1
|
Pandey H, Goel P, Srinivasan VM, Tang DWT, Wong SH, Lal D. Gut microbiota in non-alcoholic fatty liver disease: Pathophysiology, diagnosis, and therapeutics. World J Hepatol 2025; 17:106849. [DOI: 10.4254/wjh.v17.i6.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/25/2025] [Accepted: 05/21/2025] [Indexed: 06/25/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), also referred to as metabolic-associated fatty liver disease, is among the most prevalent chronic liver conditions. In some cases, NAFLD may lead to liver inflammation and non-alcoholic steatohepatitis, which can eventually progress to liver cirrhosis and hepatocellular carcinoma. The pathophysiology of NAFLD is complex, involving both genetic and environmental factors. NAFLD is a multisystem disease linked to a higher likelihood of developing metabolic disorders such as type 2 diabetes, obesity, and cardiovascular and chronic kidney diseases. The gut-liver axis represents a key connection between the gut microbiota and the liver, and its disruption has been linked to NAFLD. Growing evidence underscores the significant role of gut microbiota in the onset and progression of NAFLD, with alterations in the gut microbiome and impaired gut barrier function. Studies have identified key microbiota signatures and metabolites linked to NAFLD, implicating oxidative stress, endotoxemia, and inflammatory pathways that further strengthen the connection between gut microbiota and NAFLD. Modulation of gut microbiota through diet and microbiota-centered therapies, such as next-generation probiotics and fecal microbiota transplantation, holds promise for treating NAFLD. In this review, we explore the key link between gut microbiota and the development and progression of NAFLD, as well as its potential applications in the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Himani Pandey
- Department of Medical Genetics, Redcliffe Labs, Noida 201301, Uttar Pradesh, India
| | - Prabudh Goel
- Department of Pediatric Surgery, All India Institute of Medical Sciences, Delhi 110029, India
| | - Varunvenkat M Srinivasan
- Department of Medical Genetics, Postgraduate Institute of Child Health, Noida 201310, Uttar Pradesh, India
| | - Daryl W T Tang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
El Jaddaoui I, Sehli S, Al Idrissi N, Bakri Y, Belyamani L, Ghazal H. The Gut Mycobiome for Precision Medicine. J Fungi (Basel) 2025; 11:279. [PMID: 40278100 PMCID: PMC12028274 DOI: 10.3390/jof11040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly influence both health and disease. Advances in next-generation sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and computational biology have provided novel opportunities to study the gut mycobiome, shedding light on its composition, functional genes, and metabolite interactions. Emerging evidence links fungal dysbiosis to various diseases, including inflammatory bowel disease, colorectal cancer, metabolic disorders, and neurological conditions. The gut mycobiome also presents a promising avenue for precision medicine, particularly in biomarker discovery, disease diagnostics, and targeted therapeutics. Nonetheless, significant challenges remain in effectively integrating gut mycobiome knowledge into clinical practice. This review examines gut fungal microbiota, highlighting analytical methods, associations with human diseases, and its potential role in precision medicine. It also discusses pathways for clinical translation, particularly in diagnosis and treatment, while addressing key barriers to implementation.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Sofia Sehli
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Najib Al Idrissi
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 10000, Morocco; (I.E.J.); (Y.B.)
- Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10000, Morocco
| | - Lahcen Belyamani
- School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco;
| | - Hassan Ghazal
- Laboratory of Precision Medicine & One Health (MedPreOne), School of Medicine, Mohammed VI University of Sciences & Health, Casablanca 82403, Morocco; (S.S.); (N.A.I.)
- Laboratory of Sports Sciences and Performance Optimization, Royal Institute of Executive Management, Salé 10102, Morocco
- National Center for Scientific and Technical Research, Rabat 10102, Morocco
| |
Collapse
|
3
|
Pawelec-Pęciak O, Łanocha-Arendarczyk N, Grzeszczak K, Kosik-Bogacka D. The Role of Blastocystis spp. in the Etiology of Gastrointestinal and Autoimmune Diseases. Pathogens 2025; 14:313. [PMID: 40333047 PMCID: PMC12030515 DOI: 10.3390/pathogens14040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 05/09/2025] Open
Abstract
Blastocystis spp. has been linked to gastrointestinal symptoms, yet its pathogenicity remains uncertain. In addition, the roles of virulence factors, pathogenic potential, and host-specific traits associated with symptomatic infections are still not well understood. The growing number of immunocompromised patients has contributed to an increasing prevalence of Blastocystis spp. infections, which may be implicated in the development of various inflammatory diseases, including irritable bowel syndrome (IBS), colorectal cancer, and autoimmune disorders such as Hashimoto's disease and ulcerative colitis. However, the presence of nonspecific symptoms often complicates diagnosis. This study aimed to present current data on the impact of Blastocystis spp. on the development and progression of gastrointestinal and autoimmune diseases, as well as to explore potential treatment options for Blastocystis spp. infections. A literature review was conducted to analyze the role of Blastocystis spp. in the pathogenesis of specific diseases and to investigate potential mechanisms of its interaction with the host organism. Advances in diagnostic techniques, particularly PCR, allow not only for the detection of Blastocystis spp. but also for the identification of specific subtypes, improving treatment precision. Beyond conventional therapies like metronidazole, there is a growing emphasis on alternative treatments, including the use of medicinal plants and probiotics.
Collapse
Affiliation(s)
- Oliwia Pawelec-Pęciak
- Department of Biology, Parasitology and Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (O.P.-P.); (D.K.-B.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology, Parasitology and Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (O.P.-P.); (D.K.-B.)
| | - Konrad Grzeszczak
- Department of Medical Analytics, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Danuta Kosik-Bogacka
- Department of Biology, Parasitology and Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (O.P.-P.); (D.K.-B.)
| |
Collapse
|
4
|
Hao Z, Lu Y, Hao Y, Luo Y, Wu K, Zhu C, Shi P, Zhu F, Lin Y, Zeng X. Fungal mycobiome dysbiosis in choledocholithiasis concurrent with cholangitis. J Gastroenterol 2025; 60:340-355. [PMID: 39604579 DOI: 10.1007/s00535-024-02183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. METHODS In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. RESULTS The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedly altered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. CONCLUSION Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Changpeng Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
5
|
Mateus Rodríguez JA, Rodríguez Sanz P, Kostandyan E, Palacios Sanchez R, Pino Roque ML, Chaves Vasquez P, Roy Millán P. Mitigating Diarrhoea-Related Inflammation in Frail Older Adults with Postbiotic-Enhanced Oral Rehydration Solution: Insights from a Randomised, Double-Blind, Placebo-Controlled Study. Geriatrics (Basel) 2025; 10:34. [PMID: 40126284 PMCID: PMC11932196 DOI: 10.3390/geriatrics10020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Background/Objectives: Diarrhoea in older adults can lead to dehydration and malnutrition, impaired gut barrier function, and reduced quality of life. Unresolved inflammation during diarrhoea episodes contributes to relapse and complications. This randomised study evaluated the effects of a novel oral rehydration solution (ORS) with the postbiotic ABB C22®, known for its anti-inflammatory properties, on diarrhoea-associated inflammation in an elderly population. Methods: A randomised, double-blind, placebo-controlled, parallel-group trial was conducted at two hospital centres in Barcelona, Spain. Forty-seven participants aged ≥65 years with diarrhoea (n = 47) were randomised (1:1) to receive either ABB C22®-enriched ORS or placebo ORS for up to 14 days. Randomization was stratified by centre using a computer-generated sequence. Participants, caregivers, and outcome assessors were blinded. Primary endpoints were changes in faecal inflammatory biomarkers (calprotectin and lactoferrin) and blood immunoglobulin A. Secondary endpoints included changes in stool consistency (Bristol Stool Scale) and treatment tolerability. Results: Of the 47 participants, 42 completed the trial (21 per group). At day 14, the ORS + ABB C22® group showed greater reductions in faecal calprotectin and lactoferrin levels compared to the placebo group. Lactoferrin-positive cases were halved by day 3 in the intervention group. Stool consistency improved in both groups. No adverse events were reported in either group. Conclusions: ABB C22®-enriched ORS exhibited superior anti-inflammatory effects compared to standard ORS while achieving similar improvements in stool consistency. These findings suggest that postbiotic-enriched formulations represent a promising approach to better address the management of diarrhoea which is often accompanied by gut inflammation. The study protocol was registered in ClinicalTrials.gov (NCT06738420; date: 16 December 2024).
