1
|
Li B, Chen C, Zhou X, Liu H, Zhou Z, Wang X, Liang J, Guo Y, Liang S. Effectiveness of Astaxanthin as a Feed Supplement to Improve Growth Performance and Feed Utilization in Aquaculture Animals: A Meta-Analysis. Antioxidants (Basel) 2025; 14:609. [PMID: 40427490 PMCID: PMC12109285 DOI: 10.3390/antiox14050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aquaculture, a vital component of global food supply, faces challenges from environmental stressors that compromise aquatic animal health and productivity. Astaxanthin, a potent carotenoid antioxidant, has shown promise in enhancing growth and stress resilience in aquaculture species, yet its effects remain inconsistent across studies. This meta-analysis systematically evaluates the efficacy of dietary astaxanthin supplementation on growth, feed utilization, antioxidant capacity, and immune function in aquaculture animals. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 64 studies (33 species, 964 comparisons) published prior to 2025 were analyzed using a random-effects model. Results demonstrated that astaxanthin significantly improved final body weight, weight gain rate, specific growth rate, survival rate, and protein efficiency ratio, while reducing feed conversion ratio. Additionally, it enhanced digestive enzyme activities, hepatopancreas antioxidant biomarkers, and immune parameters. The subgroup analysis revealed differences related to species, trophic level, and habitat, and estimated the optimal dose for key indicators. Despite heterogeneity and publication bias, adjusted effect sizes remained significant for most outcomes. These findings underscore astaxanthin's potential as a multifunctional feed additive to promote sustainable aquaculture, though its efficacy depends on species, dosage, and environmental context, warranting further mechanistic and optimization studies.
Collapse
Affiliation(s)
- Bowen Li
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Chunxiu Chen
- Tianjin Fisheries Research Institute, Tianjin 300221, China;
| | - Xiaoqing Zhou
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Zhixiong Zhou
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoyu Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Jian Liang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Yongjun Guo
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| | - Shuang Liang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China; (B.L.); (X.Z.); (H.L.); (Z.Z.); (X.W.); (J.L.)
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province, Ministry of Agriculture and Rural Affairs), Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
2
|
Vitale M, Gomez-Estaca J, Chung J, Chua SC, Pampanin DM. Encapsulation Techniques to Enhance Astaxanthin Utilization as Functional Feed Ingredient. Mar Drugs 2025; 23:143. [PMID: 40278264 PMCID: PMC12028729 DOI: 10.3390/md23040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Herein, the effectiveness of astaxanthin (AX) as functional feed ingredient was assessed by enhancing its stability and bioavailability using encapsulation methods. Spray-drying and liposome entrapment were applied to a natural AX source from shrimp by-products, along with two commercially synthetic alternatives. Encapsulated AX formulations were evaluated for their physico-chemical properties, thermal stability, and in vitro performance using RTL-W1, a rainbow trout (Oncorhynchus mykiss) liver-derived cell line. Both techniques achieved high encapsulation efficiency (73-89%) and provided remarkable protection to AX during thermal treatments, maintaining its stability at 80 °C for up to 2 h and at 100 °C for 30 min. Nevertheless, neither encapsulation methods significantly mitigated water absorption over time. Additionally, morphological characterization revealed spray-dried microcapsules with typical round, partially collapsed particles with a broad size distribution, while liposomes further stabilized into dry powders by spray-drying showed structural rearrangements and an increase in size upon rehydration, although maintaining a uniform and stable distribution. In vitro testing revealed enhanced RTL-W1 cell viability and reduced reactive oxygen species (ROS) production when encapsulation was employed. Overall, these findings demonstrate the potential of the selected encapsulation techniques to optimize the stability, bioavailability, and functionality of AX, providing valuable insights to improve its utilization as a functional ingredient in fish feed formulations.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
- Skretting Aquaculture Innovation, 4016 Stavanger, Norway; (J.C.); (S.-C.C.)
| | - Joaquin Gomez-Estaca
- Instituto de Ciencia y Tecnologia de Alimentos y Nutricion (ICTAN-CSIC), 28040 Madrid, Spain
| | - Janete Chung
- Skretting Aquaculture Innovation, 4016 Stavanger, Norway; (J.C.); (S.-C.C.)
| | - Seong-Chea Chua
- Skretting Aquaculture Innovation, 4016 Stavanger, Norway; (J.C.); (S.-C.C.)
| | - Daniela Maria Pampanin
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| |
Collapse
|
3
|
Abanikannda MF, Shiflett MB, Morais ARC, Hong J, Sealey WM, Bledsoe JW. Evaluating Inclusion of Commercial Pistachio By-Product as a Functional Ingredient in Rainbow Trout Fishmeal and Plant Meal-Based Diets. Antioxidants (Basel) 2024; 13:1280. [PMID: 39594422 PMCID: PMC11591393 DOI: 10.3390/antiox13111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
To meet the growing demand for sustainable aquaculture, plant proteins are being explored as alternative sources in fish diets. However, some plant proteins can have adverse health effects on fish, prompting research into functional feed ingredients to mitigate these issues. This study investigated pistachio shell powder (PSP), rich in antioxidants, as a functional feed ingredient for rainbow trout (Oncorhynchus mykiss). The effects of PSP inclusion (0%, 0.5%, 1%, 2%) on growth performance, intestinal health, and gut microbiota were assessed in fish fed either a fishmeal (FM) or plant meal (PM) diet over a 12-week feeding period. The results indicated that PSP inclusion at 1% significantly (p < 0.05) improved weight gain and growth performance in FM treatments, with no impact on growth in PM treatments. No significant differences were observed in other growth parameters, intestinal morphology, or oxidative stress markers, although a trend toward the downregulation of inflammatory genes was noted in PM treatments at 2% PSP inclusion. PSP inclusion did not significantly alter gut microbiota alpha diversity but affected beta diversity at the 0.5% level in the FM treatments (p < 0.05). Differential abundance analysis of gut microbiota revealed taxa-specific responses to PSP, particularly the genus Candidatus arthromitus, increasing in relative abundance with PSP inclusion in both the FM- and PM-based treatments. Overall, PSP inclusion up to 2% did not have significant adverse effects on the growth, intestinal health, or antioxidant status of rainbow trout.
Collapse
Affiliation(s)
- Mosope F. Abanikannda
- Department of Animal Veterinary & Food Sciences, University of Idaho, Moscow, ID 83844, USA;
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| | - Mark B. Shiflett
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS 66045, USA; (M.B.S.); (A.R.C.M.)
| | - Ana Rita C. Morais
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS 66045, USA; (M.B.S.); (A.R.C.M.)
| | - Jeoungwhui Hong
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| | - Wendy M. Sealey
- US Department of Agriculture (USDA) Agriculture Research Service (ARS), Bozeman, MT 59715, USA;
| | - Jacob W. Bledsoe
- Department of Animal Veterinary & Food Sciences, University of Idaho, Moscow, ID 83844, USA;
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| |
Collapse
|
4
|
Panase P, Vongkampang T, Wangkahart E, Sutthi N. Impacts of astaxanthin-enriched Paracoccus carotinifaciens on growth, immune responses, and reproduction performance of broodstock Nile tilapia during winter season. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1205-1224. [PMID: 38512396 DOI: 10.1007/s10695-024-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
The growth, immune response, and reproductive performance of broodstock of Nile tilapia (Oreochromis niloticus) under winter stress conditions were investigated the effects of supplementary diets with astaxanthin-enriched Paracoccus carotinifaciens. Throughout an eight-week period in the winter season, male and female tilapia were fed with diets containing different levels of P. carotinifaciens dietary supplementation: 0 g/kg (T1; control), 5 g/kg (T2), 10 g/kg (T3), and 20 g/kg (T4). Subsequently, a four-week mating system was implemented during the winter stress period. The results revealed that there were no significant differences observed in growth, hematological indices, and blood chemical profiles among all treatment groups for both male and female tilapia. However, a significant increase in cholesterol content was noted in both male and female tilapia fed with the T4 diet (p<0.05). The total carotenoid content in the muscle was evaluated, and significantly higher values were found in both male and female tilapia that fed T4 supplementation (p<0.05). Moreover, immunological parameters such as myeloperoxidase and antioxidant parameters in the liver including superoxide dismutase activity and catalase enzyme activity showed significant increases in tilapia fed with the T4 diet. The impact of P. carotinifaciens supplementation on broodstock tilapia indicated a significant increase in spermatozoa concentration in males and increased egg production in females after consumption of the T4 diet (p<0.05). Thus, this study highlighted that the presence of astaxanthin-enriched P. carotinifaciens in the diet of broodstock Nile tilapia can lead to the accumulation of carotenoids in their muscle tissue, improvement in antioxidant status, enhancement of immune function, and potential enhancement of reproductive capabilities, even under overwintering conditions.
