1
|
Liu J, Nagy N, Ayala-Torres C, Bleuse S, Aguilar-Alonso F, Larsson O, Masucci MG. The Epstein-Barr virus deubiquitinase BPLF1 regulates stress-induced ribosome UFMylation and reticulophagy. Autophagy 2025; 21:996-1018. [PMID: 39842454 PMCID: PMC12013442 DOI: 10.1080/15548627.2024.2440846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The synthesis of membrane and secreted proteins is safeguarded by an endoplasmic reticulum-associated ribosome quality control (ER-RQC) that promotes the disposal of defective translation products by the proteasome or via a lysosome-dependent pathway involving the degradation of portions of the ER by macroautophagy (reticulophagy). The UFMylation of RPL26 on ER-stalled ribosomes is essential for activating the ER-RQC and reticulophagy. Here, we report that the viral deubiquitinase (vDUB) encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein BPLF1 hinders the UFMylation of RPL26 on ribosomes that stall at the ER, promotes the stabilization of ER-RQC substrates, and inhibits reticulophagy. The vDUB did not act as a de-UFMylase or interfere with the UFMylation of the ER membrane protein CYB5R3 by the UFL1 ligase. Instead, it copurified with ribosomes in sucrose gradients and abrogated a ZNF598- and LTN1-independent ubiquitination event required for RPL26 UFMylation. Physiological levels of BPLF1 impaired the UFMylation of RPL26 in productively EBV-infected cells, pointing to an important role of the enzyme in regulating the translation quality control that allows the efficient synthesis of viral proteins and the production of infectious virus.Abbreviation: BPLF1, BamH1 P fragment left open readingframe-1; CDK5RAP3, CDK5regulatory subunit associated protein 3; ChFP, mCherry fluorescent protein; DDRGK1, DDRGKdomain containing 1; EBV, Epstein-Barr virus; eGFP, enhancedGFP; ER-RQC, endoplasmicreticulum-associated ribosome quality control; LCL, EBV-carryinglymphoblastoid cell line; GFP, green fluorescent protein; RQC, ribosome quality control; SRP, signal recognition particle; UFM1, ubiquitin fold modifier 1; UFL1, UFM1 specific ligase 1.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Solenne Bleuse
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Rocchi A, Wollebo HS, Khalili K. Neurotropic Viruses as Acute and Insidious Drivers of Aging. Biomolecules 2025; 15:514. [PMID: 40305226 PMCID: PMC12025245 DOI: 10.3390/biom15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Aging is the result of various compounding stresses that gradually overcome the homeostatic regulation of the cell, resulting in irreversible damage. This manifests as many acute and chronic conditions, the most common of which are neurodegeneration and dementia. Epidemiological studies have shown significant, strong correlations between viral infection and neurodegenerative diseases. This review overlays the characteristics of viral pathogenesis with the hallmarks of aging to discuss how active and latent viruses contribute to aging. Through our contextualization of myriad basic science papers, we offer explanations for premature aging via viral induction of common stress response pathways. Viruses induce many stresses: dysregulated homeostasis by exogenous viral proteins and overwhelmed protein quality control mechanisms, DNA damage through direct integration and epigenetic manipulation, immune-mediated oxidative stress and immune exhaustion, and general energy theft that is amplified in an aging system. Overall, this highlights the long-term importance of vaccines and antivirals in addition to their acute benefits.
Collapse
Affiliation(s)
| | - Hassen S. Wollebo
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
3
|
Tamai S, Shimizu K, Sone R, Hoshi D, Kitahara A, Sugasawa T, Takekoshi K, Watanabe K. Variabilities of salivary human herpesvirus 6, 7, and secretory immunoglobulin A levels from pre- to post-competition periods in baseball players. J Sports Med Phys Fitness 2025; 65:438-447. [PMID: 39652048 DOI: 10.23736/s0022-4707.24.16227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
BACKGROUND Persistent physical fatigue (PPhF) accompanying daily intensive training often results in underperformance. While salivary secretory immunoglobulin A (SIgA) has been traditionally used as an immunological marker, salivary human herpesvirus 6 and/or 7 (HHV-6/7) have recently been presented as "microbiological" markers of PPhF. This study aimed to examine the monthly variabilities of salivary HHV-6/7 levels and the difference with SIgA along the training periodization. METHODS A total of 27 healthy male university baseball players (N.=17) and non-players (student staff, N.=10) were followed up for 4 months (August, pre-competition period; September and October, competition period; November, post-competition period). The main measures were subjective and objective fatigue parameters (questionnaires and performance tests), and salivary HHV-6/7 and SIgA levels. RESULTS The fatigue parameters indicated a decrease in athletic performance from August to September due to PPhF during high intensity training in August. Two-way repeated analysis of variance showed that salivary HHV-6 and -7 levels were higher in players compared to non-players (P<0.05). Salivary HHV-6 levels gradually decreased (P<0.05), whereas HHV-7 levels remained unchanged (P>0.05). Salivary SIgA levels were higher in players rather than in non-players (P>0.05), and the levels did not change (P>0.05). CONCLUSIONS Our findings suggest that salivary HHV-6/7 levels, specifically in HHV-6, reflect the degree of PPhF independently of SIgA levels. As saliva can be collected anywhere, periodic monitoring of salivary HHV-6/7 levels may be easily applicable for assessing PPhF beside sports field and allow appropriate conditioning.