Collapse
Affiliation(s)
- Julian Andrés Mateus Rodríguez
- Hospital d’Atenció Intermedia Colisée Barcelona Isabel Roig, 08030 Barcelona, Spain; (P.R.S.); (R.P.S.); (M.L.P.R.)
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (E.K.); (P.C.V.); (P.R.M.)
| | - Patricia Rodríguez Sanz
- Hospital d’Atenció Intermedia Colisée Barcelona Isabel Roig, 08030 Barcelona, Spain; (P.R.S.); (R.P.S.); (M.L.P.R.)
| | - Edgar Kostandyan
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (E.K.); (P.C.V.); (P.R.M.)
| | - Rubén Palacios Sanchez
- Hospital d’Atenció Intermedia Colisée Barcelona Isabel Roig, 08030 Barcelona, Spain; (P.R.S.); (R.P.S.); (M.L.P.R.)
| | - María Luz Pino Roque
- Hospital d’Atenció Intermedia Colisée Barcelona Isabel Roig, 08030 Barcelona, Spain; (P.R.S.); (R.P.S.); (M.L.P.R.)
- Facultat d’Infermeria, Universitat de Barcelona, 08907 Barcelona, Spain
| | - Patricia Chaves Vasquez
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (E.K.); (P.C.V.); (P.R.M.)
| | - Pedro Roy Millán
- Hospital Mare de Déu de la Mercè, Hermanas Hospitalarias, 08042 Barcelona, Spain; (E.K.); (P.C.V.); (P.R.M.)
| |
Collapse
|
6
|
Kriti M, Ojha R, Singh S, Sarma DK, Verma V, Yadav AK, Nagpal R, Kumar M. Implication of Gut Mycobiome and Virome in Type-2 Diabetes Mellitus: Uncovering the Hidden Players. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:51-64. [PMID: 40313607 PMCID: PMC12040793 DOI: 10.1007/s43657-024-00199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 05/03/2025]
Abstract
Type-2 diabetes mellitus (T2DM) is a global epidemic with significant societal costs. The gut microbiota, including its metabolites, plays a pivotal role in maintaining health, while gut dysbiosis is implicated in several metabolic disorders, including T2DM. Although data exists on the relationship between the gut bacteriome and metabolic disorders, further attention is needed for the mycobiome and virome. Recent advancements have begun to shed light on these connections, offering potential avenues for preventive measures. However, more comprehensive investigations are required to untangle the interrelations between different microbial kingdoms and their role in T2DM development or mitigation. This review presents a simplified overview of the alterations in the gut bacteriome in T2DM and delves into the current understanding of the mycobiome and virome's role in T2DM, along with their interactions with the cohabiting bacteriome. Subsequently, it explores into the age-related dynamics of the gut microbiome and the changes observed in the microbiome composition with the onset of T2DM. Further, we explore the basic workflow utilized in gut microbiome studies. Lastly, we discuss potential therapeutic interventions in gut microbiome research, which could contribute to the amelioration of the condition, serve as preventive measures, or pave the way towards personalized medicine.
Collapse
Affiliation(s)
- Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Raj Ojha
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014 Uttar Pradesh India
| | - Ashok Kumar Yadav
- Department of Zoology, Central University of Jammu, 181143 Jammu, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| |
Collapse
|
7
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Sabaredzovic A, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Philippat C, Eggesbø M, Lepage P, Slama R. Associations between pre- and post-natal exposure to phthalate and DINCH metabolites and gut microbiota in one-year old children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125204. [PMID: 39490662 DOI: 10.1016/j.envpol.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age. Within SEPAGES cohort (Suivi de l'Exposition à la Pollution Atmosphérique durant la Grossesse et Effet sur la Santé), we assessed 13 phthalate metabolites and 2 di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) metabolites in repeated urine samples collected in pregnant women and their offspring. We obtained stool samples from 356 children at 12 months of age and sequenced the V3-V4 region of the 16S rRNA gene, allowing gut bacterial profiling. We used single-chemical (linear regressions) and mixture (BKMR, Bayesian Kernel Machine Regression) models to examine associations of phthalates and DINCH metabolites, with gut microbiota indices of α-diversity (specific richness and Shannon diversity) and the relative abundances of the most abundant microbiota phyla and genera. After correction for multiple testing, di(2-ethylhexyl) phthalate (ΣDEHP), diethyl phthalate (DEP) and bis(2-propylheptyl) phthalate (DPHP) metabolites 12-month urinary concentrations were associated with higher Shannon α-diversity of the child gut microbiota in single-chemical models. The multiple-chemical model (BKMR) suggested higher α-diversity with exposure to the phthalate mixture at 12 months, driven by the same phthalates. There were no associations between phthalate and DINCH exposure biomarkers at other time points and α-diversity after correction for multiple testing. ΣDEHP metabolites concentration at 12 months was associated with higher Coprococcus genus. Finally, ΣDEHP exposure at 12 months tended to be associated with higher phylum Firmicutes, an association not maintained after correction for multiple testing. Infancy exposure to phthalate might disrupt children's gut microbiota. The observed associations were cross-sectional, so that reverse causality cannot be excluded.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France.
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), 0213, Oslo, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France
| | - Merete Eggesbø
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway; Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350, Jouy-en-Josas, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, University Grenoble Alpes, 38000, Grenoble, France; SMILE, Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France; PARSEC, Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| |
Collapse
|
8
|
Yaghmaei H, Bahanesteh A, Soltanipur M, Takaloo S, Rezaei M, Siadat SD. The Role of Gut Microbiota Modification in Nonalcoholic Fatty Liver Disease Treatment Strategies. Int J Hepatol 2024; 2024:4183880. [PMID: 39444759 PMCID: PMC11498984 DOI: 10.1155/2024/4183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/25/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most common chronic liver diseases is nonalcoholic fatty liver disease (NAFLD), which affects many people around the world. Gut microbiota (GM) dysbiosis seems to be an influential factor in the pathophysiology of NAFLD because changes in GM lead to fundamental changes in host metabolism. Therefore, the study of the effect of dysbiosis on the pathogenicity of NAFLD is important. European clinical guidelines state that the best advice for people with NAFLD is to lose weight and improve their lifestyle, but only 40% of people can achieve this goal. Accordingly, it is necessary to provide new treatment approaches for prevention and treatment. In addition to dietary interventions and lifestyle modifications, GM modification-based therapies are of interest. These therapies include probiotics, synbiotics, fecal microbiota transplantation (FMT), and next-generation probiotics. All of these treatments have had promising results in animal studies, and it can be imagined that acceptable results will be obtained in human studies as well. However, further investigations are required to generalize the outcomes of animal studies to humans.
Collapse
Affiliation(s)
- Hessam Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masood Soltanipur
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Takaloo
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Mahdi Rezaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Davias A, Lyon-Caen S, Rolland M, Iszatt N, Thomsen C, Haug LS, Sakhi AK, Monot C, Rayah Y, Ilhan ZE, Jovanovic N, Philippat C, Eggesbo M, Lepage P, Slama R. Perinatal Exposure to Phenols and Poly- and Perfluoroalkyl Substances and Gut Microbiota in One-Year-Old Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15395-15414. [PMID: 39173114 DOI: 10.1021/acs.est.3c09927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and β-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and β-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Aline Davias
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Sarah Lyon-Caen
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Matthieu Rolland
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Line Småstuen Haug
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Amrit Kaur Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Celine Monot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Yamina Rayah
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Zehra Esra Ilhan
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Nicolas Jovanovic
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Claire Philippat
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| | - Merete Eggesbo
- Division of Climate and Environmental Health, Norwegian Institute of Public Health (NIPH), Oslo 0213, Norway
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Rémy Slama
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, La Tronche 38700, France
| |
Collapse
|
10
|
Dolatkhah N, Jafari A, Eslamian F, Toopchizadeh V, Saleh P, Hashemian M. Saccharomyces boulardii improves clinical and paraclinical indices in overweight/obese knee osteoarthritis patients: a randomized triple-blind placebo-controlled trial. Eur J Nutr 2024; 63:2291-2305. [PMID: 38761281 DOI: 10.1007/s00394-024-03428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to determine the effect of the probiotic Saccharomyces boulardii (S. boulardii) in patients with knee osteoarthritis (KOA). METHODS In this study, 70 patients with KOA were recruited via outpatient clinics between 2020 and 2021 and randomly assigned to receive probiotics or placebo supplements for 12 weeks. The primary outcome was a change in pain intensity according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score. RESULTS Sixty-three patients completed the trial. A linear mixed analysis of covariance (ANCOVA) model analysis showed that probiotic was better than placebo in decreasing the pain intensity measured by visual analogue scale (VAS) [-2.11 (-2.59, -1.62) in probiotic group and -0.90 (-1.32, -0.48) in placebo group, p = 0.002] and WOMAC pain score [-3.57 (-4.66, -2.49) in probiotic group and -1.43 (-2.33, -0.53) in placebo group, p < 0.001]. The daily intake of acetaminophen for pain management significantly decreased in the probiotic group [-267.18 (-400.47, -133.89) mg, p < 0.001] that was significantly better than placebo (p = 0.006). Probiotic significantly decreased the serum levels of high-sensitivity C-reactive protein (hs-CRP) inflammatory index [-2.72 (-3.24, -2.20) µg/ml] and malondialdehyde (MDA) oxidative stress index [-1.61 (-2.11, -1.11) nmol/ml] compared to the placebo (p = 0.002 and p < 0.001, respectively). Probiotic was better than placebo in increasing the scores of role disorder due to physical health (p = 0.023), pain (p = 0.048) and physical health (p = 0.031). CONCLUSION Probiotic S. boulardii supplementation in patients with KOA significantly improved pain intensity, some dimensions of QoL, and inflammatory and oxidative stress biomarkers with no severe side effects. TRIAL REGISTRY Registered on the Iranian clinical trial website ( http://www.irct.ir : IRCT20161022030424N4) on 2019-09-02.
