1
|
Mo H, Chen Q, Zhang Z, Lin G, Wang Y, Mo L, Liang W, He J, Su B, Li J, Hu Z, Li H, Pei N, Wu Y, Su H. Development of a blocking ELISA for evaluating neutralizing antibodies in human and canine serum based on rabies virus glycoprotein epitope I. Int J Biol Macromol 2025; 301:140275. [PMID: 39863206 DOI: 10.1016/j.ijbiomac.2025.140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Rabies virus (RABV) is extremely hazardous to both humans and animals, causing up to 100 % death. Accurate and easy-to-use serological evaluation of vaccine potency following immunization is crucial for rabies control. In this study, recombinant RABV glycoprotein (rG) was designed and produced in 293FT cells. Subsequently, a monoclonal antibody (S049), against the antigenic epitope I of RABV glycoprotein, was screened. Using the recombinant RABV glycoprotein and S049, a blocking enzyme-linked immunosorbent assay (bELISA) was developed. The rG-encapsulated antigen was optimized to a concentration of 100 ng. Experimental conditions were refined, and the receiver operator characteristic (ROC) curve analysis demonstrated a maximal Youden index of 0.9978 for the canine serum detection, with a critical bELISA value of 23.21 %, specificity of 99.15 %, and sensitivity of 97.06 %. For human serum, the maximum Youden index was 0.9903, with a critical bELISA value of 30.60 %, specificity of 100 %, and sensitivity of 95.65 %. These findings indicate that the blocking ELISA exhibits comparable sensitivity and specificity to the fluorescent antibody virus neutralization test. In conclusion, the present study developed a robust blocking ELISA for post-immunization RABV detection, offering a promising tool for high-throughput sample assessment and surveillance of herd immunity, especially in resource-limited settings.
Collapse
Affiliation(s)
- Haifeng Mo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qian Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhigao Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Guanfeng Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Mo
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | | | - Jiaming He
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bijia Su
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhiming Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Nana Pei
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Hailong Su
- Department of Immunology, Zunyi Medical University, Guizhou, China; School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Li D, Wang X, Li G, Zhou J, Bian L, Zhao X, Xing L, Zeng J, Cui J, Cui L, Zhang Y, Chen Y. Optimizing rabies mRNA vaccine efficacy via RABV-G structural domain screening and heterologous prime-boost immunization. NPJ Vaccines 2025; 10:43. [PMID: 40025078 PMCID: PMC11873297 DOI: 10.1038/s41541-025-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Abstract
mRNA vaccine has become a promising technology platform for rabies prevention. This study explores the roles of different structural domains of rabies virus glycoprotein (RABV-G) and heterologous prime-boost strategies for enhanced immune responses and protection. The results suggested that mRNA vaccines encoding full-length RABV-G (RABV-Full) and RABV-R333Q induced strong immune responses and provided full protection against rabies, while mRNA vaccines encoding ectodomain/transmembrane domain (RABV-TE) and ectodomain (RABV-E) were less effective. Heterologous immunization results revealed that mRNA-primed strategies yielded higher long-lasting VNTs, but lower early VNTs than inactivated rabies virus (IRV)-primed strategies. 2×RABV-Full and IRV > RABV-Full provided 100% protection, while that of RABV-Full>IRV was 90%. Transcriptome analysis showed that rabies mRNA vaccine induced both MHCI and MHCII antigen presentation, as well as B/T cell activation. In conclusion, full-length RABV-G mRNA vaccines, particularly with an 'IRV prime and RABV-Full boost' strategy, hold great potential for rabies prevention.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Liao Xing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Juanmei Zeng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxing Cui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lili Cui
- Beijing Research Center, CSPC Pharmaceutical Group Co. Ltd., Beijing, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China.
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Rahmati S, Zandi F, Ahmadi K, Adeli A, Rastegarpanah N, Amanlou M, Vaziri B. Computational structure-based design of antiviral peptides as potential protein-protein interaction inhibitors of rabies virus phosphoprotein and human LC8. Heliyon 2025; 11:e41520. [PMID: 39845016 PMCID: PMC11750543 DOI: 10.1016/j.heliyon.2024.e41520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Rabies is a serious zoonotic disease caused by the rabies virus (RABV). Despite the successful development of vaccines and efforts made in drug discovery, rabies is incurable. Therefore, development of novel drugs is of interest to the scientific community. Antiviral peptides can be designed based on the known structures of viral proteins and their biological targets. Cytoplasmic dynein light chain LC8, one of the first identified host partners of RABV phosphoprotein (RABV P), is an essential factor for RABV transcription and replication. As part of the search for new potential drugs against rabies, we used structure-based drug design using the in silico tools. The binding site of LC8 with RABV P was used for peptide design. Four potential peptide inhibitors (Pep1-4) were selected, modeled, and docked with RABV P. The highest binding affinity was observed for the RABV P-Pep2 complex. Molecular dynamics (MD) simulations were performed and the stability of the peptides and complexes was confirmed. Finally, Pep2 can be used as a potential candidate for peptide-based antiviral therapy against RABV. The identified small peptides may prevent RABV infection based on the results of the current investigation. Further in vitro and in vivo studies are needed to confirm these results.
Collapse
Affiliation(s)
- Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Department of Medical Biotechnology, School of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Niloofar Rastegarpanah
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Santosh AK, Kumar D, Kaur C, Gupta P, Jasmeen P, Dilip L, Kavitha G, Basagoudanavar S, Hosamani M, Balamurugan V, Sharada R, Rathnamma D, Sunil KM, Hegde NR, Isloor S. Evaluation of the immune status of dogs vaccinated against rabies by an enzyme-linked immunosorbent assay using crude preparations of insect cells infected with a recombinant baculovirus encoding the rabies virus glycoprotein gene. PLoS One 2024; 19:e0314516. [PMID: 39625902 PMCID: PMC11614288 DOI: 10.1371/journal.pone.0314516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Evaluation of the effectiveness of vaccination of animals against rabies is not routinely implemented. In cases where it is carried out, the rapid fluorescent focus inhibition test (RFFIT) or the fluorescent antibody virus neutralization (FAVN) test are the recommended tests. However, both of these tests require handling of live rabies virus (RABV), and are cumbersome to perform. In view of this, the enzyme-linked immunosorbent assay (ELISA) has been proposed as a surrogate test; however, availability of appropriate antigen is a major impediment for the development of ELISAs to detect anti-rabies antibodies. The most widely used antigen is the RABV glycoprotein (G) purified from cell culture-propagated virus, which requires a biosafety level 3 containment. The alternative is to use recombinantly expressed G, which needs to be to be properly glycosylated and folded to serve as the best antigen. The most suitable system for its production is the baculovirus expression system (BVES). However, purification of RABV G is challenging. We therefore tested partially purified preparations in the form of extracts of insect cells infected with baculovirus expressing RABV G, against sera from vaccinated dogs in an indirect ELISA. The results showed good concordance against RFFIT, with sensitivity and specificity of 90.48% and 80.00%, respectively. The system may be used for quick screening to determine the presence and an approximate level of antibodies, and can be modified to enable monitoring of mass dog vaccination programs, as well as to facilitate certification of dogs intended for international travel and transportation.
Collapse
Affiliation(s)
- A. K. Santosh
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | - Deepak Kumar
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad, India
| | - Charanpreet Kaur
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, India
| | - Priya Gupta
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Pagala Jasmeen
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - L. Dilip
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | - G. Kavitha
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | | | | | - V. Balamurugan
- ICAR – National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - R. Sharada
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | - D. Rathnamma
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | - K. M. Sunil
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| | - Nagendra R. Hegde
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, India
| |
Collapse
|
5
|
Meng X, Yan F, Wang W, Wang S, Cong H, Li J, Zhao Y, Wang T, Li N, Gao Y, Wang J, Feng N, Xia X. A single dose of an ALVAC vector-based RABV virus-like particle candidate vaccine induces a potent immune response in mice, cats and dogs. Emerg Microbes Infect 2024; 13:2406280. [PMID: 39295522 PMCID: PMC11443554 DOI: 10.1080/22221751.2024.2406280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.
Collapse
Affiliation(s)
- Xianyong Meng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Haiyang Cong
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jiaqi Li
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
| | - Na Feng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
6
|
Huang S, Li JW, Zheng LW, Qiao WW, McGrath C. One Health and Oral Health: A Scoping Review to Inform Research and Present Challenges. JDR Clin Trans Res 2024; 9:88S-98S. [PMID: 39558733 DOI: 10.1177/23800844241273821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND "One health" is an integrated, unifying approach that recognizes the interconnectedness between the health of people, animals, and the environment. Oral diseases are the most common diseases to affect humankind, and it is increasingly acknowledged that key determinants of oral heath are social and environmental. However, there is a dearth of information on the relationship between oral health and one health. AIMS A scoping review was conducted to examine how animal and environmental health affects human oral health and vice versa, to examine the interest in the field overtime, and to provide a synthesis of the literature concerning one health in the oral health context to date. METHODS A broad standardized search strategy was employed across 5 electronic databases. Screening of publications with defined inclusion and exclusion criteria followed PRISMA-ScR (the Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS The initial search yielded 345 articles; 163 remained after removal of duplicates. Nineteen articles were identified as "potentially effective studies," and after consideration of the full text, 13 articles were identified as "effective studies" to inform this review. Most studies were published since 2020 (60.5%, 8/13), and there were reports from 5 of the 6 World Health Organization regions (except the Eastern Mediterranean region). Most studies were observation in nature and mostly of cross-sectional study design (84.7%, 11/13 studies). More than half of the studies (53.8%, 7/13) were concerned with how environmental factors such as chemical exposures affect human oral health. Studies involving animals (46.2%, 6/13) highlighted the risk of zoonotic infections from horses and livestock to humans. CONCLUSIONS There is a recent and growing interest in "one health" in the oral health context. Qualitative synthesis of data highlighted the interconnectedness between the health of animals and environment with human health with implications for consideration and action by dentistry. KNOWLEDGE TRANSFER STATEMENT The results of this scoping review address the importance of dentistry in the "one health" concept. This scoping review will allow other researchers to be aware of and fill literature gaps with respect to the impact of animal health and environment on oral health and contribute to future research.
