1
|
Ma L, Hung MH, Rashidi Mehrabadi F, Wang L, Li Q, Forgues M, Wang KC, Budhu A, Candia J, Chaisaingmongkol J, Rabibhadana S, Pupacdi B, Ruchirawat M, Wang XW. Beneficial infections of the enterovirus genus in patients with liver cancer. Gut 2025:gutjnl-2024-334681. [PMID: 40345802 DOI: 10.1136/gutjnl-2024-334681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a significant global cancer burden, with rising incidence and lacking a unified prevention strategy due to complex aetiologies. Viral exposures may shape host immunity via specific reactive viral antigens that could induce immune responses against hepatocarcinogenesis. OBJECTIVE We aimed to characterise viral exposure differences between HCC patients and healthy individuals and identify potentially protective viral antigens against HCC. DESIGN We profiled pan-viral serological antibody repertoires using a microbial phage library among 2647 study subjects and examined the biological activities of selective viral antigens on blood-derived immune cells from both healthy individuals and HCC patients. RESULT We identified 153 viral antigens with a significantly reduced serological response in HCC patients compared with healthy individuals. We also observed that a higher serological response to 153 viral antigens is associated with better clinical outcomes of patients with chronic liver diseases and HCC. These findings are consistent across different populations across sex, ethnicity and aetiology. We identified a common epitope (CE1) shared among 39% of reactive viral antigens that belong to the rhinovirus and enterovirus families. We demonstrated that CE1 could induce both CD4+ and CD8+ T-cell activation and CD8+ T-cell-mediated HCC cell killing. CONCLUSIONS Our results suggest that past exposures to members of the Enterovirus genus may be advantageous for cancer patients, highlighting the potential for a viral peptide-based HCC vaccine.
Collapse
Affiliation(s)
- Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Man Hsin Hung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Farid Rashidi Mehrabadi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Qin Li
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathy Cheng Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Jittiporn Chaisaingmongkol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Benjarath Pupacdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
de Assis Carvalho EM, Ozanic K, Machado AFB, Dias VC, Diniz CG, da Silva VL, Bellei N, Watanabe A. Respiratory virus circulation during pandemic: Why were some viruses still circulating? Braz J Microbiol 2025:10.1007/s42770-025-01681-2. [PMID: 40312598 DOI: 10.1007/s42770-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
A few months after the beginning of the coronavirus disease 2019 (COVID-19) pandemic in March 2020, several non-pharmacological measures were adopted worldwide, with varying degrees of strictness, to contain the transmission of the virus and mitigate its impacts. These measures, in addition to effectively reducing the circulation of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), these measures also appeared to impact the circulation of other respiratory viruses. Therefore, this study aims to discuss the most relevant data available regarding the circulation of the major respiratory viruses during the COVID-19 pandemic, exploring the factors that allowed some viruses to continue circulating while others experienced a decline. Several authors report that the detection of influenza, respiratory syncytial virus (RSV), human coronaviruses (hCoVs), human parainfluenza viruses (HPIVs), and human metapneumovirus (hMPV) dropped significantly. However, non-enveloped viruses such as adenovirus, and especially human rhinovirus (HRV), did not seem to be as affected. Hypotheses for this scenario include adopting of non-pharmacological measures to curb the spread of COVID-19, behavioral changes in hygiene habits, intrinsic characteristics of each virus such as transmission mode, the presence or absence of a viral envelope and viral interference. Rhinovirus is particularly intriguing, as it maintained a high prevalence during the years of the pandemic. Further investigation into the possible explanations for this phenomenon may be worthwhile.
Collapse
Affiliation(s)
- Eva Maria de Assis Carvalho
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Katia Ozanic
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Alessandra Ferreira Barbosa Machado
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vanessa Cordeiro Dias
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Claudio Galuppo Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vania Lucia da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Nancy Bellei
- Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Aripuanã Watanabe
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil.
| |
Collapse
|
3
|
Ahmed R, Tewes F, Aucamp M, Dube A. Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases. Drug Deliv Transl Res 2025:10.1007/s13346-025-01861-5. [PMID: 40301249 DOI: 10.1007/s13346-025-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Pulmonary infections caused by bacteria, viruses and fungi are a significant global health issue. Inhalation therapies are gaining interest as an effective approach to directly target infected lung sites and nanoparticle-based pulmonary delivery systems are increasingly investigated for this purpose. In this review, we provide an overview of common pulmonary infectious diseases and review recent work on the application of inhalable nanoparticle-based formulations for pulmonary infectious diseases, the formulation strategies, and the current research for delivering inhalable nanomedicines. We also evaluate the current clinical development status, market landscape, and discuss challenges that impede clinical translation and propose solutions to overcome these obstacles, highlighting promising opportunities for future advancements in the field. Despite advancements made and products reaching the market, notable gap persists in translational research, with challenges in achieving the target product profile, availability of appropriate in vivo disease models, scale-up, and market related questions, likely hindering research translation to the clinic.
Collapse
Affiliation(s)
- Rami Ahmed
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Frederic Tewes
- INSERM U1070, Pôle Biologie-Santé - B36, 1 Rue Georges Bonnet, 51106, 86073, POITIERS Cedex 9, TSA, France
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
4
|
Yan D, Prajna NV, Lalitha P, Sansanayudh W, Satitpitakul V, Laovirojjanakul W, Chaudhary M, Bountogo M, Sie A, Coulibaly B, Amza A, Nassirou B, Almou I, Tran H, Tran Y, Tsui E, Onclinx T, Sella R, Goren L, McClean E, Tham V, Chen C, Ouimette K, Zhong L, Liu Y, Yu D, Abraham T, Lebas E, Arnold BF, McLeod SD, Deiner MS, Porco TC, Seitzman GD, Lietman TM, Shantha J, Hinterwirth A, Doan T. Association of Weather Variables With Pathogens Contributing to Conjunctivitis Worldwide. Clin Infect Dis 2025; 80:551-561. [PMID: 39158989 PMCID: PMC11912971 DOI: 10.1093/cid/ciae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
PURPOSE To identify weather variables associated with pathogens contributing to infectious conjunctivitis globally. METHODS Sample collection and pathogen identification from patients with acute infectious conjunctivitis was performed from 2017 to 2023. We linked pathogens identified from 13 sites across 8 countries with publicly available weather data by geographic coordinates. Mixed effects logistic regression analysis was performed to estimate the associations between temperature, precipitation, and relative humidity exposures, and the prevalence of infection types (RNA virus, DNA virus, bacteria, and fungus). RESULTS In total, 498 cases from the United States, India, Nepal, Thailand, Burkina Faso, Niger, Vietnam, and Israel were included in the analysis. The 8-day average precipitation (mm) was associated with increased odds of RNA virus infection (odds ratio [OR] = 1.47, 95% confidence interval [CI]: 1.12 to 1.93, P = .01) and decreased odds of DNA infection (OR = 0.62, 95% CI: .46 to .82, P < .001). Relative humidity (%) was associated with increased odds of RNA virus infections (OR = 2.64, 95% CI: 1.51 to 4.61, P < .001), and fungal infections (OR = 2.35, 95% CI: 1.19 to 4.66, P = .01), but decreased odds of DNA virus (OR = 0.58, 95% CI: .37 to .90, P = .02) and bacterial infections (OR = 0.42, 95% CI: .25 to .71, P < .001). Temperature (°C) was not associated with ocular infections for any pathogen type. CONCLUSIONS This study suggests that weather factors affect pathogens differently. Particularly, humidity and precipitation were predictors for pathogens contributing to conjunctivitis worldwide. Additional work is needed to clarify the effects of shifts in weather and environmental factors on ocular infectious diseases.
Collapse
Affiliation(s)
- Daisy Yan
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | | | | | - Wiwan Sansanayudh
- Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Vannarut Satitpitakul
- Center of Excellence for Cornea and Stem Cell Transplantation, Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | | - Meenu Chaudhary
- B.P. Koirala Lions Center for Ophthalmic Studies, Institute of Medicine, Maharajgunj Medical Campus, Tribhuvan University, Kathmandu, Nepal
| | | | - Ali Sie
- Nouna Health Research Center (CRSN), Nouna, Burkina Faso
| | | | - Abdou Amza
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | | | - Ibrahim Almou
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | - Huy Tran
- Hai Yen Vision Institute, Ho Chi Minh City, Vietnam
- Department of Ophthalmology, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Yen Tran
- Hai Yen Vision Institute, Ho Chi Minh City, Vietnam
| | - Edmund Tsui
- Ocular Inflammatory Disease Center, Stein Eye Institute, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tania Onclinx
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ruti Sella
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Rabin Medical Center, Petha-Tikva, Israel
| | - Lee Goren
- Department of Ophthalmology, Rabin Medical Center, Petha-Tikva, Israel
| | - Esmeralda McClean
- Shiley Eye Institute, University of California San Diego, San Diego, California, USA
| | - Vivien Tham
- Department of Ophthalmology, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Kevin Ouimette
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - YuHeng Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Danny Yu
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Thomas Abraham
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Elodie Lebas
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Benjamin F Arnold
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
| | - Stephen D McLeod
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Michael S Deiner
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Travis C Porco
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Gerami D Seitzman
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Thomas M Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
- Institute for Global Health Sciences, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Jessica Shantha
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Liu X, Li H, Li Z, Gao D, Zhou J, Ni F, Yu Q, Huang Y, Tang Y, Xue L, Wang S, Yang J, Guo H, Wang Y, Yu XF, Yu Z, Wei W. MFSD6 is an entry receptor for respiratory enterovirus D68. Cell Host Microbe 2025; 33:267-278.e4. [PMID: 39798568 DOI: 10.1016/j.chom.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Enterovirus D68 (EV-D68) is a leading non-polio enterovirus that causes severe respiratory diseases and poliomyelitis-like illness in children. Viral entry represents a potential multifaceted target for antiviral intervention; however, there are no approved inhibitors to block EV-D68. Here, we identify the functionally undescribed membrane protein major facilitator superfamily-domain-containing protein 6 (MFSD6) as an EV-D68 entry factor amenable to therapeutic intervention. Specifically, MFSD6 expression is crucial for EV-D68 replication. MFSD6 binds to EV-D68 particles and is necessary for virus attachment to cells. The second extracellular domain of the MFSD6 molecule is involved in the recognition of EV-D68. On the basis of these findings, we engineered a recombinant protein complex comprising the MFSD6 ectodomain fused to Fc (MFSD6-Fc(CH3)), which potently inhibited EV-D68 uptake. MFSD6-Fc(CH3) effectively blocked EV-D68 infection in vitro and prevented lethality in newborn mice. In conclusion, our study not only identifies MFSD6 as an EV-D68 entry factor but also reveals a potential antiviral target and therapeutic agent.
