1
|
Kato D, Choy RWY, Canales E, Dick RA, Lake AD, Shapiro ND, Chin E, Li J, Zhang JR, Wu Q, Saito RD, Metobo S, Aktoudianakis E, Schroeder SD, Yang ZY, Glatt DM, Balsitis S, Gamelin L, Yu M, Cheng G, Delaney WE, Link JO. Discovery of Hepatitis B Virus Surface Antigen Suppressor GS-8873. ACS Med Chem Lett 2024; 15:546-554. [PMID: 38628802 PMCID: PMC11017420 DOI: 10.1021/acsmedchemlett.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection afflicts hundreds of millions of people and causes nearly one million deaths annually. The high levels of circulating viral surface antigen (HBsAg) that characterize CHB may lead to T-cell exhaustion, resulting in an impaired antiviral immune response in the host. Agents that suppress HBsAg could help invigorate immunity toward infected hepatocytes and facilitate a functional cure. A series of dihydropyridoisoquinolizinone (DHQ) inhibitors of human poly(A) polymerases PAPD5/7 were reported to suppress HBsAg in vitro. An example from this class, RG7834, briefly entered the clinic. We set out to identify a potent, orally bioavailable, and safe PAPD5/7 inhibitor as a potential component of a functional cure regimen. Our efforts led to the identification of a dihydropyridophthalazinone (DPP) core with improved pharmacokinetic properties. A conformational restriction strategy and optimization of core substitution led to GS-8873, which was projected to provide deep HBsAg suppression with once-daily dosing.
Collapse
Affiliation(s)
- Darryl Kato
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Eda Canales
- Gilead
Sciences, Foster City, California 94404, United States
| | - Ryan A. Dick
- Maze
Therapeutics, South
San Francisco, California 94080, United States
| | - April D. Lake
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Elbert Chin
- Gilead
Sciences, Foster City, California 94404, United States
| | - Jiayao Li
- Gilead
Sciences, Foster City, California 94404, United States
| | | | - Qiaoyin Wu
- Gilead
Sciences, Foster City, California 94404, United States
| | - Roland D. Saito
- Gilead
Sciences, Foster City, California 94404, United States
| | - Sammy Metobo
- Circle
Pharma, South San Francisco, California 94080, United States
| | | | | | - Zheng-Yu Yang
- Gilead
Sciences, Foster City, California 94404, United States
| | - Dylan M. Glatt
- 23andMe
Therapeutics, South
San Francisco, California 94080, United States
| | - Scott Balsitis
- Gilead
Sciences, Foster City, California 94404, United States
| | - Lindsay Gamelin
- Gilead
Sciences, Foster City, California 94404, United States
| | - Mei Yu
- Gilead
Sciences, Foster City, California 94404, United States
| | - Guofeng Cheng
- AusperBio
Therapeutics Inc., San Mateo, California 94401, United States
| | | | - John O. Link
- Gilead
Sciences, Foster City, California 94404, United States
| |
Collapse
|
2
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
3
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
4
|
Capozza P, Carrai M, Choi YR, Tu T, Nekouei O, Lanave G, Martella V, Beatty JA, Barrs VR. Domestic Cat Hepadnavirus: Molecular Epidemiology and Phylogeny in Cats in Hong Kong. Viruses 2023; 15:150. [PMID: 36680190 PMCID: PMC9865086 DOI: 10.3390/v15010150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Domestic cat hepadnavirus (DCH) is an emerging virus related to the hepatitis B virus (HBV). The pathogenic potential of DCH in cats remains to be established. The molecular prevalence of DCH varies widely in the regions investigated so far. The aim of this study was to determine the prevalence, load, and risk factors for DCH detection among cats in Hong Kong, and to generate molecular and epidemiological data on the DCH strains circulating in cats in Hong Kong. DCH DNA was detected using DCH-specific qPCR in 57/513 (11.1%) residual diagnostic blood samples from owned cats. The median viral load was 8.85 × 103 copies/mL of whole blood (range for the 5th to the 95th percentile, 3.33 × 103 to 2.2 × 105 copies per mL). Two outliers had higher viral loads of 1.88 × 107 copies/mL and 4.90 × 109 copies/mL. DCH was detected in cats from 3 months to 19 years of age. Sex, age, neuter status, breed, or elevated serum alanine aminotransferase were not statistically associated with DCH DNA detection. On phylogenetic analysis based on 12 complete genome sequences, the Hong Kong DCH viruses clustered in Genotype A with viruses from Australia and Asia (clade A1), distinct from viruses from Europe (clade A2). Sequence analysis found that DCH has similar epsilon and direct repeat regions to human HBV, suggesting a conserved method of replication. Based on our findings, the DCH strains circulating in Hong Kong are a continuum of the Asiatic strains.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Maura Carrai
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yan Ru Choi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Thomas Tu
- Storr Liver Centre, Westmead Clinical School and Westmead Institute for Medical Research, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Julia A. Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
5
|
Corkum CP, Wiede LL, Ruble CLA, Qiu J, Mulrooney-Cousins PM, Steeves MA, Watson DE, Michalak TI. Identification of antibodies cross-reactive with woodchuck immune cells and activation of virus-specific and global cytotoxic T cell responses by anti-PD-1 and anti-PD-L1 in experimental chronic hepatitis B and persistent occult hepadnaviral infection. Front Microbiol 2022; 13:1011070. [PMID: 36560951 PMCID: PMC9764628 DOI: 10.3389/fmicb.2022.1011070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.
Collapse
Affiliation(s)
- Christopher P. Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louisa L. Wiede
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Cara L.-A. Ruble
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Jiabin Qiu
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Patricia M. Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Meredith A. Steeves
- Non-Clinical Safety Assessment, Toxicology, Elli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - David E. Watson
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Tomasz I. Michalak,
| |
Collapse
|
6
|
Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, Jin Y, Gao Y, Wang D. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol 2022; 13:1034968. [PMID: 36531993 PMCID: PMC9751411 DOI: 10.3389/fimmu.2022.1034968] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist immune system responses and often causes persistent chronic infections. HBV is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs are glycoproteins with a strong antiviral activity that plays an important role in adaptive and innate immune responses. They are classified into three categories (type I, II, and III) based on the structure of their cell-surface receptors. As an effective drug for controlling chronic viral infections, Type I IFNs are approved to be clinically used for the treatment of HBV infection. The therapeutic effect of interferon will be enhanced when combined with other drugs. IFNs play a biological function by inducing the expression of hundreds of IFN-stimulated genes (ISGs) in the host cells, which are responsible for the inhibiting of HBV replication, transcription, and other important processes. Animal models of HBV, such as chimpanzees, are also important tools for studying IFN treatment and ISG regulation. In the present review, we summarized the recent progress in IFN-HBV treatment and focused on its mechanism through the interaction between HBV and ISGs.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Zhuo
- School of Acupuncture-Moxi bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| |
Collapse
|
7
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
8
|
Hong X, Menne S, Hu J. Constrained evolution of overlapping genes in viral host adaptation: Acquisition of glycosylation motifs in hepadnaviral precore/core genes. PLoS Pathog 2022; 18:e1010739. [PMID: 35901192 PMCID: PMC9362955 DOI: 10.1371/journal.ppat.1010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/09/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hepadnaviruses use extensively overlapping genes to expand their coding capacity, especially the precore/core genes encode the precore and core proteins with mostly identical sequences but distinct functions. The precore protein of the woodchuck hepatitis virus (WHV) is N-glycosylated, in contrast to the precore of the human hepatitis B virus (HBV) that lacks N-glycosylation. To explore the roles of the N-linked glycosylation sites in precore and core functions, we substituted T77 and T92 in the WHV precore/core N-glycosylation motifs (75NIT77 and 90NDT92) with the corresponding HBV residues (E77 and N92) to eliminate the sequons. Conversely, these N-glycosylation sequons were introduced into the HBV precore/core gene by E77T and N92T substitutions. We found that N-glycosylation increased the levels of secreted precore gene products from both HBV and WHV. However, the HBV core (HBc) protein carrying the E77T substitution was defective in supporting virion secretion, and during infection, the HBc E77T and N92T substitutions impaired the formation of the covalently closed circular DNA (cccDNA), the critical viral DNA molecule responsible for establishing and maintaining infection. In cross-species complementation assays, both HBc and WHV core (WHc) proteins supported all steps of intracellular replication of the heterologous virus while WHc, with or without the N-glycosylation sequons, failed to interact with HBV envelope proteins for virion secretion. Interestingly, WHc supported more efficiently intracellular cccDNA amplification than HBc in the context of either HBV or WHV. These findings reveal novel determinants of precore secretion and core functions and illustrate strong constraints during viral host adaptation resulting from their compact genome and extensive use of overlapping genes. Hepadnaviruses infect a wide range of hosts. The human hepatitis B virus (HBV) and woodchuck hepatitis virus (WHV) are two closely related hepadnaviruses. In contrast to the WHV precore protein, which is N-glycosylated, the HBV precore protein lacks N-glycosylation. As precore and core proteins expressed from the overlapping precore/core genes share most of their sequences but have distinct functions, we investigated the roles of the N-linked glycosylation sequons in HBV and WHV precore/core genes. Our results revealed an important role of the N-linked glycosylation sequons in enhancing precore secretion levels and regulating core protein functions in virion secretion and infection. Furthermore, cross-species complementation assays using HBV and WHV core proteins and HBV or WHV genomes defective in core protein expression indicated that both HBV and WHV core proteins could support intracellular viral replication but not virion secretion of the heterologous virus. These results provide novel insights into the evolution of overlapping genes during host adaptation of hepadnaviruses.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
10
|
Choi YR, Chen MC, Carrai M, Rizzo F, Chai Y, Tse M, Jackson K, Martella V, Steiner J, Pesavento PA, Beatty JA, Barrs VR. Hepadnavirus DNA Is Detected in Canine Blood Samples in Hong Kong but Not in Liver Biopsies of Chronic Hepatitis or Hepatocellular Carcinoma. Viruses 2022; 14:v14071543. [PMID: 35891523 PMCID: PMC9320092 DOI: 10.3390/v14071543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic hepatitis and hepatocellular carcinoma (HCC) caused by the hepadnavirus hepatitis B virus (HBV) are significant causes of human mortality. A hepatitis-B-like virus infecting cats, domestic cat hepadnavirus (DCH), was reported in 2018. DCH DNA is hepatotropic and detectable in feline blood or serum (3.2 to 12.3%). Detection of HBV DNA has been reported in sera from 10% of free-roaming dogs in Brazil, whereas 6.3% of sera from dogs in Italy tested positive for DCH DNA by real-time quantitative PCR (qPCR). If DCH, HBV, or another hepadnavirus is hepatotropic in dogs, a role for such a virus in the etiology of canine idiopathic chronic hepatitis (CH) or HCC warrants investigation. This study investigated whether DCH DNA could be detected via qPCR in blood from dogs in Hong Kong and also whether liver biopsies from dogs with confirmed idiopathic CH or HCC contained hepadnaviral DNA using two panhepadnavirus conventional PCRs (cPCR) and a DCH-specific cPCR. DCH DNA was amplified from 2 of 501 (0.4%) canine whole-blood DNA samples. A second sample taken 6 or 7 months later from each dog tested negative in DCH qPCR. DNA extracted from 101 liver biopsies from dogs in Hong Kong or the USA, diagnosed by board-certified pathologists as idiopathic CH (n = 47) or HCC (n = 54), tested negative for DCH DNA and also tested negative using panhepadnavirus cPCRs. This study confirms that DCH DNA can be detected in canine blood by qPCR, although at a much lower prevalence than that reported previously. We identified no evidence to support a pathogenic role for a hepadnavirus in canine idiopathic CH or HCC.
