1
|
Salami AT, Orji JC, Akpamu U, Iyiola TO, Olaleye SB. Attenuation of Experimental Cholesterol Gallstone Formation by Manganese Chloride in Mice: Role of NF-κβ Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04467-z. [PMID: 39715976 DOI: 10.1007/s12011-024-04467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Manganese (Mn), a trace element, has been documented to exert an important role in the metabolism of cholesterol. Cholesterol gallstone (CG) pathogenesis is directly linked to biliary cholesterol imbalance which could be due to diabetes complications or mismanagement. NF-κβ pathway, an inflammatory regulator, has been implicated in metabolic disease especially in the context of diabetes and gallstone formation. However, the management of cholesterol gallstones due to diabetes with trace elements is vague. This study investigates the probable role of manganese during CG formation due to diabetes complications. Eighty female Swiss mice were grouped: I (control), II (untreated CG), III and IV (normal mice treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), V and VI (CG treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), and VII and VIII (CG treated 75 mg/7 kg and 350 mg/kg aspirin, respectively). Experimental CG was induced with cholesterol-rich diets after alloxan-induced diabetes. On sacrifice, blood collected was evaluated for complete hematological analysis and biochemistry while the excised liver was assayed for biochemical variables. Results were subjected to one-way ANOVA values were expressed as Mean ± SEM and significant at p ≤ 0.05. Manganese treatment significantly increased packed cell volume, RBC count, and hemoglobin with decreased platelet and leukocyte counts, liver enzymes (AST, ALT, and ALP), BUN, and creatinine levels in CG groups compared with untreated CG. Blood glucose, plasma low-density lipoproteins, and liver malodialdehyde levels were significantly reduced while liver nitric-oxide, sulfhydryl, and glutathione levels increased significantly in manganese-treated groups compared with untreated CG. Manganese significantly increased fecal iron contents in normal mice by the 2nd week. Hepatocytes and gallbladder histology appear normal in manganese-treated groups. Liver NF-Kβ immunoreactivity was downregulated in manganese-treated CG groups. Manganese attenuated experimental hyperglycemia-induced cholesterol gallstone by ameliorating liver oxidative stress and NF-Kβ inflammatory pathway.
Collapse
Affiliation(s)
| | - J C Orji
- University of Ibadan, Ibadan, Nigeria
| | - U Akpamu
- Federal University Oye-Ekiti, Oye, Nigeria
| | | | | |
Collapse
|
2
|
Teka T, Wu J, Oduro PK, Li Z, Wang C, Chen H, Zhang L, Wang H, Wang L, Han L. Integrated multi-omics analyses combined with western blotting discovered that cis-TSG alleviated liver injury via modulating lipid metabolism. Front Pharmacol 2024; 15:1485035. [PMID: 39635428 PMCID: PMC11614611 DOI: 10.3389/fphar.2024.1485035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Polygonum multiflorum shows dual hepatoprotective and hepatotoxic effects. The bioactive components responsible for these effects are unknown. This study investigates whether cis-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (cis-TSG), a stilbene glycoside, has hepatoprotective and/or hepatotoxic effects in a liver injury model. Methods: C57BL/6J mice were administered α-naphthylisothiocyanate (ANIT) to induce cholestasis, followed by treatment with cis-TSG. Hepatoprotective and hepatotoxic effects were assessed using serum biomarkers, liver histology, and metabolomic and lipidomic profiling. Transcriptomic analysis were conducted to explore gene expression changes associated with lipid and bile acid metabolism, inflammation, and oxidative stress. Results and Discussion: ANIT administration caused significant liver injury, evident from elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and dysregulated lipid metabolism. cis-TSG treatment markedly reduced ALT and AST levels, normalized lipid profiles, and ameliorated liver damage, as seen histologically. Metabolomic and lipidomic analyses revealed that cis-TSG influenced key pathways, notably glycerophospholipid metabolism, sphingolipid metabolism, and bile acid biosynthesis. The treatment with cis-TSG increased monounsaturated and polyunsaturated fatty acids (MUFAs and PUFAs), enhancing peroxisome proliferator-activated receptor alpha (PPARα) activity. Transcriptomic data confirmed these findings, showing the downregulation of genes linked to lipid metabolism, inflammation, and oxidative stress in the cis-TSG-treated group. The findings suggest that cis-TSG has a hepatoprotective effect through modulation of lipid metabolism and PPARα activation.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Wollo University, Dessie, Ethiopia
| | - Jiang Wu
- Shenzhen Technology University, Shenzhen, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
4
|
Pang L, Cui M, Wu S, Kong J. Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes by PKCα-associated signalling under cholesterol stimulation. J Cell Mol Med 2024; 28:e18110. [PMID: 38164042 PMCID: PMC10844719 DOI: 10.1111/jcmm.18110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND AIMS The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation. METHODS Adult male C57BL/6 mice were used as an animal model. HepG2 cells were cultured under different cholesterol concentrations and BSEP, Cav-1, p-PKCα and Hax-1 expression levels were determined via Western blotting. Expression levels of BSEP and Cav-1 mRNA were detected using real-time PCR. Immunofluorescence and immunoprecipitation assays were performed to study BSEP and Hax-1 distribution. Finally, an ATPase activity assay was performed to detect BSEP transport activity under different cholesterol concentrations in cells. RESULTS Under low-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels significantly increased, PKCα phosphorylation significantly decreased, BSEP binding capacity to Hax-1 weakened, and BSEP function increased. Under high-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels decreased, PKCα phosphorylation increased, BSEP binding capacity to Hax-1 rose, and BSEP function decreased. CONCLUSION Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes via PKCα-associated signalling under cholesterol stimulation.
