1
|
|
Deng T, Luo D, Zhang R, Zhao R, Hu Y, Zhao Q, Wang S, Iqbal MZ, Kong X. DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids. SLAS Technol 2023; 28:22-31. [PMID: 36328181 DOI: 10.1016/j.slast.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is meaningful to find suitable in vitro models for preclinical toxicology and efficacy evaluation of nanodrugs and nanocarriers or drug screening and promoting clinical transformation of nanocarriers. The emergence and development of organoids technology provide a great possibility to achieve this goal. Herein, we constructed an in vitro 3D organoid model to study the inhibitory effect of nanocarriers on colorectal cancer. And designed hydroxyapatite nanoclusters (c-HAP) mediated by polydopamine (PDA) formed under alkaline conditions (pH 9.0), then used c-HAP to load DOX (c-HAP/DOX) as nanocarrier for improved chemotherapy. In vitro, drug release experiments show that c-HAP/DOX has suitable responsive to pH, can be triggered to the facile release of DOX in a slightly acidic environment (pH 6.0), and maintain specific stability in a neutral pH value (7.4) environment. c-HAP/DOX showed an excellent antitumor effect in the two-dimensional (2D) cell model and three-dimensional (3D) patient-derived colon cancer organoids (PDCCOs) model. In addition, c-HAP/DOX can release a sufficient amount of DOX to produce cytotoxicity in a slightly acidic environment, entering efficiently into the colorectal cancer cells caused endocytosis and induced apoptosis. Therefore, organoids can serve as an effective in vitro model to present the structure and function of colorectal cancer tissues and be used to evaluate the efficacy of nanocarriers for tumors.
Collapse
Affiliation(s)
- Tianhao Deng
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Dandan Luo
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, PR China
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, PR China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
|
De Lama-odría MDC, del Valle LJ, Puiggalí J. Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:11352. [PMID: 36232652 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
3
|
|
Xu K, Wang Y, Xie Y, Zhang X, Chen W, Li Z, Wang T, Yang X, Guo B, Wang L, Zhu X, Zhang X. Anti-melanoma effect and action mechanism of a novel chitosan-based composite hydrogel containing hydroxyapatite nanoparticles. Regen Biomater. [PMID: 35958518 DOI: 10.1093/rb/rbac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have been increasingly regarded and reported due to their potential anti-tumor ability. Previously, we found that the rod-like HANPs had good application potential for cutaneous melanoma (CMM). To satisfy the actual requirements in repairing post-operative skin defects and inhibiting CMM recurrence after tumorectomy, we constructed a novel chitosan/alginate (CS/Alg) hydrogel containing the aforementioned HANPs. The in vitro cell experiments confirmed that activated mitochondrial-dependent apoptosis was tightly related to the anti-tumor ability of HANPs. Specifically, we further discovered several target proteins might be involved in abnormal activating Wnt, proteoglycans in cancer, oxidative phosphorylation and p53 signaling pathways. The in vivo animal experiments demonstrated that the HANPs-loaded CS/Alg hydrogel (CS/Alg/HANPs) had a similar effect on inhibiting tumor growth as HANPs, and CS/Alg hydrogel as well as phosphate buffered saline (PBS) group (control) not showed any effect, proving the key role of HANPs. The immunohistochemical staining demonstrated a tumor inhibition via the mitochondria-mediated apoptosis pathway, consistent with the in vitro evaluation. Moreover, CS/Alg/HANPs exhibited no additional biosafety risk to the functions of major organs. Overall, this CS/Alg/HANPs hydrogel has substantial application potential for treating CMM.
Collapse
Affiliation(s)
- Kejia Xu
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Yifu Wang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Yao Xie
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiaoyan Zhang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Wei Chen
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Zhongtao Li
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Tingting Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Bo Guo
- West China Hospital, Sichuan University Department of Ophthalmology, , Chengdu 610041, China
| | - Lin Wang
- West China Hospital, Sichuan University Department of Dermatovenereology, , Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
4
|
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Appl Bio Mater 2022. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 28] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
5
|
|
Tyszka-Czochara M, Suder M, Dołhańczuk-Śródka A, Rajfur M, Grata K, Starosta M, Jagoda-Pasternak A, Kasprzyk W, Nowak AK, Ahmadzadeh S, Kopeć D, Suryło P, Świergosz T, Stadnicka KM. Nature-Inspired Effects of Naturally Occurring Trace Element-Doped Hydroxyapatite Combined with Surface Interactions of Mineral-Apatite Single Crystals on Human Fibroblast Behavior. Int J Mol Sci 2022; 23:802. [PMID: 35054988 DOI: 10.3390/ijms23020802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Innovative engineering design for biologically active hydroxyapatites requires enhancing both mechanical and physical properties, along with biocompatibility, by doping with appropriate chemical elements. Herein, the purpose of this investigation was to evaluate and elucidate the model of naturally occurring hydroxyapatite and the effects of doped trace elements on the function of normal human fibroblasts, representing the main cells of connective tissues. The substrates applied (geological apatites with hexagonal prismatic crystal habit originated from Slyudyanka, Lake Baikal, Russia (GAp) and from Imilchil, The Atlas Mountains, Morocco (YAp)) were prepared from mineral natural apatite with a chemical composition consistent with the building blocks of enamel and enriched with a significant F− content. Materials in the form of powders, extracts and single-crystal plates have been investigated. Moreover, the effects on the function of fibroblasts cultured on the analyzed surfaces in the form of changes in metabolic activity, proliferation and cell morphology were evaluated. Apatite plates were also evaluated for cytotoxicity and immune cell activation capacity. The results suggest that a moderate amount of F− has a positive effect on cell proliferation, whereas an inhibitory effect was attributed to the Cl− concentration. It was found that for (100) GAp plate, fibroblast proliferation was significantly increased, whereas for (001) YAp plate, it was significantly reduced, with no cytotoxic effect and no immune response from macrophages exposed to these materials. The study of the interaction of fibroblasts with apatite crystal surfaces provides a characterization relevant to medical applications and may contribute to the design of biomaterials suitable for medical applications and the evaluation of their bioavailability.
