1
|
Sorrentino G. Microenvironmental control of the ductular reaction: balancing repair and disease progression. Cell Death Dis 2025; 16:246. [PMID: 40180915 PMCID: PMC11968979 DOI: 10.1038/s41419-025-07590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
The ductular reaction (DR) is a dynamic adaptive cellular response within the liver, triggered by various hepatic insults and characterized by an expansion of dysmorphic biliary epithelial cells and liver progenitors. This complex response presents a dual role, playing a pivotal function in liver regeneration but, paradoxically, contributing to the progression of liver diseases, depending upon specific contextual factors and signaling pathways involved. This comprehensive review aims to offer a holistic perspective on the DR, focusing into its intricate cellular and molecular mechanisms, highlighting its pathological significance, and exploring its potential therapeutic implications. An up-to-date understanding of the DR in the context of different liver injuries is provided, analyzing its contributions to liver regeneration, inflammation, fibrosis, and ultimately carcinogenesis. Moreover, the review highlights the role of multiple microenvironmental factors, including the influence of extracellular matrix, tissue mechanics and the interplay with the intricate hepatic cell ecosystem in shaping the DR's regulation. Finally, in vitro and in vivo experimental models of the DR will be discussed, providing insights into how researchers can study and manipulate this critical cellular response. By comprehensively addressing the multifaceted nature of the DR, this review contributes to a more profound understanding of its pathophysiological role in liver diseases, thus offering potential therapeutic avenues for hepatic disorders and improving patient outcomes.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
2
|
Sun Y, Liu B, Xie J, Jiang X, Xiao B, Hu X, Xiang J. Aspirin attenuates liver fibrosis by suppressing TGF‑β1/Smad signaling. Mol Med Rep 2022; 25:181. [PMID: 35322863 PMCID: PMC8972277 DOI: 10.3892/mmr.2022.12697] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Aspirin reduces the liver fibrosis index and inflammation in patients and rats. However, the specific mechanism underlying the effects of aspirin are yet to be elucidated. The present study aimed to investigate the effects of aspirin on thioacetamide (TAA)-induced liver fibrosis in rats and hepatic stellate cells (HSCs) via the TGF-β1/Smad signaling pathway. Liver fibrosis was induced in Sprague Dawley rats by intraperitoneal injection of 200 mg/kg TAA twice weekly for 8 weeks. Aspirin (30 mg/kg) was administered to rats by gavage once every morning over a period of 8 weeks. Masson's trichrome and H&E staining were used to detect and analyze the pathological changes in liver tissues. Western blot analysis and immunohistochemistry were applied to determine the protein expression levels of α-smooth muscle actin (α-SMA), collagen I, TGF-β1, phosphorylated (p)-Smad2 and p-Smad3. In addition, reverse transcription-quantitative PCR was performed to detect the mRNA expression levels of α-SMA, collagen type I α 1 chain (COL1A1) and TGF-β1. The results demonstrated that treatment with aspirin significantly reduced the serum levels of alanine aminotransferase, aspartate aminotransferase and hydroxyproline in the TAA + aspirin compared with that in the TAA group. In the rat liver fibrosis model, pathological changes in liver tissues were improved following treatment with aspirin. Similarly, a marked decrease was observed in protein expression levels of α-SMA, collagen I, TGF-β1, p-Smad2 and p-Smad3. Furthermore, aspirin administration decreased the mRNA levels of α-SMA, COL1A1 and TGF-β1. In addition, HSCs were treated with different concentrations of aspirin (10, 20 and 40 mmol/l), and the protein expression levels of α-SMA, collagen I, TGF-β1, p-Smad2 and p-Smad3 were reduced in a dose-dependent manner. Overall, the present study showed that aspirin attenuated liver fibrosis and reduced collagen production by suppressing the TGF-β1/Smad signaling pathway, thus revealing a potential mechanism of aspirin in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yimin Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Bingyan Liu
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jianping Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xuefeng Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Baolai Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaomiao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinjian Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
3
|
Zhao Y, Yang Y, Li Q, Li J. Understanding the Unique Microenvironment in the Aging Liver. Front Med (Lausanne) 2022; 9:842024. [PMID: 35280864 PMCID: PMC8907916 DOI: 10.3389/fmed.2022.842024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past decades, many studies have focused on aging because of our pursuit of longevity. With lifespans extended, the regenerative capacity of the liver gradually declines due to the existence of aging. This is partially due to the unique microenvironment in the aged liver, which affects a series of physiological processes. In this review, we summarize the related researches in the last decade and try to highlight the aging-related alterations in the aged liver.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Jianzhou Li
| |
Collapse
|
4
|
Zhang F, Wang F, Liang B, Li Z, Shao J, Zhang Z, Wang S, Zheng S. Liver regeneration in traditional Chinese medicine: advances and challenges. Regen Med Res 2020; 8:1. [PMID: 31939733 PMCID: PMC6961567 DOI: 10.1051/rmr/190003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/10/2019] [Indexed: 11/14/2022] Open
Abstract
Liver diseases pose a serious problem for national health care system all over the world. Liver regeneration has profound impacts on the occurrence and development of various liver diseases, and it remains an extensively studied topic. Although current knowledge has suggested two major mechanisms for liver regeneration, including compensatory hyperplasia of hepatocytes and stem or progenitor cell-mediated regeneration, the complexity of this physiopathological process determines that its effective regulation cannot be achieved by single-target or single-component approaches. Alternatively, using traditional Chinese medicine (TCM) to regulate liver regeneration is an important strategy for prevention and treatment of liver disorder and the related diseases. From the perspectives of TCM, liver regeneration can be caused by the disrupted balance between hepatic damage and regenerative capacity, and the "marrow"-based approaches have important therapeutic implications for liver regeneration. These two points have been massively supported by a number of basic studies and clinical observations during recent decades. TCM has the advantages of overall dynamic fine-tuning and early adjustment, and has exhibited enormous therapeutic benefits for various liver diseases. Here, we review the recent advances in the understanding of liver regeneration in TCM system in the hope of facilitating the application of TCM for liver diseases via regulation of liver regeneration.
