1
|
Thanyaphoo S, Sae-Lee C, Thaopech W, Amornrit W, Junking M, Yenchitsomanus PT, Poungvarin N. Transcriptome insights into newcastle disease virus-mediated eradication of cholangiocarcinoma cells. PLoS One 2025; 20:e0322307. [PMID: 40327606 PMCID: PMC12054853 DOI: 10.1371/journal.pone.0322307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/18/2025] [Indexed: 05/08/2025] Open
Abstract
Newcastle Disease Virus (NDV) has emerged as a promising oncolytic viral therapy for various human cancers; however, its effectiveness against cholangiocarcinoma (CCA) remains unexplored. This study presents the capability of the lentogenic LaSota strain of NDV to eliminate two CCA cell lines, KKU-055 and KKU-100, as well as the potential molecular mechanisms underlying this effect. Comprehensive transcriptome analysis revealed alterations in gene expression within several pathways in CCA cells following exposure to the LaSota strain NDV, including those involved in TNF-alpha signaling via NF-kB, interferon alpha response, apoptosis, and IL-6/JAK/STAT3 signaling pathways. We remarkably observed a contrasting alteration in the expression of CXCR4, GRAMD1B, IGFBP4, and TGM2 genes in KKU-055 and KKU-100 cells. In addition, gene network analysis highlighted CCNA2, CDK1, DDX58, DHX58, EXO1, GBP1, IFIH1, IFIT1, IFIT2, IFIT3, IRF7, ISIG15, MX1, OAS1, OAS2, PARP9, TOP2A and XAF1 as potential hub genes influencing the response of CCA cells to NDV LaSota strain. Our findings offer evidence supporting the promise of NDV-based therapies as potential strategies for eliminating CCA cells.
Collapse
Affiliation(s)
- Suphannee Thanyaphoo
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wilasinee Thaopech
- Veterinary Biologics Assay and Research Center, National Institute of Animal Health, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Nakhon Ratchasima, Thailand
| | - Warisa Amornrit
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Bora NR, Kumar R, Kumar S. Development of an apoptotic lentogenic Newcastle disease virus strain by incorporating the p30 protein of African swine fever virus. Virology 2025; 606:110477. [PMID: 40069016 DOI: 10.1016/j.virol.2025.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Virotherapy is one of the emerging approaches for cancer treatment. Newcastle disease virus (NDV) is a well-studied avian paramyxovirus commonly isolated from birds. Typically, the virulent strains of NDV are acknowledged for their oncolytic properties. The anti-tumor effects of NDV rely on its capacity to trigger apoptosis in cancer cells and elicit inflammatory immune responses against the tumor. However, the virulent strains pose significant challenges for clinical application. This study investigated the development of an apoptotic lentogenic strain of NDV by incorporating the p30 protein gene of the African swine fever virus (ASFV). Previous studies have indicated that the p30 protein interacts with various cellular proteins, including PARP9 and DAB2, which suggests its potential for direct or indirect influence on apoptotic pathways. Our initial data confirmed the upregulation of caspase 3/9, PARP, and cytochrome c, suggesting the pro-apoptotic nature of the p30 protein. Further, a recombinant NDV (rNDV) expressing p30 protein (rNDV-p30) was developed, and its effects were evaluated on human breast cancer (MCF-7) cells. While rNDV alone can't show apoptosis, its variant, rNDV-p30 showed promising apoptotic features in MCF-7 cells. Overall, the results demonstrated the development of rNDV-p30 as an apoptotic virus that offered a novel virotherapy strategy for cancer treatment. Additional research is needed to investigate the underlying mechanisms, safety, and efficacy of the apoptotic activity of the rNDV-p30 and to evaluate the effectiveness of this approach in animal models.
Collapse
Affiliation(s)
- Nilave Ranjan Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Lundstrom K. Viral Vector-Based Cancer Vaccines. Methods Mol Biol 2025; 2926:101-127. [PMID: 40266521 DOI: 10.1007/978-1-0716-4542-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Viral vectors have been frequently used as vaccine-delivery vehicles. Both DNA and RNA viruses have been employed for vaccine development. Viral vectors based on adenoviruses (Ad), adeno-associated viruses (AAV), herpes simplex viruses (HSV), lentiviruses (LV), alphaviruses, flaviviruses, measles viruses (MV), rhabdoviruses, Newcastle disease virus (NDV), poxviruses and picornaviruses have been utilized. Approaches have included the expression of tumor-associated antigens and immunostimulatory genes as well as administration of oncolytic viruses. Prophylactic and therapeutic proof-of-concept has been established in preclinical animal tumor models, and therapeutic efficacy has been obtained in clinical trials in human cancer patients. Model viral vector systems and their applications in cancer vaccine development are described here.
Collapse
|
4
|
Yang H, Tian J, Zhao J, Zhao Y, Zhang G. The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy. Viruses 2024; 16:886. [PMID: 38932177 PMCID: PMC11209082 DOI: 10.3390/v16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.
Collapse
Affiliation(s)
- Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.Y.); (J.T.); (J.Z.); (Y.Z.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Onnockx S, Baldo A, Pauwels K. Oncolytic Viruses: An Inventory of Shedding Data from Clinical Trials and Elements for the Environmental Risk Assessment. Vaccines (Basel) 2023; 11:1448. [PMID: 37766125 PMCID: PMC10535390 DOI: 10.3390/vaccines11091448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Attenuated and/or genetically modified oncolytic viruses (OV) gain increasing interest as a promising approach for cancer therapy. Beside the assessment of subject safety, quality and efficacy aspects of medicinal products for human use, genetically modified viruses are also governed by EU regulatory frameworks requiring an environmental risk assessment (ERA). An important element to be assessed as part of the ERA is the incidence of exposure to OV of individuals, other than the trial subjects, and the environment. The evidence-based evaluation of shedding data is considered to be decisive in that context, as it may impact the OV capacity to be transmitted. This is particularly true for OV still able to (conditionally) replicate as opposed to replication-defective viral vectors commonly used in gene therapy or vaccination. To our knowledge, this article presents the most extensive and up-to-date review of shedding data reported with OV employed in clinics. Besides the identification of a topical need for improving the collection of shedding data, this article aims at providing an aid to the design of an appropriate shedding study, thereby relying on and further complementing principles described in existing guidelines issued by European and international institutions.
Collapse
Affiliation(s)
- Sheela Onnockx
- Sciensano, Service Biosafety and Biotechnology, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium; (A.B.); (K.P.)
| | | | | |
Collapse
|
6
|
Svensson-Arvelund J, Cuadrado-Castano S, Pantsulaia G, Kim K, Aleynick M, Hammerich L, Upadhyay R, Yellin M, Marsh H, Oreper D, Jhunjhunwala S, Moussion C, Merad M, Brown BD, García-Sastre A, Brody JD. Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity. Nat Commun 2022; 13:7149. [PMID: 36418317 PMCID: PMC9684150 DOI: 10.1038/s41467-022-34791-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Immunotherapies directly enhancing anti-tumor CD8+ T cell responses have yielded measurable but limited success, highlighting the need for alternatives. Anti-tumor T cell responses critically depend on antigen presenting dendritic cells (DC), and enhancing mobilization, antigen loading and activation of these cells represent an attractive possibility to potentiate T cell based therapies. Here we show that expansion of DCs by Flt3L administration impacts in situ vaccination with oncolytic Newcastle Disease Virus (NDV). Mechanistically, NDV activates DCs and sensitizes them to dying tumor cells through upregulation of dead-cell receptors and synergizes with Flt3L to promote anti-tumor CD8+ T cell cross-priming. In vivo, Flt3L-NDV in situ vaccination induces parallel amplification of virus- and tumor-specific T cells, including CD8+ T cells reactive to newly-described neoepitopes, promoting long-term tumor control. Cross-presenting conventional Type 1 DCs are indispensable for the anti-tumor, but not anti-viral, T cell response, and type I IFN-dependent CD4+ Th1 effector cells contribute to optimal anti-tumor immunity. These data demonstrate that mobilizing DCs to increase tumor antigen cross-presentation improves oncolytic virotherapy and that neoepitope-specific T cells can be induced without individualized, ex vivo manufactured vaccines.