Collapse
Affiliation(s)
- Paiboon Panase
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
| | - Thitiwut Vongkampang
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha sarakham, 44150, Thailand
| | - Nantaporn Sutthi
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand.
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha sarakham, 44150, Thailand.
| |
Collapse
|
5
|
Arcuri S, Pennarossa G, Pasquariello R, Prasadani M, Gandolfi F, Brevini TAL. Generation of Porcine and Rainbow Trout 3D Intestinal Models and Their Use to Investigate Astaxanthin Effects In Vitro. Int J Mol Sci 2024; 25:5966. [PMID: 38892151 PMCID: PMC11172962 DOI: 10.3390/ijms25115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Astaxanthin (AST) is a natural compound derived from shellfish, microorganisms, and algae, with several healthy properties. For this reason, it is widely used in the diet of humans and animals, such as pigs, broilers, and fish, where its addition is related to its pigmenting properties. Moreover, AST's ability to reduce free radicals and protect cells from oxidative damage finds application during the weaning period, when piglets are exposed to several stressors. To better elucidate the mechanisms involved, here we generate ad hoc pig and rainbow trout in vitro platforms able to mimic the intestinal mucosa. The morphology is validated through histological and molecular analysis, while functional properties of the newly generated intestinal barriers, both in porcine and rainbow trout models, are demonstrated by measuring trans-epithelial electrical resistance and analyzing permeability with fluorescein isothiocyanate-dextran. Exposure to AST induced a significant upregulation of antioxidative stress markers and a reduction in the transcription of inflammation-related interleukins. Altogether, the present findings demonstrate AST's ability to interact with the molecular pathways controlling oxidative stress and inflammation both in the porcine and rainbow trout species and suggest AST's positive role in prevention and health.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| |
Collapse
|
6
|
Meng X, Yang F, Zhu L, Zhan L, Numasawa T, Deng J. Effects of Different Astaxanthin Sources on Fillet Coloration and Energy Deposition in Rainbow Trout ( Oncorhynchus mykiss). AQUACULTURE NUTRITION 2024; 2024:1664203. [PMID: 39555536 PMCID: PMC10984719 DOI: 10.1155/2024/1664203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/19/2024]
Abstract
A 9-week feeding trial was conducted to investigate the effects of different dietary sources of astaxanthin on fillet coloration, texture, and nutrient composition in rainbow trout (Oncorhynchus mykiss). Eight diets were formulated to contain 0, 25, 50, 75, 100, and 125 mg/kg astaxanthin from wall-broken Haematococcus pluvialis (WBHPA), 100 mg/kg astaxanthin from wall-unbroken H. pluvialis (WUHPA), or chemically synthesized astaxanthin (CSA). Each diet was fed to triplicate groups of rainbow trout (mean initial weight of 561 g) twice daily (07:00 and 17:00) to apparent satiation for 9 weeks. Results showed that at the 100 mg/kg astaxanthin inclusion level, the CAS group had higher fillet gross energy, dorsal fillet redness, and dorsal fillet color card score compared to the WBHPA-100 group, with both being higher than the WUHPA group (P < 0.05). Fillet astaxanthin content, dorsal fillet yellowness, and lateral line redness and yellowness did not differ significantly between the CSA and WBHPA-100 groups (P > 0.05), but were higher than the WUHPA group. When WBHPA was used, the inclusion of 50-100 mg/kg decreased fillet lightness but increased fillet redness, while better fillet texture was served at 75-125 mg/kg. Dietary 25-125 mg/kg WBHPA inclusion increased fillet astaxanthin and gross energy concentrations, with minor effects on fatty acid compositions of fillet. Inclusion of over 100 mg/kg astaxanthin regardless of source decreased fillet threonine and serine contents, and the WBHPA-100 group had lower fillet glycine and alanine contents compared to the control group (P < 0.05). In conclusion, CSA had the most significant impact on fillet coloration and energy deposition in rainbow trout, while WUHPA had the least favorable effect. Additionally, the wall-breaking treatment of H. pluvialis can improve the effect of astaxanthin on fillet coloration and nutrient composition in rainbow trout, with a recommended dose range of 75-100 mg/kg.
Collapse
Affiliation(s)
- Xiaoxue Meng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fumei Yang
- Kunming Biogenic Co. Ltd., Kunming 650220, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lingli Zhan
- Kunming Biogenic Co. Ltd., Kunming 650220, China
| | | | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Zhang K, Li N, Wang Z, Feng D, Liu X, Zhou D, Li D. Recent advances in the color of aquatic products: Evaluation methods, discoloration mechanism, and protection technologies. Food Chem 2024; 434:137495. [PMID: 37741243 DOI: 10.1016/j.foodchem.2023.137495] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Color plays a pivotal role in guiding and assessing the industrial production of aquatic products due to the swift sensory perception of information through vision. This review provides a comprehensive overview of the following four aspects: (a) mechanisms governing natural color formation in aquatic products, (b) factors and mechanisms contributing to the discoloration of aquatic products, (c) cutting-edge methods for color analysis and detection, and (d) current valuable techniques for preserving color quality. The natural color of aquatic products is derived from skin chromatophores, endogenous pigment proteins, and astaxanthin. Discoloration of aquatic products can occur due to lipid oxidation, as well as enzymatic and non-enzymatic browning. Furthermore, this review examines frontier color protective technologies, encompassing physical methods like ultra-high pressure, irradiation, and low-temperature plasma, as well as chemical methods involving natural preservatives. The findings of this study offer significant insights into the development of high-quality aquatic products.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zonghan Wang
- College of Biological System Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Dingding Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| |
Collapse
|
8
|
Elbahnaswy S, Elshopakey GE. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:97-126. [PMID: 36607534 DOI: 10.1007/s10695-022-01167-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.