Collapse
Affiliation(s)
- Xize Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Huili Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhaoxue Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Delong Gao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 1300121 China
| | - Junfeng Zhou
- Department of Dermatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Fushun Ni
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qing Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Department of Pathology, Medical College, Yanbian University, Yanji, Jilin 136200, China
| | - Yuehan Huang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yubin Tang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ling Xue
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shijin Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haoran Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhenglei Yu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, Jilin 1300121 China
| | - Wei Wei
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Institute of Translational Medicine, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Valiente L, Riomoros-Barahona V, Gil-Redondo JC, Castón JR, Valbuena A, Mateu MG. A RNA Dodecahedral Cage Inside a Human Virus Plays a Dual Biological Role in Virion Assembly and Genome Release Control. J Mol Biol 2025; 437:168922. [PMID: 39725271 DOI: 10.1016/j.jmb.2024.168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Human rhinoviruses (RV) are among the most frequent human pathogens. As major causative agents of common colds they originate serious socioeconomic problems and huge expenditure every year, and they also exacerbate severe respiratory diseases. No anti-rhinoviral drugs or vaccines are available so far. Antiviral drug design may benefit from an understanding of the role during the infectious cycle of the interactions in the virion between the capsid and the viral nucleic acid. The genomic RNA inside the human RV virion forms a dodecahedral cage made of 30 double-stranded RNA elements that interact with equivalent sites at the capsid inner wall. RNA dodecahedral cages also occur in distantly related insect and plant viruses. However, the functional role(s) of the interactions between any dodecahedral cage and the capsid remained to be established. Here we describe an extensive structure-function mutational analysis of the capsid-RNA dodecahedral cage interface in the RV virion, to dissect the role of the interactions between the capsid and the cage-forming RNA duplexes in: (i) infection by RV; (ii) virus biological fitness; (iii) virion assembly; (iv) virion stability; and (v) viral RNA uncoating. The results reveal that the capsid-bound dsRNA dodecahedral cage in the human RV virion is a multifunctional structural element. Two structurally overlapping subsets of RNA duplex-capsid interactions promote virus infectivity and biological fitness by respectively facilitating virion assembly or restraining the untimely, unproductive uncoating of the viral RNA genome. These results provide new insights into virion morphogenesis and genome uncoating, and have implications for antiviral drug design.
Collapse
Affiliation(s)
- Luis Valiente
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Valentín Riomoros-Barahona
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José R Castón
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Cancela F, Lizasoain A, Panzera Y, Fernández-López E, Lozano J, Calleros L, Grecco S, Marandino AE, Cortinas MN, Masachessi G, Nates S, Icasuriaga R, Colina R, Mirazo S. Targeted Enrichment Sequencing Utilizing a Respiratory Pathogen Panel for Genomic Wastewater-Based Viral Epidemiology in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:14. [PMID: 39786435 DOI: 10.1007/s12560-024-09629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection. To address this limitation, targeted enrichment sequencing is emerging as a preferred strategy, facilitating the acquisition of a more comprehensive understanding of specific pathogens. In this study, we evaluated the performance of a targeted enrichment sequencing panel for 42 excreted respiratory viruses (including Picornaviridae, Adenoviridae, Coronaviridae, Paramyxoviridae, Orthomyxoviridae, Orthoherpesviridae, Pneumoviridae, and Parvoviridae families), known as the Respiratory Pathogen ID/AMR enrichment panel (RPIP), coupled with Explify bioinformatics analysis in 3 sewage samples from Uruguay. RPIP panel successfully identified sequences from frequently circulating viruses, along with some that had not been documented previously. We identified and characterized various viruses, including human Enterovirus (Coxsackievirus A1 and A19), Influenza A-H1N1, and full-length sequences of SARS-CoV-2. Additionally, several other viral pathogens were detected, such as human Bocavirus, human Parechovirus, Enterovirus A71, and Enterovirus D68; however, for these viruses further analysis was limited due to the small genomic regions or low-read coverage obtained. While the RPIP panel necessitates substantial sequencing depth and may introduce bias towards the more predominant strains present in the samples, this approach suggests its viability as a genomic epidemiological tool for assessing respiratory and enteric viruses in wastewater.
Collapse
Affiliation(s)
- Florencia Cancela
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, 50000, Salto, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | | | | | - Lucia Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Sofia Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Ana Eugenia Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - María Noel Cortinas
- Unidad Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, 11600, Montevideo, Uruguay
| | - Gisela Masachessi
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - Silvia Nates
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - Romina Icasuriaga
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, 50000, Salto, Uruguay
| | - Santiago Mirazo
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| |
Collapse
|
8
|
Mamun TI, Ali MA, Hosen MN, Rahman J, Islam MA, Akib MG, Zaman K, Rahman MM, Hossain FMA, Ibenmoussa S, Bourhia M, Dawoud TM. Designing a multi-epitope vaccine candidate against human rhinovirus C utilizing immunoinformatics approach. Front Immunol 2025; 15:1364129. [PMID: 39840071 PMCID: PMC11747413 DOI: 10.3389/fimmu.2024.1364129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C. The sequences of the chosen structural proteins VP1 and VP2, along with the non-structural protein 2C of HRV-C, were downloaded in FASTA format from the NCBI server for further analysis. Through an exhaustive analysis of HRV-C genomic sequences, we identified highly conserved immunogenic regions capable of eliciting a protective immune response. Leveraging advanced immunoinformatics tools, we predicted epitopes for B-cells, Cytotoxic T lymphocytes, and Helper T lymphocytes, ensuring broad coverage across different HRV-C strains. The vaccine candidate was constructed by integrating selected antigens with immunogenic epitopes and adjuvants, employing optimal linkers. Three vaccine constructs were developed, with V2 being the most promising, consisting of 480 amino acids residues. V2 exhibited strong antigenicity, non-allergenicity, and solubility, with a solubility score greater than 0.550, and demonstrated excellent structural stability, with 91.9% of residues in the most favorable regions of the Ramachandran plot. Molecular dynamics and simulation studies revealed a stable Vaccine-TLR8 complex, with a binding energy of -296.15 and consistent RMSD values. Furthermore, in silico cloning and sequence optimization ensured efficient expression in E. coli, with a Codon Adaptation Index of 0.99 and GC content of 54.58%. The minimum free energy of the RNA secondary structure was -494.90 kcal/mol. While our findings suggest the potential effectiveness of the designed vaccine candidate against HRV-C, further in vitro and in vivo investigations are warranted to validate its safety and efficacy.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Ahad Ali
- Department Of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nazmul Hosen
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jillur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Anwarul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Golam Akib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kamruz Zaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Pathology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Nokhova AR, Saroyan TA, Solomatina MV, Gutova TA, Derko AA, Dubovitskiy NA, Murashkina TA, Sharshov KA, Shestopalov AM, Kurskaya OG. Genetic Diversity and Epidemiology of Enteroviruses and Rhinoviruses in Children Hospitalized with Acute Respiratory Infections in Novosibirsk, Russia (2023-2024). Viruses 2024; 16:1924. [PMID: 39772231 PMCID: PMC11680272 DOI: 10.3390/v16121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR. The detection rate of HRV/EV was 11% (220/1992). We performed typing of 58 HRV and 28 EV viruses by partial sequencing of the VP1 gene. Rhinovirus A was the most common among HRV, followed by rhinovirus C; rhinovirus B was detected in only three cases. Enteroviruses were represented by all four species, with the EV-D68 genotype being the most frequently detected. Phylogenetic analysis of the VP1 fragment of EV-D68 showed that all our sequences belonged to the B3 subclade. We identified the first case of EV-C105 infection in Russia in a two-year-old girl hospitalized with pneumonia. Phylogenetically, the Novosibirsk strain EV-C105 was closely related to a strain discovered in France in 2018. This research helped to fill a critical gap in understanding the epidemiological landscape of HRV/EV in pediatric populations within Russia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olga G. Kurskaya
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630060, Russia; (A.R.N.); (T.A.S.); (M.V.S.); (A.A.D.); (N.A.D.); (T.A.M.); (K.A.S.); (A.M.S.)
| |
Collapse
|
10
|
Tian D, Tan TW, Kuan Hai RT, Wang G, Mohamed FP, Yu Z, Ang HT, Xu W, Tan QW, Ng PS, Low CH, Liu B, Quek Zekui P, Joy JK, Cherian J, Mak FS, Wu J. Button-Push On-Demand Synthesis for Rapid Optimization of Antiviral Peptidomimetics. J Am Chem Soc 2024; 146:31321-31329. [PMID: 39475529 DOI: 10.1021/jacs.4c12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The optimization of hit compounds into drug candidates is a pivotal phase in drug discovery but often hampered by cumbersome manual synthesis of derivatives. While automated organic molecule synthesis has enhanced efficiency, safety, and cost-effectiveness, achieving fully automated multistep synthesis remains a formidable challenge due to issues such as solvent and reagent incompatibilities and the accumulation of side-products. We herein demonstrate an automated solid-phase flow platform for synthesizing α-keto-amides and nitrile peptidomimetics, guided by docking simulations, to identify potent broad-spectrum antiviral leads. A compact parallel synthesizer was built in-house, capable of producing 5 distinct molecules per cycle; 525 reactions could be finished within three months to generate 42 derivatives for a structure-activity relationship (SAR) investigation. Among these, ten derivatives exhibited promising target inhibitory activity (IC50 < 100 nM) including two with antiviral activity (EC50 < 250 nM). The platform, coupled with digital chemical recipe files, offers rapid access to a wide range of peptidomimetics, serving as a valuable reservoir for broad-spectrum antiviral candidates. This automated solid-phase flow synthesis approach expedites the generation of previously difficult complex molecular scaffolds. By integration of SPS-flow synthesis with medicinal chemistry campaign, >10-fold target inhibitory activity was achieved from a small set of derivatives, which indicates the potential to shift the paradigm of drug discovery.
Collapse
Affiliation(s)
- Duanshuai Tian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ting Wei Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ronald Toh Kuan Hai
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Gan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Fadhil Peer Mohamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhenyang Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401120, China
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Weijun Xu
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Qian Wen Tan
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Pearly Shuyi Ng
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Choon Heng Low
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Boping Liu
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Perlyn Quek Zekui
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Joma Kanikadu Joy
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Joseph Cherian
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Frankie S Mak
- Experimental Drug Development Centre, 10 Biopolis Rd, #05-01/06 Chromos, Singapore 138670
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401120, China
| |
Collapse
|
11
|
Gil-Cantero D, Mata CP, Valiente L, Rodríguez-Huete A, Valbuena A, Twarock R, Stockley PG, Mateu MG, Castón JR. Cryo-EM of human rhinovirus reveals capsid-RNA duplex interactions that provide insights into virus assembly and genome uncoating. Commun Biol 2024; 7:1501. [PMID: 39537894 PMCID: PMC11561273 DOI: 10.1038/s42003-024-07213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The cryo-EM structure of the human rhinovirus B14 determined in this study reveals 13-bp RNA duplexes symmetrically bound to regions around each of the 30 two-fold axes in the icosahedral viral capsid. The RNA duplexes (~12% of the ssRNA genome) define a quasi-dodecahedral cage that line a substantial part of the capsid interior surface. The RNA duplexes establish a complex network of non-covalent interactions with pockets in the capsid inner wall, including coulombic interactions with a cluster of basic amino acid residues that surround each RNA duplex. A direct comparison was made between the cryo-EM structure of RNA-filled virions and that of RNA-free (empty) capsids that resulted from genome release from a small fraction of viruses. The comparison reveals that some specific residues involved in capsid-duplex RNA interactions in the virion undergo remarkable conformational rearrangements upon RNA release from the capsid. RNA release is also associated with the asynchronous opening of channels at the 30 two-fold axes. The results provide further insights into the molecular mechanisms leading to assembly of rhinovirus particles and their genome uncoating during infection. They may also contribute to development of novel antiviral strategies aimed at interfering with viral capsid-genome interactions during the infectious cycle.