Collapse
Affiliation(s)
- S Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J W Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - L W Zheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - W W Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - C McGrath
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Li J, Yu P, Liu Q, Xu L, Chen Y, Li Y, Zhang F, Zhu W, Peng Y. Safety and efficacy assessment of an mRNA rabies vaccine in dogs, rodents, and cynomolgus macaques. NPJ Vaccines 2024; 9:130. [PMID: 39033177 PMCID: PMC11271276 DOI: 10.1038/s41541-024-00925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Rabies is a lethal disease caused by the rabies virus (RABV), which causes acute neurological infections in mammals, including human beings. We previously reported that an mRNA vaccine (LVRNA001) encoding the rabies virus's glycoprotein induced strong protective immune responses to rabies in mice and dogs. Here, we further evaluate the safety of LVRNA001. First, we performed a confirmative efficacy study in dogs, which showed that LVRNA001 fully protected the animals from the virus, both pre- and post-infection. Moreover, using pre- and post-exposure prophylaxis murine models, we showed that LVRNA001, built from the CTN-1 strain, was able to protect against various representative RABV strains from the China I-VII clades. To evaluate the safety of the vaccine, chronic and reproductive toxicity studies were performed with cynomolgus macaques and rats, respectively. In a repeated-dose chronic toxicity study, vaccinated monkeys displayed no significant alterations in body weight, temperature, or hematological and biochemical markers. Lymphocyte subset measurement and histopathological examination showed that no toxicity was associated with the vaccine. The immunogenicity study in cynomolgus macaques demonstrated that LVRNA001 promoted the generation of neutralizing antibodies and Th1-biased immune response. Evaluation of reproductive toxicity in rats revealed that administration of LVRNA001 had no significant effects on fertility, maternal performance, reproductive processes, and postnatal outcomes. In conclusion, LVRNA001 can provide efficient protection against rabies virus infection in dogs and mice, and toxicity studies showed no significant vaccine-related adverse effects, suggesting that LVRNA001 is a promising and safe vaccine candidate for rabies prophylaxis and therapy.
Collapse
Affiliation(s)
- Jianglong Li
- Liverna Therapeutics Inc., Zhuhai, 519000, China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, 102206, China
| | - Qi Liu
- Liverna Therapeutics Inc., Zhuhai, 519000, China
| | - Long Xu
- AIM Vaccine Co. Ltd., Beijing, 100076, China
| | - Yan Chen
- Liverna Therapeutics Inc., Zhuhai, 519000, China
| | - Yan Li
- Liverna Therapeutics Inc., Zhuhai, 519000, China
| | - Fan Zhang
- AIM Vaccine Co. Ltd., Beijing, 100076, China.
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, 102206, China.
| | - Yucai Peng
- Liverna Therapeutics Inc., Zhuhai, 519000, China.
| |
Collapse
|
8
|
Xu Y, Weng L, Wang X, Li M, Guo W, Liu Y, Li X, Wang Z, Liu X, Xu S, He F, Hou Q, Li T, Du W, Zhang Y, Chang S, Zhang L, Zhang Y. Application prospects of the 2BS cell-adapted China fixed rabies virus vaccine strain 2aG4-B40. Virol J 2024; 21:154. [PMID: 38978059 PMCID: PMC11229241 DOI: 10.1186/s12985-024-02416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination. Thus, replacing Vero cells with human diploid cells may be a safer strategy. In this study, we developed a novel 2BS cell-adapted rabies virus strain and analysed its sequence, virulence and immunogenicity to determine its application potential as a human diploid cell inactivated vaccine. METHODS AND RESULTS The 2BS cell-adapted rabies virus strain 2aG4-B40 was established by passage for 40 generations and selection of plaques in 2BS cells. RNA sequence analysis revealed that mutations in 2BS cell-adapted strains were not located at key sites that regulate the production of neutralizing antibodies or virulence in the aG strain (GQ412744.1). The gradual increase in virulence (remaining above 7.0 logLD50/ml from the 40th to 55th generation) and antigen further indicated that these mutations may increase the affinity of the adapted strains for human diploid cells. Identification tests revealed that the 2BS cell-adapted virus strain was neutralized by anti-rabies serum, with a neutralization index of 19,952. PrEP and PEP vaccination and the NIH test further indicated that the vaccine prepared with the 2aG4-B40 strain had high neutralizing antibody levels (2.24 to 46.67 IU/ml), immunogenicity (protection index 270) and potency (average 11.6 IU/ml). CONCLUSIONS In this study, a 2BS cell-adapted strain of the 2aG4 rabies virus was obtained by passage for 40 generations. The results of sequencing analysis and titre determination of the adapted strain showed that the mutations in the adaptive process are not located at key sequence regions of the virus, and these mutations may enhance the affinity of the adapted strain for human diploid cells. Moreover, vaccines made from the adapted strain 2aG4-B40 had high potency and immunogenicity and could be an ideal candidate rabies virus strain for inactivated vaccine preparation.
Collapse
Affiliation(s)
- Ying Xu
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Lin Weng
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Xuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Ming Li
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Wanping Guo
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Yiqing Liu
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Xiang Li
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Zhenping Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Xinyu Liu
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Shengnan Xu
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Feide He
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Qianqian Hou
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Tengzhou Li
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Wenke Du
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Yabo Zhang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Shumin Chang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Liwen Zhang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China
| | - Yuntao Zhang
- Beijing Institute of Biological Products Co., Ltd, Beijing, 100176, China.
| |
Collapse
|
9
|
Elwy A, Abdelrahman H, Specht J, Dhiman S, Christ TC, Lang J, Friebus-Kardash J, Recher M, Lang KS. Natural IgG protects against early dissemination of vesicular stomatitis virus. J Autoimmun 2024; 146:103230. [PMID: 38754237 DOI: 10.1016/j.jaut.2024.103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Neonatal Fc receptor (FcRn) recycles immunoglobulin G, and inhibition of FcRn is used clinically for treatment of autoimmune diseases. In this work, using the vesicular stomatitis virus (VSV) mouse infection model system, we determined the role of FcRn during virus infection. While induction of neutralizing antibodies and long-term protection of these antibodies was hardly affected in FcRn deficient mice, FcRn deficiency limited the amount of natural IgG (VSV-specific) antibodies. Lack of natural antibodies (nAbs) limited early control of VSV in macrophages, accelerated propagation of virus in several organs, led to the spread of VSV to the neural tissue resulting in fatal outcomes. Adoptive transfer of natural IgG into FcRn deficient mice limited early propagation of VSV in FcRn deficient mice and enhanced survival of FcRn knockout mice. In line with this, vaccination of FcRn mice with very low dose of VSV prior to infection similarly prevented death after infection. In conclusion we determined the importance of nAbs during VSV infection. Lack of FcRn limited nAbs and thereby enhanced the susceptibility to virus infection.
Collapse
Affiliation(s)
- Abdelrahman Elwy
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany.
| | - Hossam Abdelrahman
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julia Specht
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Swati Dhiman
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | | | - Judith Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Justa Friebus-Kardash
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany; Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147, Essen, Germany
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Karl Sebastian Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
10
|
Cahyanti N, Syukur S, Purwati E, Fitria Y, Rahmadani I, Subekti DT. Molecular analysis and geographic distribution of the recent Indonesian rabies virus. Vet World 2023; 16:2479-2487. [PMID: 38328351 PMCID: PMC10844793 DOI: 10.14202/vetworld.2023.2479-2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/17/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Some Indonesian islands, including Sumatra, Kalimantan, Sulawesi, Java, and East Nusa Tenggara, have endemic rabies. Rabies outbreaks in Bali began from 2008 to 2011 and continue to occur sporadically. This study aimed to study the molecular analysis and geographical distribution of Indonesian rabies virus (RABV) from 2016 to 2021 and compare to previous periods. Materials and Methods Virus isolates from 2016 to 2021 were extracted from dog brains and sequenced at the nucleoprotein gene locus. They were compared with data sequences available in the GenBank database. Indonesian RABV from the previous three periods (before 1989, 1997-2003, and 2008-2010) was extracted from the GenBank database. The genetic diversity in this study was based on the N gene of Indonesian RABV. Results Asian RABV, which is genetically close to the Indonesian virus, is a virus from China (ASIA-3 cluster) and from the Southeast Asia region, namely, virus isolates from Sarawak and Malaysia and some Cambodian isolates. Rabies virus, which was isolated from the Bali islands, was the new cluster first detected and published in Bali, Indonesia, in 2008, while RABV from West Sumatra Province, which was isolated from 2016 to 2021, was also considered a new cluster that is genetically distant from other clusters in Indonesia. Conclusion The RABV in Indonesia is divided into five clusters. The isolates from West Sumatra Province from 2016 to 2021 were a new cluster genetically distant from other Indonesian viruses.