Collapse
Affiliation(s)
- Feng Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Feixia Wang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Baoyu Liang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zhanghao Li
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Jiangjuan Shao
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Zili Zhang
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| | - Shijun Wang
-
Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 PR China
| | - Shizhong Zheng
-
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
-
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 PR China
| |
Collapse
|
5
|
Qian L, Zhang H, Gu Y, Li D, He S, Wang H, Cheng Y, Yang W, Yu H, Zhao X, Cai W, Meng L, Jin M, Wang Y, Zhang Y. Reduced production of laminin by hepatic stellate cells contributes to impairment in oval cell response to liver injury in aged mice. Aging (Albany NY) 2019; 10:3713-3735. [PMID: 30513510 PMCID: PMC6326669 DOI: 10.18632/aging.101665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Aged liver is usually impaired in response to hepatic injury. Tissue-specific stem cells participate in the repair of tissue injury. However, how oval cells (OCs) respond to injury and how the process is regulated by tissue microenvironment in aged mice have not been fully understood. In this study, taking advantage of well-established murine OC activation model, we demonstrated that OCs were less activated upon injury in aged mice and the impairment was mainly attributed to dysfunction in their niche. Through analyzing global gene expression, we found that the genes differentially expressed in damaged young and aged mouse liver tissues were predominantly those required for the formation and remodeling of extracellular matrix. As one of the most important extracellular matrix components in the OC niche, laminin was shown to promote the proliferation of OCs. Not surprisingly, laminin was downregulated with aging. Consistent with the downregulation of genes encoding DNA-dependent protein kinase (DNA-PK) proteins in aged hepatic stellate cells (HSCs), inhibition of DNA-PK also led to reduced expression of laminin in HSCs. Moreover, impairment in OC activation caused by less supporting from DNA-damaged HSCs could be rescued by laminin. This study reveals a new cellular mechanism underlying impaired OCs functionality during aging.
Collapse
Affiliation(s)
- Liu Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuting Gu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hui Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiji Cheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaonan Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Cai
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Meng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Min Jin
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yanyun Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.,Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Ghanem LY, Mansour IM, Abulata N, Akl MM, Demerdash ZA, El Baz HG, Mahmoud SS, Mohamed SH, Mahmoud FS, Hassan ASM. Liver Macrophage Depletion Ameliorates The Effect of Mesenchymal Stem Cell Transplantation in a Murine Model of Injured Liver. Sci Rep 2019; 9:35. [PMID: 30631109 PMCID: PMC6328636 DOI: 10.1038/s41598-018-37184-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy show different levels of effectiveness in the context of different types of liver damage, suggesting that the microenvironment of the injured liver is a key determinant for effective stem cell therapy. The objective was to assess the modulatory effect of hepatic stem cell niche components on the transplanted MSCs during liver injury induced by carbon tetrachloride (CCl4). Superparamagnetic iron oxide (SPIO)-labeled human MSCs were injected intravenously into mice treated with CCl4 and subjected to hepatic macrophage-depletion. Liver tissues were collected at different intervals post transplantation for subsequent histopathological, morphometric, immunohistochemical, gene expression and ultrastructural studies. The homing of the transplanted MSCs was evidenced by tracing them within the niche by iron staining and immunohistochemical studies. MSCs differentiated into hepatocyte-like cells and intimal smooth muscle cells as evidenced by their expression of human albumin and α-smooth muscle actin with a concomitant increase in the level of mouse hepatocyte growth factor. A post transplantation reduction in the liver fibro-inflammatory reaction was found and was promoted by liver macrophages depletion. Thus, it could be concluded from the present study that prior manipulation of the microenvironment is required to improve the outcome of the transplanted cells.
Collapse
Affiliation(s)
- Lobna Y Ghanem
- Departments of Electron Microscopy, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Iman M Mansour
- Department of Clinical & Chemical pathology, Kasr Al-Ainy hospital, Faculty of medicine, Cairo University, Cairo, 11562, Egypt
| | - Nelly Abulata
- Department of Clinical & Chemical pathology, Kasr Al-Ainy hospital, Faculty of medicine, Cairo University, Cairo, 11562, Egypt
| | - Maha M Akl
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Zeinab A Demerdash
- Department of Immunology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Hanan G El Baz
- Department of Immunology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Soheir S Mahmoud
- Department of parasitology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Salwa H Mohamed
- Department of Immunology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Faten S Mahmoud
- Department of Immunology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Ayat S M Hassan
- Departments of Electron Microscopy, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt.
| |
Collapse
|
7
|
Gu Y, Wei W, Cheng Y, Wan B, Ding X, Wang H, Zhang Y, Jin M. A pivotal role of BEX1 in liver progenitor cell expansion in mice. Stem Cell Res Ther 2018; 9:164. [PMID: 29907129 PMCID: PMC6002993 DOI: 10.1186/s13287-018-0905-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023] Open
Abstract
Background The activation and expansion of bipotent liver progenitor cells (LPCs) are indispensable for liver regeneration after severe or chronic liver injury. However, the underlying molecular mechanisms regulating LPCs and LPC-mediated liver regeneration remain elusive. Methods Hepatic brain-expressed X-linked 1 (BEX1) expression was evaluated using microarray screening, real-time polymerase chain reaction, immunoblotting and immunofluorescence. LPC activation and liver injury were studied following a choline-deficient, ethionine-supplemented (CDE) diet in wild-type (WT) and Bex1−/− mice. Proliferation, apoptosis, colony formation and hepatic differentiation were examined in LPCs from WT and Bex1−/− mice. Peroxisome proliferator-activated receptor gamma was detected in Bex1-deficient LPCs and mouse livers, and was silenced to analyse the expansion of LPCs from WT and Bex1−/− mice. Results Hepatic BEX1 expression was increased during CDE diet-induced liver injury and was highly elevated primarily in LPCs. Bex1−/− mice fed a CDE diet displayed impaired LPC expansion and liver regeneration. Bex1 deficiency inhibited LPC proliferation and enhanced LPC apoptosis in vitro. Additionally, Bex1 deficiency inhibited the colony formation of LPCs but had no effect on their hepatic differentiation. Mechanistically, BEX1 inhibited peroxisome proliferator-activated receptor gamma to promote LPC expansion. Conclusion Our findings indicate that BEX1 plays a pivotal role in LPC activation and expansion during liver regeneration, potentially providing novel targets for liver regeneration and chronic liver disease therapies. Electronic supplementary material The online version of this article (10.1186/s13287-018-0905-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Gu
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Wei
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yiji Cheng
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Bing Wan
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xinyuan Ding
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yanyun Zhang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Min Jin
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
8
|
Abstract
Liver regeneration is a fascinating and complex process with many medical implications. An important component of this regenerative process is the hepatic progenitor cell (HPC). These appealing cells are able to participate in the renewal of hepatocytes and cholangiocytes when the normal homeostatic regeneration is exhausted. Moreover, the HPC niche is of vital importance toward the activation, differentiation, and proliferation of the HPC. This niche provides a rich microenvironment for the regulation of the HPC, thanks to the intercellular secretion of molecules. New findings indicate that the regenerative possibilities in the liver could provide a diverse basis for therapeutic targets.