Collapse
Affiliation(s)
- Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Shastak Y, Pelletier W. Captivating Colors, Crucial Roles: Astaxanthin's Antioxidant Impact on Fish Oxidative Stress and Reproductive Performance. Animals (Basel) 2023; 13:3357. [PMID: 37958112 PMCID: PMC10648254 DOI: 10.3390/ani13213357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Fish, constantly exposed to environmental stressors due to their aquatic habitat and high metabolic rates, are susceptible to oxidative stress. This review examines the interplay between oxidative stress and fish reproduction, emphasizing the potent antioxidant properties of astaxanthin. Our primary objective is to highlight astaxanthin's role in mitigating oxidative stress during critical reproductive stages, leading to improved gamete quality, ovary development, and hormone levels. We also explore its practical applications in aquaculture, including enhanced pigmentation and overall fish health. We conducted a comprehensive literature review, analyzing studies on astaxanthin's antioxidant properties and its impact on fish reproduction. Astaxanthin, a carotenoid pigment, effectively combats reactive oxygen species, inhibiting lipid peroxidation and maintaining membrane integrity. It significantly enhances reproductive success in fish and improves overall fish health in aquaculture settings. This review reveals astaxanthin's multifaceted benefits in fish health and reproduction, offering economic advantages in aquaculture. Future research should delve into species-specific responses, optimal dosages, and the long-term effects of astaxanthin supplementation to inform sustainable aquaculture strategies.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
10
|
Schmitt I, Meyer F, Krahn I, Henke NA, Peters-Wendisch P, Wendisch VF. From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules 2023; 28:molecules28041996. [PMID: 36838984 PMCID: PMC9958746 DOI: 10.3390/molecules28041996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Circular economy holds great potential to minimize the use of finite resources, and reduce waste formation by the creation of closed-loop systems. This also pertains to the utilization of sidestreams in large-scale biotechnological processes. A flexible feedstock concept has been established for the industrially relevant Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin. In this study, we aimed to use a preprocessed aquaculture sidestream for production of carotenoids, including the fish feed ingredient astaxanthin by C. glutamicum. The addition of a preprocessed aquaculture sidestream to the culture medium did not inhibit growth, obviated the need for addition of several components of the mineral salt's medium, and notably enhanced production of astaxanthin by an engineered C. glutamicum producer strain. Improved astaxanthin production was scaled to 2 L bioreactor fermentations. This strategy to improve astaxanthin production was shown to be transferable to production of several native and non-native carotenoids. Thus, this study provides a proof-of-principle for improving carotenoid production by C. glutamicum upon supplementation of a preprocessed aquaculture sidestream. Moreover, in the case of astaxanthin production it may be a potential component of a circular economy in aquaculture.
Collapse
|
11
|
Shabanzadeh S, Vatandoust S, Hosseinifard SM, Sheikhzadeh N, Shahbazfar AA. Dietary astaxanthin (Lucantin ® Pink) mitigated oxidative stress induced by diazinon in rainbow trout ( Oncorhynchus mykiss). VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:97-104. [PMID: 36909685 PMCID: PMC10003594 DOI: 10.30466/vrf.2021.533582.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/13/2021] [Indexed: 03/14/2023]
Abstract
The potential of commercial astaxanthin on growth, biochemical factors, and antioxidant-related gene expression following a challenge with diazinon were studied in rainbow trout (Oncorhynchus mykiss). Fish (~ 20.70 g) were fed diets containing commercial astaxanthin (ASX) at 0.00 (CTR and ASX0), 0.50 (ASX1), 2.00 (ASX2), and 5.00 (ASX3) g kg-1 for 60 days. Afterwards, the treated fish (ASX1, ASX2, ASX3) as well as the fish in ASX0 group were challenged with diazinon (0.11 mg L-1) for 96 hr whereas fish in the CTR group was not challenged with diazinon. Results showed that growth pattern improved significantly with all enriched diets compared to the ASX0 group. Metabolic enzyme activities, including alanine aminotransferase and alkaline phosphatase decreased in ASX2 and ASX3 groups with respect to the ASX0 group. Serum antioxidant status also showed the same pattern with enhancement in the fish fed with the ASX2 and ASX3 supplemented diets. Feeding the fish with astaxanthin, particularly in the ASX3 group, up-regulated the expression of some antioxidant-relevant genes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), and nuclear factor erythroid-2 related factor 2 (Nrf2) in the kidney and liver. Besides, the histopathological damages in kidneys and liver induced by diazinon were less pronounced in the ASX2 and ASX3 groups compared to the ASX0 group. In conclusion, commercial astaxanthin, especially at 5.00 g kg-1, enhanced the growth performance and ameliorated the oxidative stress induced by diazinon in rainbow trout.
Collapse
Affiliation(s)
| | - Saber Vatandoust
- Department of Fisheries, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Comparison of the Retention Rates of Synthetic and Natural Astaxanthin in Feeds and Their Effects on Pigmentation, Growth, and Health in Rainbow Trout ( Oncorhynchus mykiss). Antioxidants (Basel) 2022; 11:antiox11122473. [PMID: 36552680 PMCID: PMC9774906 DOI: 10.3390/antiox11122473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The coloring efficiency and physiological function of astaxanthin in fish vary with its regions. The aim of this study was to compare the retention rates of dietary astaxanthin from different sources and its effects on growth, pigmentation, and physiological function in Oncorhynchus mykiss. Fish were fed astaxanthin-supplemented diets (LP: 0.1% Lucantin® Pink CWD; CP: 0.1% Carophyll® Pink; EP: 0.1% Essention® Pink; PR: 1% Phaffia rhodozyma; HP: 1% Haematococcus pluvialis), or a diet without astaxanthin supplementation, for 56 days. Dietary astaxanthin enhanced pigmentation as well as the growth of the fish. The intestinal morphology of fish was improved, and the crude protein content of dorsal muscle significantly increased in fish fed with astaxanthin. Moreover, astaxanthin led to a decrease in total cholesterol levels and alanine aminotransferase and aspartate aminotransferase activity in plasma. Fish fed on the CP diet also produced the highest level of umami amino acids (aspartic acid and glutamic acid). Regarding antioxidant capacity, astaxanthin increased Nrf2/HO-1 signaling and antioxidant enzyme activity. Innate immune responses, including lysozyme and complement systems, were also stimulated by astaxanthin. Lucantin® Pink CWD had the highest stability in feed and achieved the best pigmentation, Essention® Pink performed best in growth promotion and Carophyll® Pink resulted in the best flesh quality. H. pluvialis was the astaxanthin source for achieving the best antioxidant properties and immunity of O. mykiss.
Collapse
|
13
|
Idenyi JN, Eya JC, Nwankwegu AS, Nwoba EG. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. ENGINEERING MICROBIOLOGY 2022; 2:100049. [PMID: 39628701 PMCID: PMC11611001 DOI: 10.1016/j.engmic.2022.100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 12/06/2024]
Abstract
Aquaculture contributes remarkably to the global economy and food security through seafood production, an important part of the global food supply chain. The success of this industry depends heavily on aquafeeds, and the nutritional composition of the feed is an important factor for the quality, productivity, and profitability of aquaculture species. The sustainability of the aquaculture industry depends on the accessibility of quality feed ingredients, such as fishmeal and fish oil. These traditional feedstuffs are under increasing significant pressure due to the rapid expansion of aquaculture for human consumption and the decline of natural fish harvest. In this review, we evaluated the development of microalgal molecules in aquaculture and expanded the use of these high-value compounds in the production of aquaculture diets. Microalgae-derived functional ingredients emerged as one of the promising alternatives for aquafeed production with positive health benefits. Several compounds found in microalgae, including carotenoids (lutein, astaxanthin, and β-carotene), essential amino acids (leucine, valine, and threonine), β-1-3-glucan, essential oils (docosahexaenoic acid and eicosapentaenoic acid), minerals, and vitamins, are of high nutritional value to aquaculture.