Collapse
Affiliation(s)
- Judit Svensson-Arvelund
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 582 25, Sweden.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gvantsa Pantsulaia
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristy Kim
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Aleynick
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Linda Hammerich
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Hepatology and Gastroenterology, Campus Virchow- Klinikum, Charité Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Ranjan Upadhyay
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Henry Marsh
- Celldex Therapeutics, Inc, Needham, MA, 02494, USA
| | | | | | | | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian D Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joshua D Brody
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Huang F, Dai C, Zhang Y, Zhao Y, Wang Y, Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front Mol Biosci 2022; 9:889403. [PMID: 35860357 PMCID: PMC9289221 DOI: 10.3389/fmolb.2022.889403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV’s inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV’s therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chuanjing Dai
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Youni Zhang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
| | - Yuqi Zhao
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yigang Wang, ; Guoqing Ru,
| |
Collapse
|
8
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
The phosphatase and tensin homolog gene inserted between NP and P gene of recombinant New castle disease virus oncolytic effect test to glioblastoma cell and xenograft mouse model. Virol J 2022; 19:21. [PMID: 35093115 PMCID: PMC8800283 DOI: 10.1186/s12985-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Glioblastoma is one of the most serious brain cancer. Previous studies have demonstrated that PTEN function disorder affects the causing and exacerbation of glioblastoma. Newcastle disease virus (NDV) has been studied as a cancer virotherapeutics. In this study, PTEN gene was delivered to glioblastoma by recombinant NDV (rNDV) and translated into protein at the cytoplasm of the glioblastoma.
Methods We did comparison tests PTEN protein expression efficiency and oncolytic effect depend on the PTEN gene insertion site at the between NP and P genes and the between P and M gene. PTEN protein mRNA transcription, translation in glioblastoma cell, and functional PTEN protein effect of the rNDV in vitro and in vivo test performed using western blotting, RT-qPCR, MTT assay, and Glioblastoma xenograft animal model test. Results The result of this study demonstrates that rNDV-PTEN kills glioblastoma cells and reduces cancer tissue better than rNDV without the PTEN gene. In molecular immunological and cytological assays, PTEN expression level was high at located in the between NP and P gene, and PTEN gene was successfully delivered to the glioblastoma cell using rNDV and PTEN gene translated to functional protein and inhibits hTERT and AKT gene. Conclusions PTEN gene enhances the oncolytic effect of the rNDV. And our study demonstrated that NP and P gene site is better than P and M gene site which is commonly and conventionally used. PTEN gene containing rNDV is a good candidate virotherapeutics for glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01746-w.
Collapse
|
10
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Burman B, Pesci G, Zamarin D. Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12123552. [PMID: 33260685 PMCID: PMC7761210 DOI: 10.3390/cancers12123552] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giulio Pesci
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
12
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
13
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
14
|
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother 2020; 16:2389-2402. [PMID: 32078405 DOI: 10.1080/21645515.2020.1723363] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic viruses have been taking the front stage in biological therapy for cancer recently. The first and most potent virus to be used in oncolytic virotherapy is human adenovirus. Recently, ongoing extensive research has suggested that other viruses like herpes simplex virus (HSV) and measles virus can also be considered as potential candidates in cancer therapy. An HSV-based oncolytic virus, T-VEC, has completed phase Ш clinical trial and has been approved by the U.S. Food and Drug Administration (FDA) for use in biological cancer therapy. Moreover, the vaccine strain of the measles virus has shown impressive results in pre-clinical and clinical trials. Considering their therapeutic efficacy, safety, and reduced side effects, the use of such engineered viruses in biological cancer therapy has the potential to establish a milestone in cancer research. In this review, we summarize the recent clinical advances in the use of oncolytic viruses in biological therapy for cancer. Additionally, this review evaluates the potential viral candidates for their benefits and shortcomings and sheds light on the future prospects.
Collapse
Affiliation(s)
- Moumita Mondal
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China.,Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| | - Ping He
- Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
15
|
Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, Yusoff K. Virotherapy: Current Trends and Future Prospects for Treatment of Colon and Rectal Malignancies. Cancer Invest 2019; 37:393-414. [PMID: 31502477 DOI: 10.1080/07357907.2019.1660887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
Collapse
Affiliation(s)
- Chin Liang Lee
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Sanggeetha Veeramani
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostics, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO) , Karaj , Iran
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia.,Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology , Abu Dhabi , United Arab Emirates
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
16
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|
17
|
Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases 2019; 7:2143-2154. [PMID: 31531310 PMCID: PMC6718777 DOI: 10.12998/wjcc.v7.i16.2143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main reasons of tumor-related deaths worldwide. At present, the main treatment is surgery, but the results are unsatisfactory, and the prognosis is poor. The majority of patients die due to liver or lung metastasis or recurrence. In recent years, great progress has been made in the field of tumor gene therapy, providing a new treatment for combating CRC. As oncolytic viruses selectively replicate almost exclusively in the cytoplasm of tumor cells and do not require integration into the host genome, they are safer, more effective and more attractive as oncolytic agents. Newcastle disease virus (NDV) is a natural RNA oncolytic virus. After NDV selectively infects tumor cells, the immune response induced by NDV’s envelope protein and intracellular factors can effectively kill the tumor without affecting normal cells. Reverse genetic techniques make NDV a vector for gene therapy. Arming the virus by inserting various exogenous genes or using NDV in combination with immunotherapy can also improve the anti-CRC capacity of NDV, and good results have been achieved in animal models and clinical treatment trials. This article reviews the molecular biological characteristics and oncolytic mechanism of NDV and discusses in vitro and in vivo experiments on NDV anti-CRC capacity and clinical treatment. In conclusion, NDV is an excellent candidate for cancer treatment, but more preclinical studies and clinical trials are needed to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Hui Song
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Newcastle disease virus mediated apoptosis and migration inhibition of human oral cancer cells: A probable role of β-catenin and matrix metalloproteinase-7. Sci Rep 2019; 9:10882. [PMID: 31350432 PMCID: PMC6659693 DOI: 10.1038/s41598-019-47244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cell metastasis and its dissemination are most enigmatic and challenging aspects in the development of its therapeutics. Newcastle disease virus (NDV) is a well-studied avian paramyxovirus frequently isolated from birds and rarely from mammals. Since the first report of its oncolytic property, many NDV strains were studied for its effect in various cancer cells. In the present study, NDV strain Bareilly was characterized for its apoptotic potential and migration inhibition in human oral cancer cells. The NDV mediated apoptosis was confirmed by flow cytometry, DNA laddering, and immunoblotting. Moreover, NDV decreased the mitochondrial membrane potential suggesting an intrinsic pathway of apoptosis in oral cancer cells. NDV infection in oral cancer cells results in migration inhibition by a reduction in levels of MMP-7. MMP-7 is one of the key target genes of β-catenin. While overexpression of MMP-7 reversed the inhibitory effect of NDV mediated migration suggested its possible involvement. Wnt/β-catenin is an essential pathway for cell growth, differentiation, and metastasis. The involvement of the Wnt/β-catenin pathway in NDV infection has never been reported. Our results showed that NDV dysregulates Wnt/β-catenin by down-regulation of p-Akt and p-GSK3β leading to degradation of β-catenin. Furthermore, NDV infection leads to a reduction in cytoplasmic and nuclear levels of β-catenin. The study will provide us with a better insight into the molecular mechanism of NDV mediated oncolysis and the key cellular partners involved in the process.