Collapse
Affiliation(s)
- Matthias Van Haele
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium
| | - Tania Roskams
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Abstract
中医药调控肝再生是防治肝病及其相关病证的重要策略, 已形成的研究热点方兴未艾. 近些年来取得的主要进展至少包括以下几个方面: 调控肝损伤与肝再生失衡提高了中医/中西医结合防治肝病及其相关病证的临床疗效, "髓"为中心治疗靶点的研究进展揭示了中医/中西医结合防治肝病及其相关病证的疗效机制, 整体动态微调早调的作用方式满足了肝再生调控复杂多变的需要, 解决了单靶点调控肝再生疗效有限的关键科学问题, 平衡协调的疗效考核与结局指标的综合判断为中医药调控肝再生的临床推广应用提供了途径和方法.
Collapse
|
10
|
Li HM, Ye ZH. Microenvironment of liver regeneration in liver cancer. Chin J Integr Med 2017; 23:555-560. [PMID: 28523536 DOI: 10.1007/s11655-017-2806-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 01/30/2023]
Abstract
The occurrence and development of liver cancer are essentially the most serious outcomes of uncontrolled liver regeneration. The progression of liver cancer is inevitably related to the abnormal microenvironment of liver regeneration. The deterioration observed in the microenvironment of liver regeneration is a necessary condition for the occurrence, development and metastasis of cancer. Therefore, the use of a technique to prevent and treat liver cancer via changes in the microenvironment of liver regeneration is a novel strategy. This strategy would be an effective way to delay, prevent or even reverse cancer occurrence, development and metastasis through an improvement in the liver regeneration microenvironment along with the integrated regulation of multiple components, targets, levels, channels and time sequences. In addition, the treatment of "tonifying Shen (Kidney) to regulate liver regeneration and repair by affecting stem cells and their microenvironment" can regulate "the dynamic imbalance between the normal liver regeneration and the abnormal liver regeneration"; this would improve the microenvironment of liver regeneration, which is also a mechanism by which liver cancer may be prevented or treated.
Collapse
Affiliation(s)
- Han-Min Li
- Institute of Application Foundation and Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China. .,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
| | - Zhi-Hua Ye
- Institute of Application Foundation and Institute of Liver Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
11
|
Yang Z, Wang L, Wang X. Matrine induces the hepatic differentiation of WB-F344 rat hepatic progenitor cells and inhibits Jagged 1/HES1 signaling. Mol Med Rep 2016; 14:3841-7. [DOI: 10.3892/mmr.2016.5668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
|
12
|
Ding ZY, Liang HF, Jin GN, Chen WX, Wang W, Datta PK, Zhang MZ, Zhang B, Chen XP. Smad6 suppresses the growth and self-renewal of hepatic progenitor cells. J Cell Physiol 2014; 229:651-660. [PMID: 24446200 DOI: 10.1002/jcp.24488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Activation of hepatic progenitor cells (HPCs) is commonly observed in chronic liver disease and Wnt/β-catenin signaling plays a crucial role in the expansion of HPCs. However, the molecular mechanisms that regulate the activation of Wnt/β-catenin signaling in the liver, especially in HPCs, remain largely elusive. Here, we reported that ectopic expression of Smad6 suppressed the proliferation and self-renewal of WB-F344 cells, a HPC cell line. Mechanistically, we found that Smad6 inhibited Wnt/β-catenin signaling through promoting the interaction of C-terminal binding protein (CtBP) with β-catenin/T-cell factor (TCF) complex to inhibit β-catenin mediated transcriptional activation in WB-F344 cells. We used siRNA targeting β-catenin to demonstrate that Wnt/β-catenin signaling was required for the proliferation and self-renewal of HPCs. Taken together, these results suggest that Smad6 is a regulatory molecule which regulates the proliferation, self-renewal and Wnt/β-catenin signaling in HPCs.