Collapse
Affiliation(s)
- Shinsuke Tamai
- Department of Sports Sciences, Japan Institute of Sports Sciences, Kita-ku, Japan
- Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Shimizu
- Department of Sports Sciences, Japan Institute of Sports Sciences, Kita-ku, Japan
| | - Ryota Sone
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Daisuke Hoshi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akari Kitahara
- Doctoral Program in Sports Medicine, Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takehito Sugasawa
- Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Takekoshi
- Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koichi Watanabe
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan -
| |
Collapse
|
4
|
Prasad V. Transmission of unfolded protein response-a regulator of disease progression, severity, and spread in virus infections. mBio 2025; 16:e0352224. [PMID: 39772778 PMCID: PMC11796368 DOI: 10.1128/mbio.03522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The unfolded protein response (UPR) is a cell-autonomous stress response aimed at restoring homeostasis due to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Viruses often hijack the host cell machinery, leading to an accumulation of misfolded proteins in the ER. The cell-autonomous UPR is the immediate response of an infected cell to this stress, aiming to restore normal function by halting protein translation, degrading misfolded proteins, and activating signaling pathways that increase the production of molecular chaperones. The cell-non-autonomous UPR involves the spreading of UPR signals from initially stressed cells to neighboring unstressed cells that lack the stressor. Though viruses are known modulators of cell-autonomous UPR, recent advancements have highlighted that cell-non-autonomous UPR plays a critical role in elucidating how local infections cause systemic effects, thereby contributing to disease symptoms and progression. Additionally, by utilizing cell-non-autonomous UPR, viruses have devised novel strategies to establish a pro-viral state, promoting virus spread. This review discusses examples that have broadened the understanding of the role of UPR in virus infections and disease progression by looking beyond cell-autonomous to non-autonomous processes and mechanistic details of the inducers, spreaders, and receivers of UPR signals.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Gao P, Ren J, Zhou Q, Chen P, Zhang A, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection. Vet Microbiol 2025; 301:110360. [PMID: 39756331 DOI: 10.1016/j.vetmic.2024.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs). In the meantime, although IRE1α was also active, its activated effector XBP1s was suppressed through downregulation of XBP1 mRNA levels and cleavage of XBP1s protein. Our findings also indicate that the Golgi apparatus, where ATF6 activation occur, was severely damaged in PRV-infected cells. Meanwhile, the downstream regulatory genes associated with the three UPR sensors, such as ERp60, CHOP, and EDEM1, remained silent in PRV-infected cells. Enhanced viral replication was observed post knockdown of UPR effectors ATF4 or XBP1, while stimulation with UPR activators inhibits virus replication. In conclusion, our findings address the critical question of how PRV regulates cellular UPR in favor of viral replication, and expand understanding of viruses mediated UPR suppression in general.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianle Ren
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peng Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ailin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Li LY, Keles A, Homeyer MA, Prüss H. Antibodies in neurological diseases: Established, emerging, explorative. Immunol Rev 2024; 328:283-299. [PMID: 39351782 PMCID: PMC11659937 DOI: 10.1111/imr.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Within a few years, autoantibodies targeting the nervous system resulted in a novel disease classification. For several of them, which we termed 'established', direct pathogenicity has been proven and now guides diagnostic pathways and early immunotherapy. For a rapidly growing number of further anti-neuronal autoantibodies, the role in disease is less clear. Increasing evidence suggests that they could contribute to disease, by playing a modulating role on brain function. We therefore suggest a three-level classification of neurological autoantibodies according to the degree of experimentally proven pathogenicity and strength of clinical association: established, emerging, explorative. This may facilitate focusing on clinical constellations in which autoantibody-mediated mechanisms have not been assumed previously, including autoimmune psychosis and dementia, cognitive impairment in cancer, and neurodegenerative diseases. Based on recent data reviewed here, humoral autoimmunity may represent an additional "super-system" for brain health. The "brain antibody-ome", that is, the composition of thousands of anti-neuronal autoantibodies, may shape neuronal function not only in disease, but even in healthy aging. Towards this novel concept, extensive research will have to elucidate pathogenicity from the atomic to the clinical level, autoantibody by autoantibody. Such profiling can uncover novel biomarkers, enhance our understanding of underlying mechanisms, and identify selective therapies.
Collapse
Affiliation(s)
- Lucie Y. Li
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Amelya Keles
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Marie A. Homeyer
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| | - Harald Prüss
- Department of Neurology and Experimental NeurologyCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE) BerlinBerlinGermany
| |
Collapse
|
7
|
Deng Y, Águeda-Pinto A, Brune W. No Time to Die: How Cytomegaloviruses Suppress Apoptosis, Necroptosis, and Pyroptosis. Viruses 2024; 16:1272. [PMID: 39205246 PMCID: PMC11359067 DOI: 10.3390/v16081272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses are obligate intracellular pathogens as their replication depends on the metabolism of the host cell. The induction of cellular suicide, known as programmed cell death (PCD), has the potential to hinder viral replication and act as a first line of defense against viral pathogens. Apoptosis, necroptosis, and pyroptosis are three important PCD modalities. Different signaling pathways are involved in their execution, and they also differ in their ability to cause inflammation. Cytomegaloviruses (CMV), beta-herpesviruses with large double-stranded DNA genomes, encode a great variety of immune evasion genes, including several cell death suppressors. While CMV inhibitors of apoptosis and necroptosis have been known and studied for years, the first pyroptosis inhibitor has been identified and characterized only recently. Here, we describe how human and murine CMV interfere with apoptosis, necroptosis, and pyroptosis signaling pathways. We also discuss the importance of the different PCD forms and their viral inhibitors for the containment of viral replication and spread in vivo.
Collapse
Affiliation(s)
| | | | - Wolfram Brune
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany; (Y.D.); (A.Á.-P.)
| |
Collapse
|
8
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple unfolded protein response pathways cooperate to link cytosolic dsDNA release to stimulator of interferon gene activation. Front Immunol 2024; 15:1358462. [PMID: 39100663 PMCID: PMC11294172 DOI: 10.3389/fimmu.2024.1358462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
Affiliation(s)
- Tiancheng Hu
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, NJ, United States
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Fleck
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Cason King
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Elaine Schalk
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zhenyu Zhang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
9
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple Unfolded Protein Response pathways cooperate to link cytosolic dsDNA release to Stimulator of Interferon Gene (STING) activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593557. [PMID: 38798499 PMCID: PMC11118346 DOI: 10.1101/2024.05.10.593557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
|
10
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Gao H, Gao X, Liu X, Luo Y, Zhong J, Liu J, Yan L, Wang H, Gong L, Zhang G, Zheng Z, Sun Y. African swine fever virus maintains de novo global cellular protein synthesis and inhibits stress granules formation via dephosphorylating eIF2α. Vet Microbiol 2024; 290:109988. [PMID: 38244395 DOI: 10.1016/j.vetmic.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.