Collapse
|
6
|
|
Kavasi RM, Coelho CC, Platania V, Quadros PA, Chatzinikolaidou M. In Vitro Biocompatibility Assessment of Nano-Hydroxyapatite. Nanomaterials (Basel) 2021; 11:1152. [PMID: 33925076 DOI: 10.3390/nano11051152] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydroxyapatite (HA) is an important component of the bone mineral phase. It has been used in several applications, such as bone regenerative medicine, tooth implants, drug delivery and oral care cosmetics. In the present study, three different batches of a commercial nanohydroxyapatite (nHA) material were physicochemically-characterized and biologically-evaluated by means of cytotoxicity and genotoxicity using appropriate cell lines based on well-established guidelines (ISO10993-5 and OECD 487). The nHAs were characterized for their size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and were found to have a rod-like shape with an average length of approximately 20 to 40 nm. The nanoparticles were cytocompatible according to ISO 10993-5, and the in vitro micronucleus assay showed no genotoxicity to cells. Internalization by MC3T3-E1 cells was observed by TEM images, with nHA identified only in the cytoplasm and extracellular space. This result also validates the genotoxicity since nHA was not observed in the nucleus. The internalization of nHA by the cells did not seem to affect normal cell behavior, since the results showed good biocompatibility of these nHA nanoparticles. Therefore, this work is a relevant contribution for the safety assessment of this nHA material.
Collapse
|
7
|
|
Balu SK, Andra S, Jeevanandam J, S MV, V S. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater 2021; 119:104523. [PMID: 33940538 DOI: 10.1016/j.jmbbm.2021.104523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Implant materials must mimic natural human bones with biocompatibility, osteoconductivity and mechanical stability to successfully replace damaged or disease-affected bones. Synthetic hydroxyapatite was incorporated with bioglass to mimic natural bones for replacing conventional implant materials which has led to certain toxicity issues. Hence, hydroxyapatite (HAp) are recently gaining applicational importance as they are resembling the structure and function of natural bones. Further, nanosized HAp is under extensive research to utilize them as a potential replacement for traditional implants with several exclusive properties. However, chemical synthesis of nano-HAp exhibited toxicity towards normal and healthy cells. Recently, biogenic Hap synthesis from marine and animal sources are introduced as a next generation implant materials, due to their mineral ion and significant porous architecture mediated biocompatibility and bone bonding ability, compared to synthetic HAp. Thus, the purpose of the paper is to give a bird's eye view into the conventional approaches for fabricating nano-HAp, its limitations and the significance of using marine organisms and marine food wastes as a precursor for biogenic nano-Hap production. Moreover, in vivo and in vitro analyses of marine source derived nano-HAp and their potential biomedical applications were also discussed.
Collapse
Affiliation(s)
- Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Swetha Andra
- Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
| | - Jaison Jeevanandam
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Manisha Vidyavathy S
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India.
