The hydrothermal method was employed in this research to synthesize Fe₂O₃ nanoparticles, which were subsequently subjected to a series of experiments to evaluate their electrochemical sensing capabilities. The resulting Fe₂O₃ nanoparticles were determined to possess a high level of purity and a crystalline structure through various analyses, including field emission-scanning electron microscopy (FE-SEM), cyclic voltammetric testing, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy analysis, differential pulse voltammetry (DPV), and the current response of the Fe₂O₃-modified electrode towards ascorbic acid. The morphology of the Fe₂O₃ nanoparticles was observed to be uniform. The synthesized particles successfully fulfilled the study's objective by exhibiting remarkably sensitive and selective sensitivity towards ascorbic acid. Conclusion Our study underscores the potential of utilizing Fe₂O₃ nanoparticle-based electrochemical sensing to detect ascorbic acid, as evidenced by the notably high sensitivity of ascorbic acid towards Fe₂O₃ nanoparticles. The distinctive properties of Fe₂O₃ nanoparticles, which include their large surface area, efficient electron transport, and straightforward manufacturing process, significantly enhance the sensor's performance. Further research is crucial to exploring the wide-ranging applications of the sensor in fields such as food safety, environmental monitoring, and biological diagnostics and to overcome any existing limitations.
Collapse
Affiliation(s)
- Sakshi Sikaria
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Sherin Celshia
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Muthamizh Selvamani
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - Mohammed Asif Hussein
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
13
|
Gevaerd A, Carneiro EA, Gogola JL, Nicollete DRP, Santiago EB, Riedi HP, Timm A, Predebon JV, Hartmann LF, Ribeiro VHA, Rochitti C, Marques GL, Loesch MMON, de Almeida BMM, Rogal-Junior S, Figueredo MVM. Utilizing COVID-19 as a Model for Diagnostics Using an Electrochemical Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:3772. [PMID: 38931556 PMCID: PMC11207896 DOI: 10.3390/s24123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
This paper reports a rapid and sensitive sensor for the detection and quantification of the COVID-19 N-protein (N-PROT) via an electrochemical mechanism. Single-frequency electrochemical impedance spectroscopy was used as a transduction method for real-time measurement of the N-PROT in an immunosensor system based on gold-conjugate-modified carbon screen-printed electrodes (Cov-Ag-SPE). The system presents high selectivity attained through an optimal stimulation signal composed of a 0.0 V DC potential and 10 mV RMS-1 AC signal at 100 Hz over 300 s. The Cov-Ag-SPE showed a log response toward N-PROT detection at concentrations from 1.0 ng mL-1 to 10.0 μg mL-1, with a 0.977 correlation coefficient for the phase (θ) variation. An ML-based approach could be created using some aspects observed from the positive and negative samples; hence, it was possible to classify 252 samples, reaching 83.0, 96.2 and 91.3% sensitivity, specificity, and accuracy, respectively, with confidence intervals (CI) ranging from 73.0 to 100.0%. Because impedance spectroscopy measurements can be performed with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing, even in places with limited resources, as an alternative to the common diagnostics methods.
Collapse
Affiliation(s)
- Ava Gevaerd
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Emmanuelle A. Carneiro
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Jeferson L. Gogola
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Diego R. P. Nicollete
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Erika B. Santiago
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Halanna P. Riedi
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Adriano Timm
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - João V. Predebon
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Luis F. Hartmann
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Victor H. A. Ribeiro
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Carlos Rochitti
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Gustavo L. Marques
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Maira M. O. N. Loesch
- School of Medicine—Campus PUCPR, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Parana 80215-901, Brazil
| | - Bernardo M. M. de Almeida
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Sérgio Rogal-Junior
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| | - Marcus V. M. Figueredo
- Research and Development Department, Hilab Campus, Rua José A. Possebom, 800, Curitiba, Parana 81270-185, Brazil (M.V.M.F.)
| |
Collapse
|
14
|
Torres do Couto MT, Galdino da Silva Júnior A, Pereira Dos Santos Avelino KY, Vega Gonzales Gil LH, Cordeiro MT, Lima de Oliveira MD, Souza de Andrade CA. Development of optical and electrochemical immunodevices for dengue virus detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3539-3550. [PMID: 38780022 DOI: 10.1039/d4ay00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.