Collapse
Affiliation(s)
- Liwei Pang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Meiying Cui
- Department of Anesthesiology, Shengjing HospitalChina Medical UniversityShenyangChina
| | - Shuodong Wu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jing Kong
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
5
|
Mohseni-Moghaddam P, Khanmohammadi M, Roghani M. Literature review on hepatoprotective effects of diosgenin: possible mechanisms of action. Front Pharmacol 2023; 14:1226548. [PMID: 37767400 PMCID: PMC10520708 DOI: 10.3389/fphar.2023.1226548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases are among the major causes of death worldwide. Alcohol consumption, obesity, diabetes mellitus, viral infection, and drug-induced liver injury are common risk factors for the development of liver diseases. Diosgenin is a herbal steroidal sapogenin with hepatoprotective properties. This phytosteroid modulates lipid profile and prevents liver injury and fibrosis, metabolic associated fatty liver disease (MAFLD), steatohepatitis, and diabetes mellitus. Different mechanisms have been presented underlying the therapeutic properties of diosgenin. Diosgenin with antioxidant activity and ability to inhibit pro-inflammatory and apoptotic mediators as well as modulating gut microbiota is able to protect the liver. This literature overview summarizes the previously published studies regarding the hepatoprotective function of diosgenin against liver injury in different conditions with an emphasis on possible underlying mechanisms.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Manijeh Khanmohammadi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Ciecko C, Okut H, Lancaster B, Schwasinger-Schmidt T. Prevalence of elevated alkaline phosphatase levels among post-bariatric surgery patients. Langenbecks Arch Surg 2023; 408:285. [PMID: 37479912 DOI: 10.1007/s00423-023-03021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Little is known about the prevalence of elevated alkaline phosphatase in post-bariatric surgery patients due to under-utilization of this test after surgery. Elevated alkaline phosphatase levels are caused by hepatobiliary disease or bone resorption, which can lead to gallstones and osteoporosis. Early, post-operative measurement of alkaline phosphatase can prevent complications, thus reducing morbidity and overall healthcare costs. The purpose of this study was to determine the prevalence of elevated alkaline phosphatase levels among post-operative bariatric surgery patients. METHODS This was a retrospective study of patients 18 years or older, who underwent laparoscopic sleeve gastrectomy (LSG) at a Midwestern Weight Management Clinic between January 1, 2002 and December 31, 2020. Alkaline phosphatase levels, weight, body mass index (BMI), gamma-glutamyl transferase (GGT), parathyroid hormone (PTH), calcitriol, and calcitonin, vitamin D and multivitamin supplementation were measured at baseline, 3, 6, and 12 months post-surgery. RESULTS Two hundred thirty patients with mean age of 47 years and BMI of 44.6 were included with 80.9% (n = 186) female. Alkaline phosphatase was elevated relative to baseline for 36.1% of patients (n = 52) at 3 months post-surgery, 42.4% of patients (n = 56) at 6 months, and 43.3% of patients (n = 45) at 12 months (p < 0.001). There were six cases of documented cholelithiasis post-surgery. CONCLUSION A significant proportion of participants experienced elevations in alkaline phosphatase following surgery, indicating that the prevalence of gallbladder pathology and bone resorption may be higher than previously thought. This merits additional investigation into these complications post-operatively to determine prevalence and avoid excess morbidity.
Collapse
Affiliation(s)
- Claudius Ciecko
- Office of Research, University of Kansas School of Medicine Wichita, 1010 North Kansas, Wichita, KS, 67214, USA.
| | - Hayrettin Okut
- Office of Population Health, University of Kansas School of Medicine Wichita, 1010 North Kansas, Wichita, KS, 67214, USA
| | - Brent Lancaster
- Wichita Surgical Specialists, 818 N Emporia St, Suite 200, Wichita, KS, 67214, USA
| | - Tiffany Schwasinger-Schmidt
- Office of Internal Medicine, University of Kansas School of Medicine Wichita, 1010 North Kansas, Wichita, KS, 67214, USA
| |
Collapse
|
7
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
8
|
Dyslipidemia in Renal Transplant Recipients. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia is a frequent complication after kidney transplantation (KT) and is an important risk factor for cardiovascular disease (CVD). Renal transplant recipients (RTRs) are considered at high, or very high, risk of CVD, which is a leading cause of death in this patient group. Despite many factors of post-transplant dyslipidemia, the immunosuppressive treatment has the biggest influence on a lipid profile. There are no strict dyslipidemia treatment guidelines for RTRs, but the ones proposing an individual approach regarding CVD risk seem most suitable. Proper diet and physical activity are the main general measures to manage dyslipidemia and should be introduced initially in every patient after KT. In the case of an insufficient correction of lipemia, statins are the basis for hypolipidemic treatment. Statins should be introduced with caution to avoid serious side-effects (e.g., myopathy) or drug-drug interactions, especially with immunosuppressants. To lower the incidence of adverse effects, and improve medication adherence, ezetimibe in combination with statins is recommended. Fibrates and bile sequestrants are not recommended due to their side-effects and variable efficacy. However, several new lipid-lowering drugs like Proprotein convertase subtilisin/Kexin type9 (PCSK9) inhibitors may have promising effects in RTRs, but further research assessing efficacy and safety is yet to be carried out.