| | - Sampath V
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
8
|
|
Abstract
Using Nanoplatforms as a hauler for photosensitizers is a bespoke paradigm to improve its bioavailability and to boost the PDT efficacy. Herein, the photodynamic cytotoxicity of methylene blue (MB) loaded on hydroxyapatite nanoparticles (HA-NPs) was tested against human osteosarcoma-derived cells (Saos-2 cell line). HA-NPs and HA-NPs loaded with MB (HA-NPs-MB) were prepared by a chemical precipitation method and characterized by TEM, Zeta potential, FTIR, and XRD. TEM images revealed that HA-NPs have a rod shape with a diameter of 14-17 nm and length around 46-64 nm. FTIR and Zeta potential confirmed the adsorption of cationic MB on HA-NPs. XRD pattern was identical to the standard XRD pattern of HA-NPs. Incubation of Saos-2 cells (24 h) with HA-NPs-MB then irradiation of cells (5 min) with a diode laser (808 nm), causes a higher decrement of cell viability (determined by MTT assay) than that caused by free MB. The LC50 was 57.53 µg/mL and 86.99 µg/mL for HA-NPs-MB and free MB, respectively. Thus, the nanoformulation of MB greatly reduced the dose of MB required for effective PDT. This study also investigated the mode of cell death after incubation of cells with free MB or HA-NPs-MB composite then exposure to laser radiation. The results revealed that the majority of cells died by apoptosis while a minor fraction of cells died by necrosis, especially in the case of HA-NPs-MB. Levels of caspase-3 and death receptor-4 (DR-4) were more elevated in the case of HA-NPs-MB than free MB. The effect of the prepared nanocomposite and free MB on Raw murine macrophage (RAW 264.7) viability was also examined using the MTT assay. The results indicated that HA-NPs-MB in the presence of laser has a great cytotoxic effect on macrophage cells compared to other treatments. This may present an advantage through decreasing macrophage that promotes tumor growth. In conclusion, HA-NPs-MB nanocomposite surmounts free MB and HA-NPs in destroying macrophage cells and Saos-2 cells through apoptosis in the presence of laser irradiation. This study introduces a thorough and new insight on osteosarcoma (cancer cell line Saos-2) PDT using HA-NPs-MB exploiting the biosafety of HA-NPs.
Collapse
Affiliation(s)
- Souad A Elfeky
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Ahmed Elsayed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mahmoud Moawad
- Department of Surgical Pathology, National Cancer Institute, Cairo University, Egypt
| | - Wafaa A Ahmed
- Department of Cancer Biology, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
9
|
|
Soleimani M, Elmi F, Mousavie Anijdan SH, Mitra Elmi M. Evaluating the Radiosensitization Effect of Hydroxyapatite Nanoparticles on Human Breast Adenocarcinoma Cell Line and Fibroblast. Iran J Med Sci 2020; 45:368-76. [PMID: 33060880 DOI: 10.30476/ijms.2020.46796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Nanohydroxyapatite (nHAP) exhibit anti-proliferative effects on various cancer cells. However, to date, there are only
a few studies on the radiosensitization effect of nHAP. The present study aimed to investigate the possible enhancement of
the radiosensitization effect of nHAP on human breast adenocarcinoma cancer (MCF-7) and fibroblast. Methods: nHAP was extracted from fish scales using the thermal alkaline method and characterized at Babol University of Medical Sciences (Babol, Iran)
in 2017. The anti-proliferative and the radiosensitization effects of nHAP were investigated by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium
Bromide (MTT), clonogenic assay, and apoptosis assay. MCF-7 cells and fibroblasts were incubated with different concentrations of nHAP
and at different periods. The MTT solution was added and the absorbance was measured at 570 nm. The MCF-7 cells were exposed to 0, 1.5,
3.5, and 5 Gy X-ray irradiation and incubated for 10-14 days. The data were compared using the one-way analysis of variance (ANOVA) followed by the post hoc tests (Tukey’s method). Results: The results showed that nHAP significantly inhibited the growth of MCF-7 cells compared with controls (P<0.001), but the difference was
not statistically significant for fibroblasts (P=0.686 at 400 µg/mL at 72 hours). After 48 hours, the proliferation of MCF-7 cells and fibroblasts
was inhibited by about 81% and 34% at 400 µg/mL concentration, respectively. The radiosensitization enhancement factor for MCF-7 cells and fibroblasts
at a dose of 3.5 Gy and 100 μg/mL concentration were 1.87 and 1.3, respectively. Conclusion: nHAP can be considered as a breast cancer radiosensitization agent with limited damage to the surrounding healthy tissue.
Collapse
Affiliation(s)
- Mitra Soleimani
- Student Research Committee, Department of Medical Physics, Radiobiology and Protection, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Elmi
- Department of Marine Chemistry, School of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Maryam Mitra Elmi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
|
Farag MM, Ahmed MM, Abdallah NM, Swieszkowski W, Shehabeldine AM. The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic. Life Sci 2020; 257:117999. [PMID: 32585244 DOI: 10.1016/j.lfs.2020.117999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
AIM This paper was mainly aimed at synthesis of Ce-containing nano-Mg-phosphate ceramic as a multifunctional material. MATERIALS AND METHODS Two ceramics based on Mg3(PO4)2 and Ce0.2Mg2.8(PO4)2 formulas (MP and MP-C, respectively) were synthesized. The synthesized powders were characterized by XRD, TEM, Zeta potential, and FTIR. Also, their dissolution behavior was tested in Tris-HCl buffer solution. Moreover, the antimicrobial efficacy was evaluated against gram-positive bacteria (Bacillus sphaericus MTCC 511 &Staphylococcus aureus MTCC 87) and gram-negative bacteria (Enterobacter aerogenes MTCC 111 &Pseudomonas aeruginosa MTCC 1034) using dick diffusion assay and microdilution method. Furthermore, the cell viability test was performed for the ceramics on Vero cells (African green monkey kidney cells), and their antitumor activity was determined by PC3 cell line (prostatic cancer). Also, the cellular uptake was determined by the flow cytometry. KEY FINDINGS The results showed that the substitution of Mg by Ce decreased the particle size from 40 to 90 nm for MP sample to 2-10 nm for MP-C sample and increased the degradation rate. Both samples showed excellent antimicrobial activities. Moreover, MP demonstrated more cell viability than MP-C on Vero cells at high concentrations, whereas, MP-C showed more antitumor activity on PC3 cells than MP sample. Moreover, MP-C showed a higher cell uptake than MP due to its smaller size and more negative charge. SIGNIFICANCE Mg-phosphate ceramic can be used in this study successfully as a delivery system for cerium ions and showed a high antitumor activity, which makes it highly recommended as safe and effective cancer treatment materials.