Collapse
Affiliation(s)
- Milena Tereza Torres do Couto
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Alberto Galdino da Silva Júnior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Karen Yasmim Pereira Dos Santos Avelino
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- Escola de Ciências da Saúde e da Vida, Universidade Católica de Pernambuco, 50050-410 Recife, PE, Brazil
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| | | | - Marli Tenório Cordeiro
- Departamento de Virologia, Instituto Aggeu Magalhães-Fiocruz, 50670-420 Recife, PE, Brazil
| | - Maria Danielly Lima de Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| | - César Augusto Souza de Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| |
Collapse
|
15
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
16
|
Erk N, Kurtay G, Bouali W, Sakal ZG, Genç AA, Erbaş Z, Soylak M. Electrochemical Detection of Melphalan in Biological Fluids Using a g-C 3N 4@ND-COOH@MoSe 2 Modified Electrode Complemented by Molecular Docking Studies with Cellular Tumor Antigen P53. ACS OMEGA 2024; 9:21058-21070. [PMID: 38764632 PMCID: PMC11097377 DOI: 10.1021/acsomega.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Melphalan (Mel) is a potent alkylating agent utilized in chemotherapy treatments for a diverse range of malignancies. The need for its accurate and timely detection in pharmaceutical preparations and biological samples is paramount to ensure optimized therapeutic efficacy and to monitor treatment progression. To address this critical need, our study introduced a cutting-edge electrochemical sensor. This device boasts a uniquely modified electrode crafted from graphitic carbon nitride (g-C3N4), decorated with activated nanodiamonds (ND-COOH) and molybdenum diselenide (MoSe2), and specifically designed to detect Mel with unparalleled precision. Our rigorous testing employed advanced techniques such as cyclic voltammetry and differential pulse voltammetry. The outcomes were promising; the sensor consistently exhibited a linear response in the range of 0.5 to 12.5 μM. Even more impressively, the detection threshold was as low as 0.03 μM, highlighting its sensitivity. To further enhance our understanding of Mel's biological interactions, we turned to molecular docking studies. These studies primarily focused on Mel's interaction dynamics with the cellular tumor antigen P53, revealing a binding affinity of -5.0 kcal/mol. A fascinating observation was made when Mel was covalently conjugated with nanodiamond-COOH (ND-COOH). This conjugation resulted in a binding affinity that surged to -10.9 kcal/mol, clearly underscoring our sensor's superior detection capabilities. This observation also reinforced the wisdom behind incorporating ND-COOH in our electrode design. In conclusion, our sensor not only stands out in terms of sensitivity but also excels in selectivity and accuracy. By bridging electrochemical sensing with computational insights, our study illuminates Mel's intricate behavior, driving advancements in sensor technology and potentially revolutionizing cancer therapeutic strategies.
Collapse
Affiliation(s)
- Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Gülbin Kurtay
- Hacettepe University, Faculty of Sciences, Department of Chemistry, 06800 Ankara, Turkey
| | - Wiem Bouali
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Zeyneb Gülsüm Sakal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Asena Ayşe Genç
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| | - Zeliha Erbaş
- Yozgat Bozok University, Science and Technology Application and Research Center, 66200 Yozgat, Turkey
- Erciyes University, Technology Research & Application Center (TAUM), 38039 Kayseri, Turkey
| | - Mustafa Soylak
- Erciyes University, Technology Research & Application Center (TAUM), 38039 Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Çankaya, Ankara 06670, Turkey
| |
Collapse
|
17
|
Boucheta H, Zouaoui E, Ferkous H, Madaci A, Yadav KK, Benguerba Y. Advancing Diabetes Management: The Future of Enzyme-Less Nanoparticle-Based Glucose Sensors-A Review. J Diabetes Sci Technol 2024:19322968241236211. [PMID: 38506487 PMCID: PMC11571395 DOI: 10.1177/19322968241236211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Glucose is vital for biological processes, requiring blood sugar levels to be maintained between 3.88 and 6.1 mmol/L, especially during fasting. Elevated levels signal diabetes, a global concern affecting 537 million people, necessitating effective glucose-monitoring devices. METHOD Enzyme-based sensors, though selective, are sensitive to environmental factors. Nonenzymatic sensors, especially those with nanoparticles, offer stability, high surface area, and cost-effectiveness. Existing literature supports their immediate glucose oxidation, showcasing exceptional sensitivity. RESULTS This review details nonenzymatic sensors, highlighting materials, detection limits, and the promise of nanoparticle-based designs, which exhibit enhanced sensitivity and selectivity in glucose detection. CONCLUSION Nanoparticle-based sensors, as reviewed, show potential for glucose monitoring, overcoming enzyme-based limitations. The conclusion suggests future directions for advancing these sensors, emphasizing ongoing innovation in this critical research area.