Collapse
Affiliation(s)
- David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Biocomputing Unit, Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Reidun Twarock
- Department of Mathematics and Department of Biology, University of York, York, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
12
|
Richter M, Khrenova M, Kazakova E, Riabova O, Egorova A, Makarov V, Schmidtke M. Dynamic features of virus protein 1 and substitutions in the 3-phenyl ring determine the potency and broad-spectrum activity of capsid-binding pyrazolo[3,4-d]pyrimidines against rhinoviruses. Antiviral Res 2024; 231:105993. [PMID: 39233314 DOI: 10.1016/j.antiviral.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Pyrazolo[3,4-d]pyrimidines represent one potent class of well tolerated and highly active rhinovirus (RV) inhibitors that act as capsid binders. The lead compound OBR-5-340 inhibits a broad-spectrum of RVs. Aiming to improve lead activity, we evaluated the impact of structural modifications in the 3-phenyl ring of OBR-5-340 on its potency and spectrum of anti-RV activity vitro. Our results demonstrate the crucial role of substitution at position 4 for strong, broad-spectrum anti-RV activity. The 4-methyl (RCB23137) and 4-chloro (RCB23138) derivatives outperformed OBR-5-340 in terms of potency and anti-RV activity spectrum. Based on these findings, the compounds were selected for computational binding studies. Molecular dynamic simulations with six RVs differing in OBR-5-340, RCB23137, and RCB23138 sensitivity proved the impact of dynamic features of two VP1 loops enveloping these inhibitors on antiviral potency.
Collapse
Affiliation(s)
- Martina Richter
- Jena University Hospital, Institute of Medical Microbiology, Section Experimental Virology, Hans-Knoell-Str. 2, 07743, Jena, Germany
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071, Moscow, Russia.
| | - Michaela Schmidtke
- Jena University Hospital, Institute of Medical Microbiology, Section Experimental Virology, Hans-Knoell-Str. 2, 07743, Jena, Germany.
| |
Collapse
|
13
|
Han S, Liu J, Feng Z, Mao Y, Gao H, Xie Z, Qian S, Xu L. Fulminant myocarditis associated with human rhinovirus A66 infection: a case report. Front Pediatr 2024; 12:1480724. [PMID: 39529970 PMCID: PMC11551029 DOI: 10.3389/fped.2024.1480724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Human rhinoviruses (HRVs) are among the most common pathogens of upper respiratory infections, and they are responsible for the common cold. An increasing number of studies have shown that HRV is associated with more severe illness. However, HRV-associated fulminant myocarditis has rarely been reported. Patient presentation A previously healthy 8-year-old boy developed fever, fatigue, and vomiting for 3 days, with a subsequent exacerbation accompanied by confusion lasting for 9 h. The day before admission, the patient presented with oliguria, confusion, and hypotension, and he was suspected of having myocarditis. The patient was transferred to our hospital for further diagnosis and treatment. On admission, rough and moist rales were detected, and the heart sounds were muffled, accompanied by an irregular heart rhythm and a gallop. An electrocardiogram (EKG) revealed a wide QRS complex, ST-segment depression, premature ventricular contractions, and complete right bundle branch block. Laboratory tests revealed that brain natriuretic peptide (BNP), N-terminal pro BNP (NT-pro BNP), and cardiac biomarkers, such as troponin I, creatinine kinase (CK), and creatinine kinase-MB (CK-MB) were elevated. Additionally, echocardiography revealed an ejection fraction of approximately 28%. The child developed severe cardiac dysfunction and tissue hypoperfusion, and the cardiogenic shock could not be corrected despite active drug therapy. He had indications for ECMO implantation. A rarely reported rhinovirus, namely, A66, was detected in his bronchoalveolar lavage fluid and oropharyngeal swabs via metagenomic next-generation sequencing and a PCR assay. Bacterial culture of all the samples yielded negative results. Conclusions This case presents a patient with severe human rhinovirus A66 infection, which is likely responsible for fulminant myocarditis. This report facilitates prompt diagnosis and treatment of fulminant myocarditis. Clinicians should consider rhinovirus as a possible pathogen of fulminant myocarditis, especially when patients present with symptoms or signs of heart involvement.
Collapse
Affiliation(s)
- Shuaibing Han
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Centre for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Liu
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Ziheng Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Centre for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiyang Mao
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Hengmiao Gao
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Centre for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Suyun Qian
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Lili Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Centre for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Das NK, Vogt J, Patel A, Banna HA, Koirala D. Structural basis for a highly conserved RNA-mediated enteroviral genome replication. Nucleic Acids Res 2024; 52:11218-11233. [PMID: 39036953 PMCID: PMC11472160 DOI: 10.1093/nar/gkae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Enteroviruses contain conserved RNA structures at the extreme 5' end of their genomes that recruit essential proteins 3CD and PCBP2 to promote genome replication. However, the high-resolution structures and mechanisms of these replication-linked RNAs (REPLRs) are limited. Here, we determined the crystal structures of the coxsackievirus B3 and rhinoviruses B14 and C15 REPLRs at 1.54, 2.2 and 2.54 Å resolution, revealing a highly conserved H-type four-way junction fold with co-axially stacked sA-sD and sB-sC helices that are stabilized by a long-range A•C•U base-triple. Such conserved features observed in the crystal structures also allowed us to predict the models of several other enteroviral REPLRs using homology modeling, which generated models almost identical to the experimentally determined structures. Moreover, our structure-guided binding studies with recombinantly purified full-length human PCBP2 showed that two previously proposed binding sites, the sB-loop and 3' spacer, reside proximally and bind a single PCBP2. Additionally, the DNA oligos complementary to the 3' spacer, the high-affinity PCBP2 binding site, abrogated its interactions with enteroviral REPLRs, suggesting the critical roles of this single-stranded region in recruiting PCBP2 for enteroviral genome replication and illuminating the promising prospects of developing therapeutics against enteroviral infections targeting this replication platform.
Collapse
Affiliation(s)
- Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Alisha Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
15
|
Roux H, Touret F, Rathelot P, Vanelle P, Roche M. From the "One-Molecule, One-Target, One-Disease" Concept towards Looking for Multi-Target Therapeutics for Treating Non-Polio Enterovirus (NPEV) Infections. Pharmaceuticals (Basel) 2024; 17:1218. [PMID: 39338380 PMCID: PMC11434921 DOI: 10.3390/ph17091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Non-polio enteroviruses (NPEVs), namely coxsackieviruses (CV), echoviruses (E), enteroviruses (EV), and rhinoviruses (RV), are responsible for a wide variety of illnesses. Some infections can progress to life-threatening conditions in children or immunocompromised patients. To date, no treatments have been approved. Several molecules have been evaluated through clinical trials without success. To overcome these failures, the multi-target directed ligand (MTDL) strategy could be applied to tackle enterovirus infections. This work analyzes registered clinical trials involving antiviral drugs to highlight the best candidates and develops filters to apply to a selection for MTDL synthesis. We explicitly stated the methods used to answer the question: which solution can fight NPEVs effectively? We note the originality and relevance of this proposal in relation to the state of the art in the enterovirus-inhibitors field. Several combinations are possible to broaden the antiviral spectrum and potency. We discuss data related to the virus and data related to each LEAD compound identified so far. Overall, this study proposes a perspective on different strategies to overcome issues identified in clinical trials and evaluate the "MTDL" potential to improve the efficacy of drugs, broaden the antiviral targets, possibly reduce the adverse effects, drug design costs and limit the selection of drug-resistant virus variants.
Collapse
Affiliation(s)
- Hugo Roux
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), 13005 Marseille, France;
| | - Pascal Rathelot
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Patrice Vanelle
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| | - Manon Roche
- Aix-Marseille Université, CNRS, ICR UMR_7273, LPCR, Faculté de Pharmacie, 13005 Marseille, France; (H.R.); (P.R.)
| |
Collapse
|
16
|
Liu FC, Chen BC, Huang YC, Huang SH, Chung RJ, Yu PC, Yu CP. Epidemiological Survey of Enterovirus Infections in Taiwan From 2011 to 2020: Retrospective Study. JMIR Public Health Surveill 2024; 10:e59449. [PMID: 39235279 PMCID: PMC11391656 DOI: 10.2196/59449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024] Open
Abstract
Background Young children are susceptible to enterovirus (EV) infections, which cause significant morbidity in this age group. Objective This study investigated the characteristics of virus strains and the epidemiology of EVs circulating among young children in Taiwan from 2011 to 2020. Methods Children diagnosed with EV infections from 2011 to 2020 were identified from the routine national health insurance data monitoring disease system, real-time outbreak and disease surveillance system, national laboratory surveillance system, and Statistics of Communicable Diseases and Surveillance Report, a data set (secondary data) of the Taiwan Centers for Disease and Control. Four primary outcomes were identified: epidemic features, characteristics of sporadic and cluster cases of EV infections, and main cluster institutions. Results From 2011 to 2020, between 10 and 7600 person-times visited the hospitals for EV infections on an outpatient basis daily. Based on 2011 to 2020 emergency department EV infection surveillance data, the permillage of EV visits throughout the year ranged from 0.07‰ and 25.45‰. After typing by immunofluorescence assays, the dominant type was coxsackie A virus (CVA; 8844/12,829, 68.9%), with most constituting types CVA10 (n=2972), CVA2 (n=1404), CVA6 (n=1308), CVA4 (n=1243), CVA16 (n=875), and CVA5 (n=680); coxsackie B virus CVB (n=819); echovirus (n=508); EV-A71 (n=1694); and EV-D68 (n=10). There were statistically significant differences (P<.001) in case numbers of EV infections among EV strains from 2011 to 2020. Cases in 2012 had 15.088 times the odds of being EV-A71, cases in 2014 had 2.103 times the odds of being CVA, cases in 2015 had 1.569 times the odds of being echovirus, and cases in 2018 had 2.274 times the odds of being CVB as cases in other years. From 2011 to 2020, in an epidemic analysis of EV clusters, 57 EV clusters were reported. Clusters that tested positive included 53 (53/57, 93%) CVA cases (the major causes were CVA6, n=32, and CVA10, n=8). Populous institutions had the highest proportion (7 of 10) of EV clusters. Conclusions This study is the first report of sporadic and cluster cases of EV infections from surveillance data (Taiwan Centers for Disease and Control, 2011-2020). This information will be useful for policy makers and clinical experts to direct prevention and control activities to EV infections that cause the most severe illness and greatest burden to the Taiwanese.