Collapse
Affiliation(s)
- Yan Ru Choi
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
| | - Min-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.-C.C.); (J.S.)
| | - Maura Carrai
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - Yingfei Chai
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - May Tse
- CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| | - Ken Jackson
- School of Veterinary Medicine, UC Davis, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA; (K.J.); (P.A.P.)
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Joerg Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (M.-C.C.); (J.S.)
| | - Patricia A. Pesavento
- School of Veterinary Medicine, UC Davis, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA; (K.J.); (P.A.P.)
| | - Julia A. Beatty
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
- Correspondence:
| | - Vanessa R. Barrs
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China; (Y.R.C.); (M.C.); (V.R.B.)
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China;
| |
Collapse
|
11
|
Chandra VM, Wilkins LR, Brautigan DL. Animal Models of Hepatocellular Carcinoma for Local-Regional Intraarterial Therapies. Radiol Imaging Cancer 2022; 4:e210098. [PMID: 35838531 PMCID: PMC9358488 DOI: 10.1148/rycan.210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Animal models play a crucial role in developing and testing new therapies for hepatocellular carcinoma (HCC), providing preclinical evidence prior to exploring human safety and efficacy outcomes. The interventional radiologist must weigh the advantages and disadvantages of various animal models available when testing a new local-regional therapy. This review highlights the currently available animal models for testing local-regional therapies for HCC and details the importance of considering animal genetics, tumor biology, and molecular mechanisms when ultimately choosing an animal model. Keywords: Animal Studies, Interventional-Vascular, Molecular Imaging-Clinical Translation, Molecular Imaging-Cancer, Chemoembolization, Liver © RSNA, 2022.
Collapse
|
12
|
Wildum S, Korolowicz KE, Suresh M, Steiner G, Dai L, Li B, Yon C, De Vera Mudry MC, Regenass-Lechner F, Huang X, Hong X, Murreddu MG, Kallakury BV, Young JAT, Menne S. Toll-Like Receptor 7 Agonist RG7854 Mediates Therapeutic Efficacy and Seroconversion in Woodchucks With Chronic Hepatitis B. Front Immunol 2022; 13:884113. [PMID: 35677037 PMCID: PMC9169629 DOI: 10.3389/fimmu.2022.884113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.
Collapse
Affiliation(s)
- Steffen Wildum
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kyle E Korolowicz
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Manasa Suresh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Guido Steiner
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lue Dai
- Roche Pharma, Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Bin Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Changsuek Yon
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | | | | | - Xu Huang
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xupeng Hong
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States
| | - John A T Young
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
13
|
Hong X, Kawasawa YI, Menne S, Hu J. Host cell-dependent late entry step as determinant of hepatitis B virus infection. PLoS Pathog 2022; 18:e1010633. [PMID: 35714170 PMCID: PMC9246237 DOI: 10.1371/journal.ppat.1010633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) has a highly restricted host range and cell tropism. Other than the human sodium taurocholate cotransporting polypeptide (huNTCP), the HBV entry receptor, host determinants of HBV susceptibility are poorly understood. Woodchucks are naturally infected with woodchuck hepatitis virus (WHV), closely related to HBV, but not with HBV. Here, we investigated the capabilities of woodchuck hepatic and human non-hepatic cell lines to support HBV infection. DNA transfection assays indicated that all cells tested supported both HBV and WHV replication steps post entry, including the viral covalently closed circular DNA (cccDNA) formation, which is essential for establishing and sustaining infection. Ectopic expression of huNTCP rendered one, but not the other, woodchuck hepatic cell line and the non-hepatic human cell line competent to support productive HBV entry, defined here by cccDNA formation during de novo infection. All huNTCP-expressing cell lines tested became susceptible to infection with hepatitis D virus (HDV) that shares the same entry receptor and initial steps of entry with HBV, suggesting that a late entry/trafficking step(s) of HBV infection was defective in one of the two woodchuck cell lines. In addition, the non-susceptible woodchuck hepatic cell line became susceptible to HBV after fusion with human hepatic cells, suggesting the lack of a host cell-dependent factor(s) in these cells. Comparative transcriptomic analysis of the two woodchuck cell lines revealed widespread differences in gene expression in multiple biological processes that may contribute to HBV infection. In conclusion, other than huNTCP, neither human- nor hepatocyte-specific factors are essential for productive HBV entry. Furthermore, a late trafficking step(s) during HBV infection, following the shared entry steps with HDV and before cccDNA formation, is subject to host cell regulation and thus, a host determinant of HBV infection. Fundamental studies on, and development of therapies against, chronic hepatitis B virus (HBV) infection, which inflicts hundreds of millions worldwide, are impeded by deficiencies in HBV-susceptible animal models. HBV displays a strict species and cell tropism that are not clearly understood. Here, by studying replication of HBV, and the related woodchuck hepatitis virus, in human and woodchuck hepatic or non-hepatic cells, we found that non-hepatic human cells and some woodchuck hepatic cells could support productive HBV entry after expression of the human cell receptor for HBV. Moreover, by studying the infection of hepatitis D virus, which shares the same entry receptor and initial steps of entry with HBV, we could narrow down a host determinant of HBV infection operating at a late entry/trafficking step(s). Our study thus provides new insights into determinants of HBV host tropism and facilitates the development of HBV-susceptible animal models.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Suresh M, Li B, Huang X, Korolowicz KE, Murreddu MG, Gudima SO, Menne S. Agonistic Activation of Cytosolic DNA Sensing Receptors in Woodchuck Hepatocyte Cultures and Liver for Inducing Antiviral Effects. Front Immunol 2021; 12:745802. [PMID: 34671360 PMCID: PMC8521114 DOI: 10.3389/fimmu.2021.745802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-β and interleukins 1β and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Kyle E Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
15
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Kallakury BV, Lee KP, Park S, Kim YW, Menne S. Combination Treatment with the Vimentin-Targeting Antibody hzVSF and Tenofovir Suppresses Woodchuck Hepatitis Virus Infection in Woodchucks. Cells 2021; 10:2321. [PMID: 34571970 PMCID: PMC8466705 DOI: 10.3390/cells10092321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kyoung-pil Lee
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Sungman Park
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Yoon-Won Kim
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| |
Collapse
|
16
|
Coffin CS, Mulrooney-Cousins PM, Michalak TI. Hepadnaviral Lymphotropism and Its Relevance to HBV Persistence and Pathogenesis. Front Microbiol 2021; 12:695384. [PMID: 34421849 PMCID: PMC8377760 DOI: 10.3389/fmicb.2021.695384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of hepatitis B virus (HBV) over five decades ago, there have been many independent studies showing presence of HBV genomes in cells of the immune system. However, the nature of HBV lymphotropism and its significance with respect to HBV biology, persistence and the pathogenesis of liver and extrahepatic disorders remains underappreciated. This is in contrast to studies of other viral pathogens in which the capability to infect immune cells is an area of active investigation. Indeed, in some viral infections, lymphotropism may be essential, and even a primary mechanism of viral persistence, and a major contributor to disease pathogenesis. Nevertheless, there are advances in understanding of HBV lymphotropism in recent years due to cumulative evidence showing that: (i) lymphoid cells are a reservoir of replicating HBV, (ii) are a site of HBV-host DNA integration and (iii) virus genomic diversification leading to pathogenic variants, and (iv) they play a role in HBV resistance to antiviral therapy and (v) likely contribute to reactivation of hepatitis B. Further support for HBV lymphotropic nature is provided by studies in a model infection with the closely related woodchuck hepatitis virus (WHV) naturally infecting susceptible marmots. This animal model faithfully reproduces many aspects of HBV biology, including its replication scheme, tissue tropism, and induction of both symptomatic and silent infections, immunological processes accompanying infection, and progressing liver disease culminating in hepatocellular carcinoma. The most robust evidence came from the ability of WHV to establish persistent infection of the immune system that may not engage the liver when small quantities of virus are experimentally administered or naturally transmitted into virus-naïve animals. Although the concept of HBV lymphotropism is not new, it remains controversial and not accepted by conventional HBV researchers. This review summarizes research advances on HBV and hepadnaviral lymphotropism including the role of immune cells infection in viral persistence and the pathogenesis of HBV-induced liver and extrahepatic diseases. Finally, we discuss the role of immune cells in HBV diagnosis and assessment of antiviral therapy efficacy.