Collapse
Affiliation(s)
- Han Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Xiaopeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Xing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Yizhuo Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Jianhao Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Jing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Luling Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Zezhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| |
Collapse
|
12
|
Dutta S, Ganguly A, Ghosh Roy S. An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:81-131. [PMID: 38782502 DOI: 10.1016/bs.ircmb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.
Collapse
Affiliation(s)
- Shovan Dutta
- Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Sounak Ghosh Roy
- Henry M Jackson for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
13
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
14
|
Wu KX, Yogarajah T, Choy Loe MW, Kaur P, Hua Lee RC, Mok CK, Wong YH, Phuektes P, Yeo LS, Chow VT, Tan YW, Hann Chu JJ. The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses. Acta Pharm Sin B 2023; 13:2039-2055. [DOI: 10.1016/j.apsb.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
|
15
|
Schlesinger M, McDonald C, Ahuja A, Alvarez Canete CA, Nuñez del Prado Z, Naipauer J, Lampidis T, Mesri EA. Glucose and mannose analogs inhibit KSHV replication by blocking N-glycosylation and inducing the unfolded protein response. J Med Virol 2023; 95:e28314. [PMID: 36380418 PMCID: PMC9839548 DOI: 10.1002/jmv.28314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS), an HIV/AIDS-associated malignancy. Effective treatments against KS remain to be developed. The sugar analog 2-deoxy- d-glucose (2-DG) is an anticancer agent that is well-tolerated and safe in patients and was recently demonstrated to be a potent antiviral, including KSHV and severe acute respiratory syndrome coronavirus 2. Because 2-DG inhibits glycolysis and N-glycosylation, identifying its molecular targets is challenging. Here we compare the antiviral effect of 2-DG with 2-fluoro-deoxy- d-glucose, a glycolysis inhibitor, and 2-deoxy-fluoro- d-mannose (2-DFM), a specific N-glycosylation inhibitor. At doses similar to those clinically achievable with 2-DG, the three drugs impair KSHV replication and virion production in iSLK.219 cells via downregulation of viral structural glycoprotein expression (K8.1 and gB), being 2-DFM the most potent KSHV inhibitor. Consistently with the higher potency of 2-DFM, we found that d-mannose rescues KSHV glycoprotein synthesis and virus production, indicating that inhibition of N-glycosylation is the main antiviral target using d-mannose competition experiments. Suppression of N-glycosylation by the sugar drugs triggers ER stress. It activates the host unfolded protein response (UPR), counteracting KSHV-induced inhibition of the protein kinase R-like endoplasmic reticulum kinase branch, particularly activating transcription factor 4 and C/EBP homologous protein expression. Finally, we demonstrate that sugar analogs induce autophagy (a prosurvival mechanism) and, thus, inhibit viral replication playing a protective role against KSHV-induced cell death, further supporting their direct antiviral effect and potential therapeutic use. Our work identifies inhibition of N-glycosylation leading to ER stress and UPR as an antienveloped virus target and sugar analogs such as 2-DG and the newly identified 2-DFM as antiviral drugs.
Collapse
Affiliation(s)
- Mariana Schlesinger
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Christian McDonald
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Anuj Ahuja
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Carolina Alejandra Alvarez Canete
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Zelmira Nuñez del Prado
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Julian Naipauer
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
- UM‐CFAR/SCCC Argentina Consortium for AIDS MalignanciesMiamiFloridaUSA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| | - Theodore Lampidis
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Enrique A. Mesri
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
- UM‐CFAR/SCCC Argentina Consortium for AIDS MalignanciesMiamiFloridaUSA
| |
Collapse
|
16
|
Upregulation of ATF4-LAMP3 Axis by ORF45 Facilitates Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2022; 96:e0145622. [PMID: 36377873 PMCID: PMC9749464 DOI: 10.1128/jvi.01456-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-oncogenic herpesvirus, and both lytic and latent infections play important roles in its pathogenesis and tumorigenic properties. Multiple cellular pathways and diverse mediators are hijacked by viral proteins and are used to support KSHV lytic replication. In previous studies, we revealed that KSHV ORF45 promoted KSHV transcription and translation by inducing sustained p90 ribosomal S6 kinase (RSK) activation and the phosphorylation of its substrates c-Fos and eIF4B. However, the cellular mediators required for lytic replication remain largely unknown. Here, we reveal that ORF45 activates eIF2α phosphorylation and ATF4 translation and then upregulates the expression of lysosome-associated membrane protein 3 (LAMP3) in an ATF4-dependent manner during KSHV lytic replication. Consequently, LAMP3 promotes Akt and ERK activation and then facilitates lytic gene expression and virion production. Furthermore, ATF4 enhances lytic replication through LAMP3, and LAMP3 acts in an ATF4-independent manner. Our findings suggest that the ATF4-LAMP3 axis is upregulated by ORF45 through ER stress activation during the KSHV lytic life cycle and, in turn, facilitates optimal lytic replication. IMPORTANCE The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) reprograms cellular transcription and translation to generate viral proteins and virion particles. Here, we show that the mediator of ER stress ATF4 and the expression of the downstream gene LAMP3 are upregulated by ORF45 during lytic replication. Consequently, increased LAMP3 expression activates Akt and ERK and promotes lytic replication. Although several UPR transcription factors are able to promote KSHV lytic replication, the proviral effect of ATF4 on lytic replication is attenuated by LAMP3 silencing, whereas the effect of LAMP3 does not directly require ATF4 expression, indicating that LAMP3 primarily exerts effects on KSHV lytic replication downstream of ATF4 and ER stress. Taken together, our findings suggest that the ORF45-upregulated ATF4-LAMP3 axis plays an essential role in KSHV lytic replication.