Collapse
Affiliation(s)
- Fang-Chen Liu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Bao-Chung Chen
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yao-Ching Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Shi-Hao Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Pi-Ching Yu
- Graduate Institute of Medicine, National Defense Medical Center, Taipei, Taiwan
- Cardiovascular Intensive Care Unit, Department of Critical Care Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Peng Yu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Sun J, Guo Y, Li L, Li Y, Zhou H, Li W. Epidemiology of childhood enterovirus infections in Hangzhou, China, 2019-2023. Virol J 2024; 21:198. [PMID: 39187884 PMCID: PMC11346042 DOI: 10.1186/s12985-024-02469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Human enteroviruses are highly prevalent world-wide. Up to more than 100 subtypes of enteroviruses can cause several diseases, including encephalitis, meningitis, myocarditis, hand-foot-mouth disease, conjunctivitis, respiratory diseases, and gastrointestinal diseases, thus posing a great threat to human health. This study aimed to investigate the epidemiological characteristics of enterovirus in children in Hangzhou, China before and after the COVID-19 outbreak. Systematic monitoring of enterovirus infections was performed by collecting samples from the children admitted to the inpatient wards and outpatient departments in the Children's Hospital, Zhejiang University School of Medicine, between January 2019 and May 2023. A commercial real-time RT PCR kit was utilized to detect enteroviruses. Among the 34,152 samples collected, 1162 samples, accounting for 3.4% of the samples, were tested positive for enteroviruses. The annual positive rates of the enteroviruses were 5.46%, 1.15%, 4.43%, 1.62%, and 1.96% in 2019, 2020, 2021, 2022, and May 2023, respectively. The positivity rate of the enteroviruses was highest among children aged 3-5 years and 5-7 years. Moreover, the monthly positivity rate of enterovirus infection ranged from 0.32% to 10.38%, with a peak in June and July. Serotypes, especially EV71 and CA16, causing severe symptoms such as HFMD, were decreasing, while the proportion of unidentified serotypes was on the rise. The incidence of enteroviruses in Hangzhou was higher in children aged 1-3 years and 7-18 years.
Collapse
Affiliation(s)
- Jian Sun
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yajun Guo
- Department of Clinical Laboratory, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng road, Hangzhou, 310052, China.
| | - Lin Li
- Department of Infectious Diseases, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | | | - Hangyu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - We Li
- Department of Clinical Laboratory, The Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng road, Hangzhou, 310052, China
| |
Collapse
|
18
|
Ott C, Dutilh G, Reist J, Bingisser R, Egli A, Heininger U. Clinical Presentation of Enterovirus D68 in a Swiss Pediatric University Center. Pediatr Infect Dis J 2024; 43:00006454-990000000-00981. [PMID: 39163309 PMCID: PMC11542972 DOI: 10.1097/inf.0000000000004503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) is responsible for millions of infections. In the last decade, there has been an increase in the number of children requiring hospital or critical care admission due to severe respiratory illness. Nevertheless, the epidemiological and clinical importance of EV-D68 infections remains unclear. OBJECTIVE We aimed to determine the local prevalence of EV-D68 infection in pediatric patients and to characterize its clinical presentation and disease burden compared with non-EV-D68 enterovirus and human rhinovirus (RV) infections. STUDY DESIGN We performed a retrospective single-center study of children presenting with respiratory symptoms and positive respiratory panel polymerase chain reaction for EV/RV from November 2018 to December 2019. We tested EV/RV positive specimens with an EV-D68-specific polymerase chain reaction to discriminate EV-D68, non-EV-D68 and RV and compared their respective clinical presentation, outcomes and treatment. RESULTS We identified 224 patients (median age 21 months), of which 16 (7%) were EV-D68 positive. They presented with cough (88%), wheezing (62%) and dyspnea (75%). EV-D68 infection had an odds ratio regarding pediatric respiratory severity-score of 11.6 relative to non-EV-D68 [confidence intervals (CI): 3.51-41.14], and of 9.9 (CI: 3.75-27.95) relative to RV. The fitted logistic regression showed that the odds of intensive care were 5 times more likely with EV-D68 than RV infection (CI: 1.32-19.28; P = 0.001). Patients with EV-D68 infections were more likely to receive medical support in the form of supplementary oxygen, antibiotics and steroids. CONCLUSIONS EV-D68 infection is associated with higher morbidity and a higher likelihood of intensive care treatment than non-EV-D68 and RV infections.
Collapse
Affiliation(s)
- Chantal Ott
- From the Applied Microbiology Research, Department of Biomedicine, University of Basel
- Department of Pediatric infectious diseases, Children University Hospital Basel
| | - Gilles Dutilh
- Department of Clinical Research, University of Basel
| | - Josiane Reist
- From the Applied Microbiology Research, Department of Biomedicine, University of Basel
| | | | - Adrian Egli
- From the Applied Microbiology Research, Department of Biomedicine, University of Basel
- Department of Clinical Bacteriology and Microbiology, University Hospital Basel, Basel
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ulrich Heininger
- Department of Pediatric infectious diseases, Children University Hospital Basel
| |
Collapse
|
19
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Svyatchenko VA, Legostaev SS, Lutkovskiy RY, Protopopova EV, Ponomareva EP, Omigov VV, Taranov OS, Ternovoi VA, Agafonov AP, Loktev VB. Coxsackievirus A7 and Enterovirus A71 Significantly Reduce SARS-CoV-2 Infection in Cell and Animal Models. Viruses 2024; 16:909. [PMID: 38932201 PMCID: PMC11209502 DOI: 10.3390/v16060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract. Co-infection with SARS-CoV-2 and LEV-8 or EV-A71 also reduced the severity of clinical manifestations of the SARS-CoV-2 infection in the animals. Additionally, the histological data illustrated that co-infection with strain LEV8 of coxsackievirus A7 decreased the level of pathological changes induced by SARS-CoV-2 in the lungs. Research into the chemokine/cytokine profile demonstrated that the studied enteroviruses efficiently triggered this part of the antiviral immune response, which is associated with the significant inhibition of SARS-CoV-2 infection. These results demonstrate that there is significant viral interference between the studied strain LEV-8 of coxsackievirus A7 or enterovirus A71 and SARS-CoV-2 in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Valery B. Loktev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Novosibirsk Region, Russia; (V.A.S.); (S.S.L.); (R.Y.L.); (E.V.P.); (E.P.P.); (V.V.O.); (O.S.T.); (V.A.T.); (A.P.A.)
| |
Collapse
|
21
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
22
|
Barbieri F, Carlen V, Martina MG, Sannio F, Cancade S, Perini C, Restori M, Crespan E, Maga G, Docquier JD, Cagno V, Radi M. 4-Trifluoromethyl bithiazoles as broad-spectrum antimicrobial agents for virus-related bacterial infections or co-infections. RSC Med Chem 2024; 15:1589-1600. [PMID: 38784463 PMCID: PMC11110737 DOI: 10.1039/d3md00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 05/25/2024] Open
Abstract
Respiratory tract infections involving a variety of microorganisms such as viruses, bacteria, and fungi are a prominent cause of morbidity and mortality globally, exacerbating various pre-existing respiratory and non-respiratory conditions. Moreover, the ability of bacteria and viruses to coexist might impact the development and severity of lung infections, promoting bacterial colonization and subsequent disease exacerbation. Secondary bacterial infections following viral infections represent a complex challenge to be overcome from a therapeutic point of view. We report herein our efforts in the development of new bithiazole derivatives showing broad-spectrum antimicrobial activity against both viruses and bacteria. A series of 4-trifluoromethyl bithiazole analogues was synthesized and screened against selected viruses (hRVA16, EVD68, and ZIKV) and a panel of Gram-positive and Gram-negative bacteria. Among them, two promising broad-spectrum antimicrobial compounds (8a and 8j) have been identified: both compounds showed low micromolar activity against all tested viruses, 8a showed synergistic activity against E. coli and A. baumannii in the presence of a subinhibitory concentration of colistin, while 8j showed a broader spectrum of activity against Gram-positive and Gram-negative bacteria. Activity against antibiotic-resistant clinical isolates is also reported. Given the ever-increasing need to adequately address viral and bacterial infections or co-infections, this study paves the way for the development of new agents with broad antimicrobial properties and synergistic activity with common antivirals and antibacterials.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Vincent Carlen
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Sacha Cancade
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Cecilia Perini
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Margherita Restori
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| |
Collapse
|
23
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Otali E, Emery Thompson M, Ross E, Gern JE, Goldberg TL. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci Rep 2024; 14:10431. [PMID: 38714841 PMCID: PMC11076286 DOI: 10.1038/s41598-024-61236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.
Collapse
Affiliation(s)
- Taylor E Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Tressa Pappas
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Emily Otali
- The Kasiisi Project, Fort Portal, Uganda
- Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Melissa Emery Thompson
- Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | | | - James E Gern
- Department of Paediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA.
| |
Collapse
|
24
|
Weary TE, Tusiime P, Tuhaise S, Mandujano Reyes JF, Ross E, Gern JE, Goldberg TL. Respiratory disease patterns in rural Western Uganda, 2019-2022. Front Pediatr 2024; 12:1336009. [PMID: 38650995 PMCID: PMC11033374 DOI: 10.3389/fped.2024.1336009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Respiratory disease is a major cause of morbidity and mortality in the developing world, but prospective studies of temporal patterns and risk factors are rare. Methods We studied people in rural Western Uganda, where respiratory disease is pervasive. We followed 30 adults (ages 22-51 years; 534 observations) and 234 children (ages 3-11 years; 1,513 observations) between May 2019 and July 2022 and collected monthly data on their respiratory symptoms, for a total of 2,047 case records. We examined associations between demographic and temporal factors and respiratory symptoms severity. Results The timing of our study (before, during, and after the emergence of COVID-19) allowed us to document the effects of public health measures instituted in the region. Incidence rates of respiratory symptoms before COVID-19 lockdown were 568.4 cases per 1,000 person-months in children and 254.2 cases per 1,000 person-months in adults. These rates were 2.6 times higher than the 2019 global average for children but comparable for adults. Younger children (ages 3-6 years) had the highest frequencies and severities of respiratory symptoms. Study participants were most likely to experience symptoms in February, which is a seasonal pattern not previously documented. Incidence and severity of symptoms in children decreased markedly during COVID-19 lockdown, illustrating the broad effects of public health measures on the incidence of respiratory disease. Discussion Our results demonstrate that patterns of respiratory disease in settings such as Western Uganda resemble patterns in developed economies in some ways (age-related factors) but not in others (increased incidence in children and seasonal pattern). Factors such as indoor air quality, health care access, timing of school trimesters, and seasonal effects (rainy/dry seasons) likely contribute to the differences observed.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | | | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
25
|
Shen S, Guo H, Li Y, Zhang L, Tang Y, Li H, Li X, Wang PH, Yu XF, Wei W. SARS-CoV-2 and oncolytic EV-D68-encoded proteases differentially regulate pyroptosis. J Virol 2024; 98:e0190923. [PMID: 38289118 PMCID: PMC10878271 DOI: 10.1128/jvi.01909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.