Collapse
Affiliation(s)
- Nirma Cahyanti
- Biotechnology Program Postgraduate School, Andalas University, West Sumatra Province, Indonesia
| | - Sumaryati Syukur
- Faculty of Mathematics and Natural Sciences, Division of Chemistry, Department of Biotechnology, Andalas University, West Sumatra Province, Indonesia
| | - Endang Purwati
- Biotechnology Program Postgraduate School, Andalas University, West Sumatra Province, Indonesia
| | - Yul Fitria
- National Reference Laboratory for Animal Rabies - Animal Disease Investigation Center of Bukittinggi, Bukittinggi, Indonesia
| | - Ibenu Rahmadani
- National Reference Laboratory for Animal Rabies - Animal Disease Investigation Center of Bukittinggi, Bukittinggi, Indonesia
| | - Didik T. Subekti
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency, Cibinong Science Center, West Java Province, Indonesia
- Indonesian Research Center for Veterinary Science, Agency for Agricultural Research and Development, Indonesian Ministry of Agriculture, Bogor, West Java Province, Indonesia
| |
Collapse
|
11
|
Khairullah AR, Kurniawan SC, Hasib A, Silaen OSM, Widodo A, Effendi MH, Ramandinianto SC, Moses IB, Riwu KHP, Yanestria SM. Tracking lethal threat: in-depth review of rabies. Open Vet J 2023; 13:1385-1399. [PMID: 38107233 PMCID: PMC10725282 DOI: 10.5455/ovj.2023.v13.i11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
An infectious disease known as rabies (family Rhabdoviridae, genus Lyssavirus) causes severe damage to mammals' central nervous systems (CNS). This illness has been around for a very long time. The majority of human cases of rabies take place in underdeveloped regions of Africa and Asia. Following viral transmission, the Rhabdovirus enters the peripheral nervous system and proceeds to the CNS, where it targets the encephalon and produces encephalomyelitis. Postbite prophylaxis requires laboratory confirmation of rabies in both people and animals. All warm-blooded animals can transmit the Lyssavirus infection, while the virus can also develop in the cells of cold-blooded animals. In the 21st century, more than 3 billion people are in danger of contracting the rabies virus in more than 100 different nations, resulting in an annual death toll of 50,000-59,000. There are three important elements in handling rabies disease in post exposure prophylaxis (PEP), namely wound care, administration of anti-rabies serum, and anti-rabies vaccine. Social costs include death, lost productivity as a result of early death, illness as a result of vaccination side effects, and the psychological toll that exposure to these deadly diseases has on people. Humans are most frequently exposed to canine rabies, especially youngsters and the poor, and there are few resources available to treat or prevent exposure, making prevention of human rabies challenging.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, Netherlands
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | |
Collapse
|
12
|
Ahata B, Akçapınar GB. CCHFV vaccine development, current challenges, limitations, and future directions. Front Immunol 2023; 14:1238882. [PMID: 37753088 PMCID: PMC10518622 DOI: 10.3389/fimmu.2023.1238882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most prevalent tick-borne viral disease affecting humans. The disease is life-threatening in many regions of the developing world, including Africa, Asia, the Middle East, and Southern Europe. In line with the rapidly increasing disease prevalence, various vaccine strategies are under development. Despite a large number of potential vaccine candidates, there are no approved vaccines as of yet. This paper presents a detailed comparative analysis of current efforts to develop vaccines against CCHFV, limitations associated with current efforts, and future research directions.
Collapse
Affiliation(s)
- Büşra Ahata
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
- Health Institutes of Turkey, Istanbul, Türkiye
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| |
Collapse
|
13
|
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines (Basel) 2023; 11:vaccines11040756. [PMID: 37112668 PMCID: PMC10147034 DOI: 10.3390/vaccines11040756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.
Collapse
Affiliation(s)
- Krithiga Natesan
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
- Correspondence: ; Tel.: +91-9449992287
| | | | - Sharada Ramakrishnaiah
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Rathnamma Doddamane
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Anthony R. Fooks
- APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
14
|
Boivin L, Harvey PD. Virus Management Using Metal-Organic Framework-Based Technologies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892577 DOI: 10.1021/acsami.3c00922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The eradication and isolation of viruses are two concurrent approaches to protect ourselves from viral infections and diseases. The quite versatile porous materials called metal-organic frameworks (MOFs), have recently emerged as efficient nanosized tools to manage viruses, and several strategies to accomplish these tasks have been developed. This review describes these strategies employing nanoscale MOFs against SARS-CoV-2, HIV-1, tobacco mosaic virus, etc., which include the sequestration by host-guest penetration inside pores, mineralization, design of a physical barrier, controlled delivery of organic and inorganic antiviral drugs or bioinhibitors, photosensitization of singlet oxygen, and direct contact with inherently cytotoxic MOFs.
Collapse
Affiliation(s)
- Léo Boivin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
15
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
16
|
Evaluation of In-House ELISA for Antirabies Antibodies Detection in Domestic Canine. Vet Med Int 2023; 2023:4096258. [PMID: 36743706 PMCID: PMC9891833 DOI: 10.1155/2023/4096258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Indonesia is known to be endemic for rabies in several areas, especially in Sumatra, Kalimantan, Sulawesi, and Flores Islands. Currently, vaccinating dogs has been shown to be the most cost-effective strategy for preventing rabies in humans. Postvaccination monitoring should be carried out to evaluate the success of vaccination by measuring antibody titers in serum of vaccinated dogs. Serological methods for monitoring rabies-specific antibody titers can be carried out using enzyme-linked immunosorbent assay (ELISA) methods as recommended by the World Organization for Animal Health (WOAH). Therefore, the development of the in-house ELISA (BukTi-Vet) that we have carried out in order to support postvaccination monitoring in dogs needs to be evaluated for its diagnostic performance compared to commercial ELISA kits. The diagnostic performance of each ELISA kit was evaluated using 111 known positive and 47 negative serums. Each known positive and negative serum will be tested using the three rabies ELISA kits used in this study. BukTi-Vet is an in-house ELISA for the detection of rabies-specific IgG antibodies that have been developed with sensitivity, specificity, and accuracy of 98.19%, 97.87%, and 98.1%, respectively. Based on the value of its positive and negative clinical utility index, BukTi-Vet is excellent for use in immunoassays directed for confirmatory (0.97) as well as screening (0.94) tests. BukTi-Vet shows a very good agreement with both Platelia II and RFFIT, so it is convincing to be further refined into a diagnostic kit. Tests of field sera from dogs vaccinated with various vaccines should be performed to provide more complete information on diagnostic performance. BukTi-Vet showed a very good agreement with RFFIT, while Pusvetma and Platelia II only showed good agreement. The average value of BukTi-Vet compatibility with RFFIT can reach 94%.
Collapse
|
17
|
Li J, Liu Q, Liu J, Wu X, Lei Y, Li S, Zhao D, Li Z, Luo L, Peng S, Ou Y, Yang H, Jin J, Li Y, Peng Y. An mRNA-based rabies vaccine induces strong protective immune responses in mice and dogs. Virol J 2022; 19:184. [PMID: 36371169 PMCID: PMC9652961 DOI: 10.1186/s12985-022-01919-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractRabies is a lethal zoonotic disease that is mainly caused by the rabies virus (RABV). Although effective vaccines have long existed, current vaccines take both time and cost to produce. Messenger RNA (mRNA) technology is an emergent vaccine platform that supports rapid vaccine development on a large scale. Here, an optimized mRNA vaccine construct (LVRNA001) expressing rabies virus glycoprotein (RABV-G) was developed in vitro and then evaluated in vivo for its immunogenicity and protective capacity in mice and dogs. LVRNA001 induced neutralizing antibody production and a strong Th1 cellular immune response in mice. In both mice and dogs, LVRNA001 provided protection against challenge with 50-fold lethal dose 50 (LD50) of RABV. With regards to protective efficiency, an extended dosing interval (14 days) induced greater antibody production than 3- or 7-day intervals in mice. Finally, post-exposure immunization against RABV was performed to evaluate the survival rates of dogs receiving two 25 μg doses of LVRNA001 vs. five doses of inactivated vaccine over the course of three months. Survival rate in the LVRNA001 group was 100%, whereas survival rate in the inactivated vaccine control group was only 33.33%. In conclusion, these results demonstrated that LVRNA001 induced strong protective immune responses in mice and dogs, which provides a new and promising prophylactic strategy for rabies.