Collapse
|
17
|
Agrawal N, Saini S, Khanna M, Dhawan G, Dhawan U. Pharmacological Manipulation of UPR: Potential Antiviral Strategy Against Chikungunya Virus. Indian J Microbiol 2022; 62:634-640. [PMID: 36458214 PMCID: PMC9705628 DOI: 10.1007/s12088-022-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract Viruses invade the host cells and maneuver the cellular translation machinery to translate the viral proteins in substantial amounts, which may disturb Endoplasmic Reticulum homeostasis leading to induction of Unfolded Protein Response (UPR), a host response pathway involved in viral pathogenesis. Here, we investigated the effect of UPR pathways on the pathogenesis of chikungunya virus infection. We observed that chikungunya virus mediated the modulation of UPR. A positive modulation was observed in the activation of IRE1 and ATF6 branch while the PERK branch of UPR observed suppressed upon virus infection. We further investigated the effect of the inhibition of UPR pathways on chikungunya virus replication using inhibitors for each branch. Cells treated with 3-ethoxy-5,6-dibromosalicylaldehyde (IRE1 inhibitor) and AEBSF (ATF6 inhibitor) significantly inhibits the viral replication process. This study has provided a novel perspective in designing antivirals against chikungunya virus. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01046-5.
Collapse
Affiliation(s)
- Nishtha Agrawal
- Department of Virology (a Unit of Department of Microbiology), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007 India
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019 India
| | - Sanjesh Saini
- Department of Virology (a Unit of Department of Microbiology), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007 India
| | - Madhu Khanna
- Department of Virology (a Unit of Department of Microbiology), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007 India
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019 India
- Delhi School of Skill Enhancement and Entrepreneurship Development, Institution of Eminence, University of Delhi, Delhi, 110007 India
- School of Allied Medical Services, Delhi Skill and Entrepreneurship University, Sector-9, Dwarka, New Delhi, 110077 India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector-2, Dwarka, New Delhi, 110075 India
| |
Collapse
|
18
|
Márton M, Bánhegyi G, Gyöngyösi N, Kálmán EÉ, Pettkó‐Szandtner A, Káldi K, Kapuy O. A systems biological analysis of the ATF4-GADD34-CHOP regulatory triangle upon endoplasmic reticulum stress. FEBS Open Bio 2022; 12:2065-2082. [PMID: 36097827 PMCID: PMC9623533 DOI: 10.1002/2211-5463.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-dependent accumulation of incorrectly folded proteins leads to activation of the unfolded protein response. The role of the unfolded protein response (UPR) is to avoid cell damage and restore the homeostatic state by autophagy; however, excessive ER stress results in apoptosis. Here we investigated the ER stress-dependent feedback loops inside one of the UPR branches by focusing on PERK-induced ATF4 and its two targets, called CHOP and GADD34. Our goal was to qualitatively describe the dynamic behavior of the system by exploring the key regulatory motifs using both molecular and theoretical biological techniques. Using the HEK293T cell line as a model system, we confirmed that the life-or-death decision is strictly regulated. We investigated the dynamic characteristics of the crucial elements of the PERK pathway at both the RNA and protein level upon tolerable and excessive levels of ER stress. Of particular note, inhibition of GADD34 or CHOP resulted in various phenotypes upon high levels of ER stress. Our computer simulations suggest the existence of two new feedback loops inside the UPR. First, GADD34 seems to have a positive effect on ATF4 activity, while CHOP inhibits it. We claim that these newly described feedback loops ensure the fine-tuning of the ATF4-dependent stress response mechanism of the cell.
Collapse
Affiliation(s)
- Margita Márton
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Gábor Bánhegyi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Norbert Gyöngyösi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Eszter Éva Kálmán
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | | | - Krisztina Káldi
- Department of PhysiologySemmelweis UniversityBudapestHungary
| | - Orsolya Kapuy
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
19
|
Mucke HA. Drug Repurposing Patent Applications March–June 2022. Assay Drug Dev Technol 2022; 20:286-293. [DOI: 10.1089/adt.2022.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Jheng JR, Hsieh CF, Chang YH, Ho JY, Tang WF, Chen ZY, Liu CJ, Lin TJ, Huang LY, Chern JH, Horng JT. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:598-610. [PMID: 35650006 DOI: 10.1016/j.jmii.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The purpose of this study was to examine the in vivo activity of rosmarinic acid (RA) - a phytochemical with antioxidant, anti-inflammatory, and antiviral properties - against influenza virus (IAV). An antibody-based kinase array and different in vitro functional assays were also applied to identify the mechanistic underpinnings by which RA may exert its anti-IAV activity. METHODS We initially examined the potential efficacy of RA using an in vivo mouse model. A time-of-addition assay and an antibody-based kinase array were subsequently applied to investigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuraminidase inhibition assay, and cellular entry assay were also performed. RESULTS RA increased survival and prevented body weight loss in IAV-infected mice. In vitro experiments revealed that RA inhibited different IAV viruses - including oseltamivir-resistant strains. From a mechanistic point of view, RA downregulated the GSK3β and Akt signaling pathways - which are known to facilitate IAV entry and replication into host cells. CONCLUSIONS RA has promising preclinical efficacy against IAV, primarily by interfering with the GSK3β and Akt signaling pathways.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Hsiu Chang
- National Defense Medical Center, Institute of Preventive Medicine, Taipei 104, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Wen-Fang Tang
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Zi-Yi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Chien-Jou Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Ta-Jen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Li-Yu Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
21
|
CREB3 Plays an Important Role in HPSE-Facilitated HSV-1 Release in Human Corneal Epithelial Cells. Viruses 2022; 14:v14061171. [PMID: 35746643 PMCID: PMC9227461 DOI: 10.3390/v14061171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/16/2023] Open
Abstract
Herpes simplex virus type-1 (HSV-1) exploits several host factors to enhance its replication and release from infected cells. It induces the production of host enzyme heparanase (HPSE) to aid in egress. While the mechanism by which HPSE assists in viral release is well-characterized, other host factors that are recruited along with HPSE for viral release are less well understood. In this study, we identify cyclic-AMP-responsive element-binding protein3 (CREB3) as a key player in HPSE-facilitated HSV-1 egress. When CREB3 is transiently upregulated in human corneal epithelial cells, HSV-1 release from the infected cells is correspondingly enhanced. This activity is linked to HPSE expression such that HPSE-transfected corneal epithelial (HCE) cells more highly express CREB3 than wild-type cells while the cells knocked out for HPSE show very little CREB3 expression. CREB3-transfected HCE cells showed significantly higher export of HPSE upon infection than wild-type cells. Our data suggests that coat protein complex II (COPII), which mediates HPSE trafficking, is also upregulated via a CREB3-dependent pathway during HSV-1 infection. Finally, the co-transfection of CREB3 and HPSE in HCE cells shows the highest viral release compared to either treatment alone, establishing CREB3 as a key player in HPSE-facilitated HSV-1 egress.