Collapse
Affiliation(s)
- Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiaohan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Berginc N, Sočan M, Prosenc Trilar K, Petrovec M. Seasonality and Genotype Diversity of Human Rhinoviruses during an Eight-Year Period in Slovenia. Microorganisms 2024; 12:341. [PMID: 38399745 PMCID: PMC10893136 DOI: 10.3390/microorganisms12020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Due to the high socioeconomic burden of rhinoviruses, the development of prevention and treatment strategies is of high importance. Understanding the epidemiological and clinical features of rhinoviruses is essential in order to address these issues. Our study aimed to define the seasonality and molecular epidemiology of rhinoviruses in Slovenia. Over a period of eight years, a total of 20,425 patients from sentinel primary healthcare settings and sentinel hospitals were examined for a panel of respiratory viruses in the national programme for the surveillance of influenza-like illnesses and acute respiratory infections. The patients were from all age groups and had respiratory infections of various severity. Infection with a rhinovirus was confirmed using an RT-rPCR in 1834 patients, and 1480 rhinoviruses were genotyped. The molecular analysis was linked to demographical and meteorological data. We confirmed the year-round circulation of rhinoviruses with clear seasonal cycles, resulting in two seasonal waves with peaks in spring and autumn. High levels of genotype variability and co-circulation were confirmed between and within seasons and were analysed in terms of patient age, the patient source reflecting disease severity, and meteorological factors. Our study provides missing scientific information on the genotype diversity of rhinoviruses in Slovenia. As most previous investigations focused on exclusive segments of the population, such as children or hospitalised patients, and for shorter study periods, our study, with its design, size and length, contributes complementary aspects and new evidence-based knowledge to the regional and global understanding of rhinovirus seasonality and molecular epidemiology.
Collapse
Affiliation(s)
- Nataša Berginc
- Department of Public Health Microbiology, National Laboratory of Health, Environment and Food, 1000 Ljubljana, Slovenia;
| | - Maja Sočan
- Centre for Infectious Diseases, National Institute of Public Health, 1000 Ljubljana, Slovenia
| | - Katarina Prosenc Trilar
- Department of Public Health Microbiology, National Laboratory of Health, Environment and Food, 1000 Ljubljana, Slovenia;
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Richter M, Döring K, Blaas D, Riabova O, Khrenova M, Kazakova E, Egorova A, Makarov V, Schmidtke M. Molecular mechanism of rhinovirus escape from the Pyrazolo[3,4-d]pyrimidine capsid-binding inhibitor OBR-5-340 via mutations distant from the binding pocket: Derivatives that brake resistance. Antiviral Res 2024; 222:105810. [PMID: 38244889 DOI: 10.1016/j.antiviral.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Rhinoviruses (RVs) cause the common cold. Attempts at discovering small molecule inhibitors have mainly concentrated on compounds supplanting the medium chain fatty acids residing in the sixty icosahedral symmetry-related hydrophobic pockets of the viral capsid of the Rhinovirus-A and -B species. High-affinity binding to these pockets stabilizes the capsid against structural changes necessary for the release of the ss(+) RNA genome into the cytosol of the host cell. However, single-point mutations may abolish this binding. RV-B5 is one of several RVs that are naturally resistant against the well-established antiviral agent pleconaril. However, RV-B5 is strongly inhibited by the pyrazolopyrimidine OBR-5-340. Here, we report on isolation and characterization of RV-B5 mutants escaping OBR-5-340 inhibition and show that substitution of amino acid residues not only within the binding pocket but also remote from the binding pocket hamper inhibition. Molecular dynamics network analysis revealed that strong inhibition occurs when an ensemble of several sequence stretches of the capsid proteins enveloping OBR-5-340 move together with OBR-5-340. Mutations abrogating this dynamic, regardless of whether being localized within the binding pocket or distant from it result in escape from inhibition. Pyrazolo [3,4-d]pyrimidine derivatives overcoming OBR-5-340 escape of various RV-B5 mutants were identified. Our work contributes to the understanding of the properties of capsid-binding inhibitors necessary for potent and broad-spectrum inhibition of RVs.
Collapse
Affiliation(s)
- Martina Richter
- Jena University Hospital, Department Medical Microbiology, Section Experimental Virology, Hans-Knoell-Str. 2, 07743 Jena, Germany
| | - Kristin Döring
- Jena University Hospital, Department Medical Microbiology, Section Experimental Virology, Hans-Knoell-Str. 2, 07743 Jena, Germany
| | - Dieter Blaas
- Medical University Vienna, Centre of Med. Biochem. Vienna Biocenter, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia.
| | - Michaela Schmidtke
- Jena University Hospital, Department Medical Microbiology, Section Experimental Virology, Hans-Knoell-Str. 2, 07743 Jena, Germany.
| |
Collapse
|
28
|
Marcelo RZ, Lustik MB, Jones MU. Seasonality and Climatic Factors Associated With Human Rhinovirus/Enterovirus Nasopharyngeal Sample Positivity on Oahu, Hawai'i, 2016-2019. Mil Med 2024; 189:e34-e39. [PMID: 37151191 DOI: 10.1093/milmed/usad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
INTRODUCTION Globally, human rhinoviruses/enteroviruses (HRVs/ENTs), indistinguishable on many widely available molecular platforms, are among the leading causes of the common cold. Geographic and climatic factors impact the peak activity of these viruses. In temperate climates, the peak activity of HRV occurs during autumn and spring whereas that of ENT occurs during autumn and summer. Both viruses are thought to peak during the rainy season in tropical climates like Hawai'i; however, data remain limited. We describe HRV/ENT seasonality and evaluate the climatic factors associated with peak activity among respiratory viral samples processed on Oahu, Hawai'i. MATERIALS AND METHODS We conducted a retrospective analysis of all respiratory specimens submitted to Tripler Army Medical Center for multiplex polymerase chain reaction testing between May 2016 and May 2019. Among HRV/ENT-positive samples, we recorded the month and year of positivity. Summative monthly positive detection was calculated with peak months above the mean. Associations between temperature, precipitation levels, relative humidity, and wind speed by week and the number of positive samples for HRV/ENT were evaluated using Poisson regression. This analysis was conducted via IRB exempt protocol number 19R18. RESULTS During our study period, there were 7,143 nasopharyngeal respiratory samples sent for multiplex polymerase chain reaction testing, with 1,572 positive for HRV/ENT (22%). Nineteen percent of respiratory samples positive for HRV/ENT were additionally positive for one or more respiratory pathogens. The majority of HRV/ENT-positive samples arose from children < 5 years of age (n = 959, 61%). Peak months were February, March, May, August, November, and December. After controlling for lagged count and year, average wind speed was the only climatic factor significantly associated with HRV/ENT sample positivity. CONCLUSIONS The peak monthly activity of HRV/ENT was similar to temperate climates with the exception of peak activity in February. Unlike other tropical climates, lower wind speed was associated with increased weekly HRV/ENT positivity and should be further explored as a transmission factor. Our study contributes to understanding the annual variability of HRV/ENT activity in tropical environments, which can inform clinician expectations regarding respiratory viral symptomatology in this region.
Collapse
Affiliation(s)
- Raymundo Z Marcelo
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Michael B Lustik
- Department of Clinical Investigations, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Milissa U Jones
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, HI 96859, USA
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
29
|
Ju DU, Park D, Kim IH, Kim S, Yoo HM. Development of Human Rhinovirus RNA Reference Material Using Digital PCR. Genes (Basel) 2023; 14:2210. [PMID: 38137032 PMCID: PMC10742479 DOI: 10.3390/genes14122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its replication by concentrating RNA synthesis within a modified host membrane in an intracellular compartment. RV infections often occur alongside infections caused by other respiratory viruses, and the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is essential to accurately quantify RV RNA from clinical samples to explore the relationships between RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A reference material (RM) is required for quality evaluation, the performance evaluation of molecular diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at 100 µL per vial and stored at -80 °C. The process of measuring the stability and homogeneity of RV RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction (RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement compatibility: it represents the equivalence of a series of outcomes for reference materials and samples being analyzed when a few measurement procedures are employed, enabling objective comparisons between quantitative findings obtained through various experiments. The number of copies value represents a measured result of approximately 1.6 × 105 copies/μL. The RM has about an 11% bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 °C and -20 °C and for 12 months at a temperature of -80 °C. The developed RM can enhance the dependability of RV molecular tests by providing a precise reference value for the absolute copy number of a viral target gene. Additionally, it can serve as a reference for diverse studies.
Collapse
Affiliation(s)
- Dong U Ju
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongju Park
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Il-Hwan Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seil Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
30
|
Jones MU, Montgomery AS, Coskun JD, Marcelo RZ, Sutton AB, Raiciulescu S. Comparing the Clinical Courses of Children With Human Rhinovirus/Enterovirus to Children With Other Respiratory Viruses in the Outpatient Setting. Pediatr Infect Dis J 2023; 42:e432-e439. [PMID: 37725805 DOI: 10.1097/inf.0000000000004097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND While infections caused by rhinoviruses and enteroviruses are common among children, the entirety of their clinical impact remains elusive. We compared the clinical outcomes of children with rhinovirus/enterovirus infections to other common respiratory viruses in outpatient settings. METHODS We conducted a retrospective analysis of nasopharyngeal samples singly positive for human rhinovirus/enterovirus (HRV/ENT), influenza A/B (FLU) or respiratory syncytial virus (RSV) from patients ≤17 years submitted for clinical testing via multiplex polymerase chain reaction between 2016 and 2019. We evaluated the following outpatient outcomes: days of respiratory symptoms before testing; visits for respiratory symptoms; receipt of a breathing treatment; receipt of antibiotics and hospital admission. Statistical analyses were conducted controlling for age and comorbid conditions. RESULTS There were 1355 positive samples included in this analysis (HRV/ENT: n = 743, FLU: n = 303 and RSV: n = 309). Compared to HRV/ENT, children with FLU had 28% fewer days of respiratory symptoms (β: -0.32; 95% confidence interval: -0.46 to -0.18; P < 0.001), fewer visits for respiratory symptoms, and significantly decreased odds of receiving a breathing treatment or antibiotics, and admission to the hospital. Children with RSV had a similar number of days of respiratory symptoms, outpatient visits and odds of hospital admission, but significantly increased odds of receiving a breathing treatment and antibiotics compared to those with HRV/ENT. CONCLUSION Clinicians should have a high level of vigilance when managing children with positive respiratory viral testing for HRV/ENT given the potential for clinical outcomes similar to and, in some instances, worse than known highly pathogenic viruses.
Collapse
Affiliation(s)
- Milissa U Jones
- From the Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, Hawaii
| | - Agnes S Montgomery
- From the Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pediatrics, Children's National Hospital, Washington, DC
| | - Jennifer D Coskun
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, Hawaii
| | | | - Alyssa B Sutton
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, Hawaii
| | - Sorana Raiciulescu
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Marylan
| |
Collapse
|
31
|
Moreni G, van Eijk H, Koen G, Johannesson N, Calitz C, Benschop K, Cremer J, Pajkrt D, Sridhar A, Wolthers K. Non-Polio Enterovirus C Replicate in Both Airway and Intestine Organotypic Cultures. Viruses 2023; 15:1823. [PMID: 37766230 PMCID: PMC10537321 DOI: 10.3390/v15091823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-polio enteroviruses (EV) belonging to species C, which are highly prevalent in Africa, mainly among children, are poorly characterized, and their pathogenesis is mostly unknown as they are difficult to culture. In this study, human airway and intestinal organotypic models were used to investigate tissue and cellular tropism of three EV-C genotypes, EV-C99, CVA-13, and CVA-20. Clinical isolates were obtained within the two passages of culture on Caco2 cells, and all three viruses were replicated in both the human airway and intestinal organotypic cultures. We did not observe differences in viral replication between fetal and adult tissue that could potentially explain the preferential infection of infants by EV-C genotypes. Infection of the airway and the intestinal cultures indicates that they both can serve as entry sites for non-polio EV-C. Ciliated airway cells and enterocytes are the target of infection for all three viruses, as well as enteroendocrine cells for EV-C99.