Collapse
Affiliation(s)
- John N. Idenyi
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
- Department of Biotechnology, Ebonyi State University, P.M.B, 053, Abakaliki, Nigeria
| | - Jonathan C. Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Amechi S. Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Emeka G. Nwoba
- Algae R&D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
14
|
Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR. Recent advancements in astaxanthin production from microalgae: A review. BIORESOURCE TECHNOLOGY 2022; 364:128030. [PMID: 36174899 DOI: 10.1016/j.biortech.2022.128030] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have emerged as the best source of high-value astaxanthin producers. Algal astaxanthin possesses numerous bioactivities hence the rising demand for several health applications and is broadly used in pharmaceuticals, aquaculture, health foods, cosmetics, etc. Among several low-priced synthetic astaxanthin, natural astaxanthin is still irreplaceable for human consumption and food-additive uses. This review highlights the recent development in production enhancement and cost-effective extraction techniques that may apply to large-scale astaxanthin biorefinery. Primarily, the biosynthetic pathway of astaxanthin is elaborated with the key enzymes involved in the metabolic process. Moreover, discussed the latest astaxanthin enhancement strategies mainly including chemicals as product inducers and byproducts inhibitors. Later, various physical, chemical, and biological cell disruption methods are compared for cell disruption efficiency, and astaxanthin extractability. The aim of this review is to provide a comprehensive review of advancements in astaxanthin research covering scalable upstream and downstream astaxanthin bioproduction aspects.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
15
|
Ignatz EH, Sandrelli RM, Tibbetts SM, Colombo SM, Zanuzzo FS, Loveless AM, Parrish CC, Rise ML, Gamperl AK. Influence of Supplemental Dietary Cholesterol on Growth Performance, Indices of Stress, Fillet Pigmentation, and Upper Thermal Tolerance of Female Triploid Atlantic Salmon ( Salmo salar). AQUACULTURE NUTRITION 2022; 2022:6336060. [PMID: 36860469 PMCID: PMC9973203 DOI: 10.1155/2022/6336060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/01/2022] [Indexed: 06/01/2023]
Abstract
The salmon aquaculture industry must be proactive at developing mitigation tools/strategies to offset the potential negative impacts of climate change. Therefore, this study examined if additional dietary cholesterol could enhance salmon production at elevated temperatures. We hypothesized that supplemental cholesterol could aid in maintaining cell rigidity, reducing stress and the need to mobilize astaxanthin muscle stores, and improving salmon growth and survival at high rearing temperatures. Accordingly, postsmolt female triploid salmon were exposed to an incremental temperature challenge (+0.2°C day-1) to mimic conditions that they experience in sea cages in the summer, with temperature held at both 16 and 18°C for several weeks [i.e., 3 weeks at 16°C, followed by an increase at 0.2°C day-1 to 18°C (10 days), then 5 weeks at 18°C] to prolong their exposure to elevated temperatures. From 16°C onwards, the fish were fed either a control diet, or one of two nutritionally equivalent experimental diets containing supplemental cholesterol [+1.30%, experimental diet #1 (ED1); or +1.76%, experimental diet #2 (ED2)]. Adding cholesterol to the diet did not affect the salmon's incremental thermal maximum (ITMax), growth, plasma cortisol, or liver stress-related transcript expression. However, ED2 appeared to have a small negative impact on survival, and both ED1 and ED2 reduced fillet "bleaching" above 18°C as measured using SalmoFan™ scores. Although the current results suggest that supplementing salmon diets with cholesterol would have few/minimal benefits for the industry, ≤ 5% of the female triploid Atlantic salmon used in this study irrespective of diet died before temperature reached 22°C. These latter data suggest that it is possible to produce all female populations of reproductively sterile salmon that can withstand summer temperatures in Atlantic Canada.
Collapse
Affiliation(s)
- Eric H. Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Sean M. Tibbetts
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS, Canada B3H 3Z1
| | - Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| | - Fábio S. Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Ashley M. Loveless
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada A1C 5S7
| |
Collapse
|
16
|
Hassanzadeh P, Ahmadvand M, Aslani S, Sheikhzadeh N, Mousavi S, Khatibi SA, Ahmadifar E. Dietary astaxanthin mitigated paraquat‐induced oxidative stress in rainbow trout (
Oncorhynchus mykiss
) fillet. AQUACULTURE RESEARCH 2022; 53:5300-5309. [DOI: 10.1111/are.16014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/06/2022] [Indexed: 01/05/2025]
Affiliation(s)
- Parviz Hassanzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Mohammad Ahmadvand
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Shadi Aslani
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Shalaleh Mousavi
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources University of Zabol Zabol Iran
| |
Collapse
|
17
|
Tan K, Zhang H, Zheng H. Carotenoid content and composition: A special focus on commercially important fish and shellfish. Crit Rev Food Sci Nutr 2022; 64:544-561. [PMID: 35930379 DOI: 10.1080/10408398.2022.2106937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Carotenoids are natural pigments that provide many health benefits to living organisms. Although terrestrial plants are the major dietary source of carotenoids for humans, aquatic animals (especially fish and shellfish) are equally important because they are rich in certain important carotenoids lacking in fruits and vegetables. Although extensive research has focused on exploring the carotenoid content and composition in fish and shellfish, this information is poorly organized. This paper reviews the scientific evidence for the carotenoid content and composition in fish and shellfish. It makes serious attempts to summarize the relevant data published on specific research questions in order to improve the understanding of various evidence to clarify the research status of carotenoids in fish and shellfish and defining topics for future studies. From the analysis of published data, it is obvious that most fish and shellfish are rich in complex carotenoids (e.g. astaxanthin, fucoxanthin, fucoxanthinol, lutein). These carotenoids have stronger antioxidant effect, higher efficiency in removing the singlet oxygen and the peroxyl radicals, and have a variety of health benefits. Carotenoid levels in fish and shellfish depend on genotype, climatic conditions of the production area, storage and cooking methods. However, the information of the bioavailability of fish/shellfish carotenoids to human is very limited, which hinders the actual contributions to health. The findings of this study can be used as a guide to select appropriate fish and shellfish as dietary sources of carotenoids, and provide information about potential fish and shellfish species for aquaculture to produce carotenoids to meet part of the growing demand for natural carotenoids.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
18
|
Reis B, Ramos-Pinto L, Cunha SA, Pintado M, da Silva JL, Dias J, Conceição L, Matos E, Costas B. Chlorella vulgaris Extracts as Modulators of the Health Status and the Inflammatory Response of Gilthead Seabream Juveniles (Sparus aurata). Mar Drugs 2022; 20:md20070407. [PMID: 35877700 PMCID: PMC9323325 DOI: 10.3390/md20070407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to evaluate the effects of short-term supplementation, with 2% Chlorella vulgaris (C. vulgaris) biomass and two 0.1% C. vulgaris extracts, on the health status (experiment one) and on the inflammatory response (experiment two) of gilthead seabream (Sparus aurata). The trial comprised four isoproteic (50% crude protein) and isolipidic (17% crude fat) diets. A fishmeal-based (FM), practical diet was used as a control (CTR), whereas three experimental diets based on CTR were further supplemented with a 2% inclusion of C. vulgaris biomass (Diet D1); 0.1% inclusion of C. vulgaris peptide-enriched extract (Diet D2) and finally a 0.1% inclusion of C. vulgaris insoluble fraction (Diet D3). Diets were randomly assigned to quadruplicate groups of 97 fish/tank (IBW: 33.4 ± 4.1 g), fed to satiation three times a day in a recirculation seawater system. In experiment one, seabream juveniles were fed for 2 weeks and sampled for tissues at 1 week and at the end of the feeding period. Afterwards, randomly selected fish from each group were subjected to an inflammatory insult (experiment two) by intraperitoneal injection of inactivated gram-negative bacteria, following 24 and 48 h fish were sampled for tissues. Blood was withdrawn for haematological procedures, whereas plasma and gut tissue were sampled for immune and oxidative stress parameters. The anterior gut was also collected for gene expression measurements. After 1 and 2 weeks of feeding, fish fed D2 showed higher circulating neutrophils than seabream fed CTR. In contrast, dietary treatments induced mild effects on the innate immune and antioxidant functions of gilthead seabream juveniles fed for 2 weeks. In the inflammatory response following the inflammatory insult, mild effects could be attributed to C. vulgaris supplementation either in biomass form or extract. However, the C. vulgaris soluble peptide-enriched extract seems to confer a protective, anti-stress effect in the gut at the molecular level, which should be further explored in future studies.