Collapse
Affiliation(s)
- Mohammad M Farag
- Glass Research Department, National Research Centre, 33 El-Behooth Str., 12622 Dokki, Cairo, Egypt.
| | - Manar M Ahmed
- Glass Research Department, National Research Centre, 33 El-Behooth Str., 12622 Dokki, Cairo, Egypt
| | - Nehal M Abdallah
- Microbiology Department, Faculty of Science, Alazhar University, Nasr City, 11651, Cairo, Egypt
| | - W Swieszkowski
- Biomaterials Group, Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Amr M Shehabeldine
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
11
|
|
Jarestan M, Khalatbari K, Pouraei A, Sadat Shandiz SA, Beigi S, Hedayati M, Majlesi A, Akbari F, Salehzadeh A. Preparation, characterization, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. 3 Biotech 2020; 10:230. [PMID: 32399380 DOI: 10.1007/s13205-020-02230-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/26/2020] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer is one of the most common cancers in modern societies. Previous studies have shown that the use of nanoparticle complexes is effective in the treatment of cancer. The aim of this study was to investigate the cytotoxicity and anticancer properties of cobalt oxide (Co3O4) nanoparticles (NPs) functionalized by glutamic acid (Glu) and conjugated with thiosemicarbazide (TSC) on gastric cancer (AGS) cell line. First, the Co3O4@Glu/TSC nanoparticles were synthesized via co-condensation reaction. Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) tests were performed for identifying the morphology, structure, size and functional groups of produced nanoparticles. MTT assay was also performed to evaluate cytotoxicity effect. Moreover, Annexin V/PI staining with flow cytometry analysis, caspase-3 activation assay, and Hoechst 33258 staining was carried out for evaluating apoptosis. The FTIR results showed that the components of Co3O4@Glu/TSC NPs complex were successfully fabricated. Crystallographic structure of Co3O4@Glu/TSC NPs was confirmed by XRD patterns. SEM results indicated that the size of the nanoparticles was in the range of 16-40 nm. An EDX spectrum was determined and data explained the existence of cobalt as the prominent element. MTT test results showed that AGS cell life was significantly decreased compared to the control group with increasing concentration of nanoparticles (dose-dependent) (P < 0.05), IC50 = 107.5 μg/mL. The results of flow cytometry assay and caspase-3 activity showed that fabricated Co3O4@Glu/TSC NPs induced apoptosis in the treated group. Moreover, Co3O4@Glu/TSC NPs treated AGS cells indicate an increase in the apoptotic characteristics including nuclear fragmentation. In the current work, the promising cytotoxicity and anti-cancer activities of Co3O4@Glu/TSC NPs complex toward gastric cancer (AGS) cell line were showed and it can be suggested for the drug delivery system.