Collapse
|
18
|
A cocktail of human monoclonal antibodies broadly neutralizes North American rabies virus variants as a promising candidate for rabies post-exposure prophylaxis. Sci Rep 2022; 12:9403. [PMID: 35672343 PMCID: PMC9174473 DOI: 10.1038/s41598-022-13527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Human rabies remains a globally significant public health problem. Replacement of polyclonal anti-rabies immunoglobulin (RIG), a passive component of rabies post-exposure prophylaxis (PEP), with a monoclonal antibody (MAb), would eliminate the cost and availability constraints associated with RIG. Our team has developed and licensed a human monoclonal antibody RAB1 (Rabishield©), as the replacement for RIG where canine rabies is enzootic. However, for the highly diverse rabies viruses of North America, a cocktail containing two or more MAbs targeting different antigenic sites of the rabies glycoprotein should be included to ensure neutralization of all variants of the virus. In this study, two MAb cocktails, R172 (RAB1-RAB2) and R173 (RAB1-CR57), were identified and evaluated against a broad range of rabies variants from North America. R173 was found to be the most potent cocktail, as it neutralized all the tested North American RABV isolates and demonstrated broad coverage of isolates from both terrestrial and bat species. R173 could be a promising candidate as an alternative or replacement for RIG PEP in North America.
Collapse
|
19
|
Kumar R, Srivastava V, Baindara P, Ahmad A. Thermostable vaccines: an innovative concept in vaccine development. Expert Rev Vaccines 2022; 21:811-824. [PMID: 35285366 DOI: 10.1080/14760584.2022.2053678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccines represent one of the most common and safer ways of combating infectious diseases. Loss of potency owing to thermal denaturation or degradation of almost all the commercially available vaccines necessitates their storage, transportation, and final dissemination under refrigerated or deep-freeze conditions. However, maintenance of a continuous cold chain at every step raises the cost of vaccines significantly. A large number of life-saving vaccines are discarded before their application owing to exposure to sub-optimum temperatures. Therefore, there is a pressing need for the development of a thermostable vaccine with a long shelf life at ambient temperature. AREAS COVERED A literature search was performed to compile a list of different vaccines, along with their storage and handling conditions. Similarly, a separate list was prepared for different coronavirus vaccines which are in use against coronavirus disease 2019. A literature survey was also performed to look at different approaches undertaken globally to address the issue of the cold-chain problem. We emphasised the importance of yeast cells in the development of thermostable vaccines. In the end, we discussed why thermostable vaccines are required, not only in resource-poor settings in Asian and African countries but also for resource-rich settings in Europe and North America. EXPERT OPINION : Temperature change can severely impact the stability of various life-saving vaccines. Therefore, there is a pressing need for the development of thermostable vaccines with a long shelf life at ambient temperature.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco 94143, California, USA
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa
| | - Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65201, Missouri, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
20
|
Khalil WM, Aboshanab KM, Aboulwafa MM. Evaluation and Correlation of Rabies Vaccine Potency Using the National Institute of Health, Rapid Focus Fluorescent Inhibition, and Passive Hemagglutination Tests. Viral Immunol 2022; 35:159-169. [PMID: 35104162 DOI: 10.1089/vim.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rabies vaccine preparations are quantitatively assayed for potency using the in-vivo challenge National Institute of Health (NIH), the main test that consumes a high number of animals, takes a long time, and has wide variability. The Rapid focus fluorescent inhibition (RFFIT) and the passive hemagglutination (PHA) tests, the two serologically based tests, were also used for such purpose. In this study, we aimed to evaluate and correlate the potency of the NIH, RFFIT, and PHA tests according to the World Health Organization (WHO) validity criteria, aiming to validate the use of RFFIT or PHA test as a substitute to the NIH test for determining the potency of commercially available Rabies vaccine preparations. The results showed that, the three tests can be successfully used; however, a higher correlation between RFFIT and NIH than PHA and NIH was recorded (Pearson correlation = 1). The potency of rabies vaccine preparations using NIH, RFFIT, and PHA were 3.73, 3.51, and 4.50, respectively. NIH is the main test for the determination of vaccine potency carried out by conducting 25 experiments and consuming about 5,000 mice compared to 1,200 mice used with RFFIT and 1,000 mice used with PHA test. Taken together, we concluded that (i) in some tested preparations, both RFFIT and PHA tests gave comparable results, and they can be used interchangeably; (ii) RFFIT could successfully replace NIH test, but not PHA; (iii) RFFIT and PHA tests are faster, more accurate, more economic, and more sensitive than NIH; nevertheless, PHA needs further investigations; and (iv) both RFFIT and NIH tests complement and reinforce each other as they provide a comprehensive picture of the product potency.
Collapse
Affiliation(s)
- Walaa M Khalil
- Central Administration of Control of Biologicals and Innovative Products and Clinical Trials, Egyptian Drug Authority Dokki, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Faculty of Pharmacy, King Salman International University, Ras-Sedr, Egypt
| |
Collapse
|
21
|
Interferon Inhibition Enhances the Pilot-Scale Production of Rabies Virus in Human Diploid MRC-5 Cells. Viruses 2021; 14:v14010049. [PMID: 35062253 PMCID: PMC8779192 DOI: 10.3390/v14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/21/2022] Open
Abstract
Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-β response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1−), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1− cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.
Collapse
|
22
|
Park JE, Shin HJ. Immunogenicity of replication-deficient vesicular stomatitis virus based rabies vaccine in mice. Vet Q 2021; 41:202-209. [PMID: 33985418 PMCID: PMC8172215 DOI: 10.1080/01652176.2021.1930277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rabies is a viral disease that causes severe neurological manifestations both in humans and various mammals. Although inactivated and/or attenuated vaccines have been developed and widely used around the world, there are still concerns with regard to their safety, efficacy, and costs. OBJECTIVE As demand has grown for a new rabies vaccine, we have developed a new vesicular stomatitis viruses (VSVs) based rabies vaccine that replaces glycoproteins with rabies virus (RABV) glycoprotein (GP), or so-called VSV/RABV-GP. METHODS VSV/RABV-GP production was measured by sandwich ELISA. The generation of VSV/RABV-GP was evaluated with GP-specific antibodies and reduced transduction with GP-specific neutralizing antibodies. Virus entry was quantified by measuring the luciferase levels at 18-h post-transduction. BALB/c mice (three groups of six mice each) were intraperitoneally immunized with PBS, RABA, or VSV/RABV-GP at 0 and 14 days. At 28 days post-immunization serology was performed. Statistical significance was calculated using the Holm-Sidak multiple Student's t test. RESULTS Mice immunized with VSV/RABV-GP produced IgM and IgG antibodies, whereas IgM titers were significantly higher in mice immunized with VSV/RABV-GP compared to inactivated RABV. The secretion profiles of IgG1 and IgG2a production suggested that VSV/RAVB-GP induces the T helper cell type-2 immune bias. In addition, the average (±SD; n = 3) serum neutralization titers of the inactivated RABV and VSV/RABV-GP groups were 241 ± 40 and 103 ± 54 IU/mL, respectively. CONCLUSION Our results confirm that VSV/RABV-GP could be a new potential vaccination platform for RABV.
Collapse
Affiliation(s)
- Jung-Eun Park
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Jin Shin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Genomics serology to inform therapies and vaccines for arthritogenic alphaviruses. Proc Natl Acad Sci U S A 2021; 118:2114687118. [PMID: 34625494 DOI: 10.1073/pnas.2114687118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
|
24
|
Zhao P, Guo S, Zhong Z, Yang S, Xia X. Quantitative characterization of the B cell receptor repertoires of human immunized with commercial rabies virus vaccine. Hum Vaccin Immunother 2021; 17:2538-2546. [PMID: 34559619 PMCID: PMC8475592 DOI: 10.1080/21645515.2021.1893576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
Humoral immunity is crucial for an efficient host immune response against rabies virus (RABV) infection. But the B cell receptor (BCR) repertoire in human after RABV vaccine immunization remained unclear. To study the BCR repertoires in peripheral blood mononuclear cells (PBMCs) of human immunized with rabies virus vaccine. In this study, we conducted BCR complementarity determining region 3 (CDR3) repertoires in 4 healthy volunteers before and after immunization with RABV vaccine by high-throughput sequencing. The bioinformatics analysis process was performed. The results showed that RABV vaccination changed the BCR diversity and the usage of V/J gene segments, as well as V-J pairing. B cell clone expansion was induced by the vaccination and sequences of high expand CDR3 aa clones were identified. To the best of our knowledge, we firstly quantitative characterized B cell receptor repertoire of human immunized with c rabies virus vaccine. It might provide us with new insights into B cell receptor condition after RABV vaccination.