Collapse
|
9
|
Zhou Q, Hu H, Zhao G, Liu P, Wang Y, Zhang H. Effect and related mechanism of Yinchenhao decoction on mice with lithogenic diet-induced cholelithiasis. Exp Ther Med 2021; 21:316. [PMID: 33717259 PMCID: PMC7885065 DOI: 10.3892/etm.2021.9747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects and the underlying mechanisms of Yinchenhao Decoction (YCHD), a traditional Chinese medicine formulation, on C57BL/6 mice with lithogenic diet (LD)-induced cholelithiasis. The condition of cholelithiasis was evaluated using a six-level criteria. Levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in the serum and liver tissue were measured using enzyme colorimetry. Concentrations of TC, phospholipids (PL) and total bile acids (TBA) in the bile were measured to calculate the cholesterol saturation index. Liver histopathology was microscopically observed and mRNA expression levels of ABCG5, ABCG8, SRBI, ABCB4, ABCB11 and NPC1L1 involved in cholesterol metabolism were measured using reverse transcription-quantitative PCR. The results showed that feeding mice the LD induced cholelithiasis, along with abnormal serum biochemical indices and imbalances in biliary cholesterol homeostasis. Increased ALT and ALP levels in the serum and ALT, ALP, TC and LDL-C levels in the serum and liver indicated the existence of hepatocyte injury, which were consistent with the pathological changes. YCHD treatment ameliorated the serum and hepatic biochemical abnormalities and adjusted the biliary imbalance. In addition, elevated expression of ATP-binding cassette subfamily G member 5/8, scavenger receptor class B type I and Niemann-Pick C1 Like 1 in the liver and small intestine were observed at the onset of cholelithiasis but were reversed by YCHD. Taken together, results from the present study suggest that YCHD ameliorated LD-induced cholelithiasis mice, which may be caused by improvements in biliary cholesterol supersaturation and regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Qun Zhou
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hai Hu
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Gang Zhao
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yixing Wang
- Department of Traditional Chinese Medicine, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Hua Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
10
|
André R, Pacheco R, Bourbon M, Serralheiro ML. Brown Algae Potential as a Functional Food against Hypercholesterolemia: Review. Foods 2021; 10:234. [PMID: 33498824 PMCID: PMC7911857 DOI: 10.3390/foods10020234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Brown algae have been part of the human diet for hundreds of years, however, in recent years, commercial and scientific interest in brown algae has increased due to the growing demand for healthier diet by the world population. Brown algae and its metabolites, such as carotenoids, polysaccharides, phlorotannins, and proteins, have been associated with multiple beneficial health effects for different diseases, such as cardiovascular diseases, one of the main causes of death in Europe. Since high blood cholesterol levels are one of the major cardiovascular risks, this review intends to provide an overview of current knowledge about the anti-hypercholesterolemic effect of different brown algae species and/or their isolated compounds.
Collapse
Affiliation(s)
- Rebeca André
- BioISI–Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (R.P.); (M.B.)
| | - Rita Pacheco
- BioISI–Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (R.P.); (M.B.)
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal
| | - Mafalda Bourbon
- BioISI–Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (R.P.); (M.B.)
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Maria Luísa Serralheiro
- BioISI–Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (R.A.); (R.P.); (M.B.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Toxicity studies of a gum guggul extract formulation administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2020:NTP-TOX-99. [PMID: 33534783 PMCID: PMC8039874 DOI: 10.22427/ntp-tox-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gum guggul extracts (GGEs) are botanical preparations derived from the oleoresin of the Commiphora mukul tree. The preparations are traditionally used in Ayurvedic medicine to treat hyperlipidemia, obesity, diabetes, atherosclerosis, and inflammatory conditions such as arthritis. In the United States, GGEs are marketed as dietary supplements. GGE toxicity was evaluated due to widespread human exposure through increasing dietary supplement use, demonstrated metabolic and hormone-altering effects, and a lack of available information to adequately assess safe use in humans. Male and female Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice were administered a GGE formulation in corn oil by gavage for 28 days or 3 months. Oral gavage was chosen as the route of exposure for these studies because human exposure primarily occurs by ingestion of encapsulated GGE supplements. (Abstract Abridged).
Collapse
|
12
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
13
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Le Roy T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, Ichou F, Haro Barceló J, Huby T, Guerin M, Giral P, Maguin E, Kapel N, Gérard P, Clément K, Lesnik P. The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol 2019; 17:94. [PMID: 31775890 PMCID: PMC6882370 DOI: 10.1186/s12915-019-0715-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale. RESULTS We depleted the intestinal microbiota of hypercholesterolemic female Apoe-/- mice using broad-spectrum antibiotics. Measurement of plasma cholesterol levels as well as cholesterol synthesis and fluxes by complementary approaches showed that the intestinal microbiota strongly regulates plasma cholesterol level, hepatic cholesterol synthesis, and enterohepatic circulation. Moreover, transplant of the microbiota from humans harboring elevated plasma cholesterol levels to recipient mice induced a phenotype of high plasma cholesterol levels in association with a low hepatic cholesterol synthesis and high intestinal absorption pattern. Recipient mice phenotypes correlated with several specific bacterial phylotypes affiliated to Betaproteobacteria, Alistipes, Bacteroides, and Barnesiella taxa. CONCLUSIONS These results indicate that the intestinal microbiota determines the circulating cholesterol level and may thus represent a novel therapeutic target in the management of dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Tiphaine Le Roy
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emelyne Lécuyer
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Benoit Chassaing
- Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.,INSERM, U1016, team "Mucosal microbiota in chronic inflammatory diseases", Paris, France.,Université de Paris, Paris, France
| | - Moez Rhimi
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Samira Boudebbouze
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Farid Ichou
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Júlia Haro Barceló
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Thierry Huby
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Maryse Guerin
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Giral
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Maguin
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, Paris, France.,EA 4065 "Ecosystème intestinal, probiotiques, antibiotiques", Faculté des Sciences Pharmaceutiques et Biologiques Paris Descartes, Paris, France
| | - Philippe Gérard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Karine Clément
- Sorbonne/INSERM, UMRS 1269, Nutrition et obésités : approches systémiques (nutriOmics), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Lesnik
- INSERM, UMRS 1166, team "Integrative Biology of Atherosclerosis", Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France. .,Institute of Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
15
|
Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 2019; 218:2096-2112. [PMID: 31201265 PMCID: PMC6605791 DOI: 10.1083/jcb.201903090] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
The liver performs numerous vital functions, including the detoxification of blood before access to the brain while simultaneously secreting and internalizing scores of proteins and lipids to maintain appropriate blood chemistry. Furthermore, the liver also synthesizes and secretes bile to enable the digestion of food. These diverse attributes are all performed by hepatocytes, the parenchymal cells of the liver. As predicted, these cells possess a remarkably well-developed and complex membrane trafficking machinery that is dedicated to moving specific cargos to their correct cellular locations. Importantly, while most epithelial cells secrete nascent proteins directionally toward a single lumen, the hepatocyte secretes both proteins and bile concomitantly at its basolateral and apical domains, respectively. In this Beyond the Cell review, we will detail these central features of the hepatocyte and highlight how membrane transport processes play a key role in healthy liver function and how they are affected by disease.