Collapse
Affiliation(s)
- Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Jafari
- Department pf Physical Medicine and Rehabilitation, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Toopchizadeh
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Saleh
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA
| |
Collapse
|
11
|
Efremova I, Maslennikov R, Poluektova E, Medvedev O, Kudryavtseva A, Krasnov G, Fedorova M, Romanikhin F, Zharkova M, Zolnikova O, Bagieva G, Ivashkin V. Presepsin as a biomarker of bacterial translocation and an indicator for the prescription of probiotics in cirrhosis. World J Hepatol 2024; 16:822-831. [PMID: 38818295 PMCID: PMC11135270 DOI: 10.4254/wjh.v16.i5.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The gut-liver axis and bacterial translocation are important in cirrhosis, but there is no available universal biomarker of cellular bacterial translocation, for which presepsin may be a candidate. AIM To evaluate the relationship of the blood presepsin levels with the state of the gut microbiota in cirrhosis in the absence of obvious infection. METHODS This study included 48 patients with Child-Pugh cirrhosis classes B and C and 15 healthy controls. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of presepsin were measured. A total of 22 patients received a probiotic (Saccharomyces boulardii) for 3 months. RESULTS Presepsin levels were higher in patients with cirrhosis than in healthy individuals [342 (91-2875) vs 120 (102-141) pg/mL; P = 0.048]. Patients with elevated presepsin levels accounted for 56.3% of all included patients. They had lower levels of serum albumin and higher levels of serum total bilirubin and overall severity of cirrhosis as assessed using the Child-Pugh scale. Patients with elevated presepsin levels had an increased abundance of the main taxa responsible for bacterial translocation, namely Bacilli and Proteobacteria (including the main class Gammaproteobacteria and the minor taxa Xanthobacteraceae and Stenotrophomonas), and a low abundance of bacteria from the family Lachnospiraceae (including the minor genus Fusicatenibacter), which produce short-chain fatty acids that have a positive effect on intestinal barrier function. The presepsin level directly correlated with the relative abundance of Bacilli, Proteobacteria, and inversely correlated with the abundance of Lachnospiraceae and Propionibacteriaceae. After 3 months of taking the probiotic, the severity of cirrhosis on the Child-Pugh scale decreased significantly only in the group with elevated presepsin levels [from 9 (8-11) to 7 (6-9); P = 0.004], while there were no significant changes in the group with normal presepsin levels [from 8 (7-8) to 7 (6-8); P = 0.123]. A high level of presepsin before the prescription of the probiotic was an independent predictor of a greater decrease in Child-Pugh scores (P = 0.046), as well as a higher level of the Child-Pugh scale (P = 0.042), but not the C-reactive protein level (P = 0.679) according to multivariate linear regression analysis. CONCLUSION The level of presepsin directly correlates with the abundance in the gut microbiota of the main taxa that are substrates of bacterial translocation in cirrhosis. This biomarker, in the absence of obvious infection, seems important for assessing the state of the gut-liver axis in cirrhosis and deciding on therapy targeted at the gut microbiota in this disease.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia.
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| | - Oleg Medvedev
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Anna Kudryavtseva
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria Fedorova
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Filipp Romanikhin
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Gyunay Bagieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| |
Collapse
|
12
|
Babaei F, Navidi-Moghaddam A, Naderi A, Ghafghazi S, Mirzababaei M, Dargahi L, Mohammadi G, Nassiri-Asl M. The preventive effects of Saccharomyces boulardii against oxidative stress induced by lipopolysaccharide in rat brain. Heliyon 2024; 10:e30426. [PMID: 38720760 PMCID: PMC11076963 DOI: 10.1016/j.heliyon.2024.e30426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
The brain is sensitive to oxidative stress, which can trigger microglial activation and neuroinflammation. Antioxidant therapies may provide neuroprotection against oxidative stress. In recent years antioxidant effects of probiotics and their possible mechanisms in oxidative stress-related models have been determined. In the current study, for the first time, we assessed the effects of Saccharomyces boulardii on oxidative stress provoked by lipopolysaccharide (LPS) in the rat brain. Four groups of animals were used, including the control, LPS, S. boulardii + LPS, and S. boulardii groups. All animals received either saline or S. boulardii (1010 CFU) by gavage for four weeks. Between days 14 and 22, all animals received either LPS (250 μg/kg) or saline by intraperitoneal (i.p.) injection. S. boulardii was able to inhibit lipid peroxidation and prevent the reduction of antioxidant levels, including glutathione and catalase in the model of oxidative stress induced by LPS in the rat hippocampus and cortex. Also, it increased the lowered ratio of glutathione/oxidized glutathione in both tissues. Serum levels of anti-inflammatory interleukin 10 (IL-10) and proinflammatory cytokines IL-6 and IL-8 increased and decreased, respectively. S. boulardii has potential antioxidant activities in oxidative stress-related model, possibly modulating gut microbiota, immune defense, and antioxidant enzyme activities that can be considered in preventing oxidative stress-related central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Navidi-Moghaddam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ariyan Naderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Minoretti P, Liaño Riera M, Santiago Sáez A, Gómez Serrano M, García Martín Á. Probiotic Supplementation With Saccharomyces boulardii and Enterococcus faecium Improves Gastric Pain and Bloating in Airline Pilots With Chronic Non-atrophic Gastritis: An Open-Label Study. Cureus 2024; 16:e52502. [PMID: 38371107 PMCID: PMC10870090 DOI: 10.7759/cureus.52502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background Commercial airline pilots (APs) are prone to upper gastrointestinal symptoms, such as epigastric pain and bloating. These issues are often linked to occupational risk factors like irregular diet, sleep disruption, and circadian rhythm disturbance. The use of probiotics to enhance intestinal health is well established, but their efficacy in treating upper gastrointestinal diseases is still debated. This is primarily due to the stomach's small resident microbiota and its low pH, which is inhospitable to most microbes. However, emerging research suggests that specific probiotic strains, such as Enterococcus faecium, can withstand acidic environments. Moreover, certain yeast species, including Saccharomyces boulardii, can survive at a low pH. Consequently, we conducted a preliminary, three-arm, randomized, open-label, dose-finding, four-week study to compare the effects of watchful waiting (WW) with the administration of an oral probiotic supplement containing S. boulardii and E. faecium in APs diagnosed with Helicobacter pylori-negative chronic non-atrophic gastritis (CNG). Methods The study included 39 APs with CNG who were randomized into three groups with a 1:1:1 ratio. The low-dose group (n = 13) received one capsule of the probiotic supplement twice daily, before meals, for four weeks. The high-dose group (n = 13) was administered two capsules of the supplement on the same schedule. The third group (n = 13) underwent WW and served as the control arm. Blinding was maintained for the examining physicians and laboratory staff, but not for the patients. All participants self-rated their experiences of gastric pain and bloating at the beginning and conclusion of the four-week treatment period. Additionally, serum levels of pepsinogen I (PGI) and pepsinogen II (PGII) were measured at these time points. Results Supplementation with probiotics significantly outperformed WW in reducing subjective gastric pain and bloating. This effect was consistent across both tested dosages, with no significant differences observed. However, only high-dose probiotics led to a statistically significant decrease in PGII levels and an increase in the PGI/PGII ratio after the four-week study period, a result not observed with low-dose probiotics. Conclusions Oral administration of S. boulardii and E. faecium demonstrated potential efficacy in reducing gastric pain and bloating symptoms in APs with CNG, as evidenced by statistically significant symptom improvement compared to the control group that did not receive the probiotic supplementation. Notably, high-dose probiotics resulted in a significant increase in the PGI/PGII ratio, indicating potential long-term cytoprotective effects on the gastric mucosa.