Collapse
|
19
|
RNA Viruses as Tools in Gene Therapy and Vaccine Development. Genes (Basel) 2019; 10:genes10030189. [PMID: 30832256 PMCID: PMC6471356 DOI: 10.3390/genes10030189] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and even progression-free survival.
Collapse
|
20
|
Matuszewska K, Santry LA, van Vloten JP, AuYeung AWK, Major PP, Lawler J, Wootton SK, Bridle BW, Petrik J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin Cancer Res 2018; 25:1624-1638. [PMID: 30206160 DOI: 10.1158/1078-0432.ccr-18-0220] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/03/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Intravenous delivery of oncolytic viruses often leads to tumor vascular shutdown, resulting in decreased tumor perfusion and elevated tumor hypoxia. We hypothesized that using 3TSR to normalize tumor vasculature prior to administration of an oncolytic Newcastle disease virus (NDV) would enhance virus delivery and trafficking of immunologic cell subsets to the tumor core, resulting in systemically enhanced immunotherapy and regression of advanced-stage epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN Using an orthotopic, syngeneic mouse model of advanced-stage EOC, we pretreated mice with 3TSR (4 mg/kg per day) alone or followed by combination with fusogenic NDV(F3aa) (1.0 × 108 plaque-forming units). RESULTS Treatment with 3TSR normalized tumor vasculature, enhanced blood perfusion of primary EOC tumors, and induced disease regression. Animals treated with combination therapy had the greatest reduction in primary tumor mass, ascites accumulation, and secondary lesions (50% of mice were completely devoid of peritoneal metastases). Combining 3TSR + NDV(F3aa) led to enhanced trafficking of immunologic cells into the primary tumor core. CONCLUSIONS We have shown, for the first time, that NDV, like other oncolytic viruses, is a potent mediator of acute vascular shutdown and that preventing this through vascular normalization can promote regression in a preclinical model of advanced-stage ovarian cancer. This challenges the current focus on induction of intravascular thrombosis as a requisite for successful oncolytic virotherapy.See related commentary by Bykov and Zamarin, p. 1446.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Amanda W K AuYeung
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Pierre P Major
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Oseledchyk A, Ricca JM, Gigoux M, Ko B, Redelman-Sidi G, Walther T, Liu C, Iyer G, Merghoub T, Wolchok JD, Zamarin D. Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget 2018; 9:28702-28716. [PMID: 29983890 PMCID: PMC6033351 DOI: 10.18632/oncotarget.25614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Intratumoral therapy with oncolytic viruses is increasingly being explored as a strategy to potentiate an immune response against cancer, but it remains unknown whether such therapy should be restricted to cancers sensitive to virus-mediated lysis. Using Newcastle Disease Virus (NDV) as a model, we explore immunogenic potential of an oncolytic virus in bladder cancer, where existing immunotherapy with PD-1 and PD-L1-targeting antibodies to date has shown suboptimal response rates. Infection of human and mouse bladder cancer cells with NDV resulted in immunogenic cell death, activation of innate immune pathways, and upregulation of MHC and PD-L1 in all tested cell lines, including the cell lines completely resistant to NDV-mediated lysis. In a bilateral flank NDV-lysis-resistant syngeneic murine bladder cancer model, intratumoral therapy with NDV led to an increase of immune infiltration in both treated and distant tumors and a shift from an inhibitory to effector T cell phenotype. Consequently, combination of intratumoral NDV with systemic PD-1 or CTLA-4 blockade led to improved local and abscopal tumor control and overall survival. These findings encourage future clinical trials combining intratumoral NDV therapy with systemic immunomodulatory agents and underscore the rationale for such treatments irrespective of tumor cell sensitivity to NDV-mediated lysis.
Collapse
Affiliation(s)
- Anton Oseledchyk
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob M Ricca
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Gigoux
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Ko
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gil Redelman-Sidi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Tyler Walther
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cailian Liu
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
22
|
Lundstrom K. Viral Vectors in Gene Therapy. Diseases 2018; 6:diseases6020042. [PMID: 29883422 PMCID: PMC6023384 DOI: 10.3390/diseases6020042] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023] Open
Abstract
Applications of viral vectors have found an encouraging new beginning in gene therapy in recent years. Significant improvements in vector engineering, delivery, and safety have placed viral vector-based therapy at the forefront of modern medicine. Viral vectors have been employed for the treatment of various diseases such as metabolic, cardiovascular, muscular, hematologic, ophthalmologic, and infectious diseases and different types of cancer. Recent development in the area of immunotherapy has provided both preventive and therapeutic approaches. Furthermore, gene silencing generating a reversible effect has become an interesting alternative, and is well-suited for delivery by viral vectors. A number of preclinical studies have demonstrated therapeutic and prophylactic efficacy in animal models and furthermore in clinical trials. Several viral vector-based drugs have also been globally approved.
Collapse
|
23
|
Antitumor effect of the Newcastle disease viral hemagglutinin-neuraminidase gene is expressed through an oncolytic adenovirus effect in osteosarcoma cells. Anticancer Drugs 2018; 29:197-207. [PMID: 29438228 DOI: 10.1097/cad.0000000000000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Newcastle disease virus (NDV) can specifically kill cancer cells and has less toxicity to normal cells. The hemagglutinin-neuraminidase (HN) protein is an important structural protein in NDV pathogenesis and has been postulated as a promising candidate for antitumor therapy. The aim of this study was to investigate the anticancer potential of recombinant adenovirus Ad-HN-PEG3p-E1a. An MTS assay was performed to determine viral proliferation after viral infection, the data showed that the proliferation ability of osteosarcoma cells decreased, whereas there was no significant change in normal hepatic cells. DAPI and Annexin V experiments showed that osteosarcoma cells were killed because of apoptosis, active oxygen content, and augmented mitochondrial membrane potential loss. Caspase Activity Assay Kits were used to detect the caspase-3 activities of the treated OS-732 for increased expression. Western blot analysis showed that cytochrome C increased significantly and apoptosis of the virus was confirmed in tumor cells. In-vivo experiments show that NDV has an inhibitory effect on tumor growth. The recombinant adenovirus, which is composed of a HN protein and progressive increment promoter PEG3p, could inhibit the growth of OS-732 and promote the apoptosis of tumor cells. However, there was no clear relationship with normal cell (L02) apoptosis.