Collapse
Affiliation(s)
- Ze-Yang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen L, Zhang W, Liang HF, Zhou QD, Ding ZY, Yang HQ, Liu WB, Wu YH, Man Q, Zhang BX, Chen XP. Activin A induces growth arrest through a SMAD- dependent pathway in hepatic progenitor cells. Cell Commun Signal 2014; 12:18. [PMID: 24628936 PMCID: PMC3995548 DOI: 10.1186/1478-811x-12-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Activin A, an important member of transforming growth factor-β superfamily, is reported to inhibit proliferation of mature hepatocyte. However, the effect of activin A on growth of hepatic progenitor cells is not fully understood. To that end, we attempted to evaluate the potential role of activin A in the regulation of hepatic progenitor cell proliferation. RESULTS Using the 2-acetaminofluorene/partial hepatectomy model, activin A expression decreased immediately after partial hepatectomy and then increased from the 9th to 15th day post surgery, which is associated with the attenuation of oval cell proliferation. Activin A inhibited oval cell line LE6 growth via activating the SMAD signaling pathway, which manifested as the phosphorylation of SMAD2/3, the inhibition of Rb phosphorylation, the suppression of cyclinD1 and cyclinE, and the promotion of p21WAF1/Cip1 and p15INK4B expression. Treatment with activin A antagonist follistatin or blocking SMAD signaling could diminish the anti-proliferative effect of activin A. By contrast, inhibition of the MAPK pathway did not contribute to this effect. Antagonizing activin A activity by follistatin administration enhanced oval cell proliferation in the 2-acetylaminofluorene/partial hepatectomy model. CONCLUSION Activin A, acting through the SMAD pathway, negatively regulates the proliferation of hepatic progenitor cells.
Collapse
Affiliation(s)
- Lin Chen
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-fang Liang
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao-dan Zhou
- Department of Nephrology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-yang Ding
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-qiang Yang
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College of Shihezi University, Shihezi, China
| | - Wei-bo Liu
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-hui Wu
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Man
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-xiang Zhang
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bogaerts E, Heindryckx F, Vandewynckel YP, Van Grunsven LA, Van Vlierberghe H. The roles of transforming growth factor-β, Wnt, Notch and hypoxia on liver progenitor cells in primary liver tumours (Review). Int J Oncol 2014; 44:1015-22. [PMID: 24504124 PMCID: PMC3977811 DOI: 10.3892/ijo.2014.2286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/28/2013] [Indexed: 12/11/2022] Open
Abstract
Primary liver tumours have a high incidence and mortality. The most important forms are hepatocellular carcinoma and intrahepatic cholangiocarcinoma, both can occur together in the mixed phenotype hepatocellular-cholangiocarcinoma. Liver progenitor cells (LPCs) are bipotential stem cells activated in case of severe liver damage and are capable of forming both cholangiocytes and hepatocytes. Possibly, alterations in Wnt, transforming growth factor-β, Notch and hypoxia pathways in these LPCs can cause them to give rise to cancer stem cells, capable of driving tumourigenesis. In this review, we summarize and discuss current knowledge on the role of these pathways in LPC activation and differentiation during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Eliene Bogaerts
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| | - Femke Heindryckx
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yves-Paul Vandewynckel
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| | - Leo A Van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, 1K12, Ghent University Hospital, 9000 Gent, Belgium
| |
Collapse
|
15
|
Ding ZY, Jin GN, Liang HF, Wang W, Chen WX, Datta PK, Zhang MZ, Zhang B, Chen XP. Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal 2013; 25:1981-1992. [PMID: 23727026 DOI: 10.1016/j.cellsig.2013.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are activated in the chronic liver injury and are found to participate in the progression of liver fibrosis, while the precise role of HPCs in liver fibrosis remains largely elusive. In this study, by immunostaining of human liver sections, we confirmed that HPCs were activated in the cirrhotic liver and secreted transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF), both of which were important inducers of liver fibrosis. Besides, we used HPC cell lines LE/6 and WB-F344 as in vitro models and found that TGF-β induced secretion of CTGF in HPCs. Moreover, TGF-β signaling was intracrine activated and contributed to autonomous secretion of CTGF in HPCs. Furthermore, we found that TGF-β induced expression of CTGF was not mediated by TGF-β activated Smad signaling but mediated by TGF-β activated Erk, JNK and p38 MAPK signaling. Taken together, our results provide evidence for the role of HPCs in liver fibrosis and suggest that the production of CTGF by TGF-β activated MAPK signaling in HPCs may be a therapeutic target of liver fibrosis.
Collapse
Affiliation(s)
- Ze-yang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Z, Chen J, Li L, Ran JH, Liu J, Gao TX, Guo BY, Li XH, Liu ZH, Liu GJ, Gao YC, Zhang XL. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation. Braz J Med Biol Res 2013; 46:681-8. [PMID: 23903688 PMCID: PMC3854420 DOI: 10.1590/1414-431x20132620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/25/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that
play a role in liver regeneration after acute liver injury. Here, we investigated the
in vitro proliferation and differentiation characteristics of
HOCs in order to explore their potential capacity for intrahepatic transplantation.
Clusters or scattered HOCs were detected in the portal area and interlobular bile
duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial
hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8%
and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by
immunostaining and flow cytometric analysis. In addition, HOCs could be
differentiated into hepatocytes and bile duct epithelial cells after leukemia
inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver
transplantation, and HOCs were subsequently transplanted into recipients. Biochemical
indicators of liver function were assessed 4 weeks after transplantation. HOC
transplantation significantly prolonged the median survival time and improved the
liver function of rats receiving HOCs compared to controls (P=0.003, Student
t-test). Administration of HOCs to rats also receiving liver
transplantation significantly reduced acute allograft rejection compared to control
liver transplant rats 3 weeks following transplantation (rejection activity index
score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may
be useful in therapeutic liver regeneration after orthotopic liver
transplantation.