Collapse
Affiliation(s)
- Hana Boucheta
- Laboratory of Physico-Chemistry Research on Surfaces and Interfaces, University of 20 August 1955, Skikda, Algeria
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
- Laboratory of Catalysis, Bio-Process and Environment, Department of Process Engineering, University of 20 August 1955, Skikda, Algeria
| | - Emna Zouaoui
- Department of Process Engineering, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
- Laboratory of Catalysis, Bio-Process and Environment, Department of Process Engineering, University of 20 August 1955, Skikda, Algeria
| | - Hana Ferkous
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 August 1955, Skikda, Algeria
| | - Anis Madaci
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Yacine Benguerba
- Laboratoire de Biopharmacie et Pharmacotechnie, Université Ferhat Abbas Sétif-1, Sétif, Algeria
| |
Collapse
|
18
|
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based Nanobiosensors for Healthcare Monitoring. Mol Biotechnol 2024; 66:378-401. [PMID: 37166577 PMCID: PMC10173227 DOI: 10.1007/s12033-023-00760-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Verruchi Gupta
- School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu & Kashmir, 182320, India
| | - Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, NH-44, Jagti, PO Nagrota, Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
19
|
Khalife M, Stankovic D, Stankovic V, Danicka J, Rizzotto F, Costache V, Schwok AS, Gaudu P, Vidic J. Electrochemical biosensor based on NAD(P)H-dependent quinone reductase for rapid and efficient detection of vitamin K 3. Food Chem 2024; 433:137316. [PMID: 37690134 DOI: 10.1016/j.foodchem.2023.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Vitamin K refers to a group of vitamins that play an important role in blood coagulation and regulation of bone and vascular metabolism. However, vitamin K3 may give severe side effects in animal and humans when improperly added to food and feed due to its toxicity. Here, an electrochemical biosensor, based on the YaiB NADPH-dependent quinone reductase from Lactococcus lactis (YaiB), was developed to achieve rapid and redox probe-free detection of vitamin K3. First, the ability of the carbon electrode to distinguish between 1,4-benzoquinone and hydroquinone was demonstrated. Then, we engineered YaiB to work as a bioreceptor immobilized at the electrode and its sensitivity and specificity to reduce vitamin K3 were demonstrated. Finally, to demonstrate the practical potential of the biosensor, we tested it directly in spiked milk samples, achieving 15-minute quantification of the vitamin K3. The limit of detection was 0.87 µM and 4.1 µM in buffer and milk, respectively.
Collapse
Affiliation(s)
- Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Dalibor Stankovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Vesna Stankovic
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Julia Danicka
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France; Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, INRAE, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, Jouy en Josas, France
| | | | - Philippe Gaudu
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France.
| |
Collapse
|
20
|
Tabish TA, Zhu Y, Shukla S, Kadian S, Sangha GS, Lygate CA, Narayan RJ. Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems. APPLIED PHYSICS REVIEWS 2023; 10:041310. [PMID: 38229764 PMCID: PMC7615530 DOI: 10.1063/5.0162640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, USA
| | - Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| | - Gurneet S. Sangha
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Dr., College Park, Maryland 20742, USA
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina 27695-7907, USA
| |
Collapse
|
21
|
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int 2023; 173:113464. [PMID: 37803787 DOI: 10.1016/j.foodres.2023.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
The high population growth rate, massive animal food consumption, fast economic progress, and limited food resources could lead to a food crisis in the future. There is a huge requirement for dietary proteins including cultured meat is being progressed to fulfill the need for meat-derived proteins in the diet. However, production of cultured meat requires monitoring numerous bioprocess parameters. This review presents a comprehensive overview of various widely adopted techniques (optical, spectroscopic, electrochemical, capacitive, FETs, resistive, microscopy, and ultrasound) for monitoring physical, chemical, and biological parameters that can improve the bioprocess control in cultured meat. The methods, operating principle, merits/demerits, and the main open challenges are reviewed with the aim to support the readers in advancing knowledge on novel sensing systems for cultured meat applications.
Collapse
Affiliation(s)
- Dnyandeo Pawar
- Microwave Materials Group, Centre for Materials for Electronics Technology (C-MET), Athani P.O, Thrissur, Kerala 680581, India.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
22
|
Rana S, Upadhyay LSB. Methylene Blue Assisted Electrochemical Detection of Bacterial Biofilm. Indian J Microbiol 2023; 63:299-306. [PMID: 37781013 PMCID: PMC10533774 DOI: 10.1007/s12088-023-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 10/03/2023] Open
Abstract
This paper presents a novel electrochemical transduction method for the rapid and straightforward detection of bacterial biofilm. Briefly, fifteen isolates from various sources were collected and evaluated for their ability to generate biofilm. The Congo red-based agar method and the tube test were used for preliminary screening. A microtiter experiment was also performed to quantitatively examine the screening results and validate the outcomes of the proposed methylene blue-based electrochemical detection method. Electrochemical sensing was performed on the two selected isolates using methylene blue as a redox indicator. For optimization goals, several methylene blue concentrations were studied. Methylene blue at a concentration of 0.4 mM was used for the analysis conclusion. The developed electrochemical method displayed a linear R2 value of 0.9747. The new electrochemical approach demonstrated great sensitivity and rapid response compared to conventional microtiter test methods.