Collapse
Affiliation(s)
- Carla S Coffin
- Liver Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia M Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Yang S, Zeng W, Zhang J, Lu F, Chang J, Guo JT. Restoration of a functional antiviral immune response to chronic HBV infection by reducing viral antigen load: if not sufficient, is it necessary? Emerg Microbes Infect 2021; 10:1545-1554. [PMID: 34227927 PMCID: PMC8354158 DOI: 10.1080/22221751.2021.1952851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prolonged viral antigen stimulation is the driving force for the development of immune tolerance to chronic hepatitis B virus (HBV) infection. The sustained reduction of viral proteins may allow for the recovery and efficient activation of HBV-specific T and B cells by immune-stimulating agents, checkpoint blockades and/or therapeutic vaccinations. Recently, several therapeutic approaches have been shown to significantly reduce intrahepatic viral proteins and/or circulating HBV surface antigen (HBsAg) with variable impacts on the host antiviral immune responses in animal models or human clinical trials. It remains to be further investigated whether reduction of viral protein expression or induction of intrahepatic viral protein degradation is more efficacious to break the immune tolerance to chronic HBV infection. It is also of great interest to know if the accelerated clearance of circulating HBsAg by antibodies has a long-term immunological impact on HBV infection and disease progression. Although it is clear that removal of antigen stimulation alone is not sufficient to induce the functional recovery of exhausted T and B cells, accumulating evidence suggests that the reduction of viral antigen load appears to facilitate the therapeutic activation of functional antiviral immunity in chronic HBV carriers. Based on a systematic review of the findings in animal models and clinical studies, the research directions toward discovery and development of more efficacious therapeutic approaches to reinvigorate HBV-specific adaptive immune function and achieve the durable control of chronic HBV infection, i.e. a functional cure, in the vast majority of treated patients are discussed.
Collapse
Affiliation(s)
- Sisi Yang
- Baruch S. Blumberg Institute, Doylestown, PA, USA.,Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wanjia Zeng
- Peking University Health Science Center, Beijing, People's Republic of China
| | - Jiming Zhang
- Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fengmin Lu
- Peking University Health Science Center, Beijing, People's Republic of China
| | | | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| |
Collapse
|
18
|
Hong X, Luckenbaugh L, Perlman D, Revill PA, Wieland SF, Menne S, Hu J. Characterization and Application of Precore/Core-Related Antigens in Animal Models of Hepatitis B Virus Infection. Hepatology 2021; 74:99-115. [PMID: 33458844 PMCID: PMC8286267 DOI: 10.1002/hep.31720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The hepatitis B core-related antigen (HBcrAg), a composite antigen of precore/core gene including classical hepatitis B core protein (HBc) and HBeAg and, additionally, the precore-related antigen PreC, retaining the N-terminal signal peptide, has emerged as a surrogate marker to monitor the intrahepatic HBV covalently closed circular DNA (cccDNA) and to define meaningful treatment endpoints. APPROACH AND RESULTS Here, we found that the woodchuck hepatitis virus (WHV) precore/core gene products (i.e., WHV core-related antigen [WHcrAg]) include the WHV core protein and WHV e antigen (WHeAg) as well as the WHV PreC protein (WPreC) in infected woodchucks. Unlike in HBV infection, WHeAg and WPreC proteins were N-glycosylated, and no significant amounts of WHV empty virions were detected in WHV-infected woodchuck serum. WHeAg was the predominant form of WHcrAg, and a positive correlation was found between the serum WHeAg and intrahepatic cccDNA. Both WHeAg and WPreC antigens displayed heterogeneous proteolytic processing at their C-termini, resulting in multiple species. Analysis of the kinetics of each component of the precore/core-related antigen, along with serum viral DNA and surface antigens, in HBV-infected chimpanzees and WHV-infected woodchucks revealed multiple distinct phases of viral decline during natural resolution and in response to antiviral treatments. A positive correlation was found between HBc and intrahepatic cccDNA but not between HBeAg or HBcrAg and cccDNA in HBV-infected chimpanzees, suggesting that HBc can be a better marker for intrahepatic cccDNA. CONCLUSIONS In conclusion, careful monitoring of each component of HBcrAg along with other classical markers will help understand intrahepatic viral activities to elucidate natural resolution mechanisms as well as guide antiviral development.
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Laurie Luckenbaugh
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David Perlman
- Merck Research Labs Exploratory Sciences Center, Cambridge, MA, USA
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stefan F. Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Corresponding Author: Jianming Hu, MD, PhD, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA. Phone: 717-531-6523.
| |
Collapse
|
19
|
Suresh M, Menne S. Application of the woodchuck animal model for the treatment of hepatitis B virus-induced liver cancer. World J Gastrointest Oncol 2021; 13:509-535. [PMID: 34163570 PMCID: PMC8204361 DOI: 10.4251/wjgo.v13.i6.509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/02/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
This review describes woodchucks chronically infected with the woodchuck hepatitis virus (WHV) as an animal model for hepatocarcinogenesis and treatment of primary liver cancer or hepatocellular carcinoma (HCC) induced by the hepatitis B virus (HBV). Since laboratory animal models susceptible to HBV infection are limited, woodchucks experimentally infected with WHV, a hepatitis virus closely related to HBV, are increasingly used to enhance our understanding of virus-host interactions, immune response, and liver disease progression. A correlation of severe liver pathogenesis with high-level viral replication and deficient antiviral immunity has been established, which are present during chronic infection after WHV inoculation of neonatal woodchucks for modeling vertical HBV transmission in humans. HCC in chronic carrier woodchucks develops 17 to 36 mo after neonatal WHV infection and involves liver tumors that are comparable in size, morphology, and molecular gene signature to those of HBV-infected patients. Accordingly, woodchucks with WHV-induced liver tumors have been used for the improvement of imaging and ablation techniques of human HCC. In addition, drug efficacy studies in woodchucks with chronic WHV infection have revealed that prolonged treatment with nucleos(t)ide analogs, alone or in combination with other compounds, minimizes the risk of liver disease progression to HCC. More recently, woodchucks have been utilized in the delineation of mechanisms involved in innate and adaptive immune responses against WHV during acute, self-limited and chronic infections. Therapeutic interventions based on modulating the deficient host antiviral immunity have been explored in woodchucks for inducing functional cure in HBV-infected patients and for reducing or even delaying associated liver disease sequelae, including the onset of HCC. Therefore, woodchucks with chronic WHV infection constitute a well-characterized, fully immunocompetent animal model for HBV-induced liver cancer and for preclinical evaluation of the safety and efficacy of new modalities, which are based on chemo, gene, and immune therapy, for the prevention and treatment of HCC in patients for which current treatment options are dismal.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, United States
| |
Collapse
|
20
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Leng X, Kallakury BV, Tucker RD, Menne S. Treatment with the Immunomodulator AIC649 in Combination with Entecavir Produces Antiviral Efficacy in the Woodchuck Model of Chronic Hepatitis B. Viruses 2021; 13:v13040648. [PMID: 33918831 PMCID: PMC8069054 DOI: 10.3390/v13040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
As current interventions for chronic hepatitis B (CHB) rarely induce cure, more effective drugs are needed. Short-term treatment of woodchucks with the novel immunomodulator AIC649, a parapoxvirus-based stimulator of toll-like receptor 9 dependent and independent pathways, has been shown to reduce viral DNA and surface antigen via a unique, biphasic response pattern. The present study evaluated long-term AIC649 treatment in combination with Entecavir for potency and safety in woodchucks. AIC649 monotreatment induced modest reductions in serum viral DNA and surface and e antigens that were associated with the same biphasic response pattern previously observed. Entecavir monotreatment reduced transiently viremia but not antigenemia, while AIC649/Entecavir combination treatment mediated superior viral control. Undetectability of viral antigens and elicitation of antibodies in AIC649/Entecavir-treated woodchucks correlated with the expression of interferons and suppression of viral replication in liver. Combination treatment was well tolerated, and liver enzyme elevations were minor and transient. It was concluded that the AIC649-mediated effects were most likely based on an improvement and/or reconstitution of antiviral immune responses that are typically deficient in CHB. As a combination partner to Entecavir, the antiviral efficacy of AIC649 was markedly enhanced. This preclinical study supports future evaluation of AIC649 for treatment of human CHB.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Xuebing Leng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Robin D. Tucker
- Division of Comparative Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.); (X.L.)