Collapse
Affiliation(s)
- Z Li
- Liaocheng People's Hospital, Department of Hepatobiliary Surgery, LiaochengShandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bautista M, Del Rio MÁG, Benedí J, Sánchez-Reus MI, Morales-González JA, Téllez-López AM, López-Orozco M. Effect of dichloromethylene diphosphonate on liver regeneration following thioacetamide-induced necrosis in rats. World J Hepatol 2013; 5:379-386. [PMID: 23898371 PMCID: PMC3724966 DOI: 10.4254/wjh.v5.i7.379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effect of dichloromethylene diphosphonate (DMDP), a selective Kupffer cell toxicant in reference to liver damage and postnecrotic liver regeneration in rats induced by sublethal dose thioacetamide (TA). METHODS Rats, intravenously (iv) pre-treated with a single dose of DMDP (10 mg/kg), were intraperitoneally (ip) injected with TA 6.6 mmol/kg (per 500 mg/kg body weight). Hepatocytes were isolated from rats at 0, 24, 48 and 72 h following TA intoxication and blood and liver samples were obtained. To evaluate the mechanisms involved in the postnecrotic regenerative state, DNA distribution and ploidy time course were assayed in isolated hepatocytes. Circulating cytokine tumor necrosis factor-alpha (TNF-α) was assayed in serum and determined by reverse transcriptase-polymerase chain reaction in liver extract. RESULTS The effect of DMDP induced noticeable changes in postnecrotic regeneration, causing an increased percentage of hepatocytes in the cell cycle S phase. The increase at 24 h in S1 population in rats pretreated with DMDP + TA was significantly (P < 0.05) different compared with that of the TA group (18.07% vs 8.57%). Hepatocytes increased their proliferation as a result of these changes. Also, TNF-α expression and serum level were increased in rats pre-treated with DMDP. Thus, DMDP pre-treatment reduced TA-induced liver injury and accelerated postnecrotic liver regeneration. CONCLUSION These results demonstrate that Kupffer cells are involved in TA-induced liver, as well as in postnecrotic proliferative liver states.
Collapse
Affiliation(s)
- Mirandeli Bautista
- Mirandeli Bautista, Ana María Téllez-López, Maricela López-Orozco, Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, CP 42000, México
| | | | | | | | | | | | | |
Collapse
|
18
|
Dong HH, Xiang S, Liang HF, Li CH, Zhang ZW, Chen XP. The niche of hepatic cancer stem cell and cancer recurrence. Med Hypotheses 2013; 80:666-8. [DOI: 10.1016/j.mehy.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/17/2022]
|
19
|
Shmarakov IO, Jiang H, Yang KJZ, Goldberg IJ, Blaner WS. Hepatic retinoid stores are required for normal liver regeneration. J Lipid Res 2013; 54:893-908. [PMID: 23349206 DOI: 10.1194/jlr.m029801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Preliminary studies of liver regeneration induced by partial hepatectomy (PHE) identified a substantial depletion of hepatic retinoid stores, by greater than 70%, in regenerating livers of wild-type C57Bl/6J mice. To understand this, we compared responses of wild-type and lecithin:retinol acyltransferase (Lrat)-deficient mice, which totally lack hepatic retinoid stores, to PHE. The Lrat-deficient livers showed delayed regeneration in the first 24 h after PHE. At 12 h after PHE, we observed significantly less mRNA expression for growth factors and cytokines implicated in regulating the priming phase of liver regeneration, specifically for Hgf and Tgfα, but not Tgfβ. Compared with wild-type mice, the changes in mRNA levels for p21 and cyclins E1, B1, and A2 mRNAs and for hepatocellular BrdU incorporation and mitoses were delayed (i.e., shifted to later times) in regenerating Lrat(-/-) livers. Concentrations of all-trans-retinoic acid were significantly lower in the livers of Lrat(-/-) mice following PHE, and this was accompanied by diminished expression of known retinoid-responsive genes. At later times after PHE, the rate of liver weight restoration for Lrat(-/-) mice was parallel to that of wild-type mice, although additional biochemical differences were observed. Thus, hepatic retinoid stores are required for maintaining expression of signaling molecules that regulate cell proliferation and differentiation immediately after hepatic injury, accounting for the delayed restoration of liver mass in Lrat(-/-) mice.
Collapse
|
20
|
Bhattacharya S, Shoda LKM, Zhang Q, Woods CG, Howell BA, Siler SQ, Woodhead JL, Yang Y, McMullen P, Watkins PB, Andersen ME. Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front Physiol 2012; 3:462. [PMID: 23248599 PMCID: PMC3522076 DOI: 10.3389/fphys.2012.00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/21/2012] [Indexed: 12/22/2022] Open
Abstract
We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell–cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koh SL, Ager E, Malcontenti-Wilson C, Muralidharan V, Christophi C. Blockade of the renin-angiotensin system improves the early stages of liver regeneration and liver function. J Surg Res 2012; 179:66-71. [PMID: 23110972 DOI: 10.1016/j.jss.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/23/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Partial hepatectomy is the preferred option for selected patients with colorectal cancer liver metastases (CRCLM). Sufficient liver regeneration (LR) is essential for a successful outcome in these patients. The blockade of the renin-angiotensin system (RAS) reduces the growth of several tumor types. The RAS also acts as a regulator of liver fibrosis and potentially LR. The angiotensin-converting enzyme (ACE) inhibitor, captopril, significantly inhibits the growth of CRCLM, but its effect on LR remains undefined. METHODS After 70% of partial hepatectomy, mice were randomly assigned to control or captopril-treated groups. LR was measured by liver-to-body weight ratio on days 1, 2, 4, 6, and 8. Hepatocyte proliferation, apoptosis and cell size, hepatic stellate cell (HSC) count, and sinusoidal endothelial cell density were quantified. Matrix metalloproteinase 9 (MMP-9) protein levels, liver injury markers, and RAS messenger RNA levels were also determined. RESULTS At day 2, captopril increased liver-to-body weight ratio (56.5 ± 1.7 captopril versus 49.3 ± 2.4 control, P = 0.027). This was associated with increased HSC count (65.4 ± 4.8 cells per 100,000 μm(2), 48.7 ± 2.3, P = 0.007) and MMP-9 levels (0.68 ± 0.12 AU, 0.12 ± 0.04, P = 0.014). The messenger RNA levels of angiotensin-converting enzyme (P = 0.045) and angiotensin 1 receptor (P = 0.039) were reduced by captopril at day 2. CONCLUSION Captopril enhanced early LR. This effect was associated with increased HSC numbers and MMP-9 protein, whereas hepatocyte proliferation was lower than controls. Captopril may provide a beneficial treatment option for the management of patients with CRCLM.