Collapse
Affiliation(s)
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
14
|
Gu P, Liu R, Yang Q, Xie L, Wei R, Li J, Mei F, Chen T, Zeng Z, He Y, Zhou H, Peng H, Nandakumar KS, Chu H, Jiang Y, Gong W, Chen Y, Schnabl B, Chen P. A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis. Cell Mol Immunol 2023; 20:1156-1170. [PMID: 37553429 PMCID: PMC10541433 DOI: 10.1038/s41423-023-01070-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
The gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.
Collapse
Affiliation(s)
- Peng Gu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fengyi Mei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Department of Environment and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Hawrysh PJ, Gao J, Tan S, Oh A, Nodwell J, Tompkins TA, McQuibban GA. PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis. Autophagy 2023; 19:2094-2110. [PMID: 36708254 PMCID: PMC10283409 DOI: 10.1080/15548627.2023.2172873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.
Collapse
Affiliation(s)
| | - Jinghua Gao
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie Tan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Amy Oh
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
16
|
Wang L, Zhang K, Zeng Y, Luo Y, Peng J, Zhang J, Kuang T, Fan G. Gut mycobiome and metabolic diseases: The known, the unknown, and the future. Pharmacol Res 2023; 193:106807. [PMID: 37244385 DOI: 10.1016/j.phrs.2023.106807] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Metabolic diseases, such as type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD) and obesity, have become a major public health problem worldwide. In recent years, most research on the role of gut microbes in metabolic diseases has focused on bacteria, whereas fungal microbes have been neglected. This review aims to provide a comprehensive overview of gut fungal alterations in T2DM, obesity, and NAFLD, and to discuss the mechanisms associated with disease development. In addition, several novel strategies targeting gut mycobiome and/or their metabolites to improve T2DM, obesity and NAFLD, including fungal probiotics, antifungal drugs, dietary intervention, and fecal microbiota transplantation, are critically discussed. The accumulated evidence suggests that gut mycobiome plays an important role in the occurrence and development of metabolic diseases. The possible mechanisms by which the gut mycobiome affects metabolic diseases include fungal-induced immune responses, fungal-bacterial interactions, and fungal-derived metabolites. Candida albicans, Aspergillus and Meyerozyma may be potential pathogens of metabolic diseases because they can activate the immune system and/or produce harmful metabolites. Moreover, Saccharomyces boulardii, S. cerevisiae, Alternaria, and Cochliobolus fungi may have the potential to improve metabolic diseases. The information may provide an important reference for the development of new therapeutics for metabolic diseases based on gut mycobiome.
Collapse
Affiliation(s)
- Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
17
|
Roldán-López D, Muñiz-Calvo S, Daroqui N, Knez M, Guillamón JM, Pérez-Torrado R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 2022; 64:3059-3074. [PMID: 36222026 DOI: 10.1080/10408398.2022.2129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food consumption of healthier products has become an essential trend in the food sector. This is also the case in beer, a biochemical process of transformation performed by yeast cells. More and more studies proclaim the need to reduce ethanol content in alcoholic drinks, certainly the most important health issue of beer consumption. In this review we gather key health issues related to beer consumption and the last advances regarding the use of yeast to attenuate those health problems. Furthermore, we have included the latest findings about the general positive impact of yeast in health as a consequence of its ability to biotransform polyphenolic compounds present in the wort, producing healthy compounds as hydroxytyrosol or melatonin, and its ability to perform as a probiotic driver. Besides, a group of population with chronic diseases as diabetes or celiac disease could take advantage of low carbohydrate or gluten-free beers, respectively. The role of yeast in beer production has been traditionally associated to its fermentative power. But here we have found a change in this dogma in the last years toward yeasts being a main driver to enhance healthy aspects of beer. The key findings are discussed and possible future directions are proposed.
Collapse
Affiliation(s)
- David Roldán-López
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Sara Muñiz-Calvo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Noemi Daroqui
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Masa Knez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Jose Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
18
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
19
|
Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes 2022; 14:2105610. [PMID: 35903007 PMCID: PMC9341359 DOI: 10.1080/19490976.2022.2105610] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The composition of the microbiota is the focus of many recent publications describing the effects of the microbiota on host health. In recent years, research has progressed further, investigating not only the diversity of genes and functions but also metabolites produced by microorganisms composing the microbiota of various niches and how these metabolites affect and shape the microbial community. While an abundance of data has been published on bacterial interactions, much less data are available on the interactions of bacteria with another component of the microbiota: the fungal community. Although present in smaller numbers, fungi are essential to the balance of this complex microbial ecosystem. Both bacterial and fungal communities produce metabolites that influence their own population but also that of the other. However, to date, interkingdom interactions occurring through metabolites produced by bacteria and fungi have rarely been described. In this review, we describe the major metabolites produced by both kingdoms and discuss how they influence each other, by what mechanisms and with what consequences for the host.
Collapse
Affiliation(s)
- Alexia Lapiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, France,CONTACT Mathias L Richard INRAE, Micalis Institute, Probihote Team, Domaine de Vilvert, 78352, Jouy en Josas, France
| |
Collapse
|
20
|
Ye T, Yuan S, Kong Y, Yang H, Wei H, Zhang Y, Jin H, Yu Q, Liu J, Chen S, Sun J. Effect of Probiotic Fungi against Cognitive Impairment in Mice via Regulation of the Fungal Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9026-9038. [PMID: 35833673 DOI: 10.1021/acs.jafc.2c03142] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fungal microbiota may be involved in the regulation of cognition and behavior, while the role of probiotic fungi against cognitive impairment is unclear. Here, we explored the idea that probiotic Saccharomyces boulardii could participate in the regulation of microglia-induced neuroinflammation in Alzheimer's disease (AD) model mice. Cognitive deficits, deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity, microglia activation, and neuroinflammatory reactions were observed. The expression levels of Toll-like receptors (TLRs) pathway-related proteins were detected. Meanwhile, intestinal barrier integrity and fungal microbiota composition were evaluated. Our results showed fungal microbiota dysbiosis in APP/PS1 mice, which might result in the neuroinflammation of AD. The increased levels of interleukin (IL)-6, IL-1β, and cluster of differentiation 11b (CD11b) were observed in APP/PS1 mice, which were associated with activation of microglia, indicative of a broader recognition of neuroinflammation mediated by fungal microbiota compared to hitherto appreciated. Probiotic S. boulardii treatment improved dysbiosis, alleviated the neuroinflammation as well as synaptic injury, and ultimately improved cognitive impairment. Moreover, S. boulardii therapy could inhibit microglia activation and the TLRs pathway, which were reversed by antifungal treatment. These findings revealed that S. boulardii actively participated in regulating the TLRs pathway to inhibit the neuroinflammation via the gut-brain axis.