Collapse
Affiliation(s)
- Mahsa Jarestan
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Kimia Khalatbari
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ayda Pouraei
- 2Department of Medical Sciences, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sadaf Beigi
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Hedayati
- 4Department of Cell and Molecular Biology, University of Guilan, Rasht, Iran
| | - Amitis Majlesi
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fatemeh Akbari
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Salehzadeh
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
12
|
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 42] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
|
13
|
|
Affiliation(s)
- Hyun Jun Jang
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | - Eun Cheol Lee
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | | | - Young Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| |
Collapse
|
14
|
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019; 7:168. [PMID: 31380359 DOI: 10.3389/fbioe.2019.00168] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea.,Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea.,Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019; 7:168. [PMID: 31380359 DOI: 10.3389/fbioe.2019.00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea
- Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea
- Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
|
Wang H, He L, Zhang P, Zhang J, Chen Z, Ren X, Mei X. Folate-modified hydroxyapatite nanorods induce apoptosis in MCF-7 cells through a mitochondrial-dependent pathway. NEW J CHEM 2019; 43:14728-38. [DOI: 10.1039/c9nj03653a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of therapeutic drugs into cancer cells is a facile method to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Huiping Wang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Peng Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Jie Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiuli Ren
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| |
Collapse
|
17
|
|
Zhao H, Wu C, Gao D, Chen S, Zhu Y, Sun J, Luo H, Yu K, Fan H, Zhang X. Antitumor Effect by Hydroxyapatite Nanospheres: Activation of Mitochondria-Dependent Apoptosis and Negative Regulation of Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway. ACS Nano 2018; 12:7838-54. [PMID: 30059628 DOI: 10.1021/acsnano.8b01996] [Citation(s) in RCA: 42] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydroxyapatite nanoparticles (HA NPs) have been acknowledged for their benign biocompatibility and proliferation inhibition effect on tumor cells, attracting considerable attention for tumor therapeutics without late effects. However, unnoticeable tumor cytotoxicity of HA NPs limited the final clinical therapeutic efficacy. Herein, a two-phase synthetic approach was developed to synthesize sphere-like HA NPs by varying the conventional growth habit of HA precipitate. We present our in vitro and in vivo experimental evidence that spherical HA NPs have surprisingly high inhibitory activities against tumor cells. We demonstrate further, based on our experimental data, that the underlying cause for the death of the tumor cells is related to two concurrent pathways, the mitochondria-dependent apoptosis pathway and negative regulation of the phosphatidylinositol-3-kinase/protein kinase B (PIK3/AKT) pathway. The present study indicated that HA nanospheres can be engineered as nontoxic specific inhibitors for efficient tumor therapeutics with nanobiomaterials.
Collapse
Affiliation(s)
- Huan Zhao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Dong Gao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Suping Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Jing Sun
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Kui Yu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
- Institute of Atomic and Molecular Physics , Sichuan University , Chengdu 610065 , China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
18
|
|
Richards JM, Kunitake JAMR, Hunt HB, Wnorowski AN, Lin DW, Boskey AL, Donnelly E, Estroff LA, Butcher JT. Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomater 2018; 71:24-36. [PMID: 29505892 DOI: 10.1016/j.actbio.2018.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
Abstract
Calcific aortic valve disease (CAVD) is an inexorably degenerative pathology characterized by progressive calcific lesion formation on the valve leaflets. The interaction of valvular cells in advanced lesion environments is not well understood yet highly relevant as clinically detectable CAVD exhibits calcifications composed of non-stoichiometric hydroxyapatite (HA). In this study, Fourier transform infrared spectroscopic imaging was used to spatially analyze mineral properties as a function of disease progression. Crystallinity (size and perfection) increased with increased valve calcification. To study the relationship between crystallinity and cellular behavior in CAVD, valve cells were seeded into 3D mineral-rich collagen gels containing synthetic HA particles, which had varying crystallinities. Lower crystallinity HA drove myofibroblastic activation in both valve interstitial and endothelial cells, as well as osteoblastic differentiation in interstitial cells. Additionally, calcium accumulation within gels depended on crystallinity, and apoptosis was insufficient to explain differences in HA-driven cellular activity. The protective nature of endothelial cells against interstitial cell activation and calcium accumulation was completely inhibited in the presence of less crystalline HA particles. Elucidating valve cellular behavior post-calcification is of vital importance to better predict and treat clinical pathogenesis, and mineral-containing hydrogel models provide a unique 3D platform to evaluate valve cell responses to a later stage of valve disease. STATEMENT OF SIGNIFICANCE We implement a 3D in vitro platform with embedded hydroxyapatite (HA) nanoparticles to investigate the interaction between valve interstitial cells, valve endothelial cells, and a mineral-rich extracellular environment. HA nanoparticles were synthesized based on analysis of the mineral properties of calcific regions of diseased human aortic valves. Our findings indicate that crystallinity of HA drives activation and differentiation in interstitial and endothelial cells. We also show that a mineralized environment blocks endothelial protection against interstitial cell calcification. Our HA-containing hydrogel model provides a unique 3D platform to evaluate valve cell responses to a mineralized ECM. This study additionally lays the groundwork to capture the diversity of mineral properties in calcified valves, and link these properties to progression of the disease.