Collapse
Affiliation(s)
- Shir Lin Koh
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
22
|
Ultrastructure of liver progenitor/oval cells in children with nonalcoholic steatohepatitis. Adv Med Sci 2012; 56:172-9. [PMID: 21940261 DOI: 10.2478/v10039-011-0037-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Very interesting reports have appeared lately on the role of liver progenitor/oval cells in the morphogenesis and development of nonalcoholic steatohepatits (NASH) in adult patients and experimental animals. However, no literature data concerning pediatric patients have been available. Therefore, the purpose of the study was to evaluate the ultrastructure of the population of liver progenitor/oval cells in the biopsy material from children with previously clinocopathologically diagnosed NASH. MATERIAL/METHODS Electron-microscopic examinations were conducted on fresh tissue samples collected from 10 children with NASH (aged 2-14 years), which were fixed with a solution of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer. RESULTS Ultrastructural examinations of the liver progenitor/oval cells in children with NASH show a quite prominent number of these cells, especially their two types, hepatic progenitor cells (HPCs) and intermediate hepatocyte-like cells (IHCs), with intermediate bile-like cells being the least frequent. They were found to occur single or in clusters of two, seldom of three, and frequently in the areas of advanced liver fibrosis or close to them. Many times, these cells were accompanied by hepatocytes showing a varying degree of death, to total cell disintegration. Interesting was the presence of activated nonparenchymal liver cells, i.e. Kupffer cells/macrophages and hepatic stellate cells, frequently found to adhere to the hepatic oval cells. CONCLUSIONS The current study suggests a marked involvement of the population of liver progenitor/oval cells, mainly HPCs and IHCs, in the development of nonalcoholic steatohepatitis in pediatric patients, especially in fibrosis progression.
Collapse
|
23
|
Chen L, Zhang W, Zhou QD, Yang HQ, Liang HF, Zhang BX, Long X, Chen XP. HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. Cell Biochem Funct 2012; 30:588-96. [PMID: 22535704 DOI: 10.1002/cbf.2838] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/07/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Lin Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Wei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Qiao-dan Zhou
- Department of Nephrology, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | | | - Hui-fang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Bi-xiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Xin Long
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| | - Xiao-ping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College; Huazhong University of Science and Technology; Wuhan; China
| |
Collapse
|
24
|
Xiang S, Dong HH, Liang HF, He SQ, Zhang W, Li CH, Zhang BX, Zhang BH, Jing K, Tomlinson S, van Rooijen N, Jiang L, Cianflone K, Chen XP. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat. PLoS One 2012; 7:e35180. [PMID: 22514719 PMCID: PMC3325996 DOI: 10.1371/journal.pone.0035180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/09/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) in rats. METHODOLOGY/PRINCIPAL FINDINGS We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.
Collapse
Affiliation(s)
- Shuai Xiang
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - Han-Hua Dong
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, China
| | - Chang-Hai Li
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - Bi-Xiang Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, China
| | - Bin-Hao Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, China
| | - Kai Jing
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Li Jiang
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | - Xiao-Ping Chen
- Hepatic Surgery Centre, Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
- * E-mail:
| |
Collapse
|
25
|
Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32:7042-7052. [PMID: 21723601 DOI: 10.1016/j.biomaterials.2011.06.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
There is currently no optimal system to expand and maintain the function of human adult hepatocytes in culture. Recent studies have demonstrated that specific tissue-derived extracellular matrix (ECM) can serve as a culture substrate and that cells tend to proliferate and differentiate best on ECM derived from their tissue of origin. The goal of this study was to investigate whether three-dimensional (3D) ECM derived from porcine liver can facilitate the growth and maintenance of physiological functions of liver cells. Optimized decellularization/oxidation procedures removed up to 93% of the cellular components from porcine liver tissue and preserved key molecular components in the ECM, including collagen-I, -III, and -IV, proteoglycans, glycosaminoglycans, fibronectin, elastin, and laminin. When HepG2 cells or human hepatocytes were seeded onto ECM discs, uniform multi-layer constructs of both cell types were formed. Dynamic culture conditions yielded better cellular infiltration into the ECM discs. Human hepatocytes cultured on ECM discs expressed significantly higher levels of albumin over a 21-day culture period compared to cells cultured in traditional polystyrene cultureware or in a collagen gel "sandwich". The culture of hepatocytes on 3D liver-specific ECM resulted in considerably improved cell growth and maintained cell function; therefore, this system could potentially be used in liver tissue regeneration, drug discovery or toxicology studies.
Collapse
Affiliation(s)
- Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Francipane MG, Cervello M, Vizzini GB, Pietrosi G, Montalto G. Management of Liver Failure: From Transplantation to Cell-Based Therapy. CELL MEDICINE 2011; 2:9-25. [PMID: 26998399 DOI: 10.3727/215517911x575993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The severe shortage of deceased donor organs has driven a search for alternative methods of treating liver failure. In this context, cell-based regenerative medicine is emerging as a promising interdisciplinary field of tissue repair and restoration, able to contribute to improving health in a minimally invasive fashion. Several cell types have allowed long-term survival in experimental models of liver injury, but their therapeutic potential in humans should be regarded with deep caution, because few clinical trials are currently available and the number of patients enrolled so far is too small to assess benefits versus risks. This review summarizes the current literature on the physiological role of endogenous stem cells in liver regeneration and on the therapeutic benefits of exogenous stem cell administration with specific emphasis on the potential clinical uses of mesenchymal stem cells. Moreover, critical points that still need clarification, such as the exact identity of the stem-like cell population exerting the beneficial effects, as well as the limitations of stem cell-based therapies, are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy," National Research Council (CNR), Palermo, Italy; †Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy," National Research Council (CNR) , Palermo , Italy
| | - Giovanni Battista Vizzini
- ‡ Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center in Italy , Palermo , Italy
| | - Giada Pietrosi
- ‡ Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center in Italy , Palermo , Italy
| | - Giuseppe Montalto
- † Department of Internal Medicine and Specialties, University of Palermo , Palermo , Italy
| |
Collapse
|
27
|
Sokal EM. From hepatocytes to stem and progenitor cells for liver regenerative medicine: advances and clinical perspectives. Cell Prolif 2011; 44 Suppl 1:39-43. [PMID: 21481042 DOI: 10.1111/j.1365-2184.2010.00730.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The parenchymal liver cell is a unique fully functional metabolic unit that can be used for liver regenerative medicine to restore function of the diseased organ; the aim of the procedure is to prevent progression of end-stage disease. The alternative, orthotopic liver transplantation, is highly intrusive, irreversible and limited by general organ shortage. Mature liver cell - hepatocyte - transplantation has been shown to have short- to medium-term efficacy for correction of miscellaneous inborn errors of metabolism. However, although proof of concept has been established, the procedure has not yet achieved full success, due to limited durability of functional benefit. Hepatocyte procurement is also restricted by organ shortage, and their storage is difficult due to poor tolerance of cryopreservation. Alternative cell sources are therefore needed for development and wider accessibility of cell-based liver regenerative medicine. Besides safety, the main challenge for these alternative cells is to acquire similar levels of functionality once implanted into the target organ. In this respect, liver derived progenitor cells may have some advantages over stem cells derived from other tissues.