Collapse
Affiliation(s)
- Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| | - Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
| | - Sara A. Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Joana Laranjeira da Silva
- Allmicroalgae, Natural Products SA, Industrial Microalgae Production, Apartado 9, 2449-909 Pataias, Portugal;
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Luís Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Elisabete Matos
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- B2E Associação para a Bioeconomia Azul—Laboratório Colaborativo, Av. Liberdade, UPTEC Mar, 4450-718 Leça da Palmeira, Portugal;
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| |
Collapse
|
19
|
Anis Mohamad Sukri S, Andu Y, Tuan Harith Z, Sarijan S, Naim Firdaus Pauzi M, Seong Wei L, Dawood MA, Abdul Kari Z. Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia ( Oreochromis niloticus) fingerlings. Saudi J Biol Sci 2022; 29:2514-2519. [PMID: 35531242 PMCID: PMC9073014 DOI: 10.1016/j.sjbs.2021.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022] Open
Abstract
The study aims to evaluate the effects of pineapples waste on the growth, texture quality and flesh colour of Nile tilapia (Oreochromis niloticus) fingerlings. Fingerlings were fed with four different levels of pineapple waste diets throughout 56 days, which contain a control group (Diet 1) and experimental diets that formulated with 10% (Diet 2), 20% (Diet 3) and 30% (Diet 4) of pineapple waste. The experimental diet was formulated with rice bran, fish meal, soybean meal, vitamin and mineral premix, vegetable oil and binder to attain 32% dietary protein. The results revealed that the formulated fish diet with pineapple waste given the optimum weight gain, weight gain percentage, specific growth rate than the control group, where Diet 4 has shown the highest value (p < 0.05). There were no effects of the pineapple waste diet on the texture quality of the fillet, while only red chromaticity (a*) showed a significant difference (p < 0.05). In conclusion, the addition of pineapple waste can improve the growth rate of Nile tilapia, and the supplementation level of the pineapple waste in the diet was 30% of the total feed formulation.
Collapse
Affiliation(s)
- Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Yusrina Andu
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
| | - Zuharlida Tuan Harith
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Shazani Sarijan
- Department of Environment and Water Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mohd Naim Firdaus Pauzi
- Department of Agrotechnology and Bio-Industry, Politeknik Jeli, 17600 Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| |
Collapse
|
20
|
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Galobart J, Holcznecht O, Vettori MV. Safety and efficacy of a feed additive consisting of astaxanthin-rich Phaffia rhodozyma for salmon and trout (Igene Biotechnology, Inc.). EFSA J 2022; 20:e07161. [PMID: 35233255 PMCID: PMC8867524 DOI: 10.2903/j.efsa.2022.7161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Following a request from the European Commission, the FEEDAP Panel was asked to deliver a scientific opinion on the safety and efficacy of astaxanthin (ATX)-rich Phaffia rhodozyma. The additive, belonging to the category 'sensory additives' and the functional group 'substances which, when fed to animals, add colours to food of animal origin' is intended to be used in feed for salmon and trout from an age of six months onwards up to a maximum content of 100 mg ATX/kg complete feed. The product is produced by the telemorph of Phaffia rhodozyma, Xanthophyllomyces dendrorhous, and it is declared to contain 995 g dried inactivated biomass and 5 g ascorbic acid per kg additive. The main active principle of the additive is ATX; however, the FEEDAP Panel noted that some other carotenoids are also present in lower quantities. The minimum ATX concentration is specified to be 5,000 mg per kg additive. The yeast Xanthophyllomyces dendrorhous is considered by EFSA to be suitable for the qualified presumption of safety (QPS) approach to safety assessment; therefore, the use of the production strain in the production of the additive would not raise any safety concern for the target species, the consumers of products from animals fed the additive and the environment. In the absence of a tolerance study with the additive, the FEEDAP Panel cannot conclude on the safety for the target species. In the absence of residue and toxicity data of ATX, no final conclusions on the safety for the consumer can be drawn. The FEEDAP Panel concluded that the additive is irritant to skin and eyes, and a skin and respiratory sensitiser, although exposure by inhalation is likely low. The FEEDAP Panel considers that ATX from the biomass does not pose a significant additional risk to the environment compared with other natural sources of ATX. In absence of adequate evidence, no conclusion can be made on the efficacy of the additive.
Collapse
|
21
|
Kumar S, Kumar R, Kumari A, Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol 2021; 62:1064-1082. [PMID: 34817092 DOI: 10.1002/jobm.202100391] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023]
Abstract
Astaxanthin is a ketocarotenoid, super antioxidant molecule. It has higher antioxidant activity than a range of carotenoids, thus has applications in cosmetics, aquaculture, nutraceuticals, therapeutics, and pharmaceuticals. Naturally, it is derived from Haematococcus pluvialis via a one-stage process or two-stage process. Natural astaxanthin significantly reduces oxidative and free-radical stress as compared to synthetic astaxanthin. The present review summarizes all the aspects of astaxanthin, including its structure, chemistry, bioavailability, and current production technology. Also, this paper gives a detailed mechanism for the potential role of astaxanthin as nutraceuticals for cardiovascular disease prevention, skin protection, antidiabetic and anticancer, cosmetic ingredient, natural food colorant, and feed supplement in poultry and aquaculture. Astaxanthin is one of the high-valued microalgae products of the future. However, due to some risks involved or not having adequate research in terms of long-term consumption, it is still yet to be explored by food industries. Although the cost of naturally derived astaxanthin is high, it accounts for only a 1% share in total astaxanthin available in the global market. Therefore, scientists are looking for ways to cut down the cost of natural astaxanthin to be made available to consumers.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Rakesh Kumar
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | -
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Anju Kumari
- Centre of Food Science and Technology, CCS Haryana Agricultural University, Hisar, India
| | - Anil Panwar
- Department of Molecular Biology, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
22
|
Judan Cruz KG, Landingin EP, Gajeton MB, Fernando SID, Watanabe K. Carotenoid coloration and coloration-linked gene expression in red tilapia (Oreochromis sp.) tissues. BMC Vet Res 2021; 17:314. [PMID: 34563199 PMCID: PMC8466994 DOI: 10.1186/s12917-021-03006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background Production, marketability and consumer preference of red tilapia often depends upon the intensity of coloration. Hence, new approaches to develop coloration are now geared to improve market acceptability and profit. This study evaluated the effects of carotenoid-rich diets on the phenotypic coloration, carotenoid level, weight gain and expression of coloration-linked genes in skin, fin and muscle tissues. Carotenoids were extracted from dried Daucus carota peel, Ipomoea aquatica leaves, and Moringa oleifera leaves. Eighty (80) size-14 fish were fed with carotenoid-rich treatments twice a day for 120 days. The phenotypic effect of the carotenoid extracts was measured through a color chart. Skin carotenoid level was measured through UV-vis spectrophotometer. csf1ra, Bcdo2 and StAR expression analysis was done using qRT-PCR. Results Treatments with carotenoid extracts yielded higher overall scores on phenotypic coloration and tissue carotenoid levels. Differential expression of carotenoid-linked genes such as the elevated expression in csf1ra and lower expression in Bcdo2b following supplementation of the enhanced diet supports the phenotypic redness and increased carotenoid values in red tilapia fed with D. carota peel and I. aquatica leaves. Conclusions Overall improvement in the redness of the tilapia was achieved through the supplementation of carotenoid-rich diet derived from readily available plants. Differential expression of coloration-linked genes supports the increase in the intensity of phenotypic coloration and level of carotenoids in the tissues. The study emphasizes the importance of carotenoids in the commercial tilapia industry and highlights the potential of the plant extracts for integration and development of feeds for color enhancement in red tilapia.