Collapse
Affiliation(s)
- Tao Ye
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiqun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongming Wei
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hangqi Jin
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
21
|
Gu Y, Wang C, Qin X, Zhou B, Liu X, Liu T, Xie R, Liu J, Wang B, Cao H. Saccharomyces boulardii, a yeast probiotic, inhibits gut motility through upregulating intestinal serotonin transporter and modulating gut microbiota. Pharmacol Res 2022; 181:106291. [PMID: 35690329 DOI: 10.1016/j.phrs.2022.106291] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Saccharomyces boulardii (Sb) is a widely used fungal probiotic in treating various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of Sb relieving IBS remain unclear. The abnormal serotonin transporter (SERT) / 5-hydroxytryptamine (5-HT) system could cause disordered gastrointestinal sensation and motility, which closely related to IBS pathogenesis. The aim of this study was to explore the effects and mechanisms of Sb on regulating gut motility. Sb supernatant (SbS) was administered to intestinal epithelial cells and mice. SbS upregulated SERT expression via enhancing heparin-binding epidermal growth factor (HB-EGF) release to activate epidermal growth factor receptor (EGFR). EGFR kinase inhibitor treatment or HB-EGF siRNA transfection in cells blocked SbS upregulating SERT. Consistently, SbS-treated mice presented inhibited gut motility, and EGFR activation and SERT upregulation were found. Moreover, 16 S rDNA sequence presented an evident decrease in Firmicutes / Bacteroidetes ratio in SbS group. In genus level, SbS reduced Escherichia_Shigella, Alistipes, Clostridium XlVa, and Saccharibacteria_genera_incertae_sedis, meanwhile, increased Parasutterella. The abundance of Saccharibacteria_genera_incertae_sedis positively correlated with defecation parameters and intestinal 5-HT content. Fecal microbiota transplantation showed that SbS could modulate gut microbiota to influence gut motility. Interestingly, elimination of gut microbiota with antibiotic cocktail did not entirely block SbS regulating gut motility. Furthermore, SbS administration to IBS-D mice significantly upregulated SERT and inhibited gut motility. In conclusion, SbS could upregulate SERT by EGFR activation, and modulate gut microbiota to inhibit gut motility. This finding would provide more evidence for the application of this yeast probiotic in IBS and other diarrheal disorders.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Chen Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Bingqian Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TeDa Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, China.
| |
Collapse
|
22
|
Abid R, Waseem H, Ali J, Ghazanfar S, Muhammad Ali G, Elasbali AM, Alharethi SH. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J Fungi (Basel) 2022; 8:444. [PMID: 35628700 PMCID: PMC9147304 DOI: 10.3390/jof8050444] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Saccharomyces cerevisiae var. boulardii is best known for its treatment efficacy against different gastrointestinal diseases. This probiotic yeast can significantly protect the normal microbiota of the human gut and inhibit the pathogenicity of different diarrheal infections. Several clinical investigations have declared S. cerevisiae var. boulardii a biotherapeutic agent due to its antibacterial, antiviral, anti-carcinogenic, antioxidant, anti-inflammatory and immune-modulatory properties. Oral or intramuscular administration of S. cerevisiae var. boulardii can remarkably induce health-promoting effects in the host body. Different intrinsic and extrinsic factors are responsible for its efficacy against acute and chronic gut-associated diseases. This review will discuss the clinical and beneficial effects of S. cerevisiae var. boulardii in the treatment and prevention of different metabolic diseases and highlight some of its health-promising properties. This review article will provide fundamental insights for new avenues in the fields of biotherapeutics, antimicrobial resistance and one health.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Hassan Waseem
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Jafar Ali
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- Department of Biological Sciences, Muslim Youth University, Islamabad 44100, Pakistan;
| | - Shakira Ghazanfar
- National Agriculture Research Center, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Islamabad 44100, Pakistan;
| | - Ghulam Muhammad Ali
- Pakistan Agricultural Research Council (PARC) 20, Ataturk Avenue, G-5/1, Islamabad 44000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Al-Jouf P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran 66262, Saudi Arabia;
| |
Collapse
|
23
|
Khan I, Wei J, Li A, Liu Z, Yang P, Jing Y, Chen X, Zhao T, Bai Y, Zha L, Li C, Ullah N, Che T, Zhang C. Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. Int Microbiol 2022; 25:587-603. [PMID: 35414032 DOI: 10.1007/s10123-022-00243-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-β, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Junshu Wei
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Anping Li
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Zhirong Liu
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Pingrong Yang
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Yaping Jing
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Xinjun Chen
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chenhui Li
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Roussel C, De Paepe K, Galia W, de Bodt J, Chalancon S, Denis S, Leriche F, Vandekerkove P, Ballet N, Blanquet-Diot S, Van de Wiele T. Multi-targeted properties of the probiotic saccharomyces cerevisiae CNCM I-3856 against enterotoxigenic escherichia coli (ETEC) H10407 pathogenesis across human gut models. Gut Microbes 2021; 13:1953246. [PMID: 34432600 PMCID: PMC8405159 DOI: 10.1080/19490976.2021.1953246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of acute traveler's diarrhea. Adhesins and enterotoxins constitute the major ETEC virulence traits. With the dramatic increase in antibiotic resistance, probiotics are considered a wholesome alternative to prevent or treat ETEC infections. Here, we examined the antimicrobial properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 against ETEC H10407 pathogenesis upon co-administration in the TNO gastrointestinal Model (TIM-1), simulating the physicochemical and enzymatic conditions of the human upper digestive tract and preventive treatment in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), integrating microbial populations of the ileum and ascending colon. Interindividual variability was assessed by separate M-SHIME experiments with microbiota from six human individuals. The probiotic did not affect ETEC survival along the digestive tract. However, ETEC pathogenicity was significantly reduced: enterotoxin encoding virulence genes were repressed, especially in the TIM-1 system, and a lower enterotoxin production was noted. M-SHIME experiments revealed that 18-days probiotic treatment stimulate the growth of Bifidobacterium and Lactobacillus in different gut regions (mucosal and luminal, ileum and ascending colon) while a stronger metabolic activity was noted in terms of short-chain fatty acids (acetate, propionate, and butyrate) and ethanol production. Moreover, the probiotic pre-treated microbiota displayed a higher robustness in composition following ETEC challenge compared to the control condition. We thus demonstrated the multi-inhibitory properties of the probiotic S. cerevisiae CNCM I-3856 against ETEC in the overall simulated human digestive tract, regardless of the inherent variability across individuals in the M-SHIME.
Collapse
Affiliation(s)
- Charlène Roussel
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France,CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kim De Paepe
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wessam Galia
- UMR 5557 Microbial Ecology, Research Group On Bacterial Opportunistic Pathogens And Environment, CNRS, VetAgro Sup, Lyon, France
| | - Jana de Bodt
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sandrine Chalancon
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | | | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, Marcq-en-Baroeul, France
| | - Stéphanie Blanquet-Diot
- CONTACT Stéphanie Blanquet-Diot Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res 2021; 175:106022. [PMID: 34883213 DOI: 10.1016/j.phrs.2021.106022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic yeast that has been elucidated to be efficacious in fighting various gastrointestinal diseases in preclinical as well as clinical studies. Its general mechanisms of probiotic action in the treatment of gastrointestinal conditions cover multifaceted aspects, including immune regulation, production of antimicrobial substances, pathogen competitive elimination, gut barrier integrity maintenance, intestinal trophic effect and antioxidant potency. In this review, basic knowledge with regard to the gut-liver axis, available probiotics remedies and mechanistic insights of S. boulardii as probiotics will be elucidated. In addition, we summarize the therapeutic potential of S. boulardii in several liver diseases evident from both bench and bedside information, such as acute liver injury/failure, fibrosis, hepatic damages due to metabolic disturbance or infection and obstructive jaundice. Future prospects in relation to medicinal effects of S. boulardii are also exploited and discussed on the basis of novel and attractive therapeutic concept in the latest scientific literature.
Collapse
|
27
|
Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, Pourjafar H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2021; 63:457-485. [PMID: 34254862 DOI: 10.1080/10408398.2021.1949577] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Saccharomyces cerevisiae var. boulardii (S. boulardii) has been isolated from lychee (Litchi chinensis), mangosteen fruit, kombucha, and dairy products like kefir. Dairy products containing S. boulardii have been revealed to possess potential probiotic activities owing to their ability to produce organic acids, essential enzymes, vitamins, and other important metabolites such as vanillic acid, phenyl ethyl alcohol, and erythromycin. S. boulardii has a wide spectrum of anti-carcinogenic, antibacterial antiviral, and antioxidant activity, and is known to reduce serum cholesterol levels. However, this yeast has mainly been prescribed for prophylaxis treatment of gastrointestinal infectious diseases, and stimulating the immune system in a number of commercially available products. The present comprehensive review article reviews the properties of S. boulardii related to their use in fermented dairy foods as a probiotic microorganism or starter culture. Technical aspects regarding the integration of this yeast into the dairy foods matrix its health advantages, therapeutic functions, microencapsulation, and viability in harsh conditions, and safety aspects are highlighted.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.,Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Seyedeh Maedeh Jafari
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Hadi Pourjafar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran.,Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
28
|
Baldewijns S, Sillen M, Palmans I, Vandecruys P, Van Dijck P, Demuyser L. The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Front Microbiol 2021; 12:705779. [PMID: 34276639 PMCID: PMC8282898 DOI: 10.3389/fmicb.2021.705779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Although the vast majority of women encounters at least one vaginal infection during their life, the amount of microbiome-related research performed in this area lags behind compared to alternative niches such as the intestinal tract. As a result, effective means of diagnosis and treatment, especially of recurrent infections, are limited. The role of the metabolome in vaginal health is largely elusive. It has been shown that lactate produced by the numerous lactobacilli present promotes health by limiting the chance of infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although the causality of this relationship is still under debate. In this review, we aim to bring together information on the role of the vaginal metabolome and microbiome in infections caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least once in their life with a significant proportion of women suffering from the recurrent variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of research limits our understanding of the molecular processes involved and restricts the possibility of developing novel treatment strategies.