Collapse
Affiliation(s)
- Sonali Rana
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010 India
| | - Lata Sheo Bachan Upadhyay
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
23
|
Peto-Gutiérrez C, Vázquez-Victorio G, Hautefeuille M. Characterization of Benchtop-Fabricated Arrays of Nanowrinkled Surface Electrodes as a Nitric Oxide Electrochemical Sensor. BIOSENSORS 2023; 13:794. [PMID: 37622879 PMCID: PMC10452632 DOI: 10.3390/bios13080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
In this work, we present an accessible benchtop fabrication technique to obtain a planar array of gold nanowrinkled surface electrodes (ANSE) for the construction of electrochemical cells, specifically to monitor soluble biomarkers of interest in cell culture environments. We present a complete characterization of the array and its response as an electrochemical cell. To validate our sensor, we evaluated the device sensitivity to detect nitric oxide (NO), an important molecule produced by endothelial cells as a response to environmental signals such as mechanics and growth factors. While testing measurements of nitric oxide in aqueous solutions with isotonic salt concentrations, we evidenced the influence of the environmental conditions for such electrochemical measurements, showing that the aqueous medium, usually not accounted for, significantly impacts the outcome. Finally, we present the application of the electrochemical sensor for the detection of nitric oxide released from stimulated endothelial cells as a proof of concept.
Collapse
Affiliation(s)
- Cindy Peto-Gutiérrez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
24
|
Rezaee A, Carrabina J. Dual-Gate Organic Thin-Film Transistor and Multiplexer Chips for the Next Generation of Flexible EG-ISFET Sensor Chips. SENSORS (BASEL, SWITZERLAND) 2023; 23:6577. [PMID: 37514871 PMCID: PMC10384797 DOI: 10.3390/s23146577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Ion-sensitive field-effect transistors (ISFETs) are used as elementary devices to build many types of chemical sensors and biosensors. Organic thin-film transistor (OTFT) ISFETs use either small molecules or polymers as semiconductors together with an additive manufacturing process of much lower cost than standard silicon sensors and have the additional advantage of being environmentally friendly. OTFT ISFETs' drawbacks include limited sensitivity and higher variability. In this paper, we propose a novel design technique for integrating extended-gate OTFT ISFETs (OTFT EG-ISFETs) together with dual-gate OTFT multiplexers (MUXs) made in the same process. The achieved results show that our OTFT ISFET sensors are of the state of the art of the literature. Our microsystem architecture enables switching between the different ISFETs implemented in the chip. In the case of sensors with the same gain, we have a fault-tolerant architecture since we are able to replace the faulty sensor with a fault-free one on the chip. For a chip including sensors with different gains, an external processor can select the sensor with the required sensitivity.
Collapse
Affiliation(s)
- Ashkan Rezaee
- Department of Microelectronic and System, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Jordi Carrabina
- Department of Microelectronic and System, Autonomous University of Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
25
|
German N, Popov A, Ramanaviciene A. The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. BIOSENSORS 2023; 13:727. [PMID: 37504125 PMCID: PMC10377297 DOI: 10.3390/bios13070727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Reagentless electrochemical glucose biosensors were developed and investigated. A graphite rod (GR) electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNs) and redox mediators (Med) such as ferrocenecarboxylic acid (FCA), 1,10-phenathroline-5,6-dione (PD), N,N,N',N'-tetramethylbenzidine (TMB) or tetrathiafulvalene (TTF) in combination with glucose oxidase (GOx) (GR/DGNs/FCA/GOx, GR/DGNs/PD/GOx, GR/DGNs/TMB/GOx, or GR/DGNs/TTF/GOx) were developed and electrochemically investigated. A biosensor based on threefold-layer-by-layer-deposited PD and GOx (GR/DGNs/(PD/GOx)3) was found to be the most suitable for the determination of glucose. To improve the performance of the developed biosensor, the surface of the GR/DGNs/(PD/GOx)3 electrode was modified with polypyrrole (Ppy) for 5 h. A glucose biosensor based on a GR/DGNs/(PD/GOx)3/Ppy(5 h) electrode was characterized using a wide linear dynamic range of up to 39.0 mmol L-1 of glucose, sensitivity of 3.03 µA mM-1 cm-2, limit of detection of 0.683 mmol L-1, and repeatability of 9.03% for a 29.4 mmol L-1 glucose concentration. The Ppy-based glucose biosensor was characterized by a good storage stability (τ1/2 = 9.0 days). Additionally, the performance of the developed biosensor in blood serum was investigated.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
26
|