Collapse
|
19
|
|
Leelakanok N, Geary S, Salem A. Fabrication and Use of Poly(d,l-lactide-co-glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil. J Pharm Sci 2018; 107:513-28. [PMID: 29045885 DOI: 10.1016/j.xphs.2017.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
5-fluorouracil (5-FU) is a chemotherapeutic agent that has been used for the treatment of a variety of malignancies since its initial introduction to the clinic in 1957. Owing to its short biological half-life, multiple dosings are generally required to maintain effective 5-FU plasma concentrations throughout the therapeutic period. Clinical studies have shown that continuous 5-FU administration is generally superior to bolus injection as exhibited by lower toxicities and increased therapeutic efficacy. Optimal therapeutic efficacy, however, is often compromised by the limiting therapeutic index. Whilst oral formulations are also used, these suffer from the drawbacks of variable bioavailability and first-pass metabolism. As a result, sustained release formulations of 5-FU have been investigated in an effort to mimic the kinetics of continuous infusion particularly for situations where local delivery is considered appropriate. The biocompatible, biodegradable, and highly tunable synthetic polymer, poly(d,l-lactide-co-glycolide) (PLGA), is widely used as a vector for sustained drug delivery, however, issues such as insufficient loading and inappropriate burst release kinetics have dogged progress into the clinic for small hydrophilic drugs such as 5-FU. This review provides introductory information about the mechanism of action, pharmacokinetic and physicochemical properties, and clinical use of 5-FU that have contributed to the development of PLGA-based 5-FU release platforms. In addition, this review provides information on fabrication methods used for a range of 5-FU-loaded PLGA formulations and discusses factors affecting the release kinetics of 5-FU as well as the in vitro and in vivo antitumor or antiproliferative efficacy of these platforms.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Sean Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
20
|
|
Turon P, del Valle L, Alemán C, Puiggalí J. Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. Applied Sciences 2017; 7:60. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
|
Wang Y, Xu S, Xiong W, Pei Y, Li B, Chen Y. Nanogels fabricated from bovine serum albumin and chitosan via self-assembly for delivery of anticancer drug. Colloids Surf B Biointerfaces 2016; 146:107-13. [PMID: 27262260 DOI: 10.1016/j.colsurfb.2016.05.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
In this study, bovine serum albumin (BSA) and chitosan (CS) were used to prepare BSA-CS nanogels by a simple green self-assembly technique. Then the nanogels were successfully used to entrap doxorubicin hydrochloride (DOX) with an entrapment ratio of 46.3%, aiming to realize the slow-release effect and lower the cytotoxicity of DOX. The IC50 values of DOX-loaded BSA-CS (DOX-BSA-CS) and free DOX obtained by MTT assay in SGC7901 cells were 0.22 and 0.05μg/mL, respectively. The cytotoxicity of DOX significantly decreased within 24h after encapsulation by the nanogels, indicating that the loaded drug could slowly release within 24h and the BSA-CS was a good slow release system. The cellular uptake experiments indicated DOX-BSA-CS diffused faster into the cancer cell than the bare drug. The flow cytometry and TUNEL assay proved DOX-BSA-CS could induce a larger apoptosis proportion of gastric cancer cells 7901 than the bare drug and it is promising to be used for curing gastric cancer.
Collapse
|
22
|
|
Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials 2016; 94:70-83. [PMID: 27105438 DOI: 10.1016/j.biomaterials.2016.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
Abstract
Dual-targeted nanoparticles have been increasingly used to realize greater anti-proliferation effect by attacking double key sites of tumor cells. In order to retain nuclei inhibition effect and enhance DOX-induced apoptosis by mitochondrial pathway simultaneously, hyaluronic acid (HA) modified hydroxyapatite (HAP) nanoparticles (HAP-HA), the functional calcium-based tumor targeting nanoparticles, have been developed. In this nanosystem, HA acts as an active tumor-targeting ligand to bind the CD44 receptors which are overexpressed on the surface of tumor cells while HAP can load and deliver DOX to both nuclei and mitochondria of tumor cells. In this study, DOX-loaded HAP-HA nanoparticles (DOX/HAP-HA) exhibited satisfactory drug loading efficiency which was up to 214.55 ± 51.05 μg mg(-1) and showed a uniform nano-scaled particle size. The mitochondrial and nuclei targetability of DOX/HAP-HA was confirmed by confocal laser scanning microscopy analyses. Besides, western blot assay demonstrated that DOX/HAP-HA could markedly enhance mitochondrial cytochrome C leakage and thereby activate apoptotic cascade associated with it. In addition, in vivo anti-tumor efficacy and toxicity evaluation of DOX/HAP-HA indicated that DOX/HAP-HA was more effective and less harmful compared to other groups. DOX/HAP-HA might be a new promising targeted delivery system for effective cancer therapy.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jiang Ni
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
23
|
|
Karamese M, Aydogdu S, Karamese SA, Altoparlak U, Gundogdu C. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac J Cancer Prev 2015; 16:4199-202. [PMID: 26028072 DOI: 10.7314/apjcp.2015.16.10.4199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti- tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. MATERIALS AND METHODS HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. RESULTS Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than 100 μM. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. CONCLUSIONS The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Microbiology, Medical Faculty, Kafkas University, Kars, Turkey E-mail :