- Correspondence: ; Tel.: +1-(202)-687-2949
| |
Collapse
|
21
|
Mauda-Havakuk M, Mikhail AS, Starost MF, Jones EC, Karim B, Kleiner DE, Partanen A, Esparza-Trujillo JA, Bakhutashvili I, Wakim PG, Kassin MT, Lewis AL, Karanian JW, Wood BJ, Pritchard WF. Imaging, Pathology, and Immune Correlates in the Woodchuck Hepatic Tumor Model. J Hepatocell Carcinoma 2021; 8:71-83. [PMID: 33728278 PMCID: PMC7955744 DOI: 10.2147/jhc.s287800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Woodchucks chronically infected with woodchuck hepatitis virus (WHV), which resembles human hepatitis B virus, develop spontaneous hepatic tumors and may be an important biological and immunological model for human HCC. Nonetheless, this model requires further validation to fully realize its translational potential. Methods Woodchucks infected at birth with WHV that had developed HCC (n=12) were studied. Computed tomography, ultrasound, and magnetic resonance imaging were performed under anesthesia. LI-RADS scoring and correlative histologic analysis of sectioned tissues were performed. For immune characterization of tumors, CD3 (T cells), CD4 (T helpers), NCAM (Natural killers), FOXP3 (T-regulatory), PDL-1 (inhibitory checkpoint protein), and the human hepatocellular carcinoma (HCC) biomarker alpha-fetoprotein (AFP) immunohistochemical stains were performed. Results Forty tumors were identified on imaging of which 29 were confirmed to be HCC with 26 categorized as LR-4 or 5. The remainder of the tumors had benign histology including basophilic foci, adenoma, and lipidosis as well as pre-malignant dysplastic foci. LR-4 and LR-5 lesions showed high sensitivity (90%) and specificity (100%) for malignant and pre-malignant tumors. Natural killers count was found to be 2–5 times lower in tumors relative to normal parenchyma while other immune cells were located in the periphery of tumors. Tumors expressed AFP and did not express PD-L1. Conclusion Woodchucks chronically infected with WHV developed diverse hepatic tumor types with diagnostic imaging, pathology, and immune patterns comparable to that in humans. This unique animal model may provide a valuable tool for translation and validation of novel image-guided and immune-therapeutic investigations.
Collapse
Affiliation(s)
- Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - David E Kleiner
- Center for Cancer Research, Clinical Center, National Cancer Institute, Bethesda, MD, USA
| | - Ari Partanen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Juan A Esparza-Trujillo
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Michael T Kassin
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Lewis
- Biocompatibles UK Ltd (a BTG International Group Company), Camberley, UK
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Zeng J, Starost MF, Mauda-Havakuk M, Mikhail AS, Partanen A, Wood BJ, Karanian JW, Pritchard WF. Ovarian teratoma in a woodchuck (Marmota monax) with hepatocellular carcinoma: radiologic and pathologic features. BMC Vet Res 2020; 16:451. [PMID: 33228678 PMCID: PMC7685576 DOI: 10.1186/s12917-020-02658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Teratomas are germ cell neoplasms composed of a wide variety of tissues. In the woodchuck, only one testicular teratoma has been described in the literature. The objective of this report was to describe the radiologic and pathologic findings in a female woodchuck (Marmota monax) with an ovarian teratoma consisting of mature tissues originating from all three germ layers. Case presentation A 2-year-old female woodchuck that had been infected at birth with woodchuck hepatitis virus and subsequently developed hepatocellular carcinoma was incidentally discovered to have a mobile 6.6 × 4.8 × 4.7 cm abdominal mass on computed tomography (CT) imaging. The tumor was predominantly solid and heterogenous on CT with soft tissue, fat, and areas of dense calcification. The teratoma did not enhance with intravenous contrast administration. On ultrasound, the tumor was solid with heterogeneous echogenicity, reflecting the fat content and areas of calcification. Sonolucent areas were present that may have represented cysts. There was heterogeneously increased signal on T1-weighted magnetic resonance imaging (MRI) and heterogeneous hyperintensity in T2-weighted imaging. Fat was evident within the tumor. At necropsy, the tumor was attached to the distal end of the right uterine horn. Histopathology showed mature tissue types representing all three germ layers. Conclusions Ovarian teratoma should be considered in the differential diagnosis of ovarian or abdominal masses in woodchucks. The tumor displayed mature tissue derived from all three germ layers. CT, ultrasound, and MRI findings were presented in detail and matched the typical imaging appearance of teratomas.
Collapse
Affiliation(s)
- Johnathan Zeng
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Ari Partanen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Room 3N320, MSC 1182, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Zheng J, Balsitis S, Santos R, Smith BJ, Subramanian R. Characterization of Seasonal Pharmacokinetic Variability in Woodchucks. Drug Metab Dispos 2020; 48:1199-1209. [PMID: 32892154 DOI: 10.1124/dmd.120.000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
The eastern woodchuck (Marmota monax) is a hibernating species extensively used as an in vivo efficacy model for chronic human hepatitis B virus infection. Under laboratory conditions, woodchucks develop a pseudohibernation condition; thus, the pharmacokinetics (PK) of small-molecule therapeutics may be affected by the seasonal change. The seasonal PK of four probe compounds were characterized over 12 months in seven male and nine female laboratory-maintained woodchucks. These compounds were selected to study changes in oxidative metabolism [antipyrine (AP)], glucuronidation [raltegravir (RTG)], renal clearance [lamivudine (3TC)], and hepatic function [indocyanine green (ICG)]. Seasonal changes in physiologic parameters and PK were determined. Seasonal body weight increases were ≥30%. Seasonal changes in body temperature and heart rate were <10%. The mean AP exposure remained unchanged from April to August 2017, followed by a significant increase (≥1.0-fold) from August to December and subsequent decrease to baseline at the end of study. A similar trend was observed in RTG and 3TC exposures. The ICG exposure remained unchanged. No significant sex difference in PK was observed, although female woodchucks appeared to be less susceptible to seasonal PK and body weight changes. Significant seasonal PK changes for AP, RTG, and 3TC indicate decreases in oxidative metabolism, phase II glucuronidation, and renal clearance during pseudohibernation. The lack of seasonal change in ICG exposure suggests there are no significant changes in hepatic function. This information can be used to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK. SIGNIFICANCE STATEMENT: Woodchuck is a hibernating species and is commonly used as a nonclinical model of hepatitis B infection. Investigation of seasonal PK changes is perhaps of greater interest to pharmaceutical industry scientists, who use the woodchuck model to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK and/or toxicity. This information is also valuable to drug metabolism and veterinary scientists in understanding woodchuck's seasonal metabolism and behavior under the pseudohibernation condition.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California
| | | | - Rex Santos
- Gilead Sciences, Inc., Foster City, California
| | | | | |
Collapse
|
24
|
A glance at the gut microbiota of five experimental animal species through fecal samples. Sci Rep 2020; 10:16628. [PMID: 33024229 PMCID: PMC7538948 DOI: 10.1038/s41598-020-73985-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental animals including the ferret, marmoset, woodchuck, mini pig, and tree shrew have been used in biomedical research. However, their gut microbiota have not been fully investigated. In this study, the gut microbiota of these five experimental animals were analyzed with 16S rRNA sequencing. The phyla Firmicutes, Bacteroidetes, and Fusobacteria were present in the gut microbiota of all the species. Specific phyla were present in different animals: Proteobacteria in the ferret, Tenericutes in the marmoset, and Spirochaetes in the mini pig. Fusobacterium and unidentified Clostridiales were the dominant genera in the ferret, whereas Libanicoccus, Lactobacillus, Porphyromonas, and Peptoclostridium were specific to marmoset, mini pig, woodchuck, and tree shrew, respectively. A clustering analysis showed that the overall distribution of microbial species in the guts of these species mirrored their mammalian phylogeny, and the microbiota of the marmoset and tree shrew showed the closest bray_curtis distances to that of humans. PICRUSt functional prediction separated the woodchuck from the other species, which may reflect its herbivorous diet. In conclusion, both the evolutionary phylogeny and daily diet affect the gut microbiota of these experimental animals, which should not be neglected for their usage in biomedical research.
Collapse
|
25
|
Puiu D, Zimin A, Shumate A, Ge Y, Qiu J, Bhaskaran M, Salzberg SL. The genome of the American groundhog, Marmota monax. F1000Res 2020; 9:1137. [PMID: 33274050 PMCID: PMC7682491 DOI: 10.12688/f1000research.25970.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
We sequenced the genome of the North American groundhog, Marmota monax, also known as the woodchuck. Our sequencing strategy included a combination of short, high-quality Illumina reads plus long reads generated by both Pacific Biosciences and Oxford Nanopore instruments. Assembly of the combined data produced a genome of 2.74 Gbp in total length, with an N50 contig size of 1,094,236 bp. To annotate the genome, we mapped the genes from another M. monax genome and from the closely related Alpine marmot, Marmota marmota, onto our assembly, resulting in 20,559 annotated protein-coding genes and 28,135 transcripts. The genome assembly and annotation are available in GenBank under BioProject PRJNA587092.