Yan J, Cheng Q, Liu H, Wang L, Yu K. Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry 2023; 153:108497. [PMID: 37393678 DOI: 10.1016/j.bioelechem.2023.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Influenza A virus (IAV) can cause influenza, a highly infectious zoonotic respiratory disease, and early detection is essential to prevent and control its rapid spread in the population. Given the limitations of traditional detection methods in clinical laboratories, we report a large surface TPB-DVA COFs (TPB: 1,3,5-Tris(4-aminophenyl) benzene, DVA: 1,4-Benzenedicarboxaldehyd, COFs: Covalent organic frameworks) nanomaterial modified electrochemical DNA biosensor, which has dual-probe specific recognition and signal amplification. The biosensor enables quantitative detection of influenza A viruses' complementary DNA (cDNA) from 10 fM to 1 × 103 nM (LOD = 5.42 fM) with good specificity and high selectivity. The reliability of the biosensor and portable device was verified by comparing the virus concentrations in animal tissues with those measured by digital droplet PCR (ddPCR) (P > 0.05). Moreover, the potential for influenza surveillance in this work was demonstrated by detecting the tissue samples from mice at different stages of infection. In summary, the good performance of this electrochemical DNA biosensor we proposed suggested it has the potential to be a rapid detection device for the influenza A virus, which could assist doctors or other professionals in obtaining rapid and accurate results for outbreak investigation and disease diagnosis.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Qian Cheng
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
27
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
28
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
29
|
Dobos AM, Popa A, Rimbu CM, Filimon A. Structure-Bioactivity Relationship of the Functionalized Polysulfone with Triethylphosphonium Pendant Groups: Perspective for Biomedical Applications. Polymers (Basel) 2023; 15:polym15040877. [PMID: 36850167 PMCID: PMC9959649 DOI: 10.3390/polym15040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Development of new biomaterials based on polysulfones tailored to act in various biomedical fields represents a promising strategy which provides an opportunity for enhancing the diagnosis, prevention, and treatment of specific illnesses. To meet these requirements, structural modification of the polysulfones is essential. In this context, for design of new materials with long-term stability, enhanced workability, compatibility with biological materials and good antimicrobial activity, the functionalization of chloromethylated polysulfones with triethylphosphonium pendant groups (PSFEtP+) was adopted. The surface chemistry analysis (Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX)), rheological properties, morphological aspects (Scanning electron microscopy (SEM), polarized light microscopy (POM)), and antimicrobial activity of the synthetized polysulfone were investigated to establish the relationship between its structure and properties, as an important indicator for targeted applications. Based on the obtained features, evaluated by the relationship between the rheological properties and microstructural aspects, and also the response at the biomaterial-bacteria interface, these qualities have been confirmed in their performance, in terms of thermal stability, antimicrobial activity, and also an increase in lifetime. Consequently, derived results constitute the preliminary basis for future tests concerning their functionality as gel matrices in biomedical devices.
Collapse
Affiliation(s)
- Adina Maria Dobos
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Adriana Popa
- “Coriolan Dragulescu” Institute of Chemistry, Mihai Viteazul Blv., 24, 300223 Timisoara, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, University of Life Science Iasi, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania
| | - Anca Filimon
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
30
|
Dotan T, Jog A, Kadan-Jamal K, Avni A, Shacham-Diamand Y. In Vivo Plant Bio-Electrochemical Sensor Using Redox Cycling. BIOSENSORS 2023; 13:219. [PMID: 36831984 PMCID: PMC9953906 DOI: 10.3390/bios13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
This work presents an in vivo stem-mounted sensor for Nicotiana tabacum plants and an in situ cell suspension sensor for Solanum lycopersicum cells. Stem-mounted sensors are mechanically stable and less sensitive to plant and air movements than the previously demonstrated leaf-mounted sensors. Interdigitated-electrode-arrays with a dual working electrode configuration were used with an auxiliary electrode and an Ag/AgCl quasi-reference electrode. Signal amplification by redox cycling is demonstrated for a plant-based sensor responding to enzyme expression induced by different cues in the plants. Functional biosensing is demonstrated, first for constitutive enzyme expression and later, for heat-shock-induced enzyme expression in plants. In the cell suspension with redox cycling, positive detection of the enzyme β-glucuronidase (GUS) was observed within a few minutes after applying the substrate (pNPG, 4-Nitrophenyl β-D-glucopyranoside), following redox reactions of the product (p-nitrophenol (pNP)). It is assumed that the initial reaction is the irreversible reduction of pNP to p-hydroxylaminophenol. Next, it can be either oxidized to p-nitrosophenol or dehydrated and oxidized to aminophenol. Both last reactions are reversible and can be used for redox cycling. The dual-electrode redox-cycling electrochemical signal was an order of magnitude larger than that of conventional single-working electrode transducers. A simple model for the gain is presented, predicting that an even larger gain is possible for sub-micron electrodes. In summary, this work demonstrates, for the first time, a redox cycling-based in vivo plant sensor, where diffusion-based amplification occurs inside a tobacco plant's tissue. The technique can be applied to other plants as well as to medical and environmental monitoring systems.