| | | | | | | | | |
Collapse
|
24
|
|
Amin A, Kandil H, Awad HM, Ismail MN. Preparation and characterization of chitosan–hydroxyapatite–glycopolymer/Cloisite 30 B nanocomposite for biomedical applications. Polym Bull (Berl) 2015; 72:1497-513. [DOI: 10.1007/s00289-015-1351-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
|
Xu X, Yang H, Ou B, Lin S, Wu H, He W, Jiang Q, Luo B, Li G. Hydroxyapatite nanoparticles modified by branched polyethylenimine are effective non-viral vectors for siRNA transfection of hepatoma cells in vitro. Int J Oncol 2015; 46:2138-42. [DOI: 10.3892/ijo.2015.2918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
|
26
|
|
Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA. Nanoparticles applied to plant science: A review. Talanta 2015; 131:693-705. [DOI: 10.1016/j.talanta.2014.08.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
27
|
|
Stan MS, Memet I, Sima C, Popescu T, Teodorescu VS, Hermenean A, Dinischiotu A. Si/SiO2 quantum dots cause cytotoxicity in lung cells through redox homeostasis imbalance. Chem Biol Interact 2014; 220:102-15. [DOI: 10.1016/j.cbi.2014.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
|
28
|
|
Dey S, Das M, Balla VK. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells. Materials Science and Engineering: C 2014; 39:336-9. [DOI: 10.1016/j.msec.2014.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
29
|
|
Liu Y, Sun Y, Cao C, Yang Y, Wu Y, Ju D, Li F. Long-term biodistribution in vivo and toxicity of radioactive/magnetic hydroxyapatite nanorods. Biomaterials 2014; 35:3348-55. [PMID: 24439404 DOI: 10.1016/j.biomaterials.2013.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/20/2013] [Indexed: 01/14/2023]
Abstract
Although nanoscale hydroxyapatite [Ca10(PO4)6(OH)2; HA] has been widely investigated as a carrier in the delivery of drugs, genes, or siRNA, the in vivo toxicity of nanoscale HA is not clear and the long-term dynamic distribution in vivo has not hitherto been visualized. In this work, gadolinium-doped HA nanorods (HA:Gd) with an r1 value of 5.49 s(-1) (mm)(-1) have been prepared by a hydrothermal method. Samarium-153 ((153)Sm) was then effectively post-labeled onto the HA:Gd ((153)Sm-HA:Gd) with a labeling rate of ∼100% and a radio-labeling stability in vitro of ∼100% over 48 h. The product could serve as a new dual-modality probe for SPECT and MR imaging in vivo. By means of SPECT and MRI, the HA:Gd nanorods were found to be quickly taken up by the mononuclear phagocyte system, especially the liver and spleen. The nanorods in the liver and lung tended to be eliminated within 24 h, but nanorods in the spleen behaved differently and proved difficult to excrete. In vitro studies by cell transmission electron microscopy (TEM) and methyl thiazolyl tetrazolium (MTT) assay showed good biocompatibility of the HA:Gd nanorods with HeLa cells, even at a high concentration. The indicators of body weight, histology, and serology demonstrated that the HA:Gd nanorods exhibited excellent biocompatibility in vivo for at least 61 days. Therefore, (153)Sm-HA:Gd nanorods with excellent relaxivity, γ-emission, and biosafety offer clear advantages and potential for bioapplications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yun Sun
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China; Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Cao
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yang Yang
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yongquan Wu
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Dianwen Ju
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Fuyou Li
- Department of Chemistry, The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
30
|
|
Liu Z, Xiao Y, Chen W, Wang Y, Wang B, Wang G, Xu X, Tang R. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J Mater Chem B 2014; 2:3480. [DOI: 10.1039/c4tb00056k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
|
Pourbaghi-Masouleh M, Hosseini V. Amorphous calcium phosphate nanoparticles could function as a novel cancer therapeutic agent by employing a suitable targeted drug delivery platform. Nanoscale Res Lett 2013; 8:449. [PMID: 24172080 DOI: 10.1186/1556-276X-8-449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/09/2013] [Indexed: 05/08/2023]
Abstract
Employment of nanovehicular system for delivering apoptogenic agent to cancer cells for inducing apoptosis has widely been investigated. Loading efficacy and controlled release of the agents are of the inseparable obstacles that hamper the efforts in reaching an efficacious targeted cancer therapy method. When the carrier itself is apoptogenic, then there is no need to load the carrier with apoptogenic agent and just delivering of the particle to the specific location matters. Hence, we hypothesize that amorphous calcium phosphate nanoparticle (ACPN) is a potent candidate for apoptosis induction, although encapsulation in liposome shell, and surface decoration with targeting ligand (TL), and cell-penetrating peptide (CPP) plays a pivotal role in the employment of this agent. It is well understood that elevation in cytosolic Ca2+ ([Ca2+]c) would result in the induction of apoptosis. ACPN has the potential to cause imbalance in this medium by elevating [Ca2+]c. Owning to the fact that the nanoparticles should be delivered into cytosol, it is necessary to trap them in a liposomal shell for evading endocytosis. It was demonstrated that employment of the trans-activator of transcription (TAT) as CPP eminently enhances the efficacy of endosomal escape; therefore, the platform is designed in a way that TAT is positioned on the surface of the liposome. Due to the fact that the apoptosis should be induced in sole cancer cells, Folate as TL is also attached on the surface of the liposome. This hypothesis heralds the new generation of chemotherapeutic agents and platforms which could have less side effect than the most common ones, in addition to other advantages they have.