Collapse
|
22
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
24
|
Wu CY, Cheng CW, Kung CC, Liao KS, Jan JT, Ma C, Wong CH. Glycosite-deleted mRNA of SARS-CoV-2 spike protein as a broad-spectrum vaccine. Proc Natl Acad Sci U S A 2022; 119:e2119995119. [PMID: 35149556 PMCID: PMC8892489 DOI: 10.1073/pnas.2119995119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- The Master Program of AI Application in Health Industry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Chih-Chuan Kung
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| |
Collapse
|
25
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
26
|
Abstract
Viruses are intracellular parasites that subvert the functions of their host cells to accomplish their infection cycle. The endoplasmic reticulum (ER)-residing chaperone proteins are central for the achievement of different steps of the viral cycle, from entry and replication to assembly and exit. The most abundant ER chaperones are GRP78 (78-kDa glucose-regulated protein), GRP94 (94-kDa glucose-regulated protein), the carbohydrate or lectin-like chaperones calnexin (CNX) and calreticulin (CRT), the protein disulfide isomerases (PDIs), and the DNAJ chaperones. This review will focus on the pleiotropic roles of ER chaperones during viral infection. We will cover their essential role in the folding and quality control of viral proteins, notably viral glycoproteins which play a major role in host cell infection. We will also describe how viruses co-opt ER chaperones at various steps of their infectious cycle but also in order to evade immune responses and avoid apoptosis. Finally, we will discuss the different molecules targeting these chaperones and the perspectives in the development of broad-spectrum antiviral drugs.
Collapse
|
27
|
Prasad V, Greber UF. The endoplasmic reticulum unfolded protein response - homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev 2021; 45:fuab016. [PMID: 33765123 PMCID: PMC8498563 DOI: 10.1093/femsre/fuab016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Rozek W, Kwasnik M, Malinowska A, Stasiak K, Larska M, Rola J. Proteomic analysis of the secretome of equine herpesvirus-1 infected rabbit kidney cells. Res Vet Sci 2021; 140:134-141. [PMID: 34428631 DOI: 10.1016/j.rvsc.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Herpesviruses are the main cause of abortions and respiratory or neurological disorders in horses. Various disease patterns are suspected to be associated with the A2254G point mutation in the DNA polymerase sequence (ORF30) of the herpesvirus genome, although the importance of this link is still under debate. Based on a label-free quantitative proteomic analysis, the differences in the secretion of some host proteins between rabbit kidney cells infected with A2254 and cells of the same line infected with G2254 equine herpesvirus 1 (EHV-1) strains were identified. In both groups, downregulation of proteins involved in insulin growth factor and extracellular matrix pathway regulation was observed. Among 12 proteins with increased secretion, 8 were regulated only in G2254 EHV-1 infection. Those were endoplasmic reticulum chaperones with calcium binding properties, related to unfolded protein response and mitochondria. It was presumed that the secretion of proteins such as calreticulin, Hspa5 or endoplasmin may contribute to the pathogenesis of EHV-1 infection.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Agata Malinowska
- Environmental Laboratory of Mass Spectrometry, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland
| | - Karol Stasiak
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
29
|
Zhu H, Tang YD, Zhan G, Su C, Zheng C. The Critical Role of PARPs in Regulating Innate Immune Responses. Front Immunol 2021; 12:712556. [PMID: 34367175 PMCID: PMC8341640 DOI: 10.3389/fimmu.2021.712556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerases (PARPs) are a family of proteins responsible for transferring ADP-ribose groups to target proteins to initiate the ADP-ribosylation, a highly conserved and fundamental post-translational modification in all organisms. PARPs play important roles in various cellular functions, including regulating chromatin structure, transcription, replication, recombination, and DNA repair. Several studies have recently converged on the widespread involvement of PARPs and ADP-Ribosylation reaction in mammalian innate immunity. Here, we provide an overview of the emerging roles of PARPs family and ADP-ribosylation in regulating the host's innate immune responses involved in cancers, pathogenic infections, and inflammations, which will help discover and design new molecular targets for cancers, pathogenic infections, and inflammations.