Collapse
Affiliation(s)
- E M Sokal
- Pediatric Liver Unit, Laboratory of Hepatology & Cell Therapy, Université Catholique de Louvain, Institut de Recherche Expérimentale et clinique Brussels, Belgium.
| |
Collapse
|
28
|
Hisakura K, Murata S, Takahashi K, Matsuo R, Pak S, Ikeda N, Kawasaki T, Kohno K, Myronovych A, Nakano Y, Ikeda O, Watanabe M, Ohkohchi N. Platelets prevent acute hepatitis induced by anti-fas antibody. J Gastroenterol Hepatol 2011; 26:348-355. [PMID: 21261726 DOI: 10.1111/j.1440-1746.2010.06334.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Platelets provide many functions in the body, especially to the liver. The purpose of this study is to investigate the effect of thrombocytosis with acute hepatitis induced by anti-Fas antibody and its mechanism. METHODS Acute hepatitis was induced by administration of anti-Fas antibody in normal and thrombocytotic C57BL6J mice. For thrombocytosis, thrombopoietin; PEG-rHuMGDF was injected 5 days before and just prior to administration of anti-Fas antibody. To investigate the mechanisms, hepatocyte cell line (AML12) and sinusoidal endothelial cell line (M1) were induced apoptosis by staurosporine. They were cultured with platelets or thrombopoietin. Examination items were as follows: platelet number, alanine aminotransferase (ALT), histological findings, TUNEL (TdT-mediated dUTP-biotin Nick End Labeling) staining, and the expression of proteins associated with apoptosis in vivo and in vitro. RESULTS Platelets were significantly increased in the thrombocytotic group (P < 0.01). Serum ALT levels were significantly reduced by thrombocytosis at 6, 24 and 72 h after the administration (P < 0.05). In histological findings, hemorrhagic necrosis was observed in the normal group, but not observed in the thrombocytotic group. TUNEL-positive hepatocytes were reduced and the expression of cleaved caspase-3 was significantly decreased in the thrombocytotic group. The phosphorylation of Akt, the increment of Bcl-xL and the decrease of cleaved caspase-3 were observed in AML12 cells cultured with platelets, but were not observed cultured with thrombopoietin. Platelets and thrombopoietin had no anti-apoptotic effect on M1 cells. CONCLUSION Increase of platelets has a preventative effect against acute hepatitis induced by the anti-Fas antibody. It is suggested that platelets have a direct protective effect against apoptosis of hepatocytes.
Collapse
Affiliation(s)
- Katsuji Hisakura
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tirnitz-Parker JEE, Viebahn CS, Jakubowski A, Klopcic BRS, Olynyk JK, Yeoh GCT, Knight B. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology 2010; 52:291-302. [PMID: 20578156 DOI: 10.1002/hep.23663] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Liver progenitor cells (LPCs) represent the cell compartment facilitating hepatic regeneration during chronic injury while hepatocyte-mediated repair mechanisms are compromised. LPC proliferation is frequently observed in human chronic liver diseases such as hereditary hemochromatosis, fatty liver disease, and chronic hepatitis. In vivo studies have suggested that a tumor necrosis factor family member, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), is promitotic for LPCs; whether it acts directly is not known. In our murine choline-deficient, ethionine-supplemented (CDE) model of chronic liver injury, TWEAK receptor [fibroblast growth factor-inducible 14 (Fn14)] expression in the whole liver is massively upregulated. We therefore set out to investigate whether TWEAK/Fn14 signaling promotes the regenerative response in CDE-induced chronic liver injury by mitotic stimulation of LPCs. Fn14 knockout (KO) mice showed significantly reduced LPC numbers and attenuated inflammation and cytokine production after 2 weeks of CDE feeding. The close association between LPC proliferation and activation of hepatic stellate cells in chronic liver injury prompted us to investigate whether fibrogenesis was also modulated in Fn14 KO animals. Collagen deposition and expression of key fibrogenesis mediators were reduced after 2 weeks of injury, and this correlated with LPC numbers. Furthermore, the injection of 2-week-CDE-treated wildtype animals with TWEAK led to increased proliferation of nonparenchymal pan cytokeratin-positive cells. Stimulation of an Fn14-positive LPC line with TWEAK led to nuclear factor kappa light chain enhancer of activated B cells (NFkappaB) activation and dose-dependent proliferation, which was diminished after targeting of the p50 NFkappaB subunit by RNA interference. CONCLUSION TWEAK acts directly and stimulates LPC mitosis in an Fn14-dependent and NFkappaB-dependent fashion, and signaling via this pathway mediates the LPC response to CDE-induced injury and regeneration.