Collapse
Affiliation(s)
- Silke Baldewijns
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
29
|
Shi T, Bian X, Yao Z, Wang Y, Gao W, Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct 2021; 11:8003-8013. [PMID: 32845255 DOI: 10.1039/d0fo01439g] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The diversity and activity of the gut microbiota residing in humans and animals are significantly influenced by the diet. Quercetin, one of the representative polyphenols in human diets, possesses a wide range of biological properties. The aim of this study was to investigate the prebiotic effects of quercetin in antibiotic-treated mice. Gut dysbiosis was successfully induced in mice by treatment with an antibiotic cocktail. Gas chromatography and 16S rDNA high-throughput sequencing techniques were used to investigate short-chain fatty acid content and gut microbial diversity and composition. The results showed that quercetin supplementation significantly improved the diversity of the gut bacterial community in antibiotic-treated mice (P < 0.05). Meanwhile, intestinal barrier function was also recovered remarkably as indicated by a decrease in the content of serum d-lactic acid and the activity of serum diamine oxidase (P < 0.05). The length of intestinal villi and mucosal thickness were also significantly increased in response to quercetin treatment (P < 0.05). Furthermore, the production of butyrate in faeces was enhanced significantly in quercetin-treated mice (P < 0.05). In conclusion, quercetin is effective in recovering gut microbiota in mice after antibiotic treatment and may act as a prebiotic in combatting gut dysbiosis.
Collapse
Affiliation(s)
- Tala Shi
- Institute of Environmental and Operational Medicine, Tianjin, China. and Department of Nutrition and Food Hygiene, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhanxin Yao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Yawen Wang
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Weina Gao
- Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Changjiang Guo
- Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
30
|
You N, Zhuo L, Zhou J, Song Y, Shi J. The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut Liver 2021; 14:291-296. [PMID: 31554391 PMCID: PMC7234879 DOI: 10.5009/gnl18579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Current studies have confirmed that liver diseases are closely related to intestinal microorganisms; however, those studies have mainly concentrated on bacteria. Although the proportion of intestinal microorganisms accounted for by colonizing fungi is very small, these fungi do have a significant effect on the homeostasis of the intestinal microecosystem. In this paper, the characteristics of intestinal fungi in patients with chronic liver diseases such as alcoholic liver disease, nonalcoholic fatty liver disease and cirrhosis are summarized, and the effects of intestinal fungi and their metabolites are analyzed and discussed. It is important to realize that not only bacteria but also intestinal fungi play important roles in liver diseases.
Collapse
Affiliation(s)
- Ningning You
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lili Zhuo
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jingxin Zhou
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yu Song
- Department of Liver Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
31
|
Sarwar A, Aziz T, Al-Dalali S, Zhang J, Din JU, Chen C, Cao Y, Fatima H, Yang Z. Characterization of synbiotic ice cream made with probiotic yeast Saccharomyces boulardii CNCM I-745 in combination with inulin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Redweik GAJ, Jochum J, Mellata M. Live Bacterial Prophylactics in Modern Poultry. Front Vet Sci 2020; 7:592312. [PMID: 33195630 PMCID: PMC7655978 DOI: 10.3389/fvets.2020.592312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Commercial poultry farms frequently use live bacterial prophylactics like vaccines and probiotics to prevent bacterial infections. Due to the emergence of antibiotic-resistant bacteria in poultry animals, a closer examination into the health benefits and limitations of commercial, live prophylactics as an alternative to antibiotics is urgently needed. In this review, we summarize the peer-reviewed literature of several commercial live bacterial vaccines and probiotics. Per our estimation, there is a paucity of peer-reviewed published research regarding these products, making repeatability, product-comparison, and understanding biological mechanisms difficult. Furthermore, we briefly-outline significant issues such as probiotic-label accuracy, lack of commercially available live bacterial vaccines for major poultry-related bacteria such as Campylobacter and Clostridium perfringens, as well research gaps (i.e., probiotic-mediated vaccine adjuvancy, gut-brain-microbiota axis). Increased emphasis on these areas would open several avenues for research, ranging from improving protection against bacterial pathogens to using these prophylactics to modulate animal behavior.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jared Jochum
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J Fungi (Basel) 2020; 6:jof6020078. [PMID: 32512834 PMCID: PMC7344949 DOI: 10.3390/jof6020078] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function.
Collapse
|
34
|
Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm 2020; 2020:9560684. [PMID: 32322167 PMCID: PMC7160717 DOI: 10.1155/2020/9560684] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
Collapse
|
35
|
Mogilnicka I, Ufnal M. Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Curr Drug Targets 2020; 20:232-240. [PMID: 30047327 DOI: 10.2174/1389450119666180724125020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/13/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microbiota play an important role in host's homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites. METHODS We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis. RESULTS Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases. CONCLUSION The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, Giraldo-Villa A, Acevedo-Castaño I, Yepes-Molina MA, Barbosa-Barbosa J, Barrera-Causil CJ, Agudelo-Ochoa GM. Stool Short-Chain Fatty Acids in Critically Ill Patients with Sepsis. J Am Coll Nutr 2020; 39:706-712. [PMID: 32163012 DOI: 10.1080/07315724.2020.1727379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: To determine the concentration of stool short-chain fatty acids (SCFAs) in critically ill patients with sepsis and to compare the results between the critically ill patient and the control group.Methods: This descriptive, multicenter, observational study was conducted in five health institutions. Over a 6-month study period, critically ill patients with sepsis who were admitted to the intensive care unit (ICU) and met the inclusion criteria were enrolled, and a control, paired by age and sex, was recruited for each patient. A spontaneous stool sample was collected from each participant and a gas chromatograph coupled to a mass spectrometer (Agilent 7890/MSD 5975 C) was used to measure the concentrations SCFAs.Results: The final sample included 44 patients and 45 controls. There were no differences in the age and sex distributions between the groups (p > 0.05). According to body mass index (BMI), undernutrition was more prevalent among critically ill patients, and BMI in control subjects was most frequently classified as overweight (p = 0.024). Propionic acid, acetic acid, butyric acid, and isobutyric acid concentrations were significantly lower in the critically ill patient group than in the control group (p = 0.000). No association with outcome variables (complications, ICU stay, and discharge condition) was found in the patients, and patients diagnosed with infection on ICU admission showed significant decreases in butyric and isobutyric acid concentrations with respect to other diagnostic criteria (p < 0.05).Conclusions: The results confirm significantly lower concentrations of stool SCFAs in critically ill patients with sepsis than in control subjects. Due to its role in intestinal integrity, barrier function, and anti-inflammatory effect, maintaining the concentration of SCFAs may be important in the ICU care protocols of the critical patient.