Collapse
Affiliation(s)
- Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Aleksey Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Yuchen Ge
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Jiabin Qiu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Manoj Bhaskaran
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
27
|
Michalak TI. Diverse Virus and Host-Dependent Mechanisms Influence the Systemic and Intrahepatic Immune Responses in the Woodchuck Model of Hepatitis B. Front Immunol 2020; 11:853. [PMID: 32536912 PMCID: PMC7267019 DOI: 10.3389/fimmu.2020.00853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Woodchuck infected with woodchuck hepatitis virus (WHV) represents the pathogenically nearest model of hepatitis B and associated hepatocellular carcinoma (HCC). This naturally occurring animal model also is highly valuable for development and preclinical evaluation of new anti-HBV agents and immunotherapies against chronic hepatitis (CH) B and HCC. Studies in this system uncovered a number of molecular and immunological processes which contribute or likely contribute to the immunopathogenesis of liver disease and modulation of the systemic and intrahepatic innate and adaptive immune responses during hepadnaviral infection. Among them, inhibition of presentation of the class I major histocompatibility complex on chronically infected hepatocytes and a role of WHV envelope proteins in this process, as well as augmented hepatocyte cytotoxicity mediated by constitutively expressed components of CD95 (Fas) ligand- and perforin-dependent pathways, capable of eliminating cells brought to contact with hepatocyte surface, including activated T lymphocytes, were uncovered. Other findings pointed to a role of autoimmune response against hepatocyte asialoglycoprotein receptor in augmenting severity of liver damage in hepadnaviral CH. It was also documented that WHV in the first few hours activates intrahepatic innate immunity that transiently decreases hepatic virus load. However, this activation is not translated in a timely manner to induction of virus-specific T cell response which appears to be hindered by defective activation of antigen presenting cells and presentation of viral epitopes to T cells. The early WHV infection also induces generalized polyclonal activation of T cells that precedes emergence of virus-specific T lymphocyte reactivity. The combination of these mechanisms hinder recognition of virus allowing its dissemination in the initial, asymptomatic stages of infection before adaptive cellular response became apparent. This review will highlight a range of diverse mechanisms uncovered in the woodchuck model which affect effectiveness of the anti-viral systemic and intrahepatic immune responses, and modify liver disease outcomes. Further exploration of these and other mechanisms, either already discovered or yet unknown, and their interactions should bring more comprehensive understanding of HBV pathogenesis and help to identify novel targets for therapeutic and preventive interventions. The woodchuck model is uniquely positioned to further contribute to these advances.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
28
|
Liu LY, Ma XZ, Ouyang B, Ings DP, Marwah S, Liu J, Chen AY, Gupta R, Manuel J, Chen XC, Gage BK, Cirlan I, Khuu N, Chung S, Camat D, Cheng M, Sekhon M, Zagorovsky K, Abdou Mohamed MA, Thoeni C, Atif J, Echeverri J, Kollmann D, Fischer S, Bader GD, Chan WCW, Michalak TI, McGilvray ID, MacParland SA. Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS NANO 2020; 14:4698-4715. [PMID: 32255624 DOI: 10.1021/acsnano.0c00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.
Collapse
Affiliation(s)
- Lewis Y Liu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Xue-Zhong Ma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Ben Ouyang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Danielle P Ings
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Sagar Marwah
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jeff Liu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Annie Y Chen
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Rahul Gupta
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Justin Manuel
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Xu-Chun Chen
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Blair K Gage
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Iulia Cirlan
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Nicholas Khuu
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Sai Chung
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Damra Camat
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Michael Cheng
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Manmeet Sekhon
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Kyryl Zagorovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Mohamed A Abdou Mohamed
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt 44519
| | - Cornelia Thoeni
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jawairia Atif
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Juan Echeverri
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sandra Fischer
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Gary D Bader
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Department of Materials Science and Engineering, University of Toronto, 160 College Street, Room 450, Toronto, Ontario, Canada M5S 3E1
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Ian D McGilvray
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sonya A MacParland
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
29
|
Menne S, Wildum S, Steiner G, Suresh M, Korolowicz K, Balarezo M, Yon C, Murreddu M, Hong X, Kallakury BV, Tucker R, Yang S, Young JAT, Javanbakht H. Efficacy of an Inhibitor of Hepatitis B Virus Expression in Combination With Entecavir and Interferon-α in Woodchucks Chronically Infected With Woodchuck Hepatitis Virus. Hepatol Commun 2020; 4:916-931. [PMID: 32490326 PMCID: PMC7262289 DOI: 10.1002/hep4.1502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
RG7834 is a small‐molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon‐α (wIFN‐α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN‐α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN‐α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off‐treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV‐specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Steffen Wildum
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Guido Steiner
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Manasa Suresh
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Kyle Korolowicz
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Maria Balarezo
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Changsuek Yon
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Marta Murreddu
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Xupeng Hong
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | | | - Robin Tucker
- Department of Pharmacology Georgetown University Medical Center Washington DC
| | - Song Yang
- Roche Pharma Research and Early Development Roche Innovation Center Shanghai Shanghai China
| | - John A T Young
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Hassan Javanbakht
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
30
|
Liu B, Bai L, Fu Y, Zhao S, Liu H, Wang R, Wang W, Li Y, Tao Y, Wang Z, Fan J, Liu E. Genetic and molecular features for hepadnavirus and plague infections in the Himalayan marmot. Genome 2020; 63:307-317. [PMID: 32308030 DOI: 10.1139/gen-2019-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Himalayan marmot (Marmota himalayana), a natural host and transmitter of plague, is also susceptible to the hepadnavirus infection. To reveal the genetic basis of the hepadnavirus susceptibility and the immune response to plague, we systematically characterized the features of immune genes in Himalayan marmot with those of human and mouse. We found that the entire major histocompatibility complex region and the hepatitis B virus pathway genes of the Himalayan marmot were conserved with those of humans. A Trim (tripartite motif) gene cluster involved in immune response and antiviral activity displays dynamic evolution, which is reflected by the duplication of Trim5 and the absence of Trim22 and Trim34. Three key regions of Ntcp, which is critical for hepatitis B virus entry, had high identity among seven species of Marmota. Moreover, we observed a severe alveolar hemorrhage, inflammatory infiltrate in the infected lungs and livers from Himalayan marmots after infection of EV76, a live attenuated Yersinia pestis strain. Lots of immune genes were remarkably up-regulated, which several hub genes Il2rγ, Tra29, and Nlrp7 are placed at the center of the gene network. These findings suggest that Himalayan marmot is a potential animal model for study on the hepadnavirus and plague infection.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Yu Fu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Haiqing Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Yandong Li
- Department of Pathology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710000, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Zhongdong Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
31
|
Kim AY, Yacoub JH, Field DH, Park BU, Kallakury B, Korolowicz KE, Menne S. Suitability of the woodchuck HCC as a preclinical model for evaluation of intra-arterial therapies. Animal Model Exp Med 2020; 3:98-102. [PMID: 32318666 PMCID: PMC7167237 DOI: 10.1002/ame2.12100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
The most commonly used preclinical models of hepatocellular carcinoma (HCC) are limited for use in testing of intra-arterial therapies such as transarterial chemoembolization and radioembolization. Issues encountered with the more commonly used animal models include dissimilarity in their disease development compared with humans and the size of the vasculature which can make intra-arterial therapy testing difficult or impossible. Here we describe the suitability of the woodchuck HCC model for testing of intra-arterial therapies. We describe the techniques for pre-embolization imaging assessment using CT and MRI, technical tips on performing angiography and embolization, and pathological assessment of treated liver.
Collapse
Affiliation(s)
- Alexander Y. Kim
- Department of RadiologyMedstar Georgetown University HospitalWashingtonDistrict of Columbia
| | - Joseph H. Yacoub
- Department of RadiologyMedstar Georgetown University HospitalWashingtonDistrict of Columbia
| | - David H. Field
- Department of RadiologyMedstar Georgetown University HospitalWashingtonDistrict of Columbia
| | - Byoung Uk Park
- Department of Pathology and Laboratory MedicineMedstar Georgetown University HospitalWashingtonDistrict of Columbia
| | - Bhaskar Kallakury
- Department of Pathology and Laboratory MedicineMedstar Georgetown University HospitalWashingtonDistrict of Columbia
| | - Kyle E. Korolowicz
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Stephan Menne
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| |
Collapse
|
32
|
Pritchard WF, Woods DL, Esparza-Trujillo JA, Starost MF, Mauda-Havakuk M, Mikhail AS, Bakhutashvili I, Leonard S, Jones EC, Krishnasamy V, Karanian JW, Wood BJ. Transarterial Chemoembolization in a Woodchuck Model of Hepatocellular Carcinoma. J Vasc Interv Radiol 2020; 31:812-819.e1. [PMID: 32107125 DOI: 10.1016/j.jvir.2019.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To assess the feasibility of transarterial chemoembolization with drug-eluting embolic (DEE) microspheres in a woodchuck model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Nine woodchucks were studied: 4 normal animals and 5 animals infected with woodchuck hepatitis virus in which HCC had developed. Three animals with HCC underwent multidetector CT. A 3-F sheath was introduced into the femoral artery, and the hepatic arteries were selectively catheterized with 2.0-2.4-F microcatheters. Normal animals underwent diagnostic angiography and bland embolization. Animals with HCC underwent DEE transarterial chemoembolization with 70-150-μm radiopaque microspheres loaded with 37.5 mg doxorubicin per milliliter. Cone-beam CT and multidetector CT were performed. Following euthanasia, explanted livers underwent micro-CT, histopathologic examination, and fluorescence imaging of doxorubicin. RESULTS The tumors were hypervascular and supplied by large-caliber tortuous vessels, with arteriovenous shunts present in 2 animals. There was heterogeneous enhancement on multidetector CT with areas of necrosis. Six tumors were identified. The most common location was the right medial lobe (n = 3). Mean tumor volume was 30.7 cm3 ± 12.3. DEE chemoembolization of tumors was achieved. Excluding the 2 animals with arteriovenous shunts, the mean volume of DEE microspheres injected was 0.49 mL ± 0.17. Fluorescence imaging showed diffusion of doxorubicin from the DEE microspheres into the tumor. CONCLUSIONS Woodchuck HCC shares imaging appearances and biologic characteristics with human HCC. Selective catheterization and DEE chemoembolization may similarly be performed. Woodchucks may be used to model interventional therapies and possibly characterize radiologic-pathologic correlations.