Collapse
Affiliation(s)
- Ryan J Schulze
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Micah B Schott
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Carol A Casey
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE
- Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | | | - Mark A McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Ferkingstad E, Oddsson A, Gretarsdottir S, Benonisdottir S, Thorleifsson G, Deaton AM, Jonsson S, Stefansson OA, Norddahl GL, Zink F, Arnadottir GA, Gunnarsson B, Halldorsson GH, Helgadottir A, Jensson BO, Kristjansson RP, Sveinbjornsson G, Sverrisson DA, Masson G, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Holm H, Jonsdottir I, Olafsson S, Steingrimsdottir T, Rafnar T, Bjornsson ES, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat Commun 2018; 9:5101. [PMID: 30504769 PMCID: PMC6269469 DOI: 10.1038/s41467-018-07460-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
Gallstones are responsible for one of the most common diseases in the Western world and are commonly treated with cholecystectomy. We perform a meta-analysis of two genome-wide association studies of gallstone disease in Iceland and the UK, totaling 27,174 cases and 736,838 controls, uncovering 21 novel gallstone-associated variants at 20 loci. Two distinct low frequency missense variants in SLC10A2, encoding the apical sodium-dependent bile acid transporter (ASBT), associate with an increased risk of gallstone disease (Pro290Ser: OR = 1.36 [1.25-1.49], P = 2.1 × 10-12, MAF = 1%; Val98Ile: OR = 1.15 [1.10-1.20], P = 1.8 × 10-10, MAF = 4%). We demonstrate that lower bile acid transport by ASBT is accompanied by greater risk of gallstone disease and highlight the role of the intestinal compartment of the enterohepatic circulation of bile acids in gallstone disease susceptibility. Additionally, two low frequency missense variants in SERPINA1 and HNF4A and 17 common variants represent novel associations with gallstone disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Florian Zink
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | - Gisli Masson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspítali University Hospital, Reykjavik, 101, Iceland
| | | | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, 600, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Sigurdur Olafsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | | | - Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Patrick Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
17
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
18
|
Zhang X, Price NL, Fernández-Hernando C. Non-coding RNAs in lipid metabolism. Vascul Pharmacol 2018; 114:93-102. [PMID: 29929012 DOI: 10.1016/j.vph.2018.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA.
| |
Collapse
|
19
|
Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: Rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23:5257-5265. [PMID: 28839426 PMCID: PMC5550775 DOI: 10.3748/wjg.v23.i29.5257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, biotechnology produced a growth of knowledge on the causes and mechanisms of metabolic diseases that have formed the basis for their study, diagnosis and treatment. Unfortunately, it is well known that the clinical features of metabolic diseases can manifest themselves with very different characteristics and escape early detection. Also, it is well known that the prognosis of many metabolic diseases is excellent if diagnosed and treated early. In this editorial we briefly summarized two groups of inherited metabolic diseases, the defects of cholesterol biosynthesis and those of bile acids. Both groups show variable clinical manifestations but some clinical signs and symptoms are common in both the defects of cholesterol and bile acids. The differential diagnosis can be made analyzing sterol profiles in blood and/or bile acids in blood and urine by chromatographic techniques (GC-MS and LC-MS/MS). Several defects of both biosynthetic pathways are treatable so early diagnosis is crucial. Unfortunately their diagnosis is made too late, due either to the clinical heterogeneity of the syndromes (severe, mild and very mild) that to the scarcity of scientific dissemination of these rare diseases. Therefore, the delay in diagnosis leads the patient to the medical observation when the disease has produced irreversible damages to the body. Here, we highlighted simple clinical and laboratory descriptions that can potentially make you to suspect a defect in cholesterol biosynthesis and/or bile acids, as well, we suggest appropriate request of the laboratory tests that along with common clinical features can help to diagnose these defects.
Collapse
|
20
|
Wang HH, Li T, Portincasa P, Ford DA, Neuschwander-Tetri BA, Tso P, Wang DQH. New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. LIVER RESEARCH (BEIJING, CHINA) 2017; 1:42-53. [PMID: 34367715 PMCID: PMC8341472 DOI: 10.1016/j.livres.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholesterol gallstone formation represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. Lithogenic bile is mainly caused by persistent hepatic hypersecretion of biliary cholesterol and sustained cholesterol-supersaturated bile is an essential prerequisite for the precipitation of solid cholesterol monohydrate crystals and the formation of cholesterol gallstones. The metabolic determinants of the supply of hepatic cholesterol molecules that are recruited for biliary secretion are dependent upon the input-output balance of cholesterol and its catabolism in the liver. The sources of cholesterol for hepatic secretion into bile have been extensively investigated; however, to what extent each cholesterol source contributes to hepatic secretion is still unclear both under normal physiological conditions and in the lithogenic state. Although it has been long known that biliary lithogenicity is initiated by hepatic cholesterol hypersecretion, the genetic mechanisms that cause supersaturated bile have not been defined yet. Identification of the Lith genes that determine hepatic cholesterol hypersecretion should provide novel insights into the primary genetic and pathophysiological defects for gallstone formation. In this review article, we focus mainly on the pathogenesis of the formation of supersaturated bile and gallstones from the viewpoint of genetics and pathophysiology. A better understanding of the molecular genetics and pathophysiology of the formation of cholesterol-supersaturated bile will undoubtedly facilitate the development of novel, effective, and noninvasive therapies for patients with gallstones, which would reduce the morbidity, mortality, and costs of health care associated with gallstones, a very prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”Medical School, Bari, Italy