Collapse
|
30
|
Gennero L, Roos MA, Sperber K, Denysenko T, Bernabei P, Calisti GF, Papotti M, Cappia S, Pagni R, Aimo G, Mengozzi G, Cavallo G, Reguzzi S, Pescarmona GP, Ponzetto A. Pluripotent plasticity of stem cells and liver repopulation. Cell Biochem Funct 2010; 28:178-89. [PMID: 20232487 DOI: 10.1002/cbf.1630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra-hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self-repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio-artificial liver-assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver.
Collapse
Affiliation(s)
- Luisa Gennero
- Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ji S, Jin L, Guo X, Ji W. Culture of newborn monkey liver epithelial progenitor cells in chemical defined serum-free medium. In Vitro Cell Dev Biol Anim 2010; 46:693-701. [PMID: 20568020 DOI: 10.1007/s11626-010-9325-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
Abstract
Studies with hepatic progenitor cells from non-human primates would allow better understanding of their human counterparts. In this study, rhesus monkey liver epithelial progenitor cells (mLEPCs) were derived from a small piece of newborn livers in chemical defined serum-free medium. Digested hepatic cells were treated in Ca(2+)-containing medium to form cell aggregates. Two types of cell aggregates were generated: elongated spindle cells and polygonal epithelial cells. Elongated spindle cells were expressed as vimentin and brachyury, and they were disappeared within 5 d in our cultures. The remaining type consisted of small polygonal epithelial cells that expressed cytokeratin 7 (CK7), CK8, CK18, nestin, CD49f, and E-cad, the markers of hepatic stem cells, but were negative for alpha-fetoprotein, albumin, and CK19. They can proliferate and be passaged, if on laminin or rat tail collagen gel, to initiate colonies. When cultured with dexamethasone and oncostatin M, the expression of mature hepatocyte markers, such as alpha-1-antitrypsin, intracytoplasmic glycogen storage, indocyanine green uptake, and lipid droplet generation, were induced in differentiated cells. If transferred onto mouse embryonic fibroblasts feeders, they gave rise to CK19-positive cholangiocytes with formation of doughnut-like structure. Thus, mLEPCs with bipotency were derived from newborn monkey liver and may serve as a preclinical model for assessment of cell therapy in humans.
Collapse
Affiliation(s)
- Shaohui Ji
- Kunming Primate Research Center, and Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiaochang Donglu, Kunming, Yunnan, 650223, China
| | | | | | | |
Collapse
|
32
|
Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther 2010; 17:692-708. [PMID: 20220785 DOI: 10.1038/gt.2010.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) are a source of circulating progenitors that are able to generate cells of all mesenchymal lineages and to cover cellular demands of injured tissues. The extent of their transdifferentiation plasticity remains controversial. Cells with MSC properties have been obtained from diverse tissues after purification and expansion in vitro. These cellular populations are heterogeneous and under certain conditions show pluripotent-like properties. MSCs present immunosuppressive and anti-inflammatory features and high migratory capacity toward inflamed or remodeling tissues. In this study we review available data regarding factors and signaling axes involved in the chemoattraction and engraftment of MSCs to an injured tissue or to a tissue undergoing active remodeling. Moreover, experimental evidence in support of uses of MSCs as vehicles of therapeutic genes is discussed. Because of its regenerative capacity and its particular immune properties, the liver is a good model to analyze the potential of MSC-based therapies. Finally, the potential application of MSCs and genetically modified MSCs in liver fibrosis and hepatocellular carcinoma (HCC) is proposed in view of available evidence.
Collapse
|
33
|
Dollé L, Best J, Mei J, Al Battah F, Reynaert H, van Grunsven LA, Geerts A. The quest for liver progenitor cells: a practical point of view. J Hepatol 2010; 52:117-29. [PMID: 19913937 DOI: 10.1016/j.jhep.2009.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chronic liver diseases can lead to hepatic dysfunction with organ failure. At present, orthotopic liver transplantation represents the benchmark therapy of terminal liver disease. However this practice is limited by shortage of donor grafts, the need for lifelong immunosuppression and very demanding state-of-the-art surgery. For this reason, new therapies have been developed to restore liver function, primarily in the form of hepatocyte transplantation and artificial liver support devices. While already offered in very specialized centers, both of these modalities still remain experimental. Recently, liver progenitor cells have shown great promise for cell therapy, and consequently they have attracted a lot of attention as an alternative or supportive tool for liver transplantation. These liver progenitor cells are quiescent in the healthy liver and become activated in certain liver diseases in which the regenerative capacity of mature hepatocytes and/or cholangiocytes is impaired. Although reports describing liver progenitor cells are numerous, they have not led to a consensus on the identity of the liver progenitor cell. In this review, we will discuss some of the characteristics of these cells and the different ways that have been used to obtain these from rodents. We will also highlight the challenges that researchers are facing in their quest to identify and use liver progenitor cells.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Cell Biology, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
The role of stem cells in liver repair and fibrosis. Int J Biochem Cell Biol 2009; 43:222-9. [PMID: 19914396 DOI: 10.1016/j.biocel.2009.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/20/2009] [Accepted: 11/06/2009] [Indexed: 11/21/2022]
Abstract
In response to liver injury or loss of liver mass, proliferation of mature liver cells is the first-line defense to restore liver homeostasis. In the setting of chronic liver disease, however, the ability of hepatocytes and cholangiocytes to proliferate is blocked and small bipotential progenitor cells are activated. Recent studies have established the role of these facultative progenitor cells in injury repair and fibrosis in patients with chronic liver disease and in experimental models. Several signaling pathways linking progenitor cell activation and fibrosis have been identified, and there is increasing evidence that cross-talk (both physical and via soluble factors) between progenitor cells and myofibroblasts is essential for both fibrosis and parenchymal regeneration. Even more exciting are new data examining the cellular components of the progenitor cell niche, demonstrating that both resident liver cells and circulating cells from the bone marrow can function as stem cells, suggesting that there is a surprising degree of phenotypic plasticity such that progenitor cells can contribute to the myofibroblast population and vice versa. We highlight here recent findings from the literature demonstrating the cellular and functional complexity of the progenitor cell niche, and emphasize some of the important questions that remain to drive future research.
Collapse
|