Collapse
Affiliation(s)
- Giulia Moreni
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| | - Nina Johannesson
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Kimberley Benschop
- National Institute for Public Health and Environment, RIVM, 3721 MA Bilthoven, The Netherlands; (K.B.); (J.C.)
| | - Jeroen Cremer
- National Institute for Public Health and Environment, RIVM, 3721 MA Bilthoven, The Netherlands; (K.B.); (J.C.)
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Katja Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| |
Collapse
|
32
|
Abstract
The common cold is a unique human disease, as it is arguably the most common disease and because of the large number of respiratory viruses causing colds it is one of the most complex of human diseases. This review discusses the respiratory viruses and notes that all these viruses may cause the illness complex recognised as the common cold. The common cold is discussed as part of the "iceberg concept" of disease which ranges from asymptomatic infection to severe illness and death. The factors influencing the incidence of colds are discussed: crowding and sociability, stress, smoking and alcohol, immune status, sex, age, sleep, season, chilling, nutrition and exercise. The mechanism of symptoms related to the innate immune response is explained and symptomatic treatments are tabulated. Morbidity associated with common cold is discussed and possible vaccines.
Collapse
|
33
|
Prajna NV, Prajna L, Teja V, Gunasekaran R, Chen C, Ruder K, Zhong L, Yu D, Liu D, Abraham T, Ao W, Deiner M, Hinterwirth A, Seitzman G, Doan T, Lietman T. Apollo Rising: Acute Conjunctivitis Outbreak in India, 2022. CORNEA OPEN 2023; 2:e0009. [PMID: 37719281 PMCID: PMC10501505 DOI: 10.1097/coa.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Purpose To identify pathogens associated with the 2022 conjunctivitis outbreak in Tamil Nadu, India. Methods This prospective study was conducted in November of 2022. Patients with presumed acute infectious conjunctivitis presenting to the Aravind Eye Clinic in Madurai, India were eligible. Anterior nares and conjunctival samples from participants were obtained and processed for metagenomic RNA deep sequencing (RNA-seq). Results Samples from 29 patients were sequenced. A pathogen was identified in 28/29 (97%) patients. Coxsackievirus A24v, a highly infectious RNA virus, was the predominant pathogen and detected in 23/29 patients. Human adenovirus D (HAdV-D), a DNA virus commonly associated with conjunctivitis outbreaks, was detected in the remaining patients (5/29). Hemorrhagic conjunctiva was documented in both HAdV-D and coxsackievirus A24v affected patients but was not the predominant clinical presentation. Phylogenetic analysis of coxsackievirus A24v revealed a recent divergence from the 2015 outbreak. Conclusions Coxsackievirus A24v and HAdV-D were co-circulating during the 2022 conjunctivitis outbreak in Tamil Nadu, India. Clinical findings were similar between patients with HAD-V and coxsackievirus A24v associated conjunctivitis. As high-throughput technologies become more readily accessible and cost-effective, unbiased pathogen surveillance may prove useful for outbreak surveillance and control.
Collapse
Affiliation(s)
| | | | | | | | - Cindi Chen
- Francis I. Proctor Foundation, San Francisco, United States
| | - Kevin Ruder
- Francis I. Proctor Foundation, San Francisco, United States
| | - Lina Zhong
- Francis I. Proctor Foundation, San Francisco, United States
| | - Danny Yu
- Francis I. Proctor Foundation, San Francisco, United States
| | - David Liu
- Francis I. Proctor Foundation, San Francisco, United States
| | - Thomas Abraham
- Francis I. Proctor Foundation, San Francisco, United States
| | - Wendy Ao
- Francis I. Proctor Foundation, San Francisco, United States
| | - Michael Deiner
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | | | - Gerami Seitzman
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Thuy Doan
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Thomas Lietman
- Francis I. Proctor Foundation, San Francisco, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
34
|
Gummersheimer S, Hayes A, Harrison C, Lee B, Schuster J, Dhar M, Sasidharan A, Banerjee D, Selvarangan R. Prevalence and clinical presentation of EV-D68 infections in Kansas City children during the 2022 season. Diagn Microbiol Infect Dis 2023; 107:115992. [PMID: 37385072 DOI: 10.1016/j.diagmicrobio.2023.115992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Seasonal EV-D68 infections can strain medical care resources due to increased pediatric hospitalizations for respiratory illness. In this study, we examine Kansas City's 2022 EV-D68 season. Rhinovirus/enterovirus (RV/EV) positive respiratory specimens from standard of care testing were salvaged and tested by EV-D68 specific PCR. Of the 1412 respiratory specimens tested from July 1 to September 15, 2022, 346 (23%) were positive for RV/EV and EV-D68 was detected in 134/319 (42%) salvaged RV/EV positive specimens. The median age of children with EV-D68 infections was 35.2 months (IQR 16.1, 67.3), which was older than children with non-EV-D68 RV/EV infections (16 months, IQR 5, 47.8), but younger than children infected during the 2014 EV-D68 outbreak. EV-D68 infection was more likely to cause severe disease in children with asthma compared to those without asthma. Real-time EV-D68 monitoring for outbreaks could potentially improve resource utilization by hospitals and help prepare for surges of respiratory disease.
Collapse
Affiliation(s)
- Stephanie Gummersheimer
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Amanda Hayes
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Christopher Harrison
- Department of Pathology and Laboratory Medicine, University of Missouri-School of Medicine, Kansas City, MO, USA
| | - Brian Lee
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Missouri-School of Medicine, Kansas City, MO, USA
| | - Jennifer Schuster
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Missouri-School of Medicine, Kansas City, MO, USA
| | - Minati Dhar
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anjana Sasidharan
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Missouri-School of Medicine, Kansas City, MO, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Division of Infectious Disease, Children's Mercy Kansas City, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Missouri-School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
35
|
Das NK, Hollmann NM, Vogt J, Sevdalis SE, Banna HA, Ojha M, Koirala D. Crystal structure of a highly conserved enteroviral 5' cloverleaf RNA replication element. Nat Commun 2023; 14:1955. [PMID: 37029118 PMCID: PMC10082201 DOI: 10.1038/s41467-023-37658-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The extreme 5'-end of the enterovirus RNA genome contains a conserved cloverleaf-like domain that recruits 3CD and PCBP proteins required for initiating genome replication. Here, we report the crystal structure at 1.9 Å resolution of this domain from the CVB3 genome in complex with an antibody chaperone. The RNA folds into an antiparallel H-type four-way junction comprising four subdomains with co-axially stacked sA-sD and sB-sC helices. Long-range interactions between a conserved A40 in the sC-loop and Py-Py helix within the sD subdomain organize near-parallel orientations of the sA-sB and sC-sD helices. Our NMR studies confirm that these long-range interactions occur in solution and without the chaperone. The phylogenetic analyses indicate that our crystal structure represents a conserved architecture of enteroviral cloverleaf-like domains, including the A40 and Py-Py interactions. The protein binding studies further suggest that the H-shape architecture provides a ready-made platform to recruit 3CD and PCBP2 for viral replication.
Collapse
Affiliation(s)
- Naba K Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Nele M Hollmann
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
- Howard Hughes Medical Institute, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Spiridon E Sevdalis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hasan A Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
36
|
Ljubin-Sternak S, Meštrović T. Rhinovirus—A True Respiratory Threat or a Common Inconvenience of Childhood? Viruses 2023; 15:v15040825. [PMID: 37112805 PMCID: PMC10144685 DOI: 10.3390/v15040825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
A decade-long neglect of rhinovirus as an important agent of disease in humans was primarily due to the fact that they were seen as less virulent and capable of causing only mild respiratory infections such as common cold. However, with an advent of molecular diagnostic methods, an increasing number of reports placed them among the pathogens found in the lower respiratory tract and recognized them as important risk factors for asthma-related pathology in childhood. As the spread of rhinovirus was not severely affected by the implementation of social distancing and other measures during the coronavirus disease 2019 (COVID-19) pandemic, its putative pathogenic role has become even more evident in recent years. By concentrating on children as the most vulnerable group, in this narrative review we first present classification and main traits of rhinovirus, followed by epidemiology and clinical presentation, risk factors for severe forms of the disease, long-term complications and the pathogenesis of asthma, as well as a snapshot of treatment trials and studies. Recent evidence suggests that the rhinovirus is a significant contributor to respiratory illness in both high-risk and low-risk populations of children.
Collapse
|
37
|
Wu R, Mumtaz M, Maxwell AJ, Isaacs SR, Laiho JE, Rawlinson WD, Hyöty H, Craig ME, Kim KW. Respiratory infections and type 1 diabetes: Potential roles in pathogenesis. Rev Med Virol 2023; 33:e2429. [PMID: 36790804 PMCID: PMC10909571 DOI: 10.1002/rmv.2429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
Among the environmental factors associated with type 1 diabetes (T1D), viral infections of the gut and pancreas has been investigated most intensely, identifying enterovirus infections as the prime candidate trigger of islet autoimmunity (IA) and T1D development. However, the association between respiratory tract infections (RTI) and IA/T1D is comparatively less known. While there are significant amounts of epidemiological evidence supporting the role of respiratory infections in T1D, there remains a paucity of data characterising infectious agents at the molecular level. This gap in the literature precludes the identification of the specific infectious agents driving the association between RTI and T1D. Furthermore, the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on the development of IA/T1D remains undeciphered. Here, we provide a comprehensive overview of the evidence to date, implicating RTIs (viral and non-viral) as potential risk factors for IA/T1D.