| | - David A. Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brent A. Neuschwander-Tetri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Q.-H. Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Dimova LG, Zlatkov N, Verkade HJ, Uhlin BE, Tietge UJF. High-cholesterol diet does not alter gut microbiota composition in mice. Nutr Metab (Lond) 2017; 14:15. [PMID: 28239402 PMCID: PMC5314487 DOI: 10.1186/s12986-017-0170-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction Western diet containing both saturated fat and cholesterol impairs cardio-metabolic health partly by modulating diversity and function of the microbiota. While diet containing only high fat has comparable effects, it is unclear how diets only enriched in cholesterol impact the microbiota. Therefore, we aimed to characterize the response of host and microbiota to a high cholesterol (HC) diet in mice susceptible to cardio-metabolic disease. Methods LDLR knockout mice received either 1.25% HC or no cholesterol containing control diet (NC) for 12 weeks before characterizing host cholesterol metabolism and intestinal microbiota composition (next generation sequencing). Results HC diet substantially increased plasma (1.6-fold) and liver cholesterol levels (21-fold), biliary cholesterol secretion (4.5-fold) and fecal neutral sterol excretion (68-fold, each p < 0.001) but not fecal bile acid excretion. Interestingly, despite the profound changes in intestinal cholesterol homeostasis no differences in microbial composition between control and HC-fed mice were detected. In both groups the main phyla were Bacteroidetes (55%), Firmicutes (27%) and Verrucomicrobia (14%). Conclusion Our results demonstrate that in mice HC diet alone does not alter the microbiota composition despite inducing substantial adaptive changes in whole body cholesterol homeostasis. The impact of Western diet on intestinal microbiota thus appears to be mediated exclusively by its high fat content. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0170-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lidiya G Dimova
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikola Zlatkov
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernt Eric Uhlin
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Pfeiler S, Khandagale AB, Magenau A, Nichols M, Heijnen HFG, Rinninger F, Ziegler T, Seveau S, Schubert S, Zahler S, Verschoor A, Latz E, Massberg S, Gaus K, Engelmann B. Distinct surveillance pathway for immunopathology during acute infection via autophagy and SR-BI. Sci Rep 2016; 6:34440. [PMID: 27694929 PMCID: PMC5046072 DOI: 10.1038/srep34440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms protecting from immunopathology during acute bacterial infections are incompletely known. We found that in response to apoptotic immune cells and live or dead Listeria monocytogenes scavenger receptor BI (SR-BI), an anti-atherogenic lipid exchange mediator, activated internalization mechanisms with characteristics of macropinocytosis and, assisted by Golgi fragmentation, initiated autophagic responses. This was supported by scavenger receptor-induced local increases in membrane cholesterol concentrations which generated lipid domains particularly in cell extensions and the Golgi. SR-BI was a key driver of beclin-1-dependent autophagy during acute bacterial infection of the liver and spleen. Autophagy regulated tissue infiltration of neutrophils, suppressed accumulation of Ly6C+ (inflammatory) macrophages, and prevented hepatocyte necrosis in the core of infectious foci. Perifocal levels of Ly6C+ macrophages and Ly6C− macrophages were unaffected, indicating predominant regulation of the focus core. SR-BI-triggered autophagy promoted co-elimination of apoptotic immune cells and dead bacteria but barely influenced bacterial sequestration and survival or inflammasome activation, thus exclusively counteracting damage inflicted by immune responses. Hence, SR-BI- and autophagy promote a surveillance pathway that partially responds to products of antimicrobial defenses and selectively prevents immunity-induced damage during acute infection. Our findings suggest that control of infection-associated immunopathology can be based on a unified defense operation.
Collapse
Affiliation(s)
- Susanne Pfeiler
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Avinash B Khandagale
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Astrid Magenau
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maryana Nichols
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Harry F G Heijnen
- Laboratory of Clinical Chemistry and Haematology and Cell Microscopy Center, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Franz Rinninger
- Universitätsklinik Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Tilman Ziegler
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Stephanie Seveau
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sören Schubert
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, 80336, Germany
| | - Stefan Zahler
- Institut für Pharmazeutische Biologie, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Admar Verschoor
- Institut für Systemische Entzündungsforschung, Universität zu Lübeck, Lübeck, 23538, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, 53127, Germany.,Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA.,German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre for Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, 81377, Germany
| |
Collapse
|
23
|
Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Sci Rep 2016; 6:32105. [PMID: 27601313 PMCID: PMC5013287 DOI: 10.1038/srep32105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.
Collapse
|
24
|
Charles-Schoeman C, Fleischmann R, Davignon J, Schwartz H, Turner SM, Beysen C, Milad M, Hellerstein MK, Luo Z, Kaplan IV, Riese R, Zuckerman A, McInnes IB. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol 2015; 67:616-25. [PMID: 25470338 PMCID: PMC5024065 DOI: 10.1002/art.38974] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. METHODS This was a phase I open-label mechanism-of-action study. Cholesterol and lipoprotein kinetics were assessed with (13) C-cholesterol and (13) C-leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. RESULTS Levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A-I (Apo A-I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL-associated Apo A-I fractional catabolic rate, or LDL-associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. CONCLUSION This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved.
Collapse
|
25
|
Cortés V, Amigo L, Zanlungo S, Galgani J, Robledo F, Arrese M, Bozinovic F, Nervi F. Metabolic effects of cholecystectomy: gallbladder ablation increases basal metabolic rate through G-protein coupled bile acid receptor Gpbar1-dependent mechanisms in mice. PLoS One 2015; 10:e0118478. [PMID: 25738495 PMCID: PMC4349594 DOI: 10.1371/journal.pone.0118478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/18/2015] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice.
Collapse
Affiliation(s)
- Víctor Cortés
- Departamento de Nutrición, Diabetes y Metabolismo, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ludwig Amigo
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Galgani
- Departamento de Nutrición, Diabetes y Metabolismo, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fermín Robledo
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Facultad de Medicina, CASEB y Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Flavio Nervi
- Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells. PLoS One 2014; 9:e102026. [PMID: 25010412 PMCID: PMC4092120 DOI: 10.1371/journal.pone.0102026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.