Collapse
Affiliation(s)
- Tali Dotan
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Material Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aakash Jog
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kian Kadan-Jamal
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Material Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Material Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- TAU/TiET Food Security Center of Excellence (TTFSCoE), Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
31
|
Ito K, Inoue KY, Ito-Sasaki T, Ikegawa M, Takano S, Ino K, Shiku H. Highly Sensitive Electrochemical Endotoxin Sensor Based on Redox Cycling Using an Interdigitated Array Electrode Device. MICROMACHINES 2023; 14:327. [PMID: 36838027 PMCID: PMC9960723 DOI: 10.3390/mi14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The Limulus amebocyte lysate (LAL) reaction-based assay, the most commonly used endotoxin detection method, requires a skilled technician. In this study, to develop an easy-to-use and highly sensitive endotoxin sensor, we created an electrochemical endotoxin sensor by using an interdigitated array electrode (IDAE) device with advantages of amplifiable signals via redox cycling and portability. We added Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as an electrochemical substrate for an LAL reaction and detected p-aminophenol (pAP) released from LGR-pAP as a product of an endotoxin-induced LAL reaction via an IDAE device. The IDAE device showed a great redox cycling efficiency of 79.8%, and a 4.79-fold signal amplification rate. Then, we confirmed that pAP was detectable in the presence of LGR-pAP through chronoamperometry with the potential of the anode stepped from -0.3 to 0.5 V vs. Ag/AgCl while the cathode was biased at -0.3 V vs. Ag/AgCl. Then, we performed an endotoxin assay by using the IDAE device. Our endotoxin sensor detected as low as 0.7 and 1.0 endotoxin unit/L after the LAL reaction for 1 h and 45 min, respectively, and these data were within the cut-off value for ultrapure dialysis fluid. Therefore, our highly sensitive endotoxin sensor is useful for ensuring medical safety.
Collapse
Affiliation(s)
- Kentaro Ito
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Kumi Y. Inoue
- Center for Basic Education, Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | - Takahiro Ito-Sasaki
- Department of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Miho Ikegawa
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Shinichiro Takano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Kosuke Ino
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| | - Hitoshi Shiku
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki Aoba, Sendai 980-8579, Japan
| |
Collapse
|
32
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
33
|
Robotic APTamer-Enabled Electrochemical Reader (RAPTER) System for Automated Aptamer-Mediated Electrochemical Analysis. Methods Mol Biol 2023; 2570:271-280. [PMID: 36156789 DOI: 10.1007/978-1-0716-2695-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors using conformational change-induced electron transfer kinetics are sensitive, reagent-less, and cost-effective tools for molecular sensing. Current advances in this technology can allow continuous drug pharmacokinetic monitoring in living animals (Dauphin-Ducharme et al., ACS Sens 4(10):2832-2837, 2019; Idili et al., Chem Sci 10(35):8164-8170, 2019), as well as automated analysis of hormone pulsatility (Liang et al., Nat Commun 10(1):852, 2019). In this chapter, we provide the methodology for an automated E-AB conformational change-based robotic sensing platform. By using an open-source programmable robotic system, this method can be adapted to a wide range of experimental scenarios.
Collapse
|
34
|
Wang W, Liu Y, Chu Y, Xiao S, Nie J, Zhang J, Qi J, Guo L. Stable sensing platform for diagnosing electrolyte disturbance using laser-induced breakdown spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:6778-6790. [PMID: 36589579 PMCID: PMC9774860 DOI: 10.1364/boe.477565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Electrolyte disturbance is very common and harmful, increasing the mortality of critical patients. Hence, rapid and accurate detection of electrolyte levels is vital in clinical practice. Laser-induced breakdown spectroscopy (LIBS) has the advantage of rapid and simultaneous detection of multiple elements, which meets the needs of clinical electrolyte detection. However, the cracking caused by serum drying and the effect of the coffee-ring led to the unstable spectral signal of LIBS and inaccurate detection results. Herein, we propose the ordered microarray silicon substrates (OMSS) obtained by laser microprocessing, to solve the disturbance caused by cracking and the coffee-ring effect in LIBS detection. Moreover, the area of OMSS is optimized to obtain the optimal LIBS detection effect; only a 10 uL serum sample is required. Compared with the silicon wafer substrates, the relative standard deviation (RSD) of the serum LIBS spectral reduces from above 80.00% to below 15.00% by the optimized OMSS, improving the spectral stability. Furthermore, the OMSS is combined with LIBS to form a sensing platform for electrolyte disturbance detection. A set of electrolyte disturbance simulation samples (80% of the ingredients are human serum) was prepared for this platform evaluation. Finally, the platform can achieve an accurate quantitative detection of Na and K elements (Na: RSD < 6.00%, R2 = 0.991; K: RSD < 4.00%, R2 = 0.981), and the detection time is within 5 min. The LIBS sensing platform has a good prospect in clinical electrolyte detection and other blood-related clinical diagnoses.