Collapse
Affiliation(s)
- Roy Wu
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | - Mohsin Mumtaz
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | - Anna J. Maxwell
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | - Sonia R. Isaacs
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | - Jutta E. Laiho
- Department of VirologyFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - William D. Rawlinson
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
- School of Biomedical SciencesFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesFaculty of ScienceUniversity of New South WalesRandwickNew South WalesAustralia
| | - Heikki Hyöty
- Department of VirologyFaculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Fimlab LaboratoriesTampereFinland
| | - Maria E. Craig
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
- Institute of Endocrinology and DiabetesChildren's Hospital at WestmeadSydneyNew South WalesAustralia
- Faculty of Medicine and HealthDiscipline of Child and Adolescent HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ki Wook Kim
- Discipline of Paediatrics and Child HealthSchool of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesRandwickNew South WalesAustralia
- Virology and Serology DivisionNew South Wales Health PathologyPrince of Wales HospitalRandwickNew South WalesAustralia
| |
Collapse
|
38
|
Almas S, Carpenter RE, Singh A, Rowan C, Tamrakar VK, Sharma R. Deciphering Microbiota of Acute Upper Respiratory Infections: A Comparative Analysis of PCR and mNGS Methods for Lower Respiratory Trafficking Potential. Adv Respir Med 2023; 91:49-65. [PMID: 36825940 PMCID: PMC9952210 DOI: 10.3390/arm91010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although it is clinically important for acute respiratory tract (co)infections to have a rapid and accurate diagnosis, it is critical that respiratory medicine understands the advantages of current laboratory methods. In this study, we tested nasopharyngeal samples (n = 29) with a commercially available PCR assay and compared the results with those of a hybridization-capture-based mNGS workflow. Detection criteria for positive PCR samples was Ct < 35 and for mNGS samples it was >40% target coverage, median depth of 1X and RPKM > 10. A high degree of concordance (98.33% PPA and 100% NPA) was recorded. However, mNGS yielded positively 29 additional microorganisms (23 bacteria, 4 viruses, and 2 fungi) beyond PCR. We then characterized the microorganisms of each method into three phenotypic categories using the IDbyDNA Explify® Platform (Illumina® Inc, San Diego, CA, USA) for consideration of infectivity and trafficking potential to the lower respiratory region. The findings are significant for providing a comprehensive yet clinically relevant microbiology profile of acute upper respiratory infection, especially important in immunocompromised or immunocompetent with comorbidity respiratory cases or where traditional syndromic approaches fail to identify pathogenicity. Accordingly, this technology can be used to supplement current syndrome-based tests, and data can quickly and effectively be phenotypically characterized for trafficking potential, clinical (co)infection, and comorbid consideration-with promise to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Sadia Almas
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
| | - Rob E. Carpenter
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
- Department of Human Resource Development, University of Texas at Tyler, 3900 University Boulevard, Tyler, TX 75799, USA
- Correspondence: ; Tel.: +1-903-530-1700
| | - Anuradha Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
| | - Chase Rowan
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
| | - Vaibhav K. Tamrakar
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
- RetroBioTech LLC, 838 Dalmalley Ln, Coppell, TX 75019, USA
| | - Rahul Sharma
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
| |
Collapse
|
39
|
Essaidi-Laziosi M, Royston L, Boda B, Pérez-Rodriguez FJ, Piuz I, Hulo N, Kaiser L, Clément S, Huang S, Constant S, Tapparel C. Altered cell function and increased replication of rhinoviruses and EV-D68 in airway epithelia of asthma patients. Front Microbiol 2023; 14:1106945. [PMID: 36937308 PMCID: PMC10014885 DOI: 10.3389/fmicb.2023.1106945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Rhinovirus (RV) infections constitute one of the main triggers of asthma exacerbations and an important burden in pediatric yard. However, the mechanisms underlying this association remain poorly understood. Methods In the present study, we compared infections of in vitro reconstituted airway epithelia originating from asthmatic versus healthy donors with representative strains of RV-A major group and minor groups, RV-C, RV-B, and the respiratory enterovirus EV-D68. Results We found that viral replication was higher in tissues derived from asthmatic donors for all tested viruses. Viral receptor expression was comparable in non-infected tissues from both groups. After infection, ICAM1 and LDLR were upregulated, while CDHR3 was downregulated. Overall, these variations were related to viral replication levels. The presence of the CDHR3 asthma susceptibility allele (rs6967330) was not associated with increased RV-C replication. Regarding the tissue response, a significantly higher interferon (IFN) induction was demonstrated in infected tissues derived from asthmatic donors, which excludes a defect in IFN-response. Unbiased transcriptomic comparison of asthmatic versus control tissues revealed significant modifications, such as alterations of cilia structure and motility, in both infected and non-infected tissues. These observations were supported by a reduced mucociliary clearance and increased mucus secretion in non-infected tissues from asthmatic donors. Discussion Altogether, we demonstrated an increased permissiveness and susceptibility to RV and respiratory EV infections in HAE derived from asthmatic patients, which was associated with a global alteration in epithelial cell functions. These results unveil the mechanisms underlying the pathogenesis of asthma exacerbation and suggest interesting therapeutic targets.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léna Royston
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Francisco Javier Pérez-Rodriguez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Song Huang
- Epithelix Sàrl, Plan les Ouates, Geneva, Switzerland
| | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Caroline Tapparel,
| |
Collapse
|
40
|
Wu X, Cui L, Bai Y, Bian L, Liang Z. Pseudotyped Viruses for Enterovirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:209-228. [PMID: 36920699 DOI: 10.1007/978-981-99-0113-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Using a non-pathogenic pseudotyped virus as a surrogate for a wide-type virus in scientific research complies with the recent requirements for biosafety. Enterovirus (EV) contains many species of viruses, which are a type of nonenveloped virus. The preparation of its corresponding pseudotyped virus often needs customized construction compared to some enveloped viruses. This article describes the procedures and challenges in the construction of pseudotyped virus for enterovirus (pseudotyped enterovirus, EVpv) and also introduces the application of EVpv in basic virological research, serological monitoring, and the detection of neutralizing antibody (NtAb).
Collapse
Affiliation(s)
- Xing Wu
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lisha Cui
- Minhai biotechnology Co. Ltd, Beijing, China
| | - Yu Bai
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
41
|
Molecular Determinants of Human Rhinovirus Infection, Assembly, and Conformational Stability at Capsid Protein Interfaces. J Virol 2022; 96:e0084022. [PMID: 36374110 PMCID: PMC9749468 DOI: 10.1128/jvi.00840-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human rhinovirus (HRV), one of the most frequent human pathogens, is the major causative agent of common colds. HRVs also cause or exacerbate severe respiratory diseases, such as asthma or chronic obstructive pulmonary disease. Despite the biomedical and socioeconomic importance of this virus, no anti-HRV vaccines or drugs are available yet. Protein-protein interfaces in virus capsids have increasingly been recognized as promising virus-specific targets for the development of antiviral drugs. However, the specific structural elements and residues responsible for the biological functions of these extended capsid regions are largely unknown. In this study, we performed a thorough mutational analysis to determine which particular residues along the capsid interpentamer interfaces are relevant to HRV infection as well as the stage(s) in the viral cycle in which they are involved. The effect on the virion infectivity of the individual mutation to alanine of 32 interfacial residues that, together, removed most of the interpentamer interactions was analyzed. Then, a representative sample that included many of those 32 single mutants were tested for capsid and virion assembly as well as virion conformational stability. The results indicate that most of the interfacial residues, and the interactions they establish, are biologically relevant, largely because of their important roles in virion assembly and/or stability. The HRV interpentamer interface is revealed as an atypical protein-protein interface, in which infectivity-determining residues are distributed at a high density along the entire interface. Implications for a better understanding of the relationship between the molecular structure and function of HRV and the development of novel capsid interface-binding anti-HRV agents are discussed. IMPORTANCE The rising concern about the serious medical and socioeconomic consequences of respiratory infections by HRV has elicited a renewed interest in the development of anti-HRV drugs. The conversion into effective drugs of compounds identified via screening, as well as antiviral drug design, rely on the acquisition of fundamental knowledge about the targeted viral elements and their roles during specific steps of the infectious cycle. The results of this study provide a detailed view on structure-function relationships in a viral capsid protein-protein interface, a promising specific target for antiviral intervention. The high density and scattering of the interfacial residues found to be involved in HRV assembly and/or stability support the possibility that any compound designed to bind any particular site at the interface will inhibit infection by interfering with virion morphogenesis or stabilization of the functional virion conformation.
Collapse
|
42
|
Incidence of Respiratory Pathogens in Naval Special Warfare Sea, Air, and Land Team Candidates With Swimming-Induced Pulmonary Edema. Chest 2022; 163:1185-1192. [PMID: 36427538 DOI: 10.1016/j.chest.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Swimming-induced pulmonary edema (SIPE) is a respiratory condition frequently seen among Naval Special Warfare (NSW) trainees. The incidence of positive respiratory panel (RP) findings in trainees with a diagnosis of SIPE currently is unknown. RESEARCH QUESTION Does a significant difference exist in the incidence of respiratory pathogens in nasopharyngeal samples of NSW candidates with SIPE and a control group? STUDY DESIGN AND METHODS Retrospective analysis of clinical information from NSW Sea, Air, and Land (SEAL) team candidates with a diagnosis of SIPE over a 12-month period. Candidates who demonstrated the common signs and symptoms of SIPE underwent a nasopharyngeal swab and RP test for common respiratory pathogens. SIPE diagnoses were supported by two-view chest radiography. RP tests were obtained for a selected control group of first-phase trainees without SIPE. RESULTS Forty-five of 1,048 SEAL team candidates received a diagnosis of SIPE (4.3%). Five had superimposed pneumonia. Thirty-six of 45 showed positive results for at least one microorganism on the RP (80%). In the study group, human rhinovirus/enterovirus (RV/EV) was the most frequently detected organism (37.8%), followed by coronavirus OC43 (17.8%), and parainfluenza virus type 3 (17.8%). Sixteen of 68 candidates from the control group showed positive RP (24%) findings. Patients with SIPE and positive RP results reported dyspnea (94%), pink frothy sputum (44%), and hemoptysis (22%) more frequently than the control participants with positive RP results. Those who reported respiratory infection symptoms in both the study and control groups showed higher incidences of positive RP results (P = .046). INTERPRETATION We observed that 80% of trainees with a diagnosis of SIPE showed positive results on a point-of-care RP. This positivity rate was significantly higher than that of RP test results from the control cohort. These findings suggest an association between colonization with a respiratory pathogen and the development of SIPE in NSW candidates.
Collapse
|
43
|
Lee CH, Huang PN, Mwale PF, Wang WC, Leu SJ, Tseng SN, Shih SR, Chiang LC, Mao YC, Tsai BY, Dlamini NB, Nguyen TC, Tsai CH, Yang YY. The Bottlenecks of Preparing Virus Particles by Size Exclusion for Antibody Generation. Int J Mol Sci 2022; 23:12967. [PMID: 36361757 PMCID: PMC9653933 DOI: 10.3390/ijms232112967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Enterovirus 71 (EV71) is the major etiological agent contributing to the development of hand-foot-mouth disease (HFMD). There are not any global available vaccines or antibody drugs against EV71 released yet. In this study, we perform the virus immunization in a cost-effective and convenient approach by preparing virus particles from size exclusion and immunization of chicken. Polyclonal yolk-immunoglobulin (IgY) was simply purified from egg yolk and monoclonal single-chain variable fragments (scFv) were selected via phage display technology with two scFv libraries containing 6.0 × 106 and 1.3 × 107 transformants. Specific clones were enriched after 5 rounds of bio-panning and four identical genes were classified after the sequence analysis. Moreover, the higher mutation rates were revealed in the CDR regions, especially in the CDR3. IgY showed specific binding activities to both EV71-infected and Coxsackievirus 16-infected cell lysates and high infectivity inhibitory activity of EV71. However, while IgY detected a 37 kDa protein, the selected scFv seemingly detected higher size proteins which could be cell protein instead of EV71 proteins. Despite the highly effective chicken antibody generation, the purity of virus particles prepared by size exclusion is the limitation of this study, and further characterization should be carried out rigorously.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Sung-Nien Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 300040, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Tien-Cuong Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chen-Hsin Tsai
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
44
|
Genome Sequences of Rare Human Enterovirus Genotypes Recovered from Clinical Respiratory Samples in Bern, Switzerland. Microbiol Resour Announc 2022; 11:e0027622. [PMID: 35993703 PMCID: PMC9476959 DOI: 10.1128/mra.00276-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on genomic sequences of human enteroviruses (EVs) that were identified in respiratory samples in Bern, Switzerland, in 2018 and 2019. Besides providing sequences for coxsackievirus A2, echovirus 11, and echovirus 30, we determined the sequences of rare EV-D68 and EV-C105 genotypes circulating in Switzerland.