Collapse
Affiliation(s)
- Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children’s Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Chenhe Su
- The Wistar Institute, Philadelphia, PA, United States
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan ST. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses 2021; 13:v13061014. [PMID: 34071559 PMCID: PMC8229678 DOI: 10.3390/v13061014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
31
|
Thiopurines activate an antiviral unfolded protein response that blocks influenza A virus glycoprotein accumulation. J Virol 2021; 95:JVI.00453-21. [PMID: 33762409 PMCID: PMC8139708 DOI: 10.1128/jvi.00453-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
Collapse
|
32
|
Seidel E, Dassa L, Schuler C, Oiknine-Djian E, Wolf DG, Le-Trilling VTK, Mandelboim O. The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLoS Pathog 2021; 17:e1008807. [PMID: 33939764 PMCID: PMC8118558 DOI: 10.1371/journal.ppat.1008807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines. Human cytomegalovirus (HCMV) is a common pathogen that usually causes asymptomatic infection in the immunocompetent population, but the immunosuppressed and fetuses infected in utero suffer mortality and disability due to HCMV disease. Current HCMV treatments are limited and no vaccine has been approved, despite significant efforts. HCMV encodes many genes of unknown function, and virus-host interactions are only partially understood. Here, we discovered that a hitherto uncharacterized HCMV protein, UL147A, downregulates the expression of an activating immune ligand allele named MICA*008, thus hindering the elimination of HCMV-infected cells. Elucidating HCMV immune evasion mechanisms could aid in the development of novel HCMV treatments and vaccines. Furthermore, MICA*008 is a highly prevalent allele implicated in cancer immune evasion, autoimmunity and graft rejection. In this work we have shown that UL147A interferes with MICA*008’s poorly understood, nonstandard maturation pathway, and acts additively with a functionally homologous HCMV protein, US9. Study of UL147A may enable manipulation of its expression as a therapeutic measure against HCMV.
Collapse
Affiliation(s)
- Einat Seidel
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Liat Dassa
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Corinna Schuler
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Dana G. Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Biochemistry, IMRIC, Jerusalem, Israel
- The Chanock Center for Virology, IMRIC, Jerusalem, Israel
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology of the University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail: (VTKL-T); (OM)
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, The Hebrew University Medical School, IMRIC, Jerusalem, Israel
- * E-mail: (VTKL-T); (OM)
| |
Collapse
|
33
|
Chen LW, Wang SS, Hung CH, Hung YH, Lin CL, Chang PJ. The Epstein-Barr Virus Lytic Protein BMLF1 Induces Upregulation of GRP78 Expression through ATF6 Activation. Int J Mol Sci 2021; 22:4024. [PMID: 33919712 PMCID: PMC8070695 DOI: 10.3390/ijms22084024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The unfolded protein response (UPR) is an intracellular signaling pathway essential for alleviating the endoplasmic reticulum (ER) stress. To support the productive infection, many viruses are known to use different strategies to manipulate the UPR signaling network. However, it remains largely unclear whether the UPR signaling pathways are modulated in the lytic cycle of Epstein-Barr virus (EBV), a widely distributed human pathogen. Herein, we show that the expression of GRP78, a central UPR regulator, is up-regulated during the EBV lytic cycle. Our data further revealed that knockdown of GRP78 in EBV-infected cell lines did not substantially affect lytic gene expression; however, GRP78 knockdown in these cells markedly reduced the production of virus particles. Importantly, we identified that the early lytic protein BMLF1 is the key regulator critically contributing to the activation of the grp78 gene promoter. Mechanistically, we found that BMLF1 can trigger the proteolytic cleavage and activation of the UPR senor ATF6, which then transcriptionally activates the grp78 promoter through the ER stress response elements. Our findings therefore provide evidence for the connection between the EBV lytic cycle and the UPR, and implicate that the BMLF1-mediated ATF6 activation may play critical roles in EBV lytic replication.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; (L.-W.C.); (Y.-H.H.)
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan;
- School of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan;
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; (L.-W.C.); (Y.-H.H.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan;
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan;
| |
Collapse
|
34
|
Abstract
The unfolded protein response (UPR) and endoplasmic reticulum (ER)-associated degradation (ERAD) are two essential components of the quality control system for proteins in the secretory pathway. When unfolded proteins accumulate in the ER, UPR sensors such as IRE1 induce the expression of ERAD genes, thereby increasing protein export from the ER to the cytosol and subsequent degradation by the proteasome. Conversely, IRE1 itself is an ERAD substrate, indicating that the UPR and ERAD regulate each other. Viruses are intracellular parasites that exploit the host cell for their own benefit. Cytomegaloviruses selectively modulate the UPR to take advantage of beneficial and inhibit detrimental effects on viral replication. We have previously shown that murine and human cytomegaloviruses express homologous proteins (M50 and UL50, respectively) that dampen the UPR at late times post infection by inducing IRE1 degradation. However, the degradation mechanism has remained uncertain. Here we show that the cytomegalovirus M50 protein mediates IRE1 degradation by the proteasome. M50-dependent IRE1 degradation can be blocked by pharmacological inhibition of p97/VCP or by genetic ablation of SEL1L, both of which are components of the ERAD machinery. SEL1L acts as a cofactor of the E3 ubiquitin ligase HRD1, while p97/VCP is responsible for the extraction of ubiquitylated proteins from the ER to the cytosol. We further show that M50 facilitates the IRE1-SEL1L interaction by binding to both, IRE1 and SEL1L. These results indicate that the viral M50 protein dampens the UPR by tethering IRE1 to SEL1L, thereby promoting its degradation by the ERAD machinery.IMPORTANCE Viruses infect cells of their host and force them to produce virus progeny. This can impose stress on the host cell and activate counter-regulatory mechanisms. Protein overload in the endoplasmic reticulum (ER) leads to ER stress and triggers the unfolded protein response, which in turn upregulates protein folding and increases the degradation of proteins in the ER. Previous work has shown that cytomegaloviruses interfere with the unfolded protein response by degrading the sensor molecule IRE1. Herein we demonstrate how the cytomegalovirus M50 protein exploits the ER-associated degradation machinery to dispose of IRE1. Degradation of IRE1 curbs the unfolded protein response and helps the virus to increase the synthesis of its own proteins and the production of virus progeny.