Collapse
Affiliation(s)
- Beatriz E Valdés-Duque
- Bioscience Research Group, Institución Universitaria Colegio Mayor de Antioquia - IUCMA, Medellín, Antioquia, Colombia
| | - Nubia A Giraldo-Giraldo
- Food and Human Nutrition Research Group, Universidad de Antioquia - UdeA, Medellín, Antioquia, Colombia
| | - Ana M Jaillier-Ramírez
- Departamento de nutrición, Hospital Universitario San Vicente Fundación Rionegro, Rionegro, Antioquia, Colombia
| | - Adriana Giraldo-Villa
- Departamento de nutrición clínica, Hospital Pablo Tobón Uribe, Medellín, Antioquia, Colombia
| | - Irene Acevedo-Castaño
- Departamento de nutrición y dietética, Hospital General, Medellín, Antioquia, Colombia
| | - Mónica A Yepes-Molina
- Departamento de nutrición y dietética, Hospital Universitario San Vicente Fundación Medellín, Medellín, Antioquia, Colombia
| | - Janeth Barbosa-Barbosa
- Departamento de nutrición, área de soporte nutricional, Clínica Las Américas, Medellín, Antioquia, Colombia
| | - Carlos J Barrera-Causil
- Research Group in Teaching and Modeling in Applied Exact Sciences, Instituto Tecnológico Metropolitano - ITM, Medellín, Antioquia, Colombia
| | - Gloria M Agudelo-Ochoa
- Food and Human Nutrition Research Group, Universidad de Antioquia - UdeA, Medellín, Antioquia, Colombia
| |
Collapse
|
37
|
Selig DJ, DeLuca JP, Li Q, Lin H, Nguyen K, Scott SM, Sousa JC, Vuong CT, Xie LH, Livezey JR. Saccharomyces boulardii CNCM I-745 probiotic does not alter the pharmacokinetics of amoxicillin. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmpt-2019-0032/dmpt-2019-0032.xml. [PMID: 32134728 DOI: 10.1515/dmpt-2019-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
Abstract
Background Probiotics are live microbial organisms that provide benefit to the host while co-habitating in the gastrointestinal tract. Probiotics are safe, available over the counter, and have clinical benefit by reducing the number of antibiotic-associated diarrhea days. Prescriptions from providers and direct consumer demand of probiotics appear to be on the rise. Several recent animal studies have demonstrated that probiotics may have significant effect on absorption of co-administered drugs. However, to date, most probiotic-drug interaction studies in animal models have been limited to bacterial probiotics and nonantibiotic drugs. Methods We performed a traditional pharmacokinetic mouse study examining the interactions between a common commercially available yeast probiotic, Saccharomyces boulardii CNCM I-745 (Florastor®) and an orally administered amoxicillin. Results We showed that there were no significant differences in pharmacokinetic parameters (half-life, area under the curve, peak concentrations, time to reach maximum concentration, elimination rate constant) of amoxicillin between the probiotic treated and untreated control groups. Conclusions Altogether, our findings suggest that coadministration or concurrent use of S. boulardii probiotic and amoxicillin would not likely alter the efficacy of amoxicillin therapy.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA, Phone: (+301) 319-9807, Fax: 301-319-9449
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Qigui Li
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Hsiuling Lin
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Ken Nguyen
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Shaylyn M Scott
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jason C Sousa
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Chau T Vuong
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Lisa H Xie
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jeffrey R Livezey
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| |
Collapse
|
38
|
Sen S, Mansell TJ. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genet Biol 2020; 137:103333. [PMID: 31923554 DOI: 10.1016/j.fgb.2020.103333] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
The presence of commensal fungal species in the human gut indicates that organisms from this kingdom have the potential to benefit the host as well. Saccharomyces boulardii, a yeast strain isolated about a hundred years ago, is the most well-characterized probiotic yeast. Though for the most part it genetically resembles Saccharomyces cerevisiae, specific phenotypic differences make it better suited for the gut microenvironment such as better acid and heat tolerance. Several studies using animal hosts suggest that S. boulardii can be used as a biotherapeutic in humans. Clinical trials indicate that it can alleviate symptoms from gastrointestinal (GI) tract infections to some extent, but further trials are needed to understand the full therapeutic potential of S. boulardii. Improvement on probiotic function using engineered yeast is an attractive future direction, though genome modification tools for use in S. boulardii have been limited until recently. However, some tools available for S. cerevisiae should be applicable for S. boulardii as well. In this review, we summarize the observed probiotic effect of this yeast and the state of the art for genome engineering tools that could help enhance its probiotic properties.
Collapse
Affiliation(s)
- Swastik Sen
- Interdepartmental Graduate Microbiology Program, Iowa State University, 4122A, BRL, 617 Bissel Rd, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Interdepartmental Graduate Microbiology Program, Iowa State University, 4122A, BRL, 617 Bissel Rd, Ames, IA 50011, USA; Department of Chemical and Biological Engineering, Iowa State University, 2112 Sweeney Hall, 618 Bissel Rd, Ames, IA 50011, USA.
| |
Collapse
|
39
|
Probiotic Supplementation in a Clostridium difficile-Infected Gastrointestinal Model Is Associated with Restoring Metabolic Function of Microbiota. Microorganisms 2019; 8:microorganisms8010060. [PMID: 31905795 PMCID: PMC7023328 DOI: 10.3390/microorganisms8010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota. In the present study, we assessed the ability of several single strain probiotics and a probiotic mixture to change the metabolic functions of normal and C. difficile-infected fecal samples. The production of short-chain fatty acids (SCFAs), hydrogen sulfide (H2S), and ammonia was measured, and changes in microbial composition were assessed by 16S rRNA gene amplicon sequencing. The C. difficile-infection in fecal samples resulted in a significant decrease (p < 0.05) in SCFA and H2S production, with a lower microbial alpha diversity. All probiotic treatments were associated with significantly increased (p < 0.05) levels of SCFAs and restored H2S levels. Probiotics showed no effect on microbial composition of either normal or C. difficile-infected fecal samples. These findings indicate that probiotics may be useful to improve the metabolic dysregulation associated with C. difficile infection.
Collapse
|
40
|
Soares ADN, Wanner SP, Morais ESS, Hudson ASR, Martins FS, Cardoso VN. Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients 2019; 11:nu11102352. [PMID: 31581750 PMCID: PMC6835599 DOI: 10.3390/nu11102352] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Benefits to the host metabolism resulting from Saccharomyces boulardii (Sb) supplementation have been described; however, no study has investigated the effects of this supplementation on aerobic metabolism and performance during physical exercise. Thus, in the present study, we addressed the effects of Sb supplementation on the rate of oxygen consumption (VO2), mechanical efficiency (external work divided by VO2), and aerobic performance of rats subjected to fatiguing, incremental-speed exercise. Twenty-six male Wistar rats were randomly divided into two groups: (1) non-supplemented, in which rats received 0.1 mL of a saline solution, and (2) Sb-supplemented, in which rats received 0.1 mL of a suspension containing 8.0 log10 colony-forming units. The rats received the treatments by gavage for 10 consecutive days; they were then subjected to fatiguing treadmill running. Sb supplementation did not change the VO2 values or mechanical efficiency during submaximal exercise intensities. In contrast, at fatigue, VO2MAX was increased by 12.7% in supplemented rats compared with controls (p = 0.01). Moreover, Sb improved aerobic performance, as evidenced by a 12.4% increase in maximal running speed attained by the supplemented rats (p < 0.05). We conclude that Sb supplementation for 10 days increases VO2MAX and aerobic performance in rats.
Collapse
Affiliation(s)
- Anne Danieli Nascimento Soares
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Barbacena, MG, 36205-018, Brazil.
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Elissa Stefane Silva Morais
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Alexandre Sérvulo Ribeiro Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Flaviano Santos Martins
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
41
|
Czerucka D, Rampal P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World J Gastroenterol 2019; 25:2188-2203. [PMID: 31143070 PMCID: PMC6526157 DOI: 10.3748/wjg.v25.i18.2188] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
The yeast Saccharomyces boulardii CNCM I-745 is one of the probiotics recommended for the prevention of antibiotic-associated diarrhea. Studies conducted in vivo and in vitro demonstrated that in the case of infectious diseases there are two potential sites of action of Saccharomyces boulardii CNCM I-745: (1) An action on enteropathogenic microorganisms (adhesion of bacteria and their elimination or an effect on their virulence factors: Toxins, lipopolysaccharide, etc.); and (2) a direct action on the intestinal mucosa (trophic effects, effects on epithelial reconstitution, anti-secretory effects, anti-inflammatory, immunomodulators). Oral administration of Saccharomyces boulardii CNCM I-745 to healthy subjects does not alter their microbiota. However, in the case of diseases associated with the use of antibiotics or chronic diarrhea, Saccharomyces boulardii CNCM I-745 can restore the intestinal microbiota faster. The interaction of Saccharomyces boulardii CNCM I-745 with the innate immune system have been recently demonstrated thus opening up a new therapeutic potential of this yeast in the case of diseases associated with intestinal infections but also other pathologies associated with dysbiosis such as inflammatory diseases.
Collapse
Affiliation(s)
- Dorota Czerucka
- Department of Human Health, Division of Ecosystems and Immunity, Center Scientific of Monaco, Monaco MC98000, Monaco
| | | |
Collapse
|
42
|
[Saccharomyces boulardii CNCM I-745 - the medicinal yeast improves intestinal enzyme function]. MMW Fortschr Med 2019; 161:20-24. [PMID: 30895510 DOI: 10.1007/s15006-019-0290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Saccharomyces boulardii CNCM I-745 is a probiotic medicinal yeast used in the prevention and treatment of diarrhea. It has numerous effects, i. a. immunological and antitoxin effects, it binds pathogens and has a beneficial effect on the intestinal microbiota. In addition, pronounced trophic effects were detected. METHOD The focus of this review is on the effects of S. boulardii CNCM I-745 on digestive enzymes located in the brush border membrane. An important role in this context is attributed to polyamines which are synthesized and secreted by S. boulardii CNCM I-745. RESULTS AND CONCLUSIONS Polyamines are essential for cell proliferation and differentiation. They enhance the expression of intestinal enzymes as well as nutrient transport systems and directly influence the nucleic acid binding capacity. S. boulardii CNCM I-745 induces signals via mitogen-activated protein kinase cascades (MAP kinase pathway) and influences the PI3 kinase signaling pathway. Furthermore, S. boulardii CNCM I-745 secretes certain enzymes that promote nutrient delivery to both the yeast itself and the host organism. The increased presence of digestive enzymes obviously contributes significantly to the clinical effect of S. boulardii CNCM I-745.