Collapse
|
27
|
Hypolipidemic effect of dietary water-soluble protein extract from chicken: impact on genes regulating hepatic lipid and bile acid metabolism. Eur J Nutr 2014; 54:193-204. [PMID: 24756472 DOI: 10.1007/s00394-014-0700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Amount and type of dietary protein have been shown to influence blood lipids. The present study aimed to evaluate the effects of a water-soluble fraction of chicken protein (CP) on plasma and hepatic lipid metabolism in normolipidemic rats. METHODS Male Wistar rats were fed either a control diet with 20 % w/w casein as the protein source, or an experimental diet where casein was replaced with CP at 6, 14, or 20 % w/w for 4 weeks. RESULTS Rats fed CP had markedly reduced levels of triacylglycerols (TAG) and cholesterol in both plasma and liver, accompanied by stimulated hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase 2 activity in the 20 % CP group compared to the control group. In addition, reduced activities and gene expression of hepatic enzymes involved in lipogenesis were observed. The gene expression of sterol regulatory element-binding transcription factor 1 was reduced in the 20 % CP-fed rats, whereas gene expression of peroxisome proliferator-activated receptor alpha was increased. Moreover, 6, 14, and 20 % CP-fed rats had significantly increased free carnitine and acylcarnitine plasma levels compared to control rats. The plasma methionine/glycine and lysine/arginine ratios were reduced in 20 % CP-treated rats. The mRNA level of ATP-binding cassette 4 was increased in the 20 % CP group, accompanied by the increased level of plasma bile acids. CONCLUSIONS The present data suggest that the hypotriglyceridemic property of a water-soluble fraction of CP is primarily due to effects on TAG synthesis and mitochondrial fatty acid oxidation. The cholesterol-lowering effect by CP may be linked to increased bile acid formation.
Collapse
|
28
|
Kong J, Liu BB, Wu SD, Wang Y, Jiang QQ, Guo EL. Enhancement of interaction of BSEP and HAX-1 on the canalicular membrane of hepatocytes in a mouse model of cholesterol cholelithiasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1644-1650. [PMID: 24817961 PMCID: PMC4014245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
We induced gallstones in C57L mice fed with a high cholesterol diet and examined the expression of bile salt export pump (BSEP) on the canalicular membrane of hepatocytes and its relation with PKCα and HAX-1.Twenty-four gallstone-prone C57L mice were randomly assigned to receive a high cholesterol diet or a regular diet. Gallstone formation was recorded. BSEP, PKCα and phospho-PKCα expression was examined by immunoblotting assays. Co-expression of BSEP and HAX-1 was studied by immunofluorescent microscopy and immunoprecipitations. Gallstones were formed in all 12 mice fed with the high cholesterol diet. In Gallstone group, BSEP levels on the canalicular membrane of hepatocytes were markedly lower while a significant increase was observed in phosphorylated PKCα. Immunofluorescent microscopy showed that BSEP and HAX-1 were co-localized on the canalicular membrane, which was apparently enhanced by feeding with the high cholesterol diet. The immunoprecipitation assays further demonstrated that BSEP and HAX-1 showed enhanced interaction in the hepatocytes of mice fed with the high cholesterol diet. Cholesterol gallstone formation is associated with downregulation of BSEP expression on the canalicular membrane of hepatocytes with increased phosphorylation of PKCα. BSEP and HAX-1 show enhanced interaction with one another on the canalicular membrane during gallstone formation.
Collapse
Affiliation(s)
- Jing Kong
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Bin-Bin Liu
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Shuo-Dong Wu
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Yu Wang
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - Qing-Quan Jiang
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| | - En-Ling Guo
- Department of Biliary and Minimally Invasive Surgery, China Medical University Shengjing Hospital Shenyang, Liaoning, China
| |
Collapse
|
29
|
Ghanbari-Niaki A, Zare-Kookandeh N, Zare-Kookandeh A. ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:162-71. [PMID: 24847418 PMCID: PMC4016686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE(S) ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression in response to treadmill-running training in female rats. MATERIALS AND METHODS Twenty Wistar rats (6-8 weeks old and 125-135 g weight) were used. Animals were randomly assigned to saline-control (SC), saline-training (ST), and Baneh-control (BC), and Baneh-training (BT) groups. Training groups did the exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day for eight weeks (5 days/week). Rats were fed orally, with Baneh extraction and saline for six weeks. The two-way ANOVA was employed for statistical analysis. ABCG5 relative gene expression was detected by Real-time PCR method. RESULTS The current findings indicate that the Baneh-treated tissues had significantly lower levels of ABCG5 gene expression in the liver, small intestine, and kidneys (P< 0.001, P< 0.003, P< 0.001, respectively), when compared with saline-treated tissues. However, a higher level of gene expression was observed in exercise groups. A lower level of HDL-c but not triglyceride (TG) and total cholesterol (TC) levels were found in Baneh-treated animals at rest. CONCLUSION Exercise training increases ABCG5 relative gene expression in the liver, small intestine and kidney tissues; therefore exercise training may adjust the reduction of ABCG5 relative gene expression in Baneh-training group.
Collapse
Affiliation(s)
- Abbass Ghanbari-Niaki
- Exercise Biochemistry Division, Faculty of Physical Education and Sport Science, University of Mazandaran, Baboulsar, Mazandaran, Iran,Corresponding author: Abbass Ghanbari-Niaki. Exercise Biochemistry Division, Faculty of Physical Education and Sport Science, University of Mazandaran, Baboulsar, Mazandaran, Iran.
| | - Navabeh Zare-Kookandeh
- Exercise Biochemistry Division, Faculty of Physical Education and Sport Science, University of Mazandaran, Baboulsar, Mazandaran, Iran
| | | |
Collapse
|
30
|
Dikkers A, Annema W, de Boer JF, Iqbal J, Hussain MM, Tietge UJF. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice. J Lipid Res 2014; 55:816-25. [PMID: 24511105 DOI: 10.1194/jlr.m042986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Clostridium butyricum MIYAIRI 588 improves high-fat diet-induced non-alcoholic fatty liver disease in rats. Dig Dis Sci 2013; 58:3534-44. [PMID: 24166662 DOI: 10.1007/s10620-013-2879-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/05/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS Non-alcoholic fatty liver disease (NAFLD) has become a common liver disease, as its prevalence has increased markedly in recent decades. The aim of the present study was to examine the improving effect of Clostridium butyricum MIYAIRI 588 (CBM588), a probiotic in clinical use for antibiotic-associated diarrhea, against high-fat diet (HFD)-induced fatty liver in rats. METHODS After feeding HFD or HFD coated with CBM588 (HFD-CBM) for 12 weeks, we evaluated the hepatic mRNA levels related to lipid metabolism, and then assessed the hepatic protein levels of several transcription factors regulating these lipogenic gene expressions. RESULTS The HFD-CBM group had decreased accumulation of lipid droplets in the liver compared with the HFD group. The HFD-CBM group had significantly decreased diacylglycerol acyltransferase (DGAT) 2 mRNA in the liver compared with the HFD group, whereas DGAT1 mRNA did not change between the HFD group and the HFD-CBM group. Moreover, the HFD-CBM group had significantly increased hepatic mRNA regulating cholesterol catabolism enzymes and excretion transporters. Correspondingly, the HFD-CBM588 groups had increased hepatic protein levels of peroxisome proliferator-activated receptor α/γ and liver X receptor α compared with the HFD group. The HFD-CBM group had accelerated excretion of total bile acid and non-esterified fatty acid in the feces. CONCLUSIONS CBM588 intake may have novel potential for improving NAFLD.