Collapse
|
35
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
36
|
You K, Wang L, Chou CH, Liu K, Nakata T, Jaiswal A, Yao J, Lefkovith A, Omar A, Perrigoue JG, Towne JE, Regev A, Graham DB, Xavier RJ. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science 2021; 371:371/6524/eabb6896. [PMID: 33384352 DOI: 10.1126/science.abb6896] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Tissue homeostasis is perturbed in a diversity of inflammatory pathologies. These changes can elicit endoplasmic reticulum (ER) stress, protein misfolding, and cell death. ER stress triggers the unfolded protein response (UPR), which can promote recovery of ER proteostasis and cell survival or trigger programmed cell death. Here, we leveraged single-cell RNA sequencing to define dynamic transcriptional states associated with the adaptive versus terminal UPR in the mouse intestinal epithelium. We integrated these transcriptional programs with genome-scale CRISPR screening to dissect the UPR pathway functionally. We identified QRICH1 as a key effector of the PERK-eIF2α axis of the UPR. QRICH1 controlled a transcriptional program associated with translation and secretory networks that were specifically up-regulated in inflammatory pathologies. Thus, QRICH1 dictates cell fate in response to pathological ER stress.
Collapse
Affiliation(s)
- Kwontae You
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lingfei Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kai Liu
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Toru Nakata
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Junmei Yao
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Abdifatah Omar
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Šudomová M, Hassan STS. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms 2021; 9:microorganisms9020292. [PMID: 33572685 PMCID: PMC7912164 DOI: 10.3390/microorganisms9020292] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 16500 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
38
|
Chu HS, Peterson C, Jun A, Foster J. Targeting the integrated stress response in ophthalmology. Curr Eye Res 2021; 46:1075-1088. [PMID: 33474991 DOI: 10.1080/02713683.2020.1867748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: To summarize the Integrated Stress Response (ISR) in the context of ophthalmology, with special interest on the cornea and anterior segment. Results: The ISR is a powerful and conserved signaling pathway that allows for cells to respond to a diverse array of both intracellular and extracellular stressors. The pathway is classically responsible for coordination of the cellular response to amino acid starvation, ultraviolet light, heme dysregulation, viral infection, and unfolded protein. Under normal circumstances, it is considered pro-survival and a necessary mechanism through which protein translation is controlled. However, in cases of severe or prolonged stress the pathway can promote apoptosis, and loss of normal cellular phenotype. The activation of this pathway culminates in the global inhibition of cap-dependent protein translation and the canonical expression of the activating transcription factor 4 (ATF4). Conclusion:The eye is uniquely exposed to ISR responsive stressors due to its environmental exposure and relative isolation from the circulatory system which are necessary for its function. We will discuss how this pathway is critical for the proper function of the tissue, its role in development, as well as how targeting of the pathway could alleviate key aspects of diverse ophthalmic diseases.
Collapse
Affiliation(s)
- Hsiao-Sang Chu
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Cornelia Peterson
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - Albert Jun
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - James Foster
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
39
|
Tian AL, Wu Q, Liu P, Zhao L, Martins I, Kepp O, Leduc M, Kroemer G. Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis 2021; 12:6. [PMID: 33414432 PMCID: PMC7790317 DOI: 10.1038/s41419-020-03324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
The integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.
Collapse
Affiliation(s)
- Ai-Ling Tian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Qi Wu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
| | - Marion Leduc
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
40
|
Li Z, Shen Y, Song Y, Zhang Y, Zhang C, Ma Y, Zhang F, Chen L. ER stress-related molecules induced by Hantaan virus infection in differentiated THP-1 cells. Cell Stress Chaperones 2021; 26:41-50. [PMID: 32870480 PMCID: PMC7736395 DOI: 10.1007/s12192-020-01150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced by virus infection. In this part, we explored whether Hantaan virus (HTNV) infection could induce ER stress in differentiated THP-1 (dTHP-1) cells. It showed that the mRNA and protein levels of ER stress-related 78 kDa glucose-regulated protein (GRP78, HSPA5) and mRNA levels of X box-binding protein 1 (XBP-1), activating transcription factor 6(ATF6) and PKR-like ER kinase (PERK) after HTNV infection, were significantly higher than that in uninfected control group. However, the mRNA levels of C/EBP homologous protein (CHOP), glucose-regulated protein 94 (GRP94, HSPC4), and inositol-requiring enzyme1 (IRE1) were not significantly different between the infected group and the untreated group in 2 h after virus infection. It is unusual in activating GRP78 but not GRP94. Meanwhile, dTHP-1 cells infected with HTNV at 12 h did not show obvious apoptosis. These results indicated that the HTNV infection could induce the unfolded protein response (UPR) in dTHP-1 cells, without directly leading to cell apoptosis during 12 h after virus infection.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an, Shaanxi, China
| | - Yuting Shen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yun Song
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
41
|
Buggiotti L, Cheng Z, Wathes DC. Mining the Unmapped Reads in Bovine RNA-Seq Data Reveals the Prevalence of Bovine Herpes Virus-6 in European Dairy Cows and the Associated Changes in Their Phenotype and Leucocyte Transcriptome. Viruses 2020; 12:v12121451. [PMID: 33339352 PMCID: PMC7768445 DOI: 10.3390/v12121451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial RNA is detectable in host samples by aligning unmapped reads from RNA sequencing against taxon reference sequences, generating a score proportional to the microbial load. An RNA-Seq data analysis showed that 83.5% of leukocyte samples from six dairy herds in different EU countries contained bovine herpes virus-6 (BoHV-6). Phenotypic data on milk production, metabolic function, and disease collected during their first 50 days in milk (DIM) were compared between cows with low (1–200 and n = 114) or high (201–1175 and n = 24) BoHV-6 scores. There were no differences in milk production parameters, but high score cows had numerically fewer incidences of clinical mastitis (4.2% vs. 12.2%) and uterine disease (54.5% vs. 62.7%). Their metabolic status was worse, based on measurements of IGF-1 and various metabolites in blood and milk. A comparison of the global leukocyte transcriptome between high and low BoHV-6 score cows at around 14 DIM yielded 485 differentially expressed genes (DEGs). The top pathway from Gene Ontology (GO) enrichment analysis was the immune system process. Down-regulated genes in the high BoHV-6 cows included those encoding proteins involved in viral detection (DDX6 and DDX58), interferon response, and E3 ubiquitin ligase activity. This suggested that BoHV-6 may largely evade viral detection and that it does not cause clinical disease in dairy cows.