Collapse
Affiliation(s)
- Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Yuebei People’s Hospital, Shaoguan Municipal Quality Control Center for Laboratory Medicine, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- CONTACT Pingsen Zhao ; Department of Laboratory Medicine, Yuebei People’s Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan512025, P. R. China
| | - Sharula Guo
- Department of Infection Control, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xianzhu Xia
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
25
|
Krasnopolsky Y. BIOTECHNOLOGICAL RESEARCH IN THE CREATION AND PRODUCTION OF ANTIRABIC VACCINES. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rabies is a neurological disease of a viral nature, leading to death. Rabies virus is an RNA virus that invades the central nervous system, leading to neuronal dysfunction. Timely vaccination can prevent the diseases development. Aim. The article is devoted to immunobiotechnological research aimed at creating antirabic vaccines. Results. The history of the antirabic vaccines creation from the first inactivated vaccines obtained from nervous tissue to the cultivation of the virus on animal cell cultures is considered. The article presents commercially available anti-rabies vaccines: their composition, the used rabies virus strains, cell cultures, the methods of inactivation and purification. The technology of producing an anti-rabies vaccine based on a Pitman Moore virus strain and a chicken fibroblast cell culture is presented. The advantages of different vaccine types are considered: live attenuated, peptide, liposomal, RNA vaccines, vaccines based on viral vectors, transgenic plants and reverse genetics methods. Conclusions. The development of biotechnology, immunology and virology makes it possible to improve constantly vaccine preparations, including those against rabies, increasing their effectiveness and safety.
Collapse
|
26
|
Bernardino TC, Astray RM, Pereira CA, Boldorini VL, Antoniazzi MM, Jared SGS, Núñez EGF, Jorge SAC. Production of Rabies VLPs in Insect Cells by Two Monocistronic Baculoviruses Approach. Mol Biotechnol 2021; 63:1068-1080. [PMID: 34228257 DOI: 10.1007/s12033-021-00366-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Rabies is an ancient zoonotic disease that still causes the death of over 59,000 people worldwide each year. The rabies lyssavirus encodes five proteins, including the envelope glycoprotein and the matrix protein. RVGP is the only protein exposed on the surface of viral particle, and it can induce immune response with neutralizing antibody formation. RVM has the ability to assist with production process of virus-like particles. VLPs were produced in recombinant baculovirus system. In this work, two recombinant baculoviruses carrying the RVGP and RVM genes were constructed. From the infection and coinfection assays, we standardized the best multiplicity of infection and the best harvest time. Cell supernatants were collected, concentrated, and purified by sucrose gradient. Each step was used for protein detection through immunoassays. Sucrose gradient analysis enabled to verify the separation of VLPs from rBV. Through the negative contrast technique, we visualized structures resembling rabies VLPs produced in insect cells and rBV in the different fractions of the sucrose gradient. Using ELISA to measure total RVGP, the recovery efficiency of VLPs at each stage of the purification process was verified. Thus, these results encourage further studies to confirm whether rabies VLPs are a promising candidate for a veterinary rabies vaccine.
Collapse
Affiliation(s)
- Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Renato Mancini Astray
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Carlos Augusto Pereira
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | - Vera Lucia Boldorini
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil
| | | | | | - Eutimio Gustavo Fernández Núñez
- Grupo de Engenharia de Bioprocessos. Escola de Artes, Ciências E Humanidades (EACH), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, CEP, 05503-900, Brazil.
| |
Collapse
|
27
|
Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021; 14:25-47. [PMID: 33623396 PMCID: PMC7894434 DOI: 10.2147/aabc.s258759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022] Open
Abstract
Neglected tropical diseases are infectious diseases that impose high morbidity and mortality rates over 1.5 billion people worldwide. Originally restricted to tropical and subtropical regions, changing climate conditions have increased their potential to emerge elsewhere. Control of their impact suffers from shortages like poor epidemiological surveillance or irregular drug distribution, and some NTDs still lack of appropriate diagnostics and/or efficient therapeutics. For these, availability of vaccines to prevent new infections, or the worsening of those already established, would mean a major breakthrough. However, only dengue and rabies count with approved vaccines at present. Herein, we review the state-of-the-art of vaccination strategies for NTDs, setting the focus on third generation vaccines and the concept of reverse vaccinology. Its capability to address pathogens´ biological complexity, likely contributing to save developmental costs is discussed. The use of computational tools is a fundamental aid to analyze increasingly large datasets aimed at designing vaccine candidates with the highest, possibly, opportunities to succeed. Ultimately, we identify and analyze those studies that took an in silico approach to find vaccine candidates, and experimentally assessed their immunogenicity and/or protection capabilities.
Collapse
Affiliation(s)
- Raquel Robleda-Castillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
28
|
Palatnik-de-Sousa CB. What Would Jenner and Pasteur Have Done About COVID-19 Coronavirus? The Urges of a Vaccinologist. Front Immunol 2020; 11:2173. [PMID: 32983183 PMCID: PMC7479216 DOI: 10.3389/fimmu.2020.02173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Clarisa B. Palatnik-de-Sousa
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute for Research in Immunology, Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
29
|
Zhang YN, Chen C, Deng CL, Zhang CG, Li N, Wang Z, Zhao L, Zhang B. A novel rabies vaccine based on infectious propagating particles derived from hybrid VEEV-Rabies replicon. EBioMedicine 2020; 56:102819. [PMID: 32512518 PMCID: PMC7273168 DOI: 10.1016/j.ebiom.2020.102819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Live attenuated vaccines (LAVs) can mimic natural infection and have advantages to stimulate a robust and sustained immune response as well as to confer long-term protection. However, safety concerns is one of the major obstacles for LAVs development. In an effort to achieve the optimal balance between immunogenicity and safety, researchers currently have taken different strategies for the development of LAVs. METHODS We constructed a novel infectious self-propagating hybrid replicon particle (PRP), VEEV-RABV-G, through replacing the entire structural proteins of the Venezuelan equine encephalitis virus (VEEV) with the glycoprotein of rabies virus (RABV-G) as the single structural protein. We evaluated the potential of VEEV-RABV-G as a safe live attenuated vaccine in mice model. FINDINGS We found that VEEV-RABV-G could self-propagate efficiently in cell culture and induce a robust humoral immunity and provide protection against virulent RABV challenge in immunized mice. Remarkably, VEEV-RABV-G is highly attenuated in both adult and sucking mice, causing much weaker inflammatory and apoptotic effects in the brains of infected adult mice and significantly lower weight loss and morbidity compared with the commonly used RABV-derived LAVs. INTERPRETATION This study reveals the feasibility of developing novel rabies vaccines based on the self-replicating PRPs. FUNDING This work was supported by the National Key Research and Development Program of China (2016YFD0500400).
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Guang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
30
|
Lu Y, Cheng L, Liu J. Optimization of Inhibitory Peptides Targeting Phosphoprotein of Rabies Virus. Int J Pept Res Ther 2020; 26:1043-1049. [PMID: 32431572 PMCID: PMC7222161 DOI: 10.1007/s10989-019-09906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
Abstract
Rabies is a serious zoonosis caused by rabies virus (RABV) of the genus Lyssavirus, and immunotherapy is now the only approved, effective method for post-exposure prophylaxis against rabies in humans, whereas an effective antiviral therapy is still unavailable if the central nervous system is invaded. Phosphoprotein (P) is known to play pivotal roles in the life cycle of RABV, and has been regarded as a prime target for inhibitors of viral replication. This study aimed to carry out intracellular administration of a kind of P-binding peptide for RABV inhibition. A group of reported P-binding peptides were focused on for activity improvement by quantitative structure–activity relationship (QSAR) method, and then were mediated by cell penetrating peptide (CPP) for intracellular activity evaluation. The QSAR models had good performance in reliability and predictability (R2 ≥ 0.852, Q2 ≥ 0.601, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Q}}_{\text{ext}}^{2}$$\end{document}Qext2 ≥ 0.595), and the peptide screened by partial least squares (PLS) QSAR model (R2 = 0.994, Q2 = 0.937, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{Q}}_{\text{ext}}^{2}$$\end{document}Qext2 = 0.981) exhibited even higher antiviral activity when it was delivered into the cells by CPP. Above all, this study provided an effective way for development of peptide drug against RABV.
Collapse
Affiliation(s)
- Yongzhong Lu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| | - Linyue Cheng
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, 266042 Qingdao, China
| |
Collapse
|
31
|
Moreira BLC, Gimenez APL, Inagaki JMF, Raboni SM. Inactivated rabies vaccines: Standardization of an in vitro assay for residual viable virus detection. PLoS Negl Trop Dis 2020; 14:e0008142. [PMID: 32210437 PMCID: PMC7135352 DOI: 10.1371/journal.pntd.0008142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/06/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Human rabies, a neglected viral zoonosis, is preventable through domestic animals vaccination and post-exposure prophylaxis using inactivated rabies vaccines. During vaccine production, several mandatory in vivo quality control trials, such as potency, live virus, and safety, are responsible for the use of large numbers of laboratory animals. Over the years, global organizations encouraged the development of alternative methods to reduce, replace and refine the use of animals in the pharmaceutical industry. In this study we standardized an in vitro assay for determination of residual live virus combining viral isolation techniques with direct immunofluorescence detection and viral quantification by a molecular method. Standardization of viral recovery steps and quantification by RT-qPCR were performed and the combined method was shown to be 3 fold more sensitive than the in vivo assay. It was possible to identify viral suspensions cultures, which still had residual viable rabies virus particles, evidencing the importance to implement this method in quality control schemes of rabies vaccine production. In addition, this developed assay is more practical, inexpensive and less time consuming, producing results in just 4 days, which may allow greater agility in the internal quality control of the vaccine. The in vitro method may reduce 2/3rd of laboratory animals numbers used for this purpose, since it can be applied in the intermediate quality control of inactivated rabies vaccine production. Rabies is a viral disease that causes thousands of deaths worldwide every year, but can be preventable through vaccination of animals and humans. In the production of inactivated rabies vaccines, quality control assays use large amounts of laboratory animals. In order to reduce the number of animals in this practice, in vitro methods for residual live virus detection need to be developed. This study shows that combining two simple and effective techniques may be a safer and more accurate method for the detection of residual rabies virus than in vivo assays to evaluate inactivated vaccines and can be used as an intermediate quality control assay of vaccine production.