Collapse
|
43
|
Terciolo C, Dapoigny M, Andre F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin Exp Gastroenterol 2019; 12:67-82. [PMID: 30804678 PMCID: PMC6375115 DOI: 10.2147/ceg.s181590] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier defects lead to "leaky gut syndrome", defined as an increase in intestinal permeability that allows the passage of luminal content into intestinal tissue and the bloodstream. Such a compromised intestinal barrier is the main factor underlying the pathogenesis of inflammatory bowel disease, but also commonly occurs in various systemic diseases such as viral infections and metabolic syndrome. The non-pathogenic yeast Saccharomyces boulardii CNCM I-745 has demonstrated its effectiveness as a probiotic in the prevention and treatment of antibiotic-associated, infectious and functional diarrhea. Via multiple mechanisms of action implicated in intestinal barrier function, S. boulardii has beneficial effects on altered intestinal microbiota and epithelial barrier defects in different pathologies. The well-studied probiotic yeast S. boulardii plays a crucial role in the preservation and/or restoration of intestinal barrier function in multiple disorders. This could be of major interest in diseases characterized by alterations in intestinal barrier function.
Collapse
Affiliation(s)
- Chloe Terciolo
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France,
- Aix-Marseille Université, INSERM, UMR 911, CRO2, Marseille, France,
| | - Michel Dapoigny
- Médecine Digestive, CHU Estaing, CHU Clermont-Ferrand, Université Clermont Auvergne, INSERM UMR 1107, Neuro-Dol, Clermont-Ferrand, France
| | - Frederic Andre
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc scientifique et technologique de Luminy, Marseille, France
| |
Collapse
|
44
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr 2019; 10:S49-S66. [PMID: 30721959 PMCID: PMC6363529 DOI: 10.1093/advances/nmy063] [Citation(s) in RCA: 675] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics are living microorganisms that confer health benefits to the host when administered in adequate amounts; however, dead bacteria and their components can also exhibit probiotic properties. Bifidobacterium and strains of lactic acid bacteria are the most widely used bacteria that exhibit probiotic properties and are included in many functional foods and dietary supplements. Probiotics have been shown to prevent and ameliorate the course of digestive disorders such as acute, nosocomial, and antibiotic-associated diarrhea; allergic disorders such as atopic dermatitis (eczema) and allergic rhinitis in infants; and Clostridium difficile-associated diarrhea and some inflammatory bowel disorders in adults. In addition, probiotics may be of interest as coadjuvants in the treatment of metabolic disorders, including obesity, metabolic syndrome, nonalcoholic fatty liver disease, and type 2 diabetes. However, the mechanisms of action of probiotics, which are diverse, heterogeneous, and strain specific, have received little attention. Thus, the aim of the present work was to review the main mechanisms of action of probiotics, including colonization and normalization of perturbed intestinal microbial communities in children and adults; competitive exclusion of pathogens and bacteriocin production; modulation of fecal enzymatic activities associated with the metabolization of biliary salts and inactivation of carcinogens and other xenobiotics; production of short-chain and branched-chain fatty acids, which, in turn, have wide effects not only in the intestine but also in peripheral tissues via interactions with short-chain fatty acid receptors, modulating mainly tissue insulin sensitivity; cell adhesion and mucin production; modulation of the immune system, which results mainly in the differentiation of T-regulatory cells and upregulation of anti-inflammatory cytokines and growth factors, i.e., interleukin-10 and transforming growth factor; and interaction with the brain-gut axis by regulation of endocrine and neurologic functions. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Mercedes Gil-Campos
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research, Cordoba, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Barker AK, Duster M, Valentine S, Hess T, Archbald-Pannone L, Guerrant R, Safdar N. A randomized controlled trial of probiotics for Clostridium difficile infection in adults (PICO). J Antimicrob Chemother 2018; 72:3177-3180. [PMID: 28961980 DOI: 10.1093/jac/dkx254] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
Background Clostridium difficile is the most common cause of hospital-acquired infections, responsible for >450000 infections annually in the USA. Probiotics provide a promising, well-tolerated adjunct therapy to standard C. difficile infection (CDI) treatment regimens, but there is a paucity of data regarding their effectiveness for the treatment of an initial CDI. Objectives We conducted a pilot randomized controlled trial of 33 participants from February 2013 to February 2015 to determine the feasibility and health outcomes of adjunct probiotic use in patients with an initial mild to moderate CDI. Methods The intervention was a 28 day, once-daily course of a four-strain oral probiotic capsule containing Lactobacillus acidophilus NCFM, Lactobacillus paracasei Lpc-37, Bifidobacterium lactis Bi-07 and B. lactis Bl-04. The control placebo was identical in taste and appearance. Registered at clinicaltrials.gov: trial registration number = NCT01680874. Results Probiotic adjunct therapy was associated with a significant improvement in diarrhoea outcomes. The primary duration of diarrhoea outcome (0.0 versus 1.0 days; P = 0.039) and two exploratory outcomes, total diarrhoea days (3.5 versus 12.0 days; P = 0.005) and rate of diarrhoea (0.1 versus 0.3 days of diarrhoea/stool diary days submitted; P = 0.009), all decreased in participants with probiotic use compared with placebo. There was no significant difference in the rate of CDI recurrence or functional improvement over time between treatment groups. Conclusions Probiotics are a promising adjunct therapy for treatment of an initial CDI and should be further explored in a larger randomized controlled trial.
Collapse
Affiliation(s)
- Anna K Barker
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Megan Duster
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Susan Valentine
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy Hess
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Laurie Archbald-Pannone
- Division of General, Geriatric, Palliative and Hospital Medicine, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA.,Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Richard Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Affairs Hospital, Madison, WI, USA.,Department of Infection Control, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
46
|
Moré MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. CLINICAL MEDICINE INSIGHTS. GASTROENTEROLOGY 2018; 11:1179552217752679. [PMID: 29449779 PMCID: PMC5808955 DOI: 10.1177/1179552217752679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022]
Abstract
Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid–binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K) pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast.
Collapse
Affiliation(s)
- Margret I Moré
- analyze & realize GmbH, Department of Consulting and Strategic Innovation, Berlin, Germany
| | - Yvan Vandenplas
- Department of Pediatrics, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
48
|
Arevalo‐Villena M, Briones‐Perez A, Corbo M, Sinigaglia M, Bevilacqua A. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. J Appl Microbiol 2017; 123:1360-1372. [DOI: 10.1111/jam.13548] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- M. Arevalo‐Villena
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - A. Briones‐Perez
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - M.R. Corbo
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - M. Sinigaglia
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - A. Bevilacqua
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| |
Collapse
|
49
|
Tapingkae W, Panyachai K, Yachai M, Doan HV. Effects of dietary red yeast (Sporidiobolus pararoseus) on production performance and egg quality of laying hens. J Anim Physiol Anim Nutr (Berl) 2017; 102:e337-e344. [DOI: 10.1111/jpn.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/20/2017] [Indexed: 01/18/2023]
Affiliation(s)
- W. Tapingkae
- Department of Animal and Aquatic Sciences; Faculty of Agriculture; Chiang Mai University; Chiang Mai Thailand
| | - K. Panyachai
- Department of Animal and Aquatic Sciences; Faculty of Agriculture; Chiang Mai University; Chiang Mai Thailand
| | - M. Yachai
- Faculty of Animal Science and Technology; Maejo University; Chiang Mai Thailand
| | - H. V. Doan
- Department of Animal and Aquatic Sciences; Faculty of Agriculture; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
50
|
Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem 2017; 526:9-21. [PMID: 28300535 DOI: 10.1016/j.ab.2017.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/18/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed.
Collapse
Affiliation(s)
- Maša Primec
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia.
| | - Dušanka Mičetić-Turk
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| |
Collapse
|