Collapse
Affiliation(s)
- Khristina G Judan Cruz
- Department of Biological Sciences, College of Science, Central Luzon State University, Nueva Ecija, Science City of Munoz, Philippines.
| | - Ervee P Landingin
- Department of Biological Sciences, College of Science, Central Luzon State University, Nueva Ecija, Science City of Munoz, Philippines
| | - Maureen B Gajeton
- Department of Biological Sciences, College of Science, Central Luzon State University, Nueva Ecija, Science City of Munoz, Philippines
| | - Somar Israel D Fernando
- Department of Biological Sciences, College of Science, Central Luzon State University, Nueva Ecija, Science City of Munoz, Philippines
| | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, 790-8577, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
23
|
Vo TTM, Nguyen TV, Amoroso G, Ventura T, Elizur A. Deploying new generation sequencing for the study of flesh color depletion in Atlantic Salmon (Salmo salar). BMC Genomics 2021; 22:545. [PMID: 34271869 PMCID: PMC8285899 DOI: 10.1186/s12864-021-07884-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The flesh pigmentation of farmed Atlantic salmon is formed by accumulation of carotenoids derived from commercial diets. In the salmon gastrointestinal system, the hindgut is considered critical in the processes of carotenoids uptake and metabolism. In Tasmania, flesh color depletion can noticeably affect farmed Atlantic salmon at different levels of severity following extremely hot summers. In this study, RNA sequencing (RNA-Seq) was performed to investigate the reduction in flesh pigmentation. Library preparation is a key step that significantly impacts the effectiveness of RNA sequencing (RNA-Seq) experiments. Besides the commonly used whole transcript RNA-Seq method, the 3' mRNA-Seq method is being applied widely, owing to its reduced cost, enabling more repeats to be sequenced at the expense of lower resolution. Therefore, the output of the Illumina TruSeq kit (whole transcript RNA-Seq) and the Lexogen QuantSeq kit (3' mRNA-Seq) was analyzed to identify genes in the Atlantic salmon hindgut that are differentially expressed (DEGs) between two flesh color phenotypes. RESULTS In both methods, DEGs between the two color phenotypes were associated with metal ion transport, oxidation-reduction processes, and immune responses. We also found DEGs related to lipid metabolism in the QuantSeq method. In the TruSeq method, a missense mutation was detected in DEGs in different flesh color traits. The number of DEGs found in the TruSeq libraries was much higher than the QuantSeq; however, the trend of DEGs in both library methods was similar and validated by qPCR. CONCLUSIONS Flesh coloration in Atlantic salmon is related to lipid metabolism in which apolipoproteins, serum albumin and fatty acid-binding protein genes are hypothesized to be linked to the absorption, transport and deposition of carotenoids. Our findings suggest that Grp could inhibit the feeding behavior of low color-banded fish, resulting in the dietary carotenoid shortage. Several SNPs in genes involving in carotenoid-binding cholesterol and oxidative stress were detected in both flesh color phenotypes. Regarding the choice of the library preparation method, the selection criteria depend on the research design and purpose. The 3' mRNA-Seq method is ideal for targeted identification of highly expressed genes, while the whole RNA-Seq method is recommended for identification of unknown genes, enabling the identification of splice variants and trait-associated SNPs, as we have found for duox2 and duoxa1.
Collapse
Affiliation(s)
- Thu Thi Minh Vo
- GeneCology Research Centre, University of the Sunshine Coast, Queensland, Sunshine Coast, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.,School of Biotechnology, International University, Viet Nam National University, 700000, Ho Chi Minh City, Vietnam
| | - Tuan Viet Nguyen
- Centre for AgriBiosciences, AgriBio, Agriculture Victoria, Victoria, 3083, Bundoora, Australia
| | | | - Tomer Ventura
- GeneCology Research Centre, University of the Sunshine Coast, Queensland, Sunshine Coast, Australia. .,School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, Queensland, Sunshine Coast, Australia.
| |
Collapse
|
24
|
Nogueira N, Canada P, Caboz J, Andrade C, Cordeiro N. Effect of different levels of synthetic astaxanthin on growth, skin color and lipid metabolism of commercial sized red porgy (Pagrus pagrus). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Effects of Dietary Inclusion of Canthaxanthin- and α-Tocopherol-Loaded Liposomes on Growth and Muscle Pigmentation of Rainbow Trout (Oncorhynchus mykiss). J FOOD QUALITY 2021. [DOI: 10.1155/2021/6653086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dietary inclusion of canthaxanthin, a common carotenoid pigment, has been long practiced in aquaculture to give the favorable flesh color in farmed salmonids. However, carotenoids are associated with limited solubility and poor physicochemical stability, and their dose in fish feed is widely regulated. In this study, we included canthaxanthin- and α-tocopherol-loaded liposomes into fish diets and evaluated the effects of supplemented fish feed on fish growth, color, nutrition, and canthaxanthin deposition in fillets of cultured rainbow trout (Oncorhynchus mykiss). The liposomes were fabricated using lecithin as phospholipids with the initial concentrations (IC = mcanthaxanthin/mlipids, % wt/wt) of canthaxanthin at 0.1%, 0.5%, and 1.0%. Particle size characterization showed that liposome mean sizes were 109.70 ± 6.36, 105.10 ± 8.41, and 109.20 ± 5.66 nm (mean ± SD; n = 3), respectively, corresponding with liposomes synthesized at canthaxanthin IC = 0.1%, IC = 0.5%, and IC = 1%. The polydispersity index (PDI) of all samples remained lower than 0.2. There were no significant differences in the mean size and PDI between blank lecithin liposome and canthaxanthin- and α-tocopherol-loaded liposomes. The encapsulation efficiency of canthaxanthin- and α-tocopherol-loaded liposomes decreased when increasing the concentration of canthaxanthin in lecithin liposomes, with EE% values of IC = 0.1%, IC = 0.5%, and IC = 1% being 85.3 ± 2.1, 72.9 ± 1.8, and 55.3 ± 2.6, respectively. For fish growth, at the end of the experiment, final weight was significantly higher in fish fed with diet supplemented with 1 g/kg canthaxanthin- and α-tocopherol-loaded liposomes (IC = 0.5%) in comparison to other experimental control groups. The difference in color of the salmon muscle was most apparent after two months of feeding. However, after three months, there was no noticeable change in the color score of the fish muscle, indicating saturation of color of the fish muscle. The above results suggest the potential of canthaxanthin- and a-tocopherol-loaded liposomes as the red pigment in fish aquaculture.