Collapse
|
24
|
Fan X, Lu H, Cui Y, Hou X, Huang C, Liu G. Overexpression of p53 delivered using recombinant NDV induces apoptosis in glioma cells by regulating the apoptotic signaling pathway. Exp Ther Med 2018; 15:4522-4530. [PMID: 29731836 DOI: 10.3892/etm.2018.5935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Malignant glioma is the most common primary brain carcinoma in the world and has a poor survival rate. Previous studies have demonstrated that p53 dysfunction contributes to the development and severity of malignant glioma. It has also been demonstrated that Newcastle disease virus (NDV) may be a viable candidate for the treatment of various types of cancer. In the present study, a p53 oncolytic agent delivered using recombinant NDV (rNDV-p53) was constructed and its anti-tumor effects in vitro and in vivo were assessed. Glioma cell lines and a xenograft mouse model were utilized to assess the ability of p53 and rNDV to promote apoptosis and induce immunotherapy, respectively. The mechanism of rNDV-p53 in glioma therapy was investigated using quantitative polymerase chain reaction and immunohistochemistry. Tumor-specific cytotoxic T-lymphocyte (CTL) responses and lymphocyte infiltration were also analyzed in glioma-bearing models. The results of the present study demonstrate that rNDV-p53 may be a potential therapeutic agent that improves the prognosis of mice with glioma. It was revealed that rNDV-p53 inhibits glioma cell growth and aggressiveness in vitro and in vivo compared with rNDV and p53 alone. The results also demonstrated that rNDV-p53 induced glioma cell apoptosis by upregulating apoptosis-related genes. In addition, the present study demonstrated that rNDV-p53 significantly stimulated CTL responses and lymphocyte infiltration whilst increasing the number of apoptotic bodies in vivo. Furthermore, rNDV-p53 therapy inhibited tumor regression and prolonged the survival of glioma-bearing mice. In conclusion, rNDV-p53 invoked an immune response against glioma cells, which may serve as a comprehensive immunotherapeutic schedule for glioma.
Collapse
Affiliation(s)
- Xiaoyong Fan
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| | - Hongzhen Lu
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| | - Youqiang Cui
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| | - Xianzeng Hou
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| | - Chuanjiang Huang
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| | - Guangcun Liu
- Department of Neurosurgery, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 329900, P.R. China
| |
Collapse
|
25
|
Pan Z, He J, Rasoul LM, Liu Y, Che R, Ding Y, Guo X, Yang J, Zou D, Zhang H, Li D, Cao H. Identification of Optimal Insertion Site in Recombinant Newcastle Disease Virus (rNDV) Vector Expressing Foreign Gene to Enhance Its Anti-Tumor Effect. PLoS One 2016; 11:e0164723. [PMID: 27736965 PMCID: PMC5087999 DOI: 10.1371/journal.pone.0164723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/29/2016] [Indexed: 01/23/2023] Open
Abstract
Recombinant Newcastle disease virus (rNDV) is tumor selective and intrinsically oncolytic, which has been developed as a vector to express exogenous genes to enhance its oncolytic efficacy. Our previous studies found that insertion sites of foreign gene in rNDV vector affected its expression and anti-tumor activities. However, the optimal insertion site for foreign genes remains unknown. In this study, we inserted the enhanced green fluorescence protein (EGFP) and IL2 genes into four different intergenic regions of the rNDV using reverse genetics technology. Recombinants rNDV-EGFPs and rNDV-IL2s were successfully rescued, which displayed the similar growth kinetics with parental virus. Both EGFP mRNA and protein levels were most abundant in HepG2 cells, when EGFP gene was inserted between the NP/P site of the rNDV. Similarly, the IL-2 expressed by HepG2 cells infected with rNDV-IL2 was highest, when IL2 was inserted into NP/P site. To test whether these rNDVs that express higher foreign genes could induce stronger anti-tumor response, we treated the H22-oxter-tumor-bearing C57BL/6J mice with rNDV-IL2s and then examined the oncolytic efficacy. The results showed that rNDV-IL2-NP/P had the strongest inhibition of murine hepatoma carcinoma tumors. The splenocytes isolated from the mice treated with rNDV-IL2-NP/P reached the highest degrees of CD4+ T and CD8+ T cells. In addition, animals' survival rate in rNDV-IL2-NP/P-treated group was higher than that of other groups. Taken together, these results demonstrate that NP and P gene junction in rNDV is the optimal insertion site for foreign genes expression to enhance rNDV's anti-tumor effects.
Collapse
Affiliation(s)
- Ziye Pan
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jinjiao He
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lubna M. Rasoul
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunye Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ruixiang Che
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yun Ding
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaocheng Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiarui Yang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dehua Zou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Deshan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- * E-mail: (DL); (HC)
| | - Hongwei Cao
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
- * E-mail: (DL); (HC)
| |
Collapse
|
26
|
An Y, Liu T, He J, Wu H, Chen R, Liu Y, Wu Y, Bai Y, Guo X, Zheng Q, Liu C, Yin J, Li D, Ren G. Recombinant Newcastle disease virus expressing P53 demonstrates promising antitumor efficiency in hepatoma model. J Biomed Sci 2016; 23:55. [PMID: 27465066 PMCID: PMC4964062 DOI: 10.1186/s12929-016-0273-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
Background Numerous studies have demonstrated that the NDV-mediated gene therapy is a promising new approach for treatment of cancers. P53 plays a vital role in tumor suppression and surveillance. Therefore, we hypothesize that a recombinant NDV expressing P53 would be an ideal agent for the hepatoma therapy. Results In the essay, the human P53 gene was incorporated into the genome of a lentogenic strain (named rNDV-P53), which did not affect viral replication kinetics and magnitude in HepG2 cells. Compared to the vehicle virus, rNDV-P53 increased cell growth suppressor ratio and early apoptosis by 2 folds, and decreased the mitochondrial membrane potential in HepG2 cells. In vivo studies, treatment with rNDV-P53 reduced tumor volume of tumor-bearing mice by more than 4 folds, tumor weight by more than 5 folds comparing with rNDV. The 120-day survival rate of rNDV-P53-treated mice was 75 %, survival rate of rNDV-treated mice was 12.5 %. TUNEL analysis showed a significant increase in the apoptosis rate in the tumor tissues of rNDV-P53-treated mice than that of rNDV-treated mice. Moreover, serum chemistries revealed an insignificant change of blood urea nitrogen (BUN), creatinine levels, alanine aminotransferase (ALT) and aspartate transaminase (AST) in rNDV-P53-treated group compared to normal mice, suggesting treatment with the recombinant virus was not toxic. Conclusion rNDV-P53 is a potent candidate for carcinoma therapy especially for hepatocarcinoma.
Collapse
Affiliation(s)
- Ying An
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Tianyan Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Jinjiao He
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Hongsong Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Rui Chen
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Yunye Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Yunzhou Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Yin Bai
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Xiaochen Guo
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Qi Zheng
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Chang Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Jiechao Yin
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China
| | - Deshan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China. .,Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, 150030, China.