Collapse
Affiliation(s)
- Weiliang Wang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuanchao Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanwu Chu
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan, 610209, China
| | - Siyi Xiao
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junfei Nie
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junlong Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianwei Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Contributed equally
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Contributed equally
| |
Collapse
|
35
|
Vieira D, Barralet J, Harvey EJ, Merle G. Detecting the PEX Like Domain of Matrix Metalloproteinase-14 (MMP-14) with Therapeutic Conjugated CNTs. BIOSENSORS 2022; 12:884. [PMID: 36291022 PMCID: PMC9599479 DOI: 10.3390/bios12100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Matrix metalloproteinases (MMPs) are essential proteins acting directly in the breakdown of the extra cellular matrix and so in cancer invasion and metastasis. Given its impact on tumor angiogenesis, monitoring MMP-14 provides strategic insights on cancer severity and treatment. In this work, we report a new approach to improve the electrochemical interaction of the MMP-14 with the electrode surface while preserving high specificity. This is based on the detection of the hemopexin (PEX) domain of MMP-14, which has a greater availability with a stable and low-cost commercial molecule, as a recognition element. This molecule, called NSC-405020, is specific of the PEX domain of MMP-14 within the binding pocket. Through the covalent grafting of the NSC-405020 molecule on carbon nanotubes (CNTs), we were able to detect and quantify MMP-14 using electrochemical impedance spectroscopy with a linear range of detection of 10 ng⋅mL-1 to 100 ng⋅mL-1, and LOD of 7.5 ng⋅mL-1. The specificity of the inhibitory small molecule was validated against the PEX domain of MMP-1. The inhibitor loaded CNTs system showed as a desirable candidate to become an alternative to the conventional recognition bioelements for the detection of MMP-14.
Collapse
Affiliation(s)
- D. Vieira
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
| | - J. Barralet
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - E. J. Harvey
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - G. Merle
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada; (D.V.); (J.B.); (E.J.H.)
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
36
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
37
|
Tang X, Zhu Y, Guan W, Zhou W, Wei P. Advances in nanosensors for cardiovascular disease detection. Life Sci 2022; 305:120733. [DOI: 10.1016/j.lfs.2022.120733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/25/2022]
|
38
|
Bushra Rafique, Khalid AM, Akhtar K, Iqbal M. Investigation of Metronidazole–DNA Interactions by Using Electrochemical and Spectroscopic Techniques. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522080109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Electroenzymatic Model System for the Determination of Catalytic Activity of Erwinia carotovora L-Asparaginase. Processes (Basel) 2022. [DOI: 10.3390/pr10071313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An electrochemical method for the determination of the catalytic activity of L-asparaginase (ASNase) from Erwinia carotovora was proposed. Our approach is based on the electrooxidation of amino acids from L-asparaginase polypeptide backbones. The electrochemical behavior of ASNase on electrodes obtained by screen-printing modified with single-wall carbon nanotubes (SPE/SWCNTs) as sensing elements demonstrated a broad oxidation peak at 0.5–0.6 V centered at 0.531 ± 0.010 V. We have shown that in the presence of the substrate L-asparagine, the oxidation current of the enzyme was reduced in a concentration-dependent manner. The specificity of electrochemical analysis was confirmed in experiments with glycine, an amino acid with no substrate activity on ASNase and does not reduce the oxidation peak of L-asparaginase. The addition of glycine did not significantly influence the amplitude of the oxidation current. The innovative aspects of the proposed electrochemical sensor are the direct monitoring of ASNase catalytic activity and a reagentless approach, which does not require additional reagents or labels.
Collapse
|
40
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
41
|
A Review on Flexible Electrochemical Biosensors to Monitor Alcohol in Sweat. BIOSENSORS 2022; 12:bios12040252. [PMID: 35448313 PMCID: PMC9026542 DOI: 10.3390/bios12040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
The continued focus on improving the quality of human life has encouraged the development of increasingly efficient, durable, and cost-effective products in healthcare. Over the last decade, there has been substantial development in the field of technical and interactive textiles that combine expertise in electronics, biology, chemistry, and physics. Most recently, the creation of textile biosensors capable of quantifying biometric data in biological fluids is being studied, to detect a specific disease or the physical condition of an individual. The ultimate goal is to provide access to medical diagnosis anytime and anywhere. Presently, alcohol is considered the most commonly used addictive substance worldwide, being one of the main causes of death in road accidents. Thus, it is important to think of solutions capable of minimizing this public health problem. Alcohol biosensors constitute an excellent tool to aid at improving road safety. Hence, this review explores concepts about alcohol biomarkers, the composition of human sweat and the correlation between alcohol and blood. Different components and requirements of a biosensor are reviewed, along with the electrochemical techniques to evaluate its performance, in addition to construction techniques of textile-based biosensors. Special attention is given to the determination of biomarkers that must be low cost and fast, so the use of biomimetic materials to recognize and detect the target analyte is turning into an attractive option to improve electrochemical behavior.