Collapse
Affiliation(s)
- William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892.
| | - David L Woods
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Juan A Esparza-Trujillo
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Shelby Leonard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Elizabeth C Jones
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Venkatesh Krishnasamy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892; National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Center for Cancer Research, National Institutes of Health, 10 Center Dr., Room 3N320B, MSC 1182, Bethesda, MD 20892
| |
Collapse
|
33
|
Akkina R, Barber DL, Bility MT, Bissig KD, Burwitz BJ, Eichelberg K, Endsley JJ, Garcia JV, Hafner R, Karakousis PC, Korba BE, Koshy R, Lambros C, Menne S, Nuermberger EL, Ploss A, Podell BK, Poluektova LY, Sanders-Beer BE, Subbian S, Wahl A. Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Curr HIV Res 2020; 18:19-28. [PMID: 31870268 PMCID: PMC7403688 DOI: 10.2174/1570162x18666191223114019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on 'Small Animal Models for HIV, Hepatitis B, and Tuberculosis' on May 30, 2019. Highlights of the workshop are outlined below.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Brigitte E. Sanders-Beer
- Address correspondence to this author at the Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20892-9830, USA; Tel: (240) 627-3209; E-mail:
| | | | | |
Collapse
|
34
|
The Genome Sequence of the Eastern Woodchuck ( Marmota monax) - A Preclinical Animal Model for Chronic Hepatitis B. G3-GENES GENOMES GENETICS 2019; 9:3943-3952. [PMID: 31645421 PMCID: PMC6893209 DOI: 10.1534/g3.119.400413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Eastern woodchuck (Marmota monax) has been extensively used in research of chronic hepatitis B and liver cancer because its infection with the woodchuck hepatitis virus closely resembles a human hepatitis B virus infection. Development of novel immunotherapeutic approaches requires genetic information on immune pathway genes in this animal model. The woodchuck genome was assembled with a combination of high-coverage whole-genome shotgun sequencing of Illumina paired-end, mate-pair libraries and fosmid pool sequencing. The result is a 2.63 Gigabase (Gb) assembly with a contig N50 of 74.5 kilobases (kb), scaffold N50 of 892 kb, and genome completeness of 99.2%. RNA sequencing (RNA-seq) from seven different tissues aided in the annotation of 30,873 protein-coding genes, which in turn encode 41,826 unique protein products. More than 90% of the genes have been functionally annotated, with 82% of them containing open reading frames. This genome sequence and its annotation will enable further research in chronic hepatitis B and hepatocellular carcinoma and contribute to the understanding of immunological responses in the woodchuck.
Collapse
|
35
|
Suresh M, Czerwinski S, Murreddu MG, Kallakury BV, Ramesh A, Gudima SO, Menne S. Innate and adaptive immunity associated with resolution of acute woodchuck hepatitis virus infection in adult woodchucks. PLoS Pathog 2019; 15:e1008248. [PMID: 31869393 PMCID: PMC6946171 DOI: 10.1371/journal.ppat.1008248] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
Viral and/or host factors that are directly responsible for the acute versus chronic outcome of hepatitis B virus (HBV) infection have not been identified yet. Information on immune response during the early stages of HBV infection in humans is mainly derived from blood samples of patients with acute hepatitis B (AHB), which are usually obtained after the onset of clinical symptoms. Features of intrahepatic immune response in these patients are less studied due to the difficulty of obtaining multiple liver biopsies. Woodchuck hepatitis virus (WHV) infection in woodchucks is a model for HBV infection in humans. In the present study, five adult woodchucks were experimentally infected with WHV and then followed for 18 weeks. Blood and liver tissues were frequently collected for assaying markers of WHV replication and innate and adaptive immune responses. Liver tissues were further analyzed for pathological changes and stained for important immune cell subsets and cytokines. The increase and subsequent decline of viral replication markers in serum and liver, the elicitation of antibodies against viral proteins, and the induction of virus-specific T-cell responses indicated eventual resolution of acute WHV infection in all animals. Intrahepatic innate immune makers stayed unchanged immediately after the infection, but increased markedly during resolution, as determined by changes in transcript levels. The presence of interferon-gamma and expression of natural killer (NK) cell markers suggested that a non-cytolytic response mechanism is involved in the initial viral control in liver. This was followed by the expression of T-cell markers and cytolytic effector molecules, indicating the induction of a cytolytic response mechanism. Parallel increases in regulatory T-cell markers suggested that this cell subset participates in the overall immune cell infiltration in liver and/or has a role in regulating AHB induced by the cytolytic response mechanism. Since the transcript levels of immune cell markers in blood, when detectable, were lower than in liver, and the kinetics, except for NK-cells and interferon-gamma, did not correlate well with their intrahepatic expression, this further indicated enrichment of immune cells within liver. Conclusion: The coordinated interplay of innate and adaptive immunity mediates viral clearance in the woodchuck animal model of HBV infection. The initial presence of NK-cell associated interferon-gamma response points to an important role of this cytokine in HBV resolution.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stefanie Czerwinski
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Marta G. Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Ashika Ramesh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
36
|
Korolowizc KE, Li B, Huang X, Yon C, Rodrigo E, Corpuz M, Plouffe DM, Kallakury BV, Suresh M, Wu TY, Miller AT, Menne S. Liver-Targeted Toll-Like Receptor 7 Agonist Combined With Entecavir Promotes a Functional Cure in the Woodchuck Model of Hepatitis B Virus. Hepatol Commun 2019; 3:1296-1310. [PMID: 31592075 PMCID: PMC6771164 DOI: 10.1002/hep4.1397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023] Open
Abstract
Current therapeutics for chronic infection with hepatitis B virus (HBV) rarely induce functional cure due to the immunotolerant status of patients. Small molecule agonists targeting toll-like receptor 7 (TLR7) have been shown to elicit a functional cure in animal models of HBV but sometimes with poor tolerability due to immune-related toxicities. In an effort to increase the therapeutic window of TLR7 agonists to treat chronic hepatitis B (CHB), we developed an oral TLR7 agonist, APR002, designed to act locally in the gastrointestinal tract and liver, thus minimizing systemic exposure and improving tolerability. Here, we describe the pharmacokinetic/pharmacodynamic (PK/PD) profile of APR002 in mice and uninfected woodchucks as well as the safety and antiviral efficacy in combination with entecavir (ETV) in woodchucks with CHB. Treatment of woodchucks chronically infected with woodchuck hepatitis virus (WHV) with weekly oral doses of APR002 was well-tolerated. While APR002 and ETV single agents did not elicit sustained viral control, combination therapy resulted in durable immune-mediated suppression of the chronic infection. These woodchucks also had detectable antibodies to viral antigens, enhanced interferon-stimulated gene expression, and loss of WHV covalently closed circular DNA. Conclusion: APR002 is a novel TLR7 agonist exhibiting a distinct PK/PD profile that in combination with ETV can safely attain a functional cure in woodchucks with chronic WHV infection. Our results support further investigation of liver-targeted TLR7 agonists in human CHB.
Collapse
Affiliation(s)
- Kyle E. Korolowizc
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| | - Bin Li
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| | - Xu Huang
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| | - Changsuek Yon
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| | | | | | | | | | - Manasa Suresh
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| | | | | | - Stephan Menne
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDC
| |
Collapse
|
37
|
Structural Differences between the Woodchuck Hepatitis Virus Core Protein in the Dimer and Capsid States Are Consistent with Entropic and Conformational Regulation of Assembly. J Virol 2019; 93:JVI.00141-19. [PMID: 31043524 DOI: 10.1128/jvi.00141-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Hepadnaviruses are hepatotropic enveloped DNA viruses with an icosahedral capsid. Hepatitis B virus (HBV) causes chronic infection in an estimated 240 million people; woodchuck hepatitis virus (WHV), an HBV homologue, has been an important model system for drug development. The dimeric capsid protein (Cp) has multiple functions during the viral life cycle and thus has become an important target for a new generation of antivirals. Purified HBV and WHV Cp spontaneously assemble into 120-dimer capsids. Though they have 65% identity, WHV Cp has error-prone assembly with stronger protein-protein association. We have taken advantage of the differences in assemblies to investigate the basis of assembly regulation. We determined the structures of the WHV capsid to 4.5-Å resolution by cryo-electron microscopy (cryo-EM) and of the WHV Cp dimer to 2.9-Å resolution by crystallography and examined the biophysical properties of the dimer. We found, in dimer, that the subdomain that makes protein-protein interactions is partially disordered and rotated 21° from its position in capsid. This subdomain is susceptible to proteolysis, consistent with local disorder. WHV assembly shows similar susceptibility to HBV antiviral molecules, suggesting that HBV assembly follows similar transitions. These data show that there is an entropic cost for assembly that is compensated for by the energetic gain of burying hydrophobic interprotein contacts. We propose a series of stages in assembly that incorporate a disorder-to-order transition and structural shifts. We suggest that a cascade of structural changes may be a common mechanism for regulating high-fidelity capsid assembly in HBV and other viruses.IMPORTANCE Virus capsids assemble spontaneously with surprisingly high fidelity. This requires strict geometry and a narrow range of association energies for these protein-protein interactions. It was hypothesized that requiring subunits to undergo a conformational change to become assembly active could regulate assembly by creating an energetic barrier and attenuating association. We found that woodchuck hepatitis virus capsid protein undergoes structural transitions between its dimeric and its 120-dimer capsid states. It is likely that the closely related hepatitis B virus capsid protein undergoes similar structural changes, which has implications for drug design. Regulation of assembly by structural transition may be a common mechanism for many viruses.