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang district, Harbin, People's Republic of China. .,Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Schirrmacher V. Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate! Biomedicines 2016; 4:E16. [PMID: 28536382 PMCID: PMC5344264 DOI: 10.3390/biomedicines4030016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This review provides an overview of 50 years of basic and clinical research on an oncolytic avian virus, Newcastle Disease Virus (NDV), which has particular anti-neoplastic and immune stimulatory properties. Of special interest is the fact that this biological agent induces immunogenic cell death and systemic anti-tumor immunity. Furthermore, localized oncolytic virotherapy with NDV was shown to overcome systemic tumor resistance to immune checkpoint blockade immunotherapy. Clinical experience attests to low side effects and a high safety profile. This is due among others to the strong virus-induced type I interferon response. Other viral characteristics are lack of interaction with host cell DNA, lack of genetic recombination and independence of virus replication from cell proliferation. In this millennium, new recombinant strains of viruses are being produced with improved therapeutic properties. Clinical applications include single case observations, case series studies and Phase I to III studies.
Collapse
Affiliation(s)
- Volker Schirrmacher
- Immunological and Oncological Center (IOZK), Tumor Immunology, 50674 Cologne, Germany.
| |
Collapse
|
28
|
Cao JX, Zhang XY, Liu JL, Li JL, Liu YS, Wang M, Xu BL, Wang ZX. Validity of combination active specific immunotherapy for colorectal cancer: a meta-analysis of 2993 patients. Cytotherapy 2015; 17:1746-62. [PMID: 26455275 DOI: 10.1016/j.jcyt.2015.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS The aim of this study was to investigate whether active specific immunotherapy (ASI) is able to demonstrate therapeutic efficacy against colorectal cancer. METHODS We conducted a systematic review of published papers from MEDLINE, the Cochrane Central Register of Controlled Trials, EMBASE, the Wanfang Database, the China Science and Technology Periodical Database and China Journal Net. Published data were extracted independently by two authors who used predefined database templates. The effects of ASI were compared with those of surgery alone, and a pooled analysis was performed with the use of the data from random- or fixed-effect models. RESULTS Twelve trials matched our inclusion criteria (n = 2993, including 1842 control subjects). The overall analysis showed a significant survival benefit [1-, 2-, 3-, 4-, 5-, 6- and 7-year overall survival (OS), P < 0.05; 10-year OS, P < 0.001] in favor of ASI immunotherapy combined with surgery, but there was not an improvement in the 8- or 9-year OS (P > 0.05). The disease-free survival (DFS) rate was improved after the combination of ASI immunotherapy (2-, 3-, 5- and 10-year DFS, P < 0.05), but no significant improvement was noted for the 1-, 4-, 6-, 7-, 8- or 9-year DFS (P > 0.05). In addition, the disease-specific survival (DSS) was improved at some time points after the combination of ASI immunotherapy and surgery (2-, 3-, 4-, 5- and 6-year DSS, P < 0.05, but not the 1-, 7-, 8- or 9-year DSS, P > 0.05). An improved 2-, 3-, 4-, 5- and 6-year recurrence-free interval (RFI) (P < 0.05) was also observed in patients who received ASI therapy, but this was not observed for the 1-year RFI (P > 0.05). Furthermore, an analysis of the recurrence-free survival (RFS) showed that it was significantly increased in the ASI plus surgery group (1-, 2-, 3-, 4-, 5- and 6-year RFS, P < 0.001). The funnel plots showed that the analyses were relatively reliable and the publication bias was small. CONCLUSIONS The combination of ASI immunotherapy and surgery was superior in prolonging the overall survival time and enhancing the recurrence-free survival rate compared with surgery alone.
Collapse
Affiliation(s)
- Jun-Xia Cao
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Xiao-Yan Zhang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jin-Long Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jun-Li Li
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Yi-Shan Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Min Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Bei-Lei Xu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Zheng-Xu Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China.
| |
Collapse
|
29
|
Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther 2015; 15:1757-71. [PMID: 26436571 DOI: 10.1517/14712598.2015.1088000] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) selectively replicate in tumor cells and cause cancer cell death. Most OVs in clinical studies are genetically engineered. In contrast, the avian Newcastle disease virus (NDV) is a naturally oncolytic RNA virus. While anti-viral immunity is considered a major problem in achieving maximal tumor cell killing by OVs, this review discusses the importance of NDV immunogenic cell death (ICD) and how anti-viral immune responses can be integrated to induce maximal post-oncolytic T-cell-mediated anti-tumor immunity. Since replication of NDV is independent of host cell DNA replication (which is the target of many cytostatic drugs and radiotherapy) and because of other findings, oncolytic NDV is a candidate agent to break therapy resistance of tumor cells. AREAS COVERED Properties of this avian paramyxovirus are summarized with special emphasis to its anti-neoplastic and immune-stimulatory properties. The review then discusses prospective anti-cancer therapies, including treatments with NDV alone, and combinations with an autologous NDV-modified tumor cell vaccine or with a viral oncolysate pulsed dendritic cell vaccine. Various combinatorial approaches between these and with other modalities are also reviewed. EXPERT OPINION Post-oncolytic anti-tumor immunity based on ICD is in the expert's opinion of greater importance for long-term therapeutic effects than maximal tumor cell killing. Of the various combinatorial approaches discussed, the most promising and feasible for clinical practice appears to be the combination of systemic NDV pre-treatment with anti-tumor vaccination.
Collapse
Affiliation(s)
- Volker Schirrmacher
- a Immunological and Oncological Center (IOZK), Tumor Immunology , Hohenstaufenring 30-32, D-50674 Köln, Cologne, Germany
| |
Collapse
|
30
|
Tayeb S, Zakay-Rones Z, Panet A. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother 2015; 4:49-62. [PMID: 27512670 PMCID: PMC4918379 DOI: 10.2147/ov.s78600] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials.
Collapse
Affiliation(s)
- Shay Tayeb
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel; Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and Molecular Biology, The Chanock Center for Virology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
31
|
Amin M, Lockhart AC. The potential role of immunotherapy to treat colorectal cancer. Expert Opin Investig Drugs 2014; 24:329-44. [PMID: 25519074 DOI: 10.1517/13543784.2015.985376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the fourth most common cancer and the second leading cause of cancer-related death worldwide. Surgery, chemotherapy, radiation therapy and anti-angiogenic therapies form the backbone of treatment for CRC in various stages. Immunotherapy is frequently used either alone or in combination with chemotherapy for the treatment of various cancers such as melanoma, prostate cancer and renal cell cancer. Current CRC research is moving forward to discover ways to incorporate immunotherapies into the treatment of CRC. AREAS COVERED The aim of this review is to summarize the potential role of immunotherapy in CRC. Herein, the authors provide a brief overview of immune modulatory cells, immune surveillance and escape in CRC. They also review vaccine trials in addition to cytokines and monoclonal antibodies. This coverage includes ongoing trials and checkpoint inhibitors such as cytotoxic T lymphocyte antigen-1, programmed cell death-1, and PDL1. EXPERT OPINION Checkpoint inhibitors in combination with either chemotherapy or chemo-antiangiogenic-therapy may represent a future therapeutic approach for CRC incorporating immune system targeting. Given the success of immune-based therapy in other tumor types, the authors anticipate that a similar breakthrough in CRC will be forthcoming.