Collapse
Affiliation(s)
- Beatriz Lourenço Correia Moreira
- Center of Development and Production of Immunobiologicals, Instituto de Tecnologia do Parana (TECPAR), Curitiba, Parana, Brazil.,Postgraduate Program in Microbiology, Parasitology and Pathology, Universidade Federal do Parana, Curitiba, Parana, Brazil
| | - Ana Paula Lappas Gimenez
- Center of Development and Production of Immunobiologicals, Instituto de Tecnologia do Parana (TECPAR), Curitiba, Parana, Brazil
| | - Jorge Minor Fernandes Inagaki
- Center of Development and Production of Immunobiologicals, Instituto de Tecnologia do Parana (TECPAR), Curitiba, Parana, Brazil
| | - Sonia Mara Raboni
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Parana, Curitiba, Parana, Brazil
| |
Collapse
|
32
|
de Rezende AG, Fernández Núñez EG, Astray RM, Puglia ALP, Pereira CA, Jorge SAC. An optimization study for expression of the rabies virus glycoprotein (RVGP) in mammalian cell lines using the Semliki Forest virus (SFV). J Biotechnol 2019; 304:63-69. [PMID: 31442500 DOI: 10.1016/j.jbiotec.2019.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
The Semliki Forest virus (SFV) viral vector has been widely used for transient protein expression. This study aimed to analyze comprehensively the capacity of SFV vector to express rabies lyssavirus glycoprotein (RVGP) in mammalian cells. The assessed parameters were transfection strategy, multiplicity of infection (MOI), harvest time and mammalian cell host. Two transfection approaches, electroporation and lipofection were evaluated to obtain the recombinant SFV, and the electroporation was found to be the most effective. Viral quantification by RT-qPCR was performed to elucidate the relation between the amount of recombinant virus utilized in the infection process and the production levels of the heterologous protein. Four different multiplicities of infection (MOIs = 1; 10; 15; 50) were evaluated using five mammalian cell lines: BHK-21, HuH-7, Vero, L929, and HEK-293T. Protein expression was assessed at two harvest times after infection (24 and 48 h). The recombinant protein generated was characterized by western blot, dot blot, and indirect immunofluorescence (IIF), while its concentration was determined by enzyme-linked immunosorbent assay (ELISA). Similar expression patterns were observed in cell lines BHK-21, HEK-293T, L929, and Vero, with higher RVGP production in the first 24 h. The BHK-21 cells showed yields of up to 4.3 μg per 106 cells when lower MOIs (1 and 10) were used. The HEK-293 T cells also showed similar production (4.3 μg per 106 cells) with MOI of 1, while the L929 and Vero cell lines showed lower expression rates of 2.82 and 1.26 μg per 106 cells, respectively. These cell lines showed lower expression levels at 48 h after infection compared to 24 h. Controversially, in the case of the HuH-7 cell line, RVGP production was higher at 48 h after infection (4.0 μg per 106 cells) and using MOIs of 15 and 50. This work may contribute to optimize the RVGP production using SFV system in mammalian cells. This study can also substantiate for example, the development of approaches that use of SFV for applications for other protein expressions and suggests values for relevant parameters and cell lines of this biotechnique.
Collapse
Affiliation(s)
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil; Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Nyctinomops laticaudatus bat-associated Rabies virus causes disease with a shorter clinical period and has lower pathogenic potential than strains isolated from wild canids. Arch Virol 2019; 164:2469-2477. [PMID: 31297587 DOI: 10.1007/s00705-019-04335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines.
Collapse
|
34
|
Smith SP, Wu G, Fooks AR, Ma J, Banyard AC. Trying to treat the untreatable: experimental approaches to clear rabies virus infection from the CNS. J Gen Virol 2019; 100:1171-1186. [PMID: 31237530 DOI: 10.1099/jgv.0.001269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rabies virus causes an invariably fatal encephalitis following the onset of clinical disease. Despite the availability of safe and effective vaccines, the clinical stages of rabies encephalitis remain untreatable, with few survivors being documented. A principal obstacle to the treatment of rabies is the neurotropic nature of the virus, with the blood-brain barrier size exclusion limit rendering the delivery of antiviral drugs and molecules to the central nervous system inherently problematic. This review focuses on efforts to try and overcome barriers to molecule delivery to treat clinical rabies and overviews current progress in the development of experimental live rabies virus vaccines that may have future applications in the treatment of clinical rabies, including the attenuation of rabies virus vectors through either the duplication or mutation of existing genes or the incorporation of non-viral elements within the genome. Rabies post-infection treatment (PIT) remains the holy grail of rabies research.
Collapse
Affiliation(s)
- Samuel P Smith
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK.,Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK.,Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Julian Ma
- Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK
| | - Ashley C Banyard
- Institute for Infection and Immunity, St George's Hospital Medical School, University of London, London, UK.,School of Life Sciences, University of West Sussex, Falmer, West Sussex, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
35
|
Psarris A, Sindos M, Daskalakis G, Chondrogianni ME, Panayiotou S, Antsaklis P, Loutradis D. Immunizations during pregnancy: How, when and why. Eur J Obstet Gynecol Reprod Biol 2019; 240:29-35. [PMID: 31226574 DOI: 10.1016/j.ejogrb.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022]
Abstract
Maternal immunization during pregnancy provide protection for the mother and the fetus against certain pathogens. Immunizations during pregnancy are divided to routine immunizations recommended for all pregnant women, immunizations for certain medical indications and vaccines that are potentially harmful during pregnancy and should be avoided. We conducted a comprehensive review of the literature regarding immunizations during pregnancy. The search terms used were immunization, vaccine, pregnancy, influenza, pertussis, safety and efficacy. We gathered all available guidelines on vaccination during pregnancy. Generally, vaccines are allowed during pregnancy when the benefits outweigh the risks. Tdap and inactivated flu vaccines are routinely recommended during pregnancy. Vaccines containing live attenuated viruses are contraindicated during pregnancy. These are LAIV influenza, MMR, Varicella, Zoster, BCG and smallpox pre-exposure. All other vaccines are given when medically indicated and the possible benefits outweigh the risks. Obstetricians and gynecologists should be familiar with the indications of vaccination during pregnancy. Vaccination coverage of pregnant women with routinely recommended vaccines has increased but further efforts are needed. Our aim is to review vaccination practices during pregnancy, demonstrate the benefits and dangers of different vaccines, evaluate their effectiveness and define the proper timing of vaccination.
Collapse
Affiliation(s)
- Alexandros Psarris
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece.
| | - Michael Sindos
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Maria Eleni Chondrogianni
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Stefani Panayiotou
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Dimitrios Loutradis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| |
Collapse
|
36
|
Development and Validation of Heminested RT-PCR and qRT-PCR Assays for Comprehensive Detection of Rabies Virus in the Suspected Rabid Brain and Saliva Samples. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.85790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Development and validation of a real-time RT-PCR assay for the quantification of rabies virus as quality control of inactivated rabies vaccines. J Virol Methods 2019; 270:46-51. [PMID: 31047970 DOI: 10.1016/j.jviromet.2019.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Rabies is an infectious viral disease, characterized as a neglected zoonosis, responsible for nearly 60,000 deaths annually. The virus is transmitted mainly by dogs in Africa and Asia, and wildlife in Europe and the Americas, to all mammals' species, causing severe encephalitis almost always fatal after the onset of neurological symptoms. Human rabies can be prevented through extensive vaccination of dogs and pre/post-prophylaxis treatments in humans with inactivated rabies vaccines. The vaccine manufacture involves a series of quality control assays using laboratory animals, which are mandatory to exclude the presence of viable residual virus. The quality controls must be carried out in various steps during the vaccine production, which demands the use of a large number of animals. In this study, we standardized a real-time quantitative RT-PCR duplex assay to be used during intermediate stages of the vaccine production. This assay was done for the quantification of vaccine strain rabies virus, targeting rabies nucleoprotein, and β-actin mRNA of BHK-21 cells as an internal endogenous control. The results showed specific amplification, with the analytical sensitivity ranged from 101 to 106 TCID50/mL with high repeatability rate for the quantification of rabies virus in inactivated vaccine samples. Global organizations are engaged to develop new approaches to determine viable residual virus, and this assay can be applied in combination with traditional in vitro methods for the release of intermediate batches of vaccines during the production process, keeping the in vivo tests only for final release.
Collapse
|
38
|
Solmaz G, Puttur F, Francozo M, Lindenberg M, Guderian M, Swallow M, Duhan V, Khairnar V, Kalinke U, Ludewig B, Clausen BE, Wagner H, Lang KS, Sparwasser TD. TLR7 Controls VSV Replication in CD169 + SCS Macrophages and Associated Viral Neuroinvasion. Front Immunol 2019; 10:466. [PMID: 30930901 PMCID: PMC6428728 DOI: 10.3389/fimmu.2019.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7−/− mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7−/− mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7−/− mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.