Collapse
|
32
|
Hismiogullari AA, Hismiogullari SE, Rahman K. Isolation and biochemical analysis of vesicles from taurohyodeoxycholic acid-infused isolated perfused rat livers. World J Gastroenterol 2013; 19:6228-6236. [PMID: 24115821 PMCID: PMC3787354 DOI: 10.3748/wjg.v19.i37.6228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/12/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To isolate biliary lipid-carrying vesicles from isolated perfused rat livers after taurohyodeoxycholic acid (THDC) infusion. Biliary lipid vesicles have been implicated in hepatic disease and THDC was used since it increases biliary phospholipid secretion.
METHODS: Rat livers were isolated and perfused via the hepatic portal vein with THDC dissolved in Krebs Ringer Bicarbonate solution, pH 7.4, containing 1 mmol/L CaCl2, 5 mmol/L glucose, a physiological amino acid mixture, 1% bovine serum albumin and 20% (v/v) washed human erythrocytes at a rate of 2000 nmol/min for 2 h. The livers were then removed, homogenized and subjected to centrifugation, and the microsomal fraction was obtained and further centrifuged at 350000 g for 90 min to obtain subcellular fractions. These were analyzed for total phospholipid, cholesterol, protein and alkaline phosphodiesterase I (PDE).
RESULTS: No significant changes were observed in the total phospholipid, cholesterol and protein contents of the gradient fractions obtained from the microsomal preparation. However, the majority of the gradient fractions (ρ= 1.05-1.07 g/mL and ρ = 1.95-1.23 g/mL) obtained from THDC-infused livers had significantly higher PDE activity compared to the control livers. The low density gradient fraction (ρ = 1.05-1.07 g/mL) which was envisaged to contain the putative vesicle population isolated from THDC-perfused livers had relatively small amounts of phospholipids and protein when compared to the relevant control fractions; however, they displayed an increase in cholesterol and PDE activity. The phospholipids were also isolated by thin layer chromatography and subjected to fractionation by high performance liquid chromatography; however, no differences were observed in the pattern of the fatty acid composition of the phospholipids isolated from THDC and control perfused livers. The density gradient fractions (ρ = 1.10-1.23 g/mL) displayed an increase in all the parameters measured from both control and THDC-infused livers.
CONCLUSION: No significant changes in biliary lipids were observed in the fractions from THDC-infused livers; however, PDE activity was significantly increased compared to the control livers.
Collapse
|
33
|
Dikkers A, Tietge UJF. The neglected cousin of the hepatocyte: how gallbladder epithelial cells might contribute to cholesterol gallstone formation. Dig Dis Sci 2013; 58:296-8. [PMID: 23371007 DOI: 10.1007/s10620-012-2541-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 12/09/2022]
|
34
|
Lecanu L, Yao ZX, McCourty A, Sidahmed EK, Orellana ME, Burnier MN, Papadopoulos V. Control of hypercholesterolemia and atherosclerosis using the cholesterol recognition/interaction amino acid sequence of the translocator protein TSPO. Steroids 2013; 78. [PMID: 23182766 PMCID: PMC3552137 DOI: 10.1016/j.steroids.2012.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The translocator protein (18-kDa) TSPO is an ubiquitous high affinity cholesterol-binding protein reported to be present in the endothelial and smooth muscle cells of the blood vessels; its expression dramatically increased in macrophages found in atherosclerotic plaques. A domain in the carboxy-terminus of TSPO was identified and characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide could be used as an hypocholesterolemic, with potential anti-atherogenic properties, agent. We report herein the therapeutic benefit that resulted for the administration of the VLNYYVWR human CRAC sequence to guinea pigs fed with a high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. CRAC treatment (3 and 30mg/kg once daily for 6 weeks) resulted in reduced circulating cholesterol levels in guinea pigs fed with 2% high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. In high cholesterol fed guinea pigs, CRAC treatment administered once daily induced an increase in circulating HDL, decreased total, free and LDL cholesterol, and removed atheroma deposits in the aorta in a dose-dependent manner. The treatment also prevented the high cholesterol diet-induced increase in serum creatine kinase, total and isoforms, markers of neurological, cardiac and muscular damage. No toxicity was observed. Taken together these results support a role of TSPO in lipid homeostasis and atherosclerosis and indicate that CRAC may constitute a novel and safe treatment of hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Su K, Sabeva NS, Liu J, Wang Y, Bhatnagar S, van der Westhuyzen DR, Graf GA. The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation. J Biol Chem 2012; 287:28564-75. [PMID: 22715101 DOI: 10.1074/jbc.m112.360081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ABCG5 and ABCG8 form a complex (G5G8) that opposes the absorption of plant sterols but is also expressed in liver where it promotes the excretion of cholesterol into bile. Hepatic G5G8 is transcriptionally regulated by a number of factors implicated in the development of insulin resistance and nonalcoholic fatty liver disease. Therefore, we hypothesized that G5G8 may influence the development of diet-induced obesity phenotypes independently of its role in opposing phytosterol absorption. G5G8 knock-out (KO) mice and their wild type (WT) littermates were challenged with a plant sterol-free low fat or high fat (HF) diet. Weight gain and the rise in fasting glucose were accelerated in G5G8 KO mice following HF feeding. HF-fed G5G8 KO mice had increased liver weight, hepatic lipids, and plasma alanine aminotransferase compared with WT controls. Consistent with the development of nonalcoholic fatty liver disease, macrophage infiltration, the number of TUNEL-positive cells, and the expression of proinflammatory cytokines were also increased in G5G8 KO mice. Hepatic lipid accumulation was associated with increased peroxisome proliferator activated receptor γ, CD36, and fatty acid uptake. Phosphorylation of eukaryotic translation initiation factor 2α (eiF2α) and expression of activating transcription factor 4 and tribbles 3 were elevated in HF-fed G5G8 KO mice, a pathway that links the unfolded protein response to the development of insulin resistance through inhibition of protein kinase B (Akt) phosphorylation. Phosphorylation of Akt and insulin receptor was reduced, whereas serine phosphorylation of insulin receptor substrate 1 was elevated.