Collapse
Affiliation(s)
- Manik Amin
- Washington University, Siteman Cancer Center , 660 S. Euclid Ave, Box 8056, St. Louis, MO 63110 , USA
| | | |
Collapse
|
32
|
Schirrmacher V, Fournier P, Schlag P. Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function. Expert Rev Vaccines 2014; 13:117-30. [PMID: 24219122 DOI: 10.1586/14760584.2014.854169] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Surgery remains the primary curative treatment but nearly 50% of patients relapse as consequence of micrometastatic or minimal residual disease (MRD) at the time of surgery. Spontaneous T-cell-mediated immune responses to CRC tumor-associated antigens (TAAs) in tumor-draining lymph nodes and in the bone marrow (BM) lead to infiltration of the tumors by lymphocytes. Certain types of such tumor-infiltrating lymphocytes (TILs) have a positive and others a negative impact on the patients' prognosis. This review focuses on advances in CRC active-specific immunotherapy (ASI), in particular on results from randomized controlled clinical studies employing therapeutic autologous tumor cell vaccines. The observed improvement of long-term survival is explained by activation and mobilization of a pre-existing repertoire of tumor-reactive memory T cells which, according to recent discoveries, reside in distinct niches of patients' bone marrow in neighborhood with hematopoietic (HSC) and mesenchymal (MSC) stem cells. Interestingly, memory T cells also contain a subset of stem memory T cells (SMTs) in addition to effector (EMTs) and central memory T cells (CMTs). The mechanism of function of a therapeutic vaccine in a chronic disease is distinct from that of prophylactic vaccines which have to generate de novo protective immune responses. The advantage of autologous vaccines for mobilization of a broad and highly individual repertoire of memory T cells will be discussed.
Collapse
Affiliation(s)
- Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Bai FL, Yu YH, Tian H, Ren GP, Wang H, Zhou B, Han XH, Yu QZ, Li DS. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol Ther 2014; 15:1226-38. [PMID: 24971746 DOI: 10.4161/cbt.29686] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recombinant Newcastle disease virus (rNDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) delivered by rNDV. We demonstrated that rNDV expressing TRAIL (rNDV-TRAIL) or both human IL-2 and TRAIL (rNDV-IL-2-TRAIL) significantly enhanced inherent anti-neoplastic of rNDV by inducing apoptosis. And we showed that apoptosis-related genes mRNA expression was increased after treated with rNDV-TRAIL or rNDV-IL-2-TRAIL compared with rNDV and rNDV-IL-2. We also demonstrated that both rNDV-IL-2 and rNDV-IL-2-TRAIL induced proliferation of the CD4(+) and CD8(+) in treated mice and elicited expression of TNF-α and IFN-γ antitumor cytokines. These mice treated with oncolytic agents exhibited significant reduction in tumor development compared with mice treated with the parental virus. In addition, experiments in both hepatocellular carcinoma and melanoma-bearing mice demonstrated that the genetically engineered rNDV-IL-2-TRAIL exhibited prolonged animals' survival compared with rNDV, rNDV-IL-2, and rNDV-TRAIL. In conclusion, the immunotherapy and oncolytic virotherapy properties of NDV can be enhanced by the introduction of IL-2 and TRAIL genes, whose products initiated a broad cascade of immunological affects and induced tumor cells apoptosis in the microenvironment of the immune system.
Collapse
Affiliation(s)
- Fu-Liang Bai
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Yin-Hang Yu
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Hui Tian
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Gui-Ping Ren
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Hui Wang
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Bing Zhou
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Xiao-Hui Han
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Qing-Zhong Yu
- USDA-ARS; Southeast Poultry Research Laboratory; Athens, GA USA
| | - De-Shan Li
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China; Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| |
Collapse
|
34
|
Zhao L, Mei Y, Sun Q, Guo L, Wu Y, Yu X, Hu B, Liu X, Liu H. Autologous tumor vaccine modified with recombinant new castle disease virus expressing IL-7 promotes antitumor immune response. THE JOURNAL OF IMMUNOLOGY 2014; 193:735-45. [PMID: 24943214 DOI: 10.4049/jimmunol.1400004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autologous tumor vaccine modified with nonlytic Newcastle disease virus (ATV-NDV) is a promising vaccine for cancer immunotherapy. IL-7 plays a critical role in lymphocyte development and homeostasis. To improve the efficacy of ATV-NDV, we inserted the murine IL-7 gene into the genome of nonlytic NDV strain LX using reverse genetic system. The insertion of the IL-7 gene neither affected the main features of NDV replication nor its tumor selectivity. The gene product was biologically active and stable. Then we tested the antitumor effects of the autologous tumor vaccine modified with LX/(IL-7) in the murine tumor models. We showed that tumor cells modified with LX/IL-7 induced a strong antitumor activity both in prophylaxis and therapeutic models. The IFN-γ production and the cytotoxicity of tumor-specific CD8(+) T cells were significantly enhanced after immunization with tumor cells modified with LX/(IL-7) in both models. Although the tumor-infiltrating CD4(+) T cells and CD8(+) T cells were both increased and their IFN-γ productions also were upregulated, the antitumor activity of the tumor vaccine modified with LX/(IL-7) was dependent on CD8(+) T cells. Our results demonstrated that the autologous tumor vaccine modified with NDV strain LX/(IL-7) could promote the antitumor immune responses mediated by CD8(+) T cells and significantly improve the efficacy of the ATV-NDV.
Collapse
Affiliation(s)
- Lixiang Zhao
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu Mei
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qing Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; and
| | - Linghua Guo
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Wu
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao Yu
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Bo Hu
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; and
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
35
|
Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunol Lett 2014; 159:36-46. [PMID: 24613899 DOI: 10.1016/j.imlet.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/12/2014] [Accepted: 02/23/2014] [Indexed: 01/01/2023]
Abstract
Newcastle disease virus (NDV) is an intrinsically tumor-specific virus, several clinical trials have reported that mesogenic NDV is a safe and effective agent for human cancer therapy. Interleukin 2 (IL2) is a cytokine that stimulates T cell propagation to trigger innate and adaptive immunity. IL2 has been used for cancer therapy and has achieved curative effects. In this study, a recombinant NDV LaSota strain expressing human interleukin 2 (rLaSota/IL2) was generated. The ability of rLaSota/IL2 to express human IL2 was detected in the infected tumor cells. In addition, the activity of IL2 was analyzed. The antitumor potential of rLaSota/IL2 was studied by xenograph mice carrying H22 and B16-F10 cells. Tumor-specific CD4(+) and CD8(+) T cells and MHC II were also analyzed in the two tumor-bearing models. Our study showed that rLaSota/IL2 significantly stimulated tumor-specific cytotoxic T-lymphocyte (CTL) responses and increased regulatory CD4(+) and cytotoxic CD8(+) T cells proliferation. The treatment with rLaSota/IL2 led to tumor regression in tumor-bearing mice and prolonged the survival of tumor-bearing mice. Furthermore, tumor challenging experiments demonstrated that rLaSota/IL2 invoked mice a unique capacity to remember a pathogen through the generation of memory T cells, which protect the host in the event of reinfection and form adaptive immune system. The result indicates that tumor-infiltrating CD4(+) T regulatory cells may denote the effective regression of tumors. Taken together, rLaSota/IL2 has potential for immunotherapy and oncolytic therapy of cancers and may be an ideal candidate for clinical application in future cancer therapy.