Collapse
Affiliation(s)
- Gülhas Solmaz
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Franz Puttur
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marcela Francozo
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marc Lindenberg
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Vikas Duhan
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Kalinke
- Institute of Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hermann Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Karl S Lang
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
39
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
40
|
Squaiella-Baptistão CC, Magnoli FC, Marcelino JR, Sant'Anna OA, Tambourgi DV. Quality of horse F(ab') 2 antitoxins and anti-rabies immunoglobulins: protein content and anticomplementary activity. J Venom Anim Toxins Incl Trop Dis 2018; 24:16. [PMID: 29946337 PMCID: PMC6006770 DOI: 10.1186/s40409-018-0153-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background Among other applications, immunotherapy is used for the post-exposure treatment and/or prophylaxis of important infectious diseases, such as botulism, diphtheria, tetanus and rabies. The effectiveness of serum therapy is widely proven, but improvements on the immunoglobulin purification process and on the quality control are necessary to reduce the amount of protein aggregates. These may trigger adverse reactions in patients by activating the complement system and inducing the generation of anaphylatoxins. Herein, we used immunochemical methods to predict the quality of horse F(ab’)2 anti-botulinum AB, anti-diphtheric, antitetanic and anti-rabies immunoglobulins, in terms of amount of proteins and protein aggregates. Methods Samples were submitted to protein quantification, SDS-PAGE, Western blot analysis and molecular exclusion chromatography. The anticomplementary activity was determined in vitro by detecting the production of C5a/C5a desArg, the most potent anaphylatoxin. Data were analyzed by one-way ANOVA followed by Tukey’s post-test, and differences were considered statistically significant when p < 0.05. Results Horse F(ab’)2 antitoxins and anti-rabies immunoglobulin preparations presented different amounts of protein. SDS-PAGE and Western blot analyses revealed the presence of protein aggregates, non-immunoglobulin contaminants and, unexpectedly, IgG whole molecules in the samples, indicating the non-complete digestion of immunoglobulins. The chromatographic profiles of antitoxins and anti-rabies immunoglobulins allowed to estimate the percentage of contaminants and aggregates in the samples. Although protein aggregates were present, the samples were not able to induce the generation of C5a/C5a desArg in vitro, indicating that they probably contain acceptable levels of aggregates. Conclusions Anti-botulinum AB (bivalent), anti-diphtheric, antitetanic and anti-rabies horse F(ab’)2 immunoglobulins probably contain acceptable levels of aggregates, although other improvements on the preparations must be carried out. Protein profile analysis and in vitro anticomplementary activity of F(ab’)2 immunoglobulin preparations should be included as quality control steps, to ensure acceptable levels of aggregates, contaminants and whole IgG molecules on final products, reducing the chances of adverse reactions in patients.
Collapse
Affiliation(s)
| | - Fábio Carlos Magnoli
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - José Roberto Marcelino
- 2Seção de Processamento de Plasmas Hiperimunes, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Osvaldo Augusto Sant'Anna
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Denise V Tambourgi
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
41
|
Chen Z. Parainfluenza virus 5-vectored vaccines against human and animal infectious diseases. Rev Med Virol 2018; 28. [PMID: 29316047 PMCID: PMC7169218 DOI: 10.1002/rmv.1965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022]
Abstract
Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative‐sense, nonsegmented, single‐stranded RNA virus belonging to the Paramyxoviridae family. Parainfluenza virus 5 is an excellent viral vector and has been used as a live vaccine for kennel cough for many years in dogs without any safety concern. It can grow to high titers in many cell types, and its genome is stable even in the presence of foreign gene insertions. So far, PIV5 has been used to develop vaccines against influenza virus, respiratory syncytial virus, rabies virus, and Mycobacterium tuberculosis, demonstrating its ability to elicit robust and protective immune responses in preclinical animal models. Parainfluenza virus 5–based vaccines can be administered intranasally, intramuscularly, or orally. Interestingly, prior exposure of PIV5 does not prevent a PIV5‐vectored vaccine from generating robust immunity, indicating that the vector can be used more than once. Here, these encouraging results are reviewed together along with discussion of the desirable advantages of the PIV5 vaccine vector to aid future vaccine design and to accelerate progression of PIV5‐based vaccines into clinical trials.
Collapse
Affiliation(s)
- Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China
| |
Collapse
|
42
|
Slesak G, Fleck R, Scherbaum H, Blumenstock G, Schäfer J. Adverse events in vaccinations for travelers - a 1-year prospective survey in a travel clinic in Germany. J Travel Med 2018; 25:4980870. [PMID: 29688492 DOI: 10.1093/jtm/tay026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/17/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The study goal was to assess and compare adverse events (AE) of current vaccinations for travelers under 'real-life conditions'. METHODS A prospective observational online questionnaire study was performed from May 2015 till April 2016 in a travel clinic in Germany. Online questionnaire links were sent 1 week after the first vaccination date. Severity was rated on a scale from 1 to 5 (minor to very severe AE). RESULTS Of 1357 vaccinees 781 (57.6%) responded to the questionnaire, corresponding to 1415 vaccinations (1-7 simultaneous vaccinations). Responders were more often female (f:m = 1.29:1). Main age groups were 20-29 years old (36.1%). Most frequent vaccinations were against rabies (277; chick embryo cell vaccine (CEC): 97, human diploid cell vaccine (HDC): 180), yellow fever (250), typhoid fever (198), meningococcal meningitis (126) and Japanese encephalitis (104). A total of 217 vaccinees (27.8%) reported AE; 82 (10.5%) rated AE as more severe (grade 3: 61, grade 4: 18, grade 5: 3). No life-threatening AE was reported. Of 157 systemic AE the most frequent were: fatigue (75), headaches (46) and pyrexia (31). Of 94 local AE most frequently reported were pain (66), myalgia (25) and swelling (12). AE after single vaccinations were more often associated with rabies vaccine (OR 2.2; 1.2-4.2). AE increased with the number of simultaneous vaccinations (single vaccination: 24.1%, 88/365; 2 vaccinations: 26.6%, 73/274, ≥3 vaccinations: 39.4%, 56/142, χ2 = 12.24, P = 0.002, CCorr = 0.18), but more severe AE showed no association with the number of vaccinations (χ2 = 5.55, P = 0.06, CCorr = 0.12). CONCLUSIONS Single and simultaneous vaccinations were overall well tolerated. AE were reported more frequently with rabies vaccinations in single vaccinations. Increased numbers of simultaneous vaccinations led to some incremental AE but not to more severe AE. Simultaneous vaccinations should be encouraged to reduce missed opportunities for immunizations.
Collapse
Affiliation(s)
- Günther Slesak
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| | - Ralf Fleck
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| | - Helmut Scherbaum
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| | - Gunnar Blumenstock
- Institute of Clinical Epidemiology and Applied Biometry, Eberhard Karls University, Tübingen, Germany
| | - Johannes Schäfer
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| |
Collapse
|
43
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
44
|
Galvez-Romero G, Salas-Rojas M, Pompa-Mera EN, Chávez-Rueda K, Aguilar-Setién Á. Addition of C3d-P28 adjuvant to a rabies DNA vaccine encoding the G5 linear epitope enhances the humoral immune response and confers protection. Vaccine 2017; 36:292-298. [PMID: 29191739 DOI: 10.1016/j.vaccine.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/18/2023]
Abstract
Rabies DNA vaccines based on full-length glycoprotein (G) induce virus neutralizing antibody (VNA) responses and protect against the virus challenge. Although conformational epitopes of G are the main target of VNAs, some studies have shown that a polypeptide linear epitope G5 is also able to induce VNAs. However, a G5 DNA vaccine has not been explored. While multiple doses of DNA vaccines are required in order to confer a protective immune response, this could be overcome by the inclusion of C3d-P28, a molecular adjuvant is know to improve the antibody response in several anti-viral vaccine models. To induce and enhance the immune response against rabies in mice, we evaluated two DNA vaccines based on the linear epitope G5 of Rabies Virus (RABV) glycoprotein (pVaxG5 vaccine) and another vaccine consisting of G5 fused to the molecular adjuvant C3d-P28 (pVaxF1 vaccine). VNA responses were measured in mice immunized with both vaccines. The VNA levels from the group immunized with pVaxG5 decreased gradually, while those from the group vaccinated with pVaxF1 remained high throughout the experimental study. After challenge with 22 LD50 of the Challenge Virus Strain (CVS), the survival rate of mice immunized with pVaxG5 and pVaxF1 was increased by 27% and 50% respectively, in comparison to the PBS group. Furthermore, the in vitro proliferation of anti-rabies specific spleen CD4+ and CD8+ T cells from mice immunized with pVaxF1 was observed. Collectively, these results suggest that the linear G5 epitope is a potential candidate vaccine. Furthermore, the addition of a C3d-P28 adjuvant contributed to enhanced protection, the sustained production of VNAs, and a specific T-cell proliferative response.