Collapse
|
27
|
Niu J, Zhao W, Lu DQ, Xie JJ, He XS, Fang HH, Liao SY. Dual-Function Analysis of Astaxanthin on Golden Pompano ( Trachinotus ovatus) and Its Role in the Regulation of Gastrointestinal Immunity and Retinal Mitochondrial Dysfunction Under Hypoxia Conditions. Front Physiol 2020; 11:568462. [PMID: 33335485 PMCID: PMC7736049 DOI: 10.3389/fphys.2020.568462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the potential mechanisms of astaxanthin in the regulation of gastrointestinal immunity and retinal mitochondrial function of golden pompano (Trachinotus ovatus). Triplicate groups of juvenile T. ovatus (mean initial weight: 6.03 ± 0.01 g) were fed one of six diets (D1, D2, D3, D4, D5, and D6) for 8 weeks, with each diet containing various concentrations of astaxanthin (0, 0.0005, 0.001, 0.005, 0.01, or 0.1%, respectively). Growth performance of fish fed the D2–D5 diets was higher than that of fish fed the D1 diet; however, growth performance and survival of fish deteriorated sharply in fish fed the D6 diet. Gut villus in fish fed the D2–D5 diets were significantly longer and wider than that of fish fed the D6 diet. Feeding with D2–D5 diets led to increased abundance of Bacillus, Pseudomonas, Oceanobacillus, Lactococcus, Halomonas, Lactobacillus, and Psychrobacter while abundance of Vibrio and Bacterium decreased. Additionally, feeding with the D6 diet resulted in a sharp decline in Pseudomonas and Lactobacillus abundance and a sharp increase in Vibrio abundance. A low dissolved oxygen environment (DO, 1.08 mg/L) was conducted for 10 h after the rearing trial. No fish mortality was observed for any of the diet treatments. Lysozyme (LZY) activity in fish fed the D6 diet decreased sharply and was significantly lower than that in other groups. ROS production also decreased sharply in fish fed the D6 diet. Moreover, the conjunctiva and sclera in the fish fed the D6 diet were indistinguishable. Suitable dietary astaxanthin supplementation levels (0.005–0.1%) exerting a neuroprotective effect from low dissolved oxygen environments is due to up-regulated expression of anti-apoptotic factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 extra large (Bcl-xL), and down-regulated expression of Bcl-2-associated X protein (Bax) pro-apoptotic factor in retinas. Furthermore, suitable dietary astaxanthin levels (0.0005–0.01%) suppressed up-regulation of critical mitochondrial components, such as peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), and mitochondrial DNA (mtDNA), while excessive astaxanthin supplementation produces the opposite effect. In brief, high-dose astaxanthin arouses and aggravates low dissolved oxygen-induced inflammation, oxidative stress, intestinal disorder, retinal apoptosis, and retinal mitochondrial dysfunction in T. ovatus. Second-degree polynomial regression of WG indicated that the optimum dietary astaxanthin for juvenile T. ovatus is 0.049%.
Collapse
Affiliation(s)
- Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan-Qi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan-Shu He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Hang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Casella P, Iovine A, Mehariya S, Marino T, Musmarra D, Molino A. Smart Method for Carotenoids Characterization in Haematococcus pluvialis red phase and Evaluation of Astaxanthin Thermal Stability. Antioxidants (Basel) 2020; 9:antiox9050422. [PMID: 32414186 PMCID: PMC7278830 DOI: 10.3390/antiox9050422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Haematococcus pluvialis microalgae is a promising source of astaxanthin, an excellent antioxidant carotenoid. H. pluvialis, as well as other species, could find more extensive applications as healthy food for a variegated carotenoids composition in addition to astaxanthin. Official method has not currently been used for this purpose. The objective of this work was to propose a method to characterize carotenoids in H. pluvialis after the comparison between spectrophotometric and liquid chromatography analysis. In addition, in order to improve the use of astaxanthin in the food industry, thermal stability was investigated. In this context, the effect of temperature at 40-80 °C, over a 16 h storage period was tested on astaxanthin produced by H. pluvialis. A further test was carried out at room temperature (20 °C) for seven days. A decrease in the astaxanthin concentration was observed at all tested temperatures with a decrease >50% of all-trans isomer at 80 °C after 16 h and an increase of 9-cis and 13-cis isomers. In conclusion, the obtained results showed the importance of evaluating the degradation effect of temperature on astaxanthin used as a food additive for a future greater enhancement of this bioproduct in the food field.
Collapse
Affiliation(s)
- Patrizia Casella
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability—CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy; (P.C.); (A.I.); (S.M.)
| | - Angela Iovine
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability—CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy; (P.C.); (A.I.); (S.M.)
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa (CE), Italy; (T.M.); (D.M.)
| | - Sanjeet Mehariya
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability—CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy; (P.C.); (A.I.); (S.M.)
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa (CE), Italy; (T.M.); (D.M.)
| | - Tiziana Marino
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa (CE), Italy; (T.M.); (D.M.)
| | - Dino Musmarra
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa (CE), Italy; (T.M.); (D.M.)
| | - Antonio Molino
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability—CR Portici. P. Enrico Fermi, 1, 80055 Portici (NA), Italy; (P.C.); (A.I.); (S.M.)
- Correspondence: ; Tel.: +39-081-772-3276
| |
Collapse
|
29
|
Effect of Black Mulberry (Morus nigra) Powder on Growth Performance, Biochemical Parameters, Blood Carotenoid Concentration, and Fillet Color of Rainbow Trout. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
The degree of flesh pigmentation is one of the most important quality criteria dictating the fish market value. It is well known that fish, like other animals, cannot synthesize their own coloring pigments de novo, and must obtain these pigments from their diet. In this study, four levels of black mulberry (Morus nigra) juice powder (BMP) as a natural pigment source were incorporated into a basal diet at concentrations of 0, 0.25, 0.5, and 0.75% and fed to rainbow trout weighing 100±5 g for 8 weeks in triplicate. At the end of the feeding trial, the effect of BMP on growth performance, blood biochemical parameters and fillet color was examined. Fish fed BMP showed significant enhancements in weight gain (WG), specific growth (SGR), food conversion ratio (FCR), and survival rates (SR) (P<0.05). SGR, WG and SR values were increased significantly following dietary supplementation with BMP in a dose dependent manner with the highest values in fish fed 0.75%, while the FCR was decreased (P<0.05). Body crude protein, lipid, and moisture contents were increased significantly in fish fed BMP (P<0.05). Dietary BMP has significantly decreased the levels of blood ALT, AST, and glucose (P>0.05). While the blood carotenoid concentration was increased in fish fed 0.5% BMP compared to other treated groups. Fish fed BMP showed increased fillet yellowness (b*) and redness (a*), while the fillet lightness (L*) was decreased when compared to the control (P<0.05). In conclusion, diets supplemented with BMP increased the growth performance, muscle pigmentation, and health status of rainbow trout.
Collapse
|
30
|
Kalinowski CT, Larroquet L, Véron V, Robaina L, Izquierdo MS, Panserat S, Kaushik S, Fontagné-Dicharry S. Influence of Dietary Astaxanthin on the Hepatic Oxidative Stress Response Caused by Episodic Hyperoxia in Rainbow Trout. Antioxidants (Basel) 2019; 8:antiox8120626. [PMID: 31817693 PMCID: PMC6943655 DOI: 10.3390/antiox8120626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023] Open
Abstract
A 13-week feeding trial was carried out with juvenile rainbow trout to test two diets: a control diet without astaxanthin (AX) supplementation (CTRL diet), and a diet supplemented with 100 mg/kg of synthetic AX (ASTA diet). During the last week of the feeding trial, fish were exposed to episodic hyperoxia challenge for 8 consecutive hours per day. Episodic hyperoxia induced physiological stress responses characterized by a significant increase in plasma cortisol and hepatic glycogen and a decrease in plasma glucose levels. The decrease of plasma glucose and the increase of hepatic glycogen content due to episodic hyperoxia were emphasized with the ASTA diet. Hyperoxia led to an increase in thiobarbituric acid-reactive substances in the muscle, diminished by dietary AX supplementation in both liver and muscle. Muscle and liver AX were increased and decreased respectively after 7-day episodic hyperoxia, leading to an increase in flesh redness. This augment of muscle AX could not be attributed to AX mobilization, since plasma AX was not affected by hyperoxia. Moreover, hyperoxia decreased most of antioxidant enzyme activities in liver, whereas dietary AX supplementation specifically increased glutathione reductase activity. A higher mRNA level of hepatic glutathione reductase, thioredoxin reductase, and glutamate-cysteine ligase in trout fed the ASTA diet suggests the role of AX in glutathione and thioredoxin recycling and in de novo glutathione synthesis. Indeed, dietary AX supplementation improved the ratio between reduced and oxidized glutathione (GSH/GSSG) in liver. In addition, the ASTA diet up-regulated glucokinase and glucose-6-phosphate dehydrogenase mRNA level in the liver, signaling that dietary AX supplementation may also stimulate the oxidative phase of the pentose phosphate pathway that produces NADPH, which provides reducing power that counteracts oxidative stress. The present results provide a broader understanding of the mechanisms by which dietary AX is involved in the reduction of oxidative status.