Collapse
|
36
|
Fournier P, Schirrmacher V. Randomized clinical studies of anti-tumor vaccination: state of the art in 2008. Expert Rev Vaccines 2014; 8:51-66. [DOI: 10.1586/14760584.8.1.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Lv Z, Zhang TY, Yin JC, Wang H, Sun T, Chen LQ, Bai FL, Wu W, Ren GP, Li DS. Enhancement of Anti-tumor Activity of Newcastle Disease Virus by the Synergistic Effect of Cytosine Deaminase. Asian Pac J Cancer Prev 2013; 14:7489-96. [DOI: 10.7314/apjcp.2013.14.12.7489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Abstract
Recent studies have underlined the close link between immune response and prognosis of patients with colorectal cancer (CRC). Immune response understanding combined with biotechnology progress of the last years has allowed development of immunotherapy strategies in CRC. Immunotherapy strategies are divided in "active" or "passive" strategies (patients immune system stimulation or not) and considering the activation of antigen specific immune response or not. These immunotherapy strategies are well tolerated and induced cellular and humoral response correlated with clinical response. Many monoclonal antibodies targeting signalisation pathways or angiogenic growth factors have demonstrated their efficacy in CRC. Multiple vaccine strategies, using different tumour associated antigens, have demonstrated a biological efficacy but with poor clinical results. Results are more promising in adjuvant setting but need to be confirmed by randomized trials. Adoptive immunotherapy with transfer of tumour associated antigen specific T cell is probably the most promising strategy. Actually, except monoclonal antibodies, immunotherapy is not used in clinical practice in CRC due to the lack of results and absence of standardisation.
Collapse
Affiliation(s)
- David Tougeron
- CHU de Poitiers, service d'hépato-gastro-entérologie, 2, rue de la Milétrie, 86000 Poitiers cedex, France, Inserm, U1079, faculté de médecine de Rouen, 76000 Rouen Cedex, France, Faculté de médecine de Poitiers, laboratoire inflammation, tissus épithéliaux et cytokines, France
| | | | | |
Collapse
|
39
|
Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Toomey PG, Vohra NA, Ghansah T, Sarnaik AA, Pilon-Thomas SA. Immunotherapy for gastrointestinal malignancies. Cancer Control 2013; 20:32-42. [PMID: 23302905 DOI: 10.1177/107327481302000106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers are the most common human tumors encountered worldwide. The majority of GI cancers are unresectable at the time of diagnosis, and in the subset of patients undergoing resection, few are cured. There is only a modest improvement in survival with the addition of modalities such as chemotherapy and radiation therapy. Due to an increasing global cancer burden, it is imperative to integrate alternative strategies to improve outcomes. It is well known that cancers possess diverse strategies to evade immune detection and destruction. This has led to the incorporation of various immunotherapeutic strategies, which enable reprogramming of the immune system to allow effective recognition and killing of GI tumors. METHODS A review was conducted of the results of published clinical trials employing immunotherapy for esophageal, gastroesophageal, gastric, hepatocellular, pancreatic, and colorectal cancers. RESULTS Monoclonal antibody therapy has come to the forefront in the past decade for the treatment of colorectal cancer. Immunotherapeutic successes in solid cancers such as melanoma and prostate cancer have led to the active investigation of immunotherapy for GI malignancies, with some promising results. CONCLUSIONS To date, monoclonal antibody therapy is the only immunotherapy approved by the US Food and Drug Administration for GI cancers. Initial trials validating new immunotherapeutic approaches, including vaccination-based and adoptive cell therapy strategies, for GI malignancies have demonstrated safety and the induction of antitumor immune responses. Therefore, immunotherapy is at the forefront of neoadjuvant as well as adjuvant therapies for the treatment and eradication of GI malignancies.
Collapse
Affiliation(s)
- Paul G Toomey
- Department of Surgery, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
41
|
Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 2012; 7:347-67. [PMID: 22393889 DOI: 10.2217/fmb.12.4] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus, which has been demonstrated to possess significant oncolytic activity against mammalian cancers. This review summarizes the research leading to the elucidation of the mechanisms of NDV-mediated oncolysis, as well as the development of novel oncolytic agents through the use of genetic engineering. Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand our knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
42
|
Kumar R, Tiwari AK, Chaturvedi U, Kumar GR, Sahoo AP, Rajmani RS, Saxena L, Saxena S, Tiwari S, Kumar S. Velogenic newcastle disease virus as an oncolytic virotherapeutics: in vitro characterization. Appl Biochem Biotechnol 2012; 167:2005-22. [PMID: 22644640 DOI: 10.1007/s12010-012-9700-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
Cancer is one of the killer diseases in humans and needs alternate curative measures despite recent improvement in modern treatment modalities. Oncolytic virotherapy seems to be a promising nonconventional way to treat cancers. Newcastle disease virus (NDV), a poultry virus, is nonpathogenic to human and domestic animals and has a long history of being used in oncotherapy research in several preclinical studies. The ability of NDV to successfully infect and destroy cancer cells is dependent on the strain and the pathotype of the virus. Adaptation of viruses to heterologous hosts without losing its replicative and oncolytic potential is prerequisite for use as cancer virotherapeutics. In the present study, velogenic NDV was adapted for replication in HeLa cells, and its cytotoxic potential was evaluated by observing morphological, biochemical, and nuclear landmarks of apoptosis. Our results indicated that the NDV-induced apoptosis in HeLa cells was dependent on upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and caspases activation. Different determinants of apoptosis evaluated in the present study indicated that this strain could be a promising candidate for cancer therapy in future.
Collapse
Affiliation(s)
- Rajiv Kumar
- Molecular Biology Laboratory, Department of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Safety and clinical usage of newcastle disease virus in cancer therapy. J Biomed Biotechnol 2011; 2011:718710. [PMID: 22131816 PMCID: PMC3205905 DOI: 10.1155/2011/718710] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian virus that causes deadly infection to over 250 species of birds, including domestic and wild-type, thus resulting in substantial losses to the poultry industry worldwide. Many reports have demonstrated the oncolytic effect of NDV towards human tumor cells. The interesting aspect of NDV is its ability to selectively replicate in cancer cells. Some of the studies have undergone human clinical trials, and favorable results were obtained. Therefore, NDV strains can be the potential therapeutic agent in cancer therapy. However, investigation on the therapeutic perspectives of NDV, especially human immunological effects, is still ongoing. This paper provides an overview of the current studies on the cytotoxic and anticancer effect of NDV via direct oncolysis effects or immune stimulation. Safety of NDV strains applied for cancer immunotherapy is also discussed in this paper.
Collapse
|
44
|
Speetjens FM, Zeestraten ECM, Kuppen PJK, Melief CJM, van der Burg SH. Colorectal cancer vaccines in clinical trials. Expert Rev Vaccines 2011; 10:899-921. [PMID: 21692708 DOI: 10.1586/erv.11.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article elucidates current strategies of active immunotherapy for colorectal cancer patients with a focus on T-cell mediated immunotherapy. Poor prognosis of especially stage III and IV colorectal cancer patients emphasizes the need for advanced therapeutic intervention. Here, we refer to clinical trials using either tumor cell-derived vaccines or tumor antigen vaccines with a special interest on safety, induced immune responses, clinical benefit and efforts to improve the clinical impact of these vaccines in the context of colorectal cancer treatment.
Collapse
Affiliation(s)
- Frank M Speetjens
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Rahma OE, Khleif SN. Therapeutic vaccines for gastrointestinal cancers. Gastroenterol Hepatol (N Y) 2011; 7:517-64. [PMID: 22298988 PMCID: PMC3264936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Despite progress in the management of gastrointestinal malignancies, these diseases remain devastating maladies. Conventional treatment with chemotherapy and radiation is still only partially effective and highly toxic. In the era of increasing knowledge of the molecular biology of tumors and the interaction between the tumor and immune system, the development of targeted agents, including cancer vaccines, has emerged as a promising modality. In this paper, we discuss the principals of vaccine development, and we review most of the published trials on gastrointestinal cancer vaccines that have been conducted over the last decade. Many antigens and various treatment approaches have already been tested in colon, pancreatic, and other cancers. Some of these approaches have already shown some clinical benefit. In this paper, we discuss these different strategies and some of the future directions for targeting gastrointestinal malignancies with vaccines.