Collapse
Affiliation(s)
- Guillermo Galvez-Romero
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica Salas-Rojas
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Ericka N Pompa-Mera
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karina Chávez-Rueda
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Álvaro Aguilar-Setién
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
45
|
Gomi R, Sharma A, Wu W, Sung B, Worgall S. Post-exposure immunization by capsid-modified AdC7 vector expressing Pseudomonas aeruginosa OprF clears P. aeruginosa respiratory infection. Vaccine 2017; 35:7174-7180. [PMID: 29126807 DOI: 10.1016/j.vaccine.2017.10.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022]
Abstract
Respiratory infections with Pseudomonas aeruginosa are major health problems, particularly in patients with cystic fibrosis (CF). No vaccine against P. aeruginosa is yet available. A vaccine that controls colonization of the respiratory tract with P. aeruginosa could be useful to prevent chronic infection and exacerbations. Replication-deficient adenoviral (Ad) vectors based on non-human serotypes are attractive vaccine platforms as they can circumvent the problem of pre-existing anti-Ad immunity in humans. The primate-based AdC7 vector AdC7OprF.RGD that expresses the outer membrane protein F (OprF) of P. aeruginosa (AdC7OprF) and that displays an integrin-binding arginine-glycine-aspartic acid (RGD) sequence is a potent inducer of lung mucosal and protective immunity. Here, we investigated the efficacy of immunization with AdC7OprF.RGD to clear an already established P. aeruginosa respiratory infection in mice (wild-type and CF) and rats. Intratracheal administration of the clinical P. aeruginosa strain RP73 embedded in agar beads was used to establish persistent infection. Subsequent intranasal immunization with AdC7OprF.RGD induced robust P. aeruginosa-specific systemic and mucosal, humoral and cellular immune responses. Importantly, the AdC7OprF.RGD immunized mice effectively cleared P. aeruginosa from the lungs. Likewise, immunization with AdC7OprF.RGD of CF mice and Sprague Dawley rats with established P. aeruginosa respiratory infection showed enhanced anti-Pseudomonas immune responses and increased clearance of P. aeruginosa from the lungs. These data suggest that AdC7OprF.RGD can be effective as a post-exposure vaccine and may be useful in clinical settings in particular for patients with CF who frequently harbor the bacteria over prolonged periods.
Collapse
Affiliation(s)
- Rika Gomi
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States; Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
46
|
Wang Z, Liang Q, Zhang Y, Yang J, Li M, Wang K, Cui M, Chen H, Fu ZF, Zhao L, Zhou M. An optimized HMGB1 expressed by recombinant rabies virus enhances immunogenicity through activation of dendritic cells in mice. Oncotarget 2017; 8:83539-83554. [PMID: 29137362 PMCID: PMC5663534 DOI: 10.18632/oncotarget.18368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Rabies remains an important public health threat, killing approximately 59,000 people worldwide annually, most of which are from the developing countries of Africa and Asia where dog rabies are endemic. Therefore, developing an affordable and efficacious vaccine for dog-mediated rabies control is needful in these countries. Our previous studies indicated that over-expression of granulocyte-macrophage colony stimulating factor (GM-CSF) or macrophage inflammatory protein-1 (MIP-1α or CCL3) by recombinant rabies virus (rRABV) could enhance the immunogenicity by activating dendritic cells (DCs). In this study, to further characterize the role of activating DCs in RABV immunogenicity, High mobility group box 1 (HMGB1), a highly conserved and non-histone chromosomal protein that can promote DCs maturation and activation, were investigated. The wild-type HMGB1 (HMGB1wt) and an optimized HMGB1 (HMGB1mut) were individually inserted into the genome of the rRABV strain LBNSE (designated as LBNSE-HMGB1wt and LBNSE-HMGB1mut, respectively), and the effect of over-expression of HMGB1 on the immunogenicity of RABV was investigated. The results demonstrated that LBNSE-HMGB1mut could promote significantly more DCs activation, and the recruitment of follicular helper T, germinal center B and plasma cells in vaccinated mice than those immunized with LBNSE-HMGB1wt or parent virus LBNSE. Further investigations suggested that mice vaccinated with LBNSE-HMGB1mut produced significantly higher level of RABV-neutralizing antibodies and offered a better protection than those vaccinated with LBNSE or LBNSE-HMGB1wt. Taken together, these data provides a better understanding of the mechanism for HMGB1 as a potential adjuvant in enhancing the immunogenicity of RABV, which would contribute to developing more-efficacious rabies vaccines.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yajing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kunlun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Department of Pathology, University of Georgia, Athens, GA, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Chen T, Zhang Y, Wang Z, Yang J, Li M, Wang K, Cui M, Fu ZF, Zhao L, Zhou M. Recombinant rabies virus expressing IL-15 enhances immunogenicity through promoting the activation of dendritic cells in mice. Virol Sin 2017; 32:317-327. [PMID: 28861771 DOI: 10.1007/s12250-017-4036-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Rabies remains a public health threat that kills approximately 59,000 people worldwide each year, most of which are from the developing countries of Africa and Asia where dog rabies are endemic. Therefore, developing an affordable and efficacious vaccine is crucial for rabies control in these countries. Interleukin (IL)-15, an immunoregulatory cytokine, is a pluripotent molecule with therapeutic potential, which targets many cell types and links the innate and adaptive immune system. In this study, IL-15 gene was cloned and inserted into the genome of a recombinant rabies virus (RABV) strain LBNSE (designated as LBNSE-IL15), and the effect of over-expression of IL-15 on the immunogenicity of RABV was investigated. It was found that mice vaccinated with LBNSE-IL15 could induce significantly higher level of virus-neutralizing antibody (VNA) than those immunized with LBNSE, resulting in the higher protection after challenge. Further investigation was performed to find out the possible role of IL-15 plays in the process of antibody induction, and it was found that LBNSE-IL15 could enhance the maturation of dendritic cells (DCs) in immunized mice. Furthermore, the mice immunized with LBNSE-IL15 could promote the TFH cells differentiation and the generation of germinal center B cells and plasma cells. Together, these data indicated that IL-15 could be a potential adjuvant in enhancing the immunogenicity of RABV, contributing to the development of more-efficacious rabies vaccines.
Collapse
Affiliation(s)
- Tiange Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhao Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kunlun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Asgary V, Shoari A, Afshar Moayad M, Shafiee Ardestani M, Bigdeli R, Ghazizadeh L, Khosravy MS, Panahnejad E, Janani A, Bashar R, Abedi M, Ahangari Cohan R. Evaluation of G2 Citric Acid-Based Dendrimer as an Adjuvant in Veterinary Rabies Vaccine. Viral Immunol 2017; 31:47-54. [PMID: 29328884 DOI: 10.1089/vim.2017.0024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For induction of an appropriate immune response, especially in the case of an inactivated vaccine, the use of an adjuvant is crucial. In this study, adjuvanticity effect of G2 dendrimer in veterinary rabies vaccine has been investigated. A nonlinear globular G2 dendrimer comprising citric acid and polyethylene glycol 600 (PEG-600) was synthesized and the toxicity was studied in vitro on the J774A.1 cell line. The adjuvanticity effect of the dendrimer was then investigated on rabies virus in NMRI mice as a model. Different concentrations of dendrimer were used to determine the best formulation for the survival of the mice after virus challenge. The rise of neutralizing antibody was also checked by rapid fluorescent focus inhibition test (RFFIT). The relative potency of the prepared formulation was finally calculated using standard NIH test and the results were compared (and discussed) with the commercially available rabies vaccine. The accuracy of dendrimer synthesis was confirmed using Fourier transform infrared (FT-IR), size, and zeta potential analysis. The in vitro toxicity assay revealed that no significant toxic effect is observed in cells when data are compared with the control group. The in vivo assay showed that a higher survival rate in the mice received a special formulation due to adjuvanticity effect of dendrimer, which is also confirmed by RFFIT. However, the relative potency of that formulation does not give expected results when compared with the alum-containing rabies vaccine. In the current investigation, the adjuvanticity effect of G2 dendrimer was demonstrated for the first time in rising of neutralizing antibodies against rabies virus. Our data confirm that nanoparticles can enhance immune responses in an appropriate manner. Moreover, engineered nanoparticles will enable us to develop novel potent multivalent adjuvants in vaccine technology.
Collapse
Affiliation(s)
- Vahid Asgary
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran .,2 Department of Immunology, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Alireza Shoari
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran
| | - Majid Afshar Moayad
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran
| | - Mehdi Shafiee Ardestani
- 3 Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Razieh Bigdeli
- 4 Research and Development Laboratory, Javid Biotechnology Institute , Tehran, Iran
| | - Leila Ghazizadeh
- 5 National Cell Bank of Iran, Pasteur Institute of Iran , Tehran, Iran
| | | | - Erfan Panahnejad
- 4 Research and Development Laboratory, Javid Biotechnology Institute , Tehran, Iran
| | - Alireza Janani
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran
| | - Rouzbeh Bashar
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran
| | - Maliheh Abedi
- 1 Department of Rabies, Virology Research Group, Pasteur Institute of Iran , Tehran, Iran
| | - Reza Ahangari Cohan
- 6 Department of Pilot Nanobiotechnology, New Technology Research Group, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|