Collapse
|
42
|
de Oliveira C, Maciel JV, Christ-Ribeiro A, Guarda A, Dias D. A Voltammetric Approach for the Simultaneous Determination of Cd and Pb in Water Applying Carbon Paste Electrode Modified with Bismuth Film. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
|
44
|
Sharma KP, Shin M, Awasthi GP, Poudel MB, Kim HJ, Yu C. Chitosan polymer matrix-derived nanocomposite (CuS/NSC) for non-enzymatic electrochemical glucose sensor. Int J Biol Macromol 2022; 206:708-717. [PMID: 35231535 DOI: 10.1016/j.ijbiomac.2022.02.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
In this study, N and S co-doped chitosan polymer matrix-derived composite (CuS/NSC) was synthesized via a one-step hydrothermal technique using a low-cost copper complex of chitosan polymer. Cyclic voltammetry and chronoamperometry revealed excellent electrocatalytic performance. The glucose sensor exhibited a linear range of 160 μM to 11.76 mM, a low detection limit 2.72 μM and a sensitivity of 13.62 mA mM-1 cm-2 with an excellent linear response. Furthermore, the sensor also displayed selectivity for glucose over potential interfering agents and exhibited a satisfactory recovery percentage using real sample in human serum. The results demonstrate that, CuS/NSC is an efficient nanocomposite material for non-enzymatic glucose sensors and is applicable for glucose detection in biological fluids.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Milan Babu Poudel
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Han Joo Kim
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
45
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
46
|
Lorenzen AL, dos Santos AM, dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022; 404:139757. [PMID: 34955549 PMCID: PMC8684030 DOI: 10.1016/j.electacta.2021.139757] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors are useful techniques for fast, inexpensive, sensitive, and easy detection of innumerous specimen. In face of COVID-19 pandemic, it became evident the necessity of a rapid and accurate diagnostic test, so the impedimetric immunosensor approach can be a good alternative to replace the conventional tests due to the specific antibody-antigen binding interaction and the fast response in comparison to traditional methods. In this work, a modified electrode with electrosynthesized PEDOT and gold nanoparticles followed by the immobilization of truncated nucleoprotein (N aa160-406aa) was used for a fast and reliable detection of antibodies against COVID-19 in human serum sample. The method consists in analyzing the charge-transfer resistance (RCT) variation before and after the modified electrode comes into contact with the positive and negative serum sample for COVID-19, using [Fe(CN)6]3-/4- as a probe. The results show a linear and selective response for serum samples diluted in a range of 2.5 × 103 to 20 × 103. Also, the electrode material was fully characterized by Raman spectroscopy, transmission electron microscopy and scanning electron microscopy coupled with EDS, indicating that the gold nanoparticles were well distributed around the polymer matrix and the presence of the biological sample was confirmed by EDS analysis. EIS measurements allowed to differentiate the negative and positive samples by the difference in the RCT magnitude, proving that the material developed here has potential properties to be applied in impedimetric immunosensors for the detection of SARS-CoV-2 antibodies in about 30 min.
Collapse
Affiliation(s)
- Ana Luiza Lorenzen
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Ariane Moraes dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luâni Poll dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luciano da Silva Pinto
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Franciele Wolfart
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil,Corresponding author
| |
Collapse
|
47
|
Amani AM, Alami A, Shafiee M, Sanaye R, Dehghani FS, Atefi M, Zare MA, Gheisari F. A highly sensitive electrochemical biosensor for dopamine and uric acid in the presence of a high concentration of ascorbic acid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, Arsad N. Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:8362. [PMID: 34960456 PMCID: PMC8704003 DOI: 10.3390/s21248362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhafizah Burham
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| |
Collapse
|
49
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal Chim Acta 2021; 1188:339188. [PMID: 34794574 DOI: 10.1016/j.aca.2021.339188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
A CoFe Prussian blue analogue (CoFe PB) modified FTO electrode, prepared via a facile electrodeposition method, is investigated as a non-enzymatic glucose sensor under neutral conditions. The electrode exhibits a linear detection of glucose in the 0.1-8.2 mmol/L range with a detection limit of 67 μM, a sensitivity of 18.69 μA/mM.cm2, and a fast response time of less than 7 s under neutral conditions. Its stability is confirmed with both electrochemical experiments and characterization studies performed on the pristine and post-mortem electrode. We also conducted a comprehensive electrochemical analysis to elucidate the identity of the active site and the glucose oxidation mechanism on the Prussian blue surface.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | | | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Physics, Faculty of Science Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
50
|
Tajik S, Beitollahi H, Dourandish Z, Mohammadzadeh Jahania P, Sheikhshoaie I, Askari MB, Salarizadeh P, Garkani Nejad F, Kim D, Kim SY, Varma RS, Shokouhimehr M. Non‐precious transition metal oxide nanomaterials: Synthesis, characterization, and electrochemical applications. ELECTROANAL 2021. [DOI: 10.1002/elan.202100393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hadi Beitollahi
- Research Institute of Environmental Sciences, International Center for Sciences, High Technology and Environmental Sciences IRAN, ISLAMIC REPUBLIC OF
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|