Collapse
|
38
|
Down-regulation of hepatitis delta virus super-infection in the woodchuck model. Virology 2019; 531:100-113. [PMID: 30856482 DOI: 10.1016/j.virol.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms mediating clearance of hepatitis delta virus (HDV) are poorly understood. This study analyzed in detail profound down-regulation of HDV infection in the woodchuck model. Super-infection with HDV of woodchucks chronically infected with HBV-related woodchuck hepatitis virus produced two patterns. In the first, HDV viremia had a sharp peak followed by a considerable decline, and initial rise of HDV virions' infectivity followed by abrupt infectivity loss. In the second, HDV titer rose and later displayed plateau-like profile with high HDV levels; and HDV infectivity became persistently high when HDV titer reached the plateau. The infectivity loss was not due to defects in the virions' envelope, binding to anti-envelope antibodies, or mutations in HDV genome, but it correlated with profound reduction of the replication capacity of virion-associated HDV genomes. Subsequent finding that in virions with reduced infectivity most HDV RNAs were not full-length genomes suggests possible HDV clearance via RNA fragmentation.
Collapse
|
39
|
Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, Cottontail V, Page RA, Glebe D, Drexler JF, Tschapka M. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. ECOHEALTH 2019; 16:82-94. [PMID: 30564998 PMCID: PMC7088011 DOI: 10.1007/s10393-018-1387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/07/2023]
Abstract
The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.
Collapse
Affiliation(s)
- Thomas Hiller
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama.
| | - Andrea Rasche
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Alexander König
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Lara Jeworowski
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Teague O'Mara
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Veronika Cottontail
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jan Felix Drexler
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
40
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
41
|
Williams JB, Hüppner A, Mulrooney-Cousins PM, Michalak TI. Differential Expression of Woodchuck Toll-Like Receptors 1-10 in Distinct Forms of Infection and Stages of Hepatitis in Experimental Hepatitis B Virus Infection. Front Microbiol 2018; 9:3007. [PMID: 30581424 PMCID: PMC6292964 DOI: 10.3389/fmicb.2018.03007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
Woodchucks infected with woodchuck hepatitis virus (WHV) represent a highly valuable model of human hepatitis B virus (HBV) infection, chronic hepatitis (CH), and virus induced-primary liver cancer. Toll-like receptors (TLRs) are important mediators of immune responses playing pivotal roles in the pathogenesis of viral diseases; however, their expression profiles in different forms of infection and stages of hepatitis, and in healthy animals remain essentially unknown. In this study, woodchuck TLRs 1–10 exon fragments were identified and TLR genes transcription quantified in livers, primary hepatocytes, peripheral blood mononuclear cells (PBMC), and in selected organs during experimental WHV infection. Among others, liver biopsies from acute hepatitis (AH) and CH showed significantly augmented expression of the majority of TLRs when compared to healthy and woodchucks prior to AH, with resolved AH or primary occult infection. In contrast to the liver tissue, significant upregulation of TLR3, TLR4, and TLR10, but downregulation of TLR7, characterized hepatocytes derived from livers of animals with resolved AH accompanied by secondary occult infection. Hepatocytes from CH showed significantly lower expression or a trend toward suppression of several TLRs when compared to hepatocytes from healthy animals and woodchucks with other forms of infection or hepatitis, suggesting that hepatocyte innate immune response is downregulated during CH. Contrastingly, upregulated transcription of some TLRs characterized PBMC throughout CH. Our study uncovered that TLR expression significantly varies between different forms of hepadnaviral infection and whether infection is accompanied or not by hepatitis. The results showed that the profiles of TLRs’ expression in circulating lymphomononuclear cells do not mirror accurately those of livers and hepatocytes from infected animals. These findings are of importance to the understanding of immune process operating at different sites targeted by virus in the course of hepadnaviral infection and evaluation of future therapies modifying antiviral innate responses in the woodchuck model.
Collapse
Affiliation(s)
- John Bradley Williams
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alena Hüppner
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Patricia M Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
42
|
Zhang P, Zhai S, Chang J, Guo JT. In Vitro Anti-hepatitis B Virus Activity of 2',3'-Dideoxyguanosine. Virol Sin 2018; 33:538-544. [PMID: 30421112 PMCID: PMC6335223 DOI: 10.1007/s12250-018-0065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
2',3'-dideoxyguanosine (DoG) has been demonstrated to inhibit duck hepatitis B virus (DHBV) replication in vivo in a duck model of HBV infection. In the current study, the in vitro antiviral effects of DoG on human and animal hepadnaviruses were investigated. Our results showed that DoG effectively inhibited HBV, DHBV, and woodchuck hepatitis virus (WHV) replication in hepatocyte-derived cells in a dose-dependent manner, with 50% effective concentrations (EC50) of 0.3 ± 0.05, 6.82 ± 0.25, and 23.0 ± 1.5 μmol/L, respectively. Similar to other hepadnaviral DNA polymerase inhibitors, DoG did not alter the levels of intracellular viral RNA but induced the accumulation of a less-than-full-length viral RNA species, which was recently demonstrated to be generated by RNase H cleavage of pgRNA. Furthermore, using a transient transfection assay, DoG showed similar antiviral activity against HBV wild-type, 3TC-resistant rtA181V, and adefovir-resistant rtN236T mutants. Our results suggest that DoG has potential as a nucleoside analogue drug with anti-HBV activity.
Collapse
Affiliation(s)
- Pinghu Zhang
- Institute of Translational Medicine and Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001 China
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
- Qinghai Himalayan Experimental Animal Center, Xining, 810006 China
| | - Shuo Zhai
- Institute of Translational Medicine and Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001 China
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA 18902 USA
| |
Collapse
|
43
|
Huang H, Salavaggione O, Rivera L, Mukherjee S, Brekken R, Tennant B, Iyer R, Adjei A. Woodchuck VEGF (wVEGF) characteristics: Model for angiogenesis and human hepatocellular carcinoma directed therapies. Arch Biochem Biophys 2018; 661:97-106. [PMID: 30439360 DOI: 10.1016/j.abb.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/21/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) stimulates angiogenesis. Human hepatocellular carcinoma (HCC) is a VEGF-driven tumor often associated with chronic hepatitis B or C virus infection. The woodchuck is a well-characterized model of hepatitis B virus related HCC and a valuable tool for translational studies of novel VEGF targeted agents. We cloned the cDNA encoding woodchuck VEGF (wVEGF), transiently expressed it in COS cells and functionally characterized the recombinant protein. The open reading frame of wVEGF contained 645 nucleotides encoding a protein of 214 amino acids. Two protein bands (17 and 25 kDa) were detected in conditioned media of wVEGF expressing COS-1 cells and a single band of 25 kDa was identified in cell lysates. Addition of recombinant wVEGF to COS cells enhanced cell proliferation and stimulated VEGFR2, Akt, ERK1/2, and FAK phosphorylation. Sunitinib, a tyrosine kinase inhibitor, inhibited wVEGF- induced VEGFR2 phosphorylation in a dose-dependent manner. Finally, development of HCC in woodchucks was accompanied by increased laminin and PECAM1 expressing vessels, VEGFR2 expression, increased ligation of VEGF to VEGFR2, and a decrease in collagen IV-positive blood vessels. Our results suggest that woodchuck model can be used further to study angiogenesis and the effect of VEGF directed therapies in human HCC.