Collapse
|
42
|
Yadavalli T, Suryawanshi R, Koganti R, Hopkins J, Ames J, Koujah L, Iqbal A, Madavaraju K, Agelidis A, Shukla D. Standalone or combinatorial phenylbutyrate therapy shows excellent antiviral activity and mimics CREB3 silencing. SCIENCE ADVANCES 2020; 6:eabd9443. [PMID: 33277262 PMCID: PMC7821892 DOI: 10.1126/sciadv.abd9443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Herpesviruses are ubiquitous human pathogens that tightly regulate many cellular pathways including the unfolded protein response to endoplasmic reticulum (ER) stress. Pharmacological modulation of this pathway results in the inhibition of viral replication. In this study, we tested 4-phenylbutyrate (PBA), a chemical chaperone-based potent alleviator of ER stress, for its effects on herpes simplex virus (HSV) type 1 infection. Through in vitro studies, we observed that application of PBA to HSV-infected cells results in the down-regulation of a proviral, ER-localized host protein CREB3 and a resultant inhibition of viral protein synthesis. PBA treatment caused viral inhibition in cultured human corneas and human skin grafts as well as murine models of ocular and genital HSV infection. Thus, we propose that this drug can provide an alternative to current antivirals to treat both ocular HSV-1 and genital HSV-2 infections and may be a strong candidate for human trials.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James Hopkins
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krishnaraju Madavaraju
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Shokeen K, Srivathsan A, Kumar S. Lithium chloride functions as Newcastle disease virus-induced ER-stress modulator and confers anti-viral effect. Virus Res 2020; 292:198223. [PMID: 33166563 DOI: 10.1016/j.virusres.2020.198223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Newcastle disease is a severe clinical manifestation of avian species caused by Newcastle disease virus (NDV). Although several vaccination strategies are available to protect poultry against NDV infection, even then, outbreaks have been reported in the vaccinated birds. The lack of therapeutics against NDV makes the need for effective anti-viral drugs is of utmost importance. Lithium Chloride (LiCl) is a widely prescribed drug for the treatment of bipolar disorder, acute brain injuries, and chronic neurodegenerative diseases. Also, LiCl has been repurposed as an effective anti-viral drug for some viral infections. In the present work, we have investigated the efficacy of LiCl to inhibit NDV replication using in vitro, in ovo, and in vivo models. Our results collectively showed the modulation of NDV replication after the LiCl treatment. We also demonstrated that NDV induces endoplasmic reticulum stress (ER-stress), and a stress-inducible ER chaperone, glucose-regulating protein 78 (GRP78), was found to be over-expressed after NDV infection. Subsequently, the treatment of NDV infected cells with LiCl significantly reduced the transcript and protein levels of GRP78. Finally, we concluded that LiCl treatment protects the cells from ER-stress induced by the NDV infection.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ariktha Srivathsan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
44
|
Wang S, Ma X, Wang H, He H. Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection. Viruses 2020; 12:v12090974. [PMID: 32887282 PMCID: PMC7552016 DOI: 10.3390/v12090974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes great economic losses in the cattle industry. Herpesvirus infection generally induces endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in infected cells. However, it is not clear whether ER stress and UPR can be induced by BoHV-1 infection. Here, we found that ER stress induced by BoHV-1 infection could activate all three UPR sensors (the activating transcription factor 6 (ATF6), the inositol-requiring enzyme 1 (IRE1), and the protein kinase RNA-like ER kinase (PERK)) in MDBK cells. During BoHV-1 infection, the ATF6 pathway of UPR did not affect viral replication. However, both knockdown and specific chemical inhibition of PERK attenuated the BoHV-1 proliferation, and chemical inhibition of PERK significantly reduced the viral replication at the post-entry step of the BoHV-1 life cycle. Furthermore, knockdown of IRE1 inhibits BoHV-1 replication, indicating that the IRE1 pathway may promote viral replication. Further study revealed that BoHV-1 replication was enhanced by IRE1 RNase activity inhibition at the stage of virus post-entry in MDBK cells. Furthermore, IRE1 kinase activity inhibition and RNase activity enhancement decrease BoHV1 replication via affecting the virus post-entry step. Our study revealed that BoHV-1 infection activated all three UPR signaling pathways in MDBK cells, and BoHV-1-induced PERK and IRE1 pathways may promote viral replication. This study provides a new perspective for the interactions of BoHV-1 and UPR, which is helpful to further elucidate the mechanism of BoHV-1 pathogenesis.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| |
Collapse
|
45
|
The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections. Nat Commun 2020; 11:1997. [PMID: 32332742 PMCID: PMC7181865 DOI: 10.1038/s41467-020-15844-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent viruses cause chronic disease, and threaten the lives of immunosuppressed individuals. Here, we elucidate a mechanism supporting the persistence of human adenovirus (AdV), a virus that can kill immunosuppressed patients. Cell biological analyses, genetics and chemical interference demonstrate that one of five AdV membrane proteins, the E3-19K glycoprotein specifically triggers the unfolded protein response (UPR) sensor IRE1α in the endoplasmic reticulum (ER), but not other UPR sensors, such as protein kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6). The E3-19K lumenal domain activates the IRE1α nuclease, which initiates mRNA splicing of X-box binding protein-1 (XBP1). XBP1s binds to the viral E1A-enhancer/promoter sequence, and boosts E1A transcription, E3-19K levels and lytic infection. Inhibition of IRE1α nuclease interrupts the five components feedforward loop, E1A, E3-19K, IRE1α, XBP1s, E1A enhancer/promoter. This loop sustains persistent infection in the presence of the immune activator interferon, and lytic infection in the absence of interferon. Adenovirus (AdV) can cause persistent infections, but underlying mechanisms are poorly understood. Here, Prasad et al. show that the AdV glycoprotein E3-19K activates the unfolded protein response sensor IRE1α, and that this triggers a feedforward loop that sustains persistent infection in the presence of interferon.
Collapse
|