Collapse
|
45
|
Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel) 2022; 15:ph15091149. [PMID: 36145370 PMCID: PMC9502241 DOI: 10.3390/ph15091149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.
Collapse
|
46
|
Pająk B, Zieliński R, Manning JT, Matejin S, Paessler S, Fokt I, Emmett MR, Priebe W. The Antiviral Effects of 2-Deoxy-D-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and Other Highly Pathogenic Viruses. Molecules 2022; 27:5928. [PMID: 36144664 PMCID: PMC9503362 DOI: 10.3390/molecules27185928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
Viral infection almost invariably causes metabolic changes in the infected cell and several types of host cells that respond to the infection. Among metabolic changes, the most prominent is the upregulated glycolysis process as the main pathway of glucose utilization. Glycolysis activation is a common mechanism of cell adaptation to several viral infections, including noroviruses, rhinoviruses, influenza virus, Zika virus, cytomegalovirus, coronaviruses and others. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Glycolysis inhibitors, especially 2-deoxy-D-glucose (2-DG), have been intensively studied as antiviral agents. However, 2-DG's poor pharmacokinetic properties limit its wide clinical application. Herein, we discuss the potential of 2-DG and its novel analogs as potent promising antiviral drugs with special emphasis on targeted intracellular processes.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- WPD Pharmaceuticals, Zwirki i Wigury 101, 01-163 Warsaw, Poland
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - John Tyler Manning
- Department of Pathology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Stanislava Matejin
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Izabela Fokt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Mark R. Emmett
- Department of Pathology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| |
Collapse
|
47
|
Ong HH, Andiappan AK, Duan K, Lum J, Liu J, Tan KS, Howland S, Lee B, Ong YK, Thong M, Chow VT, Wang DY. Transcriptomics of rhinovirus persistence reveals sustained expression of RIG-I and interferon-stimulated genes in nasal epithelial cells in vitro. Allergy 2022; 77:2778-2793. [PMID: 35274302 DOI: 10.1111/all.15280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are frequently associated with asthma exacerbations, and have been found in the airways of asthmatic patients. While HRV-induced acute infection is well-documented, it is less clear whether the nasal epithelium sustains prolonged HRV infections along with the associated activation of host immune responses. OBJECTIVE To investigate sustainably regulated host responses of human nasal epithelial cells (hNECs) during HRV persistence. METHODS Using a time-course study, HRV16 persistence and viral replication dynamics were established using an in vitro infection model of hNECs. RNA sequencing was performed on hNECs in the early and late stages of infection at 3 and 14 days post-infection (dpi), respectively. The functional enrichment of differentially expressed genes (DEGs) was evaluated using gene ontology (GO) and Ingenuity pathway analysis. RESULTS HRV RNA and protein expression persisted throughout prolonged infections, even after decreased production of infectious virus progeny. GO analysis of unique DEGs indicated altered regulation of pathways related to ciliary function and airway remodeling at 3 dpi and serine-type endopeptidase activity at 14 dpi. The functional enrichment of shared DEGs between the two time-points was related to interferon (IFN) and cytoplasmic pattern recognition receptor (PRR) signaling pathways. Validation of the sustained regulation of candidate genes confirmed the persistent expression of RIG-I and revealed its close co-regulation with interferon-stimulated genes (ISGs) during HRV persistence. CONCLUSIONS The persistence of HRV RNA does not necessarily indicate an active infection during prolonged infection. The sustained expression of RIG-I and ISGs in response to viral RNA persistence highlights the importance of assessing how immune-activating host factors can change during active HRV infection and the immune regulation that persists thereafter.
Collapse
Affiliation(s)
- Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Biosafety level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Shanshan Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology - Head & Neck Surgery, National University Health System, Singapore, Singapore
| | - Vincent T Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Bartlow AW, Stromberg ZR, Gleasner CD, Hu B, Davenport KW, Jakhar S, Li PE, Vosburg M, Garimella M, Chain PSG, Erkkila TH, Fair JM, Mukundan H. Comparing variability in diagnosis of upper respiratory tract infections in patients using syndromic, next generation sequencing, and PCR-based methods. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000811. [PMID: 36962439 PMCID: PMC10022352 DOI: 10.1371/journal.pgph.0000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Early and accurate diagnosis of respiratory pathogens and associated outbreaks can allow for the control of spread, epidemiological modeling, targeted treatment, and decision making-as is evident with the current COVID-19 pandemic. Many respiratory infections share common symptoms, making them difficult to diagnose using only syndromic presentation. Yet, with delays in getting reference laboratory tests and limited availability and poor sensitivity of point-of-care tests, syndromic diagnosis is the most-relied upon method in clinical practice today. Here, we examine the variability in diagnostic identification of respiratory infections during the annual infection cycle in northern New Mexico, by comparing syndromic diagnostics with polymerase chain reaction (PCR) and sequencing-based methods, with the goal of assessing gaps in our current ability to identify respiratory pathogens. Of 97 individuals that presented with symptoms of respiratory infection, only 23 were positive for at least one RNA virus, as confirmed by sequencing. Whereas influenza virus (n = 7) was expected during this infection cycle, we also observed coronavirus (n = 7), respiratory syncytial virus (n = 8), parainfluenza virus (n = 4), and human metapneumovirus (n = 1) in individuals with respiratory infection symptoms. Four patients were coinfected with two viruses. In 21 individuals that tested positive using PCR, RNA sequencing completely matched in only 12 (57%) of these individuals. Few individuals (37.1%) were diagnosed to have an upper respiratory tract infection or viral syndrome by syndromic diagnostics, and the type of virus could only be distinguished in one patient. Thus, current syndromic diagnostic approaches fail to accurately identify respiratory pathogens associated with infection and are not suited to capture emerging threats in an accurate fashion. We conclude there is a critical and urgent need for layered agnostic diagnostics to track known and unknown pathogens at the point of care to control future outbreaks.
Collapse
Affiliation(s)
- Andrew W. Bartlow
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl D. Gleasner
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bin Hu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Karen W. Davenport
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Po-E Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Molly Vosburg
- Medical Associates of Northern New Mexico, Los Alamos, New Mexico, United States of America
| | - Madhavi Garimella
- Medical Associates of Northern New Mexico, Los Alamos, New Mexico, United States of America
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tracy H. Erkkila
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jeanne M. Fair
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
49
|
Filipe IC, Tee HK, Prados J, Piuz I, Constant S, Huang S, Tapparel C. Comparison of tissue tropism and host response to enteric and respiratory enteroviruses. PLoS Pathog 2022; 18:e1010632. [PMID: 35789345 PMCID: PMC9286751 DOI: 10.1371/journal.ppat.1010632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/15/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Enteroviruses (EVs) are among the most prevalent viruses worldwide. They are characterized by a high genetic and phenotypic diversity, being able to cause a plethora of symptoms. EV-D68, a respiratory EV, and EV-D94, an enteric EV, represent an interesting paradigm of EV tropism heterogeneity. They belong to the same species, but display distinct phenotypic characteristics and in vivo tropism. Here, we used these two viruses as well as relevant 3D respiratory, intestinal and neural tissue culture models, to highlight key distinctive features of enteric and respiratory EVs. We emphasize the critical role of temperature in restricting EV-D68 tissue tropism. Using transcriptomic analysis, we underscore fundamental differences between intestinal and respiratory tissues, both in the steady-state and in response to infection. Intestinal tissues present higher cell proliferation rate and are more immunotolerant than respiratory tissues. Importantly, we highlight the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response of intestinal and respiratory tissues. EV-D68 strongly activates antiviral pathways while EV-D94, on the contrary, barely induces any host defense mechanisms. In summary, our study provides an insightful characterization of the differential pathogenesis of EV-D68 and EV-D94 and the interplay with their main target tissues. Enteroviruses (EVs) are important human pathogens, associated with more than 20 clinical presentations. They replicate predominantly in the intestinal and/or respiratory mucosae. The respiratory EV-D68 can be considered an emerging virus because it caused an unprecedent outbreak in 2014, and contemporary isolates display increased virulence and novel neurotropic potential. The genetically related enteric EV-D94 is less common and its pathogenesis remains poorly defined, however, its infection has also been associated with neurological symptoms such as acute flaccid paralysis. To decipher the pathogenic mechanisms of these two viruses, we investigated their tropism and innate immunity induction in relevant human respiratory, intestinal and neural tissue culture models. Our results highlight the critical role of temperature in restricting EV-D68 tropism. Furthermore, using transcriptomic analysis, we identified key differences between respiratory and intestinal tissues, with the latter exhibiting higher cell proliferation and being more immunotolerant. More importantly, we could demonstrate the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response, with EV-D68 strongly activating antiviral pathways and EV-D94, in contrast, inducing few host antiviral transcripts. This work identifies key differences in the pathogenesis of these representative respiratory and enteric EVs, which may contribute to the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, University of Geneva, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Song Huang
- Epithelix SAS Geneva, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Gagliardi TB, Iverson E, DeGrace EJ, Rosenberg BR, Scull MA. Immunofluorescence-Mediated Detection of Respiratory Virus Infections in Human Airway Epithelial Cultures. Curr Protoc 2022; 2:e453. [PMID: 35671174 PMCID: PMC9202242 DOI: 10.1002/cpz1.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A diverse collection of viral pathogens target airway epithelial cells for infection, with effects ranging from mild upper respiratory tract symptoms to death of the infected individual. Among these pathogens are recently discovered and/or emergent viruses that sometimes fail to infect commonly used, immortalized cell lines and for which infection phenotypes in the respiratory tract remain unknown. Human airway epithelial cultures have been developed over the past several decades and have proven to be a useful model system in culturing hard‐to‐grow viruses and assaying various features of infection in a physiologically relevant setting. This article includes methods for the generation of well‐differentiated human airway epithelial cell cultures at air‐liquid interface that recapitulate the mucosal epithelium of the trachea/bronchus in vivo. We further detail inoculation of these cultures with respiratory viruses—specifically rhinovirus, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)—and provide a protocol for the detection of double‐stranded RNA or viral antigen–positive cells by immunofluorescence microscopy. These techniques, together with a post‐imaging analysis, can be applied to characterize the efficiency of infection and kinetics of spread within the airway epithelium. Furthermore, these methods can be utilized in conjunction with antibodies against cellular targets to determine cell tropism and colocalization with specific host factors during infection. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of human airway epithelial cultures at air‐liquid interface (HAE‐ALI) Basic Protocol 2: Viral inoculation of HAE‐ALI Basic Protocol 3: Immunofluorescence (IF)‐based detection of infected cells in HAE‐ALI
Collapse
Affiliation(s)
- Talita B Gagliardi
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland
| |
Collapse
|