Collapse
Affiliation(s)
- Carmen Tatiana Kalinowski
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Laurence Larroquet
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Vincent Véron
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Lidia Robaina
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Stéphane Panserat
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
| | - Sachi Kaushik
- Grupo de Investigación en Acuicultura (GIA), Research Institute in Sustainable Aquaculture and Marine Conservation (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (C.T.K.); (L.R.); (M.S.I.); (S.K.)
| | - Stéphanie Fontagné-Dicharry
- NUMEA, INRA, University Pau & Pays Adour, E2S UPPA, 64310 Saint-Pée-sur-Nivelle, France; (L.L.); (V.V.); (S.P.)
- Correspondence: ; Tel.: +33-559515996
| |
Collapse
|
31
|
MONMEESIL P, FUNGFUANG W, TULAYAKUL P, PONGCHAIRERK U. The effects of astaxanthin on liver histopathology and expression of superoxide dismutase in rat aflatoxicosis. J Vet Med Sci 2019; 81:1162-1172. [PMID: 31270307 PMCID: PMC6715921 DOI: 10.1292/jvms.18-0690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
The metabolism of aflatoxin B1 (AFB1) generates reactive oxygen species (ROS) that destroys hepatocytes. Meanwhile, astaxanthin (AX) is known to have stronger antioxidative activity than other carotenoids. This study aimed to investigate hepatoprotective role of AX from AFB1-induced toxicity in rat by histopathological study and immunohistochemistry of Cu/Zn-SOD (SOD1) which acts as the first enzyme in antioxidative reaction against cell injury from ROS. Twenty Wistar rats were randomly divided into 4 groups. The control and AFB1 groups were gavaged by water for 7 days followed by a single DMSO and 1 mg/kg AFB1, respectively. The AXL+ AFB1 and AXH+ AFB1 groups were given of 5 mg/kg and 100 mg/kg AX for 7 days before 1 mg/kg AFB1 administration. The result showed significantly elevated liver weight per 100 g body weight in AFB1 group. The histopathological finding revealed vacuolar degeneration, necrosis, megalocytosis and binucleation of hepatocytes with bile duct hyperplasia in AFB1 group. The severities of pathological changes were sequentially reduced in AXL+AFB1 and AXH+AFB1 groups. Most rats in AXH+AFB1 group owned hypertrophic hepatocytes and atypical proliferation of cholangiocytes which are adaptive responses to severe hepatocyte damage. The SOD1 expression was also significantly higher in AXH+AFB1 group than solely treated AFB1 and AXL+AFB1 groups. In conclusion, AX alleviated AFB1-induced liver damage in rat by stimulating SOD1 expression and transdifferentiation of cholangiocytes in dose dependent manner.
Collapse
Affiliation(s)
- Poempool MONMEESIL
- Department of Anatomy, Faculty of Veterinary Medicine,
Kasetsart University, 50 Ngamwongwan Road, Ladyao, Jatuchak, Bangkok 10900, Thailand
| | - Wirasak FUNGFUANG
- Department of Zoology, Faculty of Science, Kasetsart
University, 50 Ngamwongwan Road, Ladyao, Jatuchak, Bangkok 10900, Thailand
| | - Phitsanu TULAYAKUL
- Department of Veterinary Public Health, Faculty of
Veterinary Medicine, Kasetsart University, Malaiman Road, Kamphaeng Saen, Nakhon Pathom
73140, Thailand
| | - Urai PONGCHAIRERK
- Department of Anatomy, Faculty of Veterinary Medicine,
Kasetsart University, 50 Ngamwongwan Road, Ladyao, Jatuchak, Bangkok 10900, Thailand
| |
Collapse
|
32
|
Abd El-Gawad EA, Wang HP, Yao H. Diet Supplemented With Synthetic Carotenoids: Effects on Growth Performance and Biochemical and Immunological Parameters of Yellow Perch ( Perca flavescens). Front Physiol 2019; 10:1056. [PMID: 31496952 PMCID: PMC6712420 DOI: 10.3389/fphys.2019.01056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/02/2019] [Indexed: 01/24/2023] Open
Abstract
The current study assessed the effect of dietary canthaxanthin and lycopene supplementation at different concentrations on growth performance and antioxidant status in yellow perch (Perca flavescens). In this regard, fish with initial weight (32 ± 1.0 g) were divided into five groups in triplicate, and fed on carotenoid-free diet (control), canthaxanthin (CTX) (50 and 100 mg/kg diet), and lycopene (200 and 400 mg/kg diet) for 60 days. Growth parameters and antioxidant enzymes were evaluated after 30 and 60 days post feeding. Tissue liver and intestine from six fish per treatment was collected for antioxidant and digestive enzymes analysis. The results revealed a significant increase (P < 0.05) of lipid content in the group fed lycopene at a dietary level 400 mg/kg for 60 days, compared to the control. Moreover, dietary carotenoids exhibited no significant effect on growth performance; this was evidenced by no significant up-regulation of growth hormone (gh) and insulin-like growth factor 1b (igf-1b) genes after 30 and 60 days post feeding. Intestinal lipase and trypsin activities were significantly improved with dietary lycopene especially at a dose of (400 mg/kg diet) for 60 days. Malondialdehyde (MDA) level in liver was also significantly decreased with dietary lycopene (400 mg/kg diet) for 60 days. Hepatic superoxide dismutase (SOD), catalase (CAT), and Glutathione peroxidase (GSH-Px) activities were significantly decreased with dietary CTX, especially at dose (100 mg/kg diet) and lycopene at a concentration of 200 and 400 mg/kg diet after 60 days feeding. Additionally, the immune-related gene interleukin-1 beta (il-1b) mRNA expression level revealed up-regulation in groups fed on CTX at different concentrations for 30 days, and fish fed lycopene at a concentration level 400 mg/kg diet for 60 days. The obtained results concluded that dietary supplementation of canthaxanthin and lycopene could enhance immune response and maintain antioxidants defense of fish. Therefore, it considered as a functional aquafeed ingredient for yellow perch.
Collapse
Affiliation(s)
- Eman A Abd El-Gawad
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| |
Collapse
|
33
|
Sun T, Yin R, Magnuson AD, Tolba SA, Liu G, Lei XG. Dose-Dependent Enrichments and Improved Redox Status in Tissues of Broiler Chicks under Heat Stress by Dietary Supplemental Microalgal Astaxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5521-5530. [PMID: 29733582 DOI: 10.1021/acs.jafc.8b00860] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Astaxanthin (AST) is a well-known carotenoid with a high antioxidant capacity. This study was designed to evaluate the nutritional and metabolic effects of microalgal AST added to the diets of broiler chicks under heat stress. A total of 240 Cornish male chicks (1 day old) were divided into six cages per treatment (eight chicks per cage) and fed a corn-soybean meal diet supplemented with AST from Haematococcus pluvialis at 0, 10, 20, 40, and 80 mg/kg for 6 weeks. Heat stress was employed during weeks 4-6. The supplementation led to dose-dependent enrichments ( P < 0.05) of AST and total carotenoids in the plasma, the liver, and the breast and thigh muscles. There were similar enhancements ( P < 0.05) of oxygen-radical-absorbance capacities, but there were decreases or mixed responses ( P < 0.05) of glutathione concentrations and glutathione peroxidase activities in the tissues. In conclusion, supplemental dietary microalgal AST was bioavailable to the chicks and enriched in their tissues independent of heat stress, leading to coordinated changes in their endogenous antioxidant defense and meat quality.
Collapse
Affiliation(s)
- Tao Sun
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| | - Ran Yin
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| | - Andrew D Magnuson
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| | - Samar A Tolba
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| | - Guanchen Liu
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| | - Xin Gen Lei
- Department of Animal Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|