Collapse
Affiliation(s)
- Kai Su
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Hager L, Li L, Pun H, Liu L, Hossain MA, Maguire GF, Naples M, Baker C, Magomedova L, Tam J, Adeli K, Cummins CL, Connelly PW, Ng DS. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice. J Biol Chem 2012; 287:20755-68. [PMID: 22500017 PMCID: PMC3370258 DOI: 10.1074/jbc.m112.340919] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/06/2012] [Indexed: 12/22/2022] Open
Abstract
We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Lauren Hager
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine and
| | - Lixin Li
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Henry Pun
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Lu Liu
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Mohammad A. Hossain
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Graham F. Maguire
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Mark Naples
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | - Chris Baker
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | - Lilia Magomedova
- Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Jonathan Tam
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
- Division of Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada, and
| | | | - Philip W. Connelly
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Dominic S. Ng
- From the Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
37
|
Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res 2012; 349:551-63. [PMID: 22581381 PMCID: PMC3414710 DOI: 10.1007/s00441-012-1417-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Breast cancer resistance protein (BCRP) is known for its protective function against the toxic effects of exogenous compounds. In addition to this, a role in the transport of endogenous compounds has been described. Since BCRP in the plasma membrane was shown to be regulated by sex steroids, we investigated the presence and possible role of BCRP in steroid hormone-producing organs. Therefore, the presence and localization of Bcrp was investigated in endocrine organs of wild-type mice. Furthermore, the interaction of various steroid hormones with human BCRP activity was studied. Quantitative PCR revealed Bcrp mRNA in the pituitary and adrenal glands, pancreas, ovary, testis and adipose tissue. Immunohistochemistry revealed the presence of Bcrp in the cortex of the adrenal gland and in plasma membranes of adipocytes. In the pituitary gland, pancreas, ovary and testis, Bcrp was mainly located in the capillaries. The interaction between BCRP and 12 steroid hormones was studied using membrane vesicles of HEK293-BCRP cells. Estradiol, testosterone, progesterone and androstenedione inhibited BCRP-mediated uptake of 3H-estrone sulphate (E1S) most potently, with calculated inhibitory constant (Ki) values of 5.0 ± 0.2, 36 ± 14, 14.7 ± 1.3 and 217 ± 13 μM, respectively. BCRP function was attenuated non-competitively, which implies an allosteric inhibition of BCRP-mediated E1S transport by these steroids. In conclusion, localization of Bcrp in endocrine organs together with the efficient allosteric inhibition of the efflux pump by steroid hormones are suggestive for a role for BCRP in steroid hormone regulation.
Collapse
|
38
|
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond) 2012; 9:25. [PMID: 22458435 PMCID: PMC3366910 DOI: 10.1186/1743-7075-9-25] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022] Open
Abstract
Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.
Collapse
|
39
|
Reshetnyak VI. Concept of the pathogenesis and treatment of cholelithiasis. World J Hepatol 2012; 4:18-34. [PMID: 22400083 PMCID: PMC3295849 DOI: 10.4254/wjh.v4.i2.18] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/15/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Gallstone disease (GD) is a chronic recurrent hepatobiliary disease, the basis for which is the impaired metabolism of cholesterol, bilirubin and bile acids, which is characterized by the formation of gallstones in the hepatic bile duct, common bile duct, or gallbladder. GD is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems. GD can result in serious outcomes, such as acute gallstone pancreatitis and gallbladder cancer. The epidemiology, pathogenesis and treatment of GD are discussed in this review. The prevalence of GD varies widely by region. The prevalence of gallstone disease has increased in recent years. This is connected with a change in lifestyle: reduction of motor activity, reduction of the physical load and changes to diets. One of the important benefits of early screening for gallstone disease is that ultrasonography can detect asymptomatic cases, which results in early treatment and the prevention of serious outcomes. The pathogenesis of GD is suggested to be multifactorial and probably develops from complex interactions between many genetic and environmental factors. It suggests that corticosteroids and oral contraceptives, which contain hormones related to steroid hormones, may be regarded as a model system of cholelithiasis development in man. The achievement in the study of the physiology of bile formation and the pathogenesis of GD has allowed expanding indications for therapeutic treatment of GD.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Vasiliy Ivanovich Reshetnyak, VA Negovsky Scientific Research Institute of General Reanimatology, Russia Academy of Medical Sciences, Moscow 107031, Russia
| |
Collapse
|
40
|
Freark de Boer J, Annema W, Schreurs M, van der Veen JN, van der Giet M, Nijstad N, Kuipers F, Tietge UJF. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J Lipid Res 2011; 53:348-357. [PMID: 22180634 DOI: 10.1194/jlr.m018671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [(3)H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Top Institute Food and Nutrition, Wageningen, The Netherlands
| | - Marijke Schreurs
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Medical Biology Section, Molecular Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelske N van der Veen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Markus van der Giet
- Medizinische Klinik IV-Nephrology, Charite-Campus Benjamin Franklin, Berlin, Germany
| | - Niels Nijstad
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands; Top Institute Food and Nutrition, Wageningen, The Netherlands.
| |
Collapse
|
41
|
Abstract
Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.
Collapse
|