Collapse
Affiliation(s)
- Huayi Huang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Oreste Salavaggione
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lee Rivera
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Internal Medicine, Hematology-Oncology Division, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rolf Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bud Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Araba Adjei
- Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
44
|
Zhu B, Zhu Z, Wang J, Huang S, Li F, Wang L, Liu Y, Yan Q, Zhou S, Lu M, Yang D, Wang B. Chinese woodchucks with different susceptibility to WHV infection differ in their genetic background exemplified by cytochrome B and MHC-DRB molecules. Virol J 2018; 15:101. [PMID: 29914514 PMCID: PMC6006932 DOI: 10.1186/s12985-018-1010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chinese woodchucks (M. himalayana) were recently found to be susceptible to woodchuck hepatitis virus (WHV) infection. In this study, we aimed to determine the susceptibility to WHV infection of M. himalayana from different areas and their association with the animal genetic background exemplified by cytochrome B and MHC-DRB molecules. METHODS Animals from four different areas in Qinghai province were inoculated with WHV59 strains. The virological markers including WHV surface antigen (WHsAg), WHV core antibody (WHcAb), and WHV DNA in serum were measured by ELISA and Real-time PCR, respectively. The sequences of cytochrome B gene and MHC-DRB molecules were obtained and sorted with Clustalx software. The nucleotide variation sites were identified using MEGA5 software. RESULTS The animals from four different areas had different susceptibility to WHV infection. Animals from TR and TD areas had a high level of long-lasting viremia, while those from GD and WL areas had a low level of transient viremia after WHV inoculation. All of the animals belong to the same subspecies M. himalayana robusta identified by cytochrome B gene sequences. Based on their nucleotide variation pattern, 8 alleles of cytochrome B gene were identified, and 7 MHC-DRB alleles were identified. Allele A of cytochrome B and Allele Mamo-DRB1*02 of MHC-DRB was found to be frequent in animals from TR and TD areas, while Allele H of cytochrome B and Allele Mamo-DRB1*07 of MHC-DRB was predominant in animals from GD and WL areas. CONCLUSION Chinese woodchucks from different areas differed in their susceptibility to WHV infection, though they belong to the same subspecies M. himalayana robusta. The genetic background exemplified by cytochrome B and MHC-DRB differed in Chinese woodchucks with different susceptibility to WHV infection.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Zhenni Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China.,Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Fanghui Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Yanan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Qi Yan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Shunchang Zhou
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
45
|
Freitas N, Lukash T, Gunewardena S, Chappell B, Slagle BL, Gudima SO. Relative Abundance of Integrant-Derived Viral RNAs in Infected Tissues Harvested from Chronic Hepatitis B Virus Carriers. J Virol 2018; 92:e02221-17. [PMID: 29491161 PMCID: PMC5923063 DOI: 10.1128/jvi.02221-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/17/2018] [Indexed: 02/07/2023] Open
Abstract
Five matching sets of nonmalignant liver tissues and hepatocellular carcinoma (HCC) samples from individuals chronically infected with hepatitis B virus (HBV) were examined. The HBV genomic sequences were determined by using overlapping PCR amplicons covering the entire viral genome. Four pairs of tissues were infected with HBV genotype C, while one pair was infected with HBV genotype B. HBV replication markers were found in all tissues. In the majority of HCC samples, the levels of pregenomic/precore RNA (pgRNA) and covalently closed circular DNA (cccDNA) were lower than those in liver tissue counterparts. Regardless of the presence of HBV replication markers, (i) integrant-derived HBV RNAs (id-RNAs) were found in all tissues by reverse transcription-PCR (RT-PCR) analysis and were considerably abundant or predominant in 6/10 tissue samples (2 liver and 4 HCC samples), (ii) RNAs that were polyadenylated using the cryptic HBV polyadenylation signal and therefore could be produced by HBV replication or derived from integrated HBV DNA were found in 5/10 samples (3 liver and 2 HCC samples) and were considerably abundant species in 3/10 tissues (2 livers and 1 HCC), and (iii) cccDNA-transcribed RNAs polyadenylated near position 1931 were not abundant in 7/10 tissues (2 liver and 5 HCC samples) and were predominant in only two liver samples. Subsequent RNA sequencing analysis of selected liver/HCC samples also showed relative abundance of id-RNAs in most of the examined tissues. Our findings suggesting that id-RNAs could represent a significant source of HBV envelope proteins, which is independent of viral replication, are discussed in the context of the possible contribution of id-RNAs to the HBV life cycle.IMPORTANCE The relative abundance of integrant-derived HBV RNAs (id-RNAs) in chronically infected tissues suggest that id-RNAs coding for the envelope proteins may facilitate the production of a considerable fraction of surface antigens (HBsAg) in infected cells bearing HBV integrants. If the same cells support HBV replication, then a significant fraction of assembled HBV virions could bear id-RNA-derived HBsAg as a major component of their envelopes. Therefore, the infectivity of these HBV virions and their ability to facilitate virus cell-to-cell spread could be determined mainly by the properties of id-RNA-derived envelope proteins and not by the properties of replication-derived HBsAg. These interpretations suggest that id-RNAs may play a role in the maintenance of chronic HBV infection and therefore contribute to the HBV life cycle. Furthermore, the production of HBsAg from id-RNAs independently of viral replication may explain at least in part why treatment with interferon or nucleos(t)ides in most cases fails to achieve a loss of serum HBsAg.
Collapse
Affiliation(s)
- Natalia Freitas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tetyana Lukash
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Benjamin Chappell
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
46
|
Abstract
Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV) worldwide. Current antiviral therapies, including interferon and nucleot(s)ide analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.
Collapse
Affiliation(s)
- Wei-Na Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Ling Ai
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bao-Ju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China.
| |
Collapse
|
47
|
Pennington MR, Ledbetter EC, Van de Walle GR. New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems. Viruses 2017; 9:E349. [PMID: 29156583 PMCID: PMC5707556 DOI: 10.3390/v9110349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1), canid alphaherpesvirus 1 (CHV-1) and felid alphaherpesvirus 1 (FHV-1), infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections.
Collapse
Affiliation(s)
- Matthew R Pennington
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Ao YY, Yu JM, Li LL, Cao JY, Deng HY, Xin YY, Liu MM, Lin L, Lu S, Xu JG, Duan ZJ. Diverse novel astroviruses identified in wild Himalayan marmots. J Gen Virol 2017; 98:612-623. [PMID: 28100306 DOI: 10.1099/jgv.0.000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With advances in viral surveillance and next-generation sequencing, highly diverse novel astroviruses (AstVs) and different animal hosts had been discovered in recent years. However, the existence of AstVs in marmots had yet to be shown. Here, we identified two highly divergent strains of AstVs (tentatively named Qinghai Himalayanmarmot AstVs, HHMAstV1 and HHMAstV2), by viral metagenomic analysis in liver tissues isolated from wild Marmota himalayana in China. Overall, 12 of 99 (12.1 %) M. himalayana faecal samples were positive for the presence of genetically diverse AstVs, while only HHMAstV1 and HHMAstV2 were identified in 300 liver samples. The complete genomic sequences of HHMAstV1 and HHMAstV2 were 6681 and 6610 nt in length, respectively, with the typical genomic organization of AstVs. Analysis of the complete ORF 2 sequence showed that these novel AstVs are most closely related to the rabbit AstV, mamastrovirus 23 (with 31.0 and 48.0 % shared amino acid identity, respectively). Phylogenetic analysis of the amino acid sequences of ORF1a, ORF1b and ORF2 indicated that HHMAstV1 and HHMAstV2 form two distinct clusters among the mamastroviruses, and may share a common ancestor with the rabbit-specific mamastrovirus 23. These results suggest that HHMAstV1 and HHMAstV2 are two novel species of the genus Mamastrovirus in the Astroviridae. The remarkable diversity of these novel AstVs will contribute to a greater understanding of the evolution and ecology of AstVs, although additional studies will be needed to understand the clinical significance of these novel AstVs in marmots, as well as in humans.
Collapse
Affiliation(s)
- Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jing-Yuan Cao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Hong-Yan Deng
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Yun-Yun Xin
- The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan, PR China
| | - Meng-Meng Liu
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Lin Lin
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, PR China
| | - Shan Lu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Jian-Guo Xu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| |
Collapse
|
49
|
Fairman J, Liu KH, Menne S. Prevention of liver tumor formation in woodchucks with established hepatocellular carcinoma by treatment with cationic liposome-DNA complexes. BMC Cancer 2017; 17:172. [PMID: 28264666 PMCID: PMC5339946 DOI: 10.1186/s12885-017-3163-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Background Approximately 250 million people worldwide are chronically infected with hepatitis B virus (HBV) and more than half of the hepatocellular carcinoma (HCC) cases are attributed to this infection. As HCC has a high mortality rate, and current treatment options are remarkably limited, the development of new therapeutic treatment strategies is warranted. Methods In this study, woodchucks infected with woodchuck hepatitis virus (WHV), and with pre-existing liver tumors, were used as a model to investigate if complexes of cationic liposomes and non-coding DNA (JVRS-100) were effective in treatment of HCC. Results It was observed that the high serum viral load that is present in a typical chronic WHV infection (i.e., approximately 100-fold higher than human viral loads) results in immune suppression and resistance to treatment with JVRS-100. Treatment of woodchucks with lower serum viral load that more closely matched with the viral load usually seen in human HBV infection appears a better model for immunotherapeutic development based on the responsiveness to JVRS-100 treatment. In the latter case, marked declines in WHV DNA and WHV surface antigen were determined over the 12-week treatment period and WHV markers stayed suppressed during most time points of the 12-week follow-up period. Even more remarkably, the formation of new liver tumors was not observed in woodchucks treated with a well-tolerated dose of JVRS-100, as compared to several new tumors that developed in vehicle-treated control animals. Conclusions Although there was little decrease in the volumes of the liver tumors existing at the time of treatment, it is generally accepted that preventing the spread and metastasis of almost always fatal cancers such as HCC and thus, reducing it to a chronic and treatable disease can also be a successful therapeutic approach. The results in woodchucks warrant the investigation of JVRS-100 as an intervention to prevent liver cancer in patients chronically infected with HBV and at high risk for HCC development.
Collapse
Affiliation(s)
- Jeffery Fairman
- Juvaris BioTherapeutics, Inc., Pleasanton, CA, 94566, USA.,Present address: SutroVax, Inc., South San Francisco, CA, 94080, USA
| | - Katherine H Liu
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Stephan Menne
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA. .,Present address: Georgetown University Medical Center, Department of Microbiology & Immunology, Medical-Dental Building, Room C301, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
50
|
PreC and C Regions of Woodchuck Hepatitis Virus Facilitate Persistent Expression of Surface Antigen of Chimeric WHV-HBV Virus in the Hydrodynamic Injection BALB/c Mouse Model. Viruses 2017; 9:v9020035. [PMID: 28230775 PMCID: PMC5332954 DOI: 10.3390/v9020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/11/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
In the hydrodynamic injection (HI) BALB/c mouse model with the overlength viral genome, we have found that woodchuck hepatitis virus (WHV) could persist for a prolonged period of time (up to 45 weeks), while hepatitis B virus (HBV) was mostly cleared at week four. In this study, we constructed a series of chimeric genomes based on HBV and WHV, in which the individual sequences of a 1.3-fold overlength HBV genome in pBS-HBV1.3 were replaced by their counterparts from WHV. After HI with the WHV-HBV chimeric constructs in BALB/c mice, serum viral antigen, viral DNA (vDNA), and intrahepatic viral antigen expression were analyzed to evaluate the persistence of the chimeric genomes. Interestingly, we found that HI with three chimeric WHV-HBV genomes resulted in persistent antigenemia in mice. All of the persistent chimeric genomes contained the preC region and the part of the C region encoding the N-terminal 1–145 amino acids of the WHV genome. These results indicated that the preC region and the N-terminal part of the C region of the WHV genome may play a role in the persistent antigenemia. The chimeric WHV-HBV genomes were able to stably express viral antigens in the liver and could be further used to express hepadnaviral antigens to study their pathogenic potential.
Collapse
|