Collapse
|
46
|
Lech PJ, Russell SJ. Use of attenuated paramyxoviruses for cancer therapy. Expert Rev Vaccines 2011; 9:1275-302. [PMID: 21087107 DOI: 10.1586/erv.10.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paramyxoviruses, measles virus (MV), mumps virus (MuV) and Newcastle disease virus (NDV), are well known for causing measles and mumps in humans and Newcastle disease in birds. These viruses have been tamed (attenuated) and successfully used as vaccines to immunize their hosts. Remarkably, pathogenic MuV and vaccine strains of MuV, MV and NDV efficiently infect and kill cancer cells and are consequently being investigated as novel cancer therapies (oncolytic virotherapy). Phase I/II clinical trials have shown promise but treatment efficacy needs to be enhanced. Technologies being developed to increase treatment efficacy include: virotherapy in combination with immunosuppressive drugs (cyclophosphamide); retargeting of viruses to specific tumor types or tumor vasculature; using infected cell carriers to protect and deliver the virus to tumors; and genetic manipulation of the virus to increase viral spread and/or express transgenes during viral replication. Transgenes have enabled noninvasive imaging or tracking of viral gene expression and enhancement of tumor destruction.
Collapse
Affiliation(s)
- Patrycja J Lech
- Mayo Clinic, Department of Molecular Medicine, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
47
|
Rao B, Han M, Wang L, Gao X, Huang J, Huang M, Liu H, Wang J. Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J Transl Med 2011; 9:17. [PMID: 21272332 PMCID: PMC3041676 DOI: 10.1186/1479-5876-9-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/27/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To evaluate the objective clinical outcomes of active specific immunotherapy (ASI) in advanced colorectal cancer (advanced CRC) and suspected minimal residual colorectal cancer (suspected minimal residual CRC). METHODS A search was conducted on Medline and Pub Med from January 1998 to January 2010 for original studies on ASI in colorectal cancer (CRC). All articles included in this study were assessed with the application of predetermined selection criteria and were divided into two groups: ASI in advanced CRC and ASI in suspected minimal residual CRC. For ASI in suspected minimal residual CRC, a meta-analysis was executed with results regarding the overall survival (OS) and disease-free survival (DFS). Regarding ASI in advanced colorectal cancer, a system review was performed with clinical outcomes. RESULTS 1375 colorectal carcinoma patients with minimal residual disease have been enrolled in Meta-analysis. A significantly improved OS and DFS was noted for suspected minimal residual CRC patients utilizing ASI (For OS: HR = 0.76, P = 0.007; For DFS: HR = 0.76, P = 0.03). For ASI in stage II suspected minimal residual CRC, OS approached significance when compared with control (HR = 0.71, P = 0.09); however, the difference in DFS of ASI for the stage II suspected minimal residual CRC reached statistical significance (HR = 0.66, P = 0.02). For ASI in stage III suspected minimal residual CRC compared with control, The difference in both OS and DFS achieved statistical significance (For OS: HR = 0.76, P = 0.02; For DFS: HR = 0.81, P = 0.03). 656 advanced colorectal patients have been evaluated on ASI in advanced CRC. Eleven for CRs and PRs was reported, corresponding to an overall response rate of 1.68%. No serious adverse events have been observed in 2031 patients. CONCLUSIONS It is unlikely that ASI will provide a standard complementary therapeutic approach for advanced CRC in the near future. However, the clinical responses to ASI in patients with suspected minimal residual CRC have been encouraging, and it has become clear that immunotherapy works best in situations of patients with suspected minimal residual CRC.
Collapse
Affiliation(s)
- Benqiang Rao
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Minyan Han
- Medical Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655,PR China
| | - Lei Wang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Xiaoyan Gao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Jun Huang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Meijin Huang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Huanliang Liu
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Jianping Wang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| |
Collapse
|
48
|
Zamarin D, Vigil A, Kelly K, García-Sastre A, Fong Y. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther 2009; 16:796-804. [PMID: 19242529 PMCID: PMC2882235 DOI: 10.1038/gt.2009.14] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
Despite the advances in cancer therapies in the past century, malignant melanoma continues to present a significant clinical challenge due to lack of chemotherapeutic response. Systemic therapy with immunostimulatory agents such as interferon and interleukin-2 (IL-2) has shown some promise, though each is associated with significant side effects. Over the past 50 years, oncolytic Newcastle disease virus (NDV) has emerged as an alternative candidate for cancer therapy. The establishment of reverse-genetics systems for the virus has allowed us to further manipulate the virus to enhance its oncolytic activity. Introduction of immunomodulatory molecules, especially IL-2, into the NDV genome was shown to enhance the oncolytic potential of the virus in a murine syngeneic colon carcinoma model. We hypothesize that a recombinant NDV expressing IL-2 would be an effective agent for therapy of malignant melanoma. We show that recombinant NDV possesses a strong cytolytic activity against multiple melanoma cell lines, and is effective in clearing established syngeneic melanoma tumors in mice. Moreover, introduction of murine IL-2 into NDV significantly enhanced its activity against syngeneic melanomas, resulting in increased overall animal survival and generation of antitumor immunity. These findings warrant further investigations of IL-2-expressing NDV as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- D Zamarin
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
49
|
van der Bij GJ, Oosterling SJ, Beelen RHJ, Meijer S, Coffey JC, van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg 2009; 249:727-34. [PMID: 19387333 DOI: 10.1097/sla.0b013e3181a3ddbd] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In this review, we address the underlying mechanisms by which surgery augments metastases outgrowth and how these insights can be used to develop perioperative therapeutic strategies for prevention of tumor recurrence. SUMMARY BACKGROUND DATA Surgical removal of the primary tumor provides the best chance of long-term disease-free survival for patients with colorectal cancer (CRC). Unfortunately, a significant part of CRC patients will develop metastases, even after successful resection of the primary tumor. Paradoxically, it is now becoming clear that surgery itself contributes to development of both local recurrences and distant metastases. METHODS Data for this review were identified by searches of PubMed and references from relevant articles using the search terms "surgery," "CRC," and "metastases." RESULTS Surgical trauma and concomitant wound-healing processes induce local and systemic changes, including impairment of tissue integrity and production of inflammatory mediators and angiogenic factors. This can lead to immune suppression and enhanced growth or adhesion of tumor cells, all of which increase the chance of exfoliated tumor cells developing into secondary malignancies. CONCLUSIONS Because surgery remains the appropriate and necessary means of treatment for most CRC patients, new adjuvant therapeutic strategies that prevent tumor recurrence after surgery need to be explored since the perioperative therapeutic window of opportunity offers promising means of improving patient outcome but is unfortunately underutilized.
Collapse
Affiliation(s)
- Gerben J van der Bij
- Department of Surgical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Stefan K Burgdorf
- Department of Surgical Gastroenterology Z2, Gentofte Hospital, University of Copenhagen, Denmark.
| | | | | |
Collapse
|