Collapse
Affiliation(s)
- Milad Pourbaghi-Masouleh
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, P.O. Box: 31787/316, Iran
| | - Vahid Hosseini
- Department of Health Science and Technology, Laboratory of Applied Mechanobiology, ETH, Zürich 8093, Switzerland
| |
Collapse
|
32
|
|
|
33
|
|
Abstract
Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
34
|
|
Moreno-vega A, Gómez-quintero T, Nuñez-anita R, Acosta-torres L, Castaño V. Polymeric and Ceramic Nanoparticles in Biomedical Applications. Journal of Nanotechnology 2012; 2012:1-10. [DOI: 10.1155/2012/936041] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Materials in the nanometer size range may possess unique and beneficial properties, which are very useful for different medical applications including stomatology, pharmacy, and implantology tissue engineering. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. Polymeric and ceramic nanoparticles have been extensively studied as particulate carriers in the pharmaceutical and medical fields, because they show promise as drug delivery systems as a result of their controlled- and sustained-release properties, subcellular size, and biocompatibility with tissue and cells. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents. Nanotechnology is showing promising developments in many areas and may benefit our health and welfare. However, a wide range of ethical issues has been raised by this innovative science. Many authorities believe that these advancements could lead to irreversible disasters if not limited by ethical guidelines.
Collapse
|
35
|
|
Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A 2012; 100A:738-45. [DOI: 10.1002/jbm.a.33270] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/22/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
36
|
|
Xu Z, Liu C, Wei J, Sun J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol 2012; 32:429-35. [PMID: 22162110 DOI: 10.1002/jat.1745] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
Abstract
Hydroxyapatite nanoparticles (nano-HAP) have been reported to cause inflammatory reactions. Here, we aimed to compare the effects of four types of nano-HAP with different nanocrystal morphologies (short rod-like, long rod-like, spherical or needle-shaped crystals) and sizes (10-20, 10-30 or 20-40 nm) on growth inhibition and apoptosis in primary cultured rat osteoblasts. The osteoblasts was treated with the four types of nano-HAP at various concentrations (20, 40, 60, 80 or 100 mg l⁻¹). The nano-HAP specific surface area was detected using the Brunauer, Emmet and Teller method. The cell growth rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; apoptotic alterations and the level of reactive oxygen species in osteoblasts were measured using flow cytometry; and the amounts of apoptotic p53 and cytochrome c proteins were measured using western blotting. We observed that all four types of nano-HAP inhibited the growth of osteoblasts in a dose-dependent manner. These nano-HAP significantly induced apoptosis in osteoblasts. Nano-HAP with smaller specific surface areas induced lower apoptosis rates. The needle-shaped and the short rod-like particles induced greater cellular injury than the spherical and long rod-like particles, respectively. The increased apoptosis rates were accompanied by increased p53 and cytochrome c expression. These findings indicate that nano-HAP inhibit the activity of osteoblasts and also induce the apoptosis of osteoblasts in vitro. These findings also suggest that the nano-HAP-induced apoptotic pathway is mediated by a mitochondrial-dependent pathway. Moreover, the sizes, morphologies and concentrations of nano-HAP have significant effects on the apoptotic level.
Collapse
Affiliation(s)
- Zhengli Xu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | | | | | | |
Collapse
|
37
|
|
Yan-Zhong Z, Yan-Yan H, Jun Z, Shai-Hong Z, Zhi-You L, Ke-Chao Z. Characteristics of functionalized nano-hydroxyapatite and internalization by human epithelial cell. Nanoscale Res Lett 2011; 6:600. [PMID: 22108000 DOI: 10.1186/1556-276X-6-600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/23/2011] [Indexed: 05/26/2023]
Abstract
Hydroxyapatite is the main inorganic component of biological bone and tooth enamel, and synthetic hydroxyapatite has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of arginine-functionalized and europium-doped hydroxyapatite nanoparticles (Arg-Eu-HAP). The synthesized nanoparticles characterized by transmission electron microscopy, X-ray diffractometry, Fourier transform infrared, and Zeta potential analyzer. Its biological properties with DNA binding, cell toxicity, cell binding and intracellular distribution were tested by agarose gel electrophoresis assay, flow cytometry, and fluorescence microscope and laser scanning confocal microscope. The synthesized Arg-Eu-HAP could effectively bind DNA without any cytotoxicity and be internalized into the cytoplasm and perinuclear of human lung epithelial cells.
Collapse
Affiliation(s)
- Zhao Yan-zhong
- Medical Experiment Center in the Third Xiangya Hospital, Central South University, Changsha 410013, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- Research Center for Medical Material and Instruments, Central South University, Changsha 410013, China
| | - Huang Yan-yan
- Medical Experiment Center in the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhu Jun
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Zhu Shai-hong
- Medical Experiment Center in the Third Xiangya Hospital, Central South University, Changsha 410013, China
- Research Center for Medical Material and Instruments, Central South University, Changsha 410013, China
| | - Li Zhi-you
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Zhou Ke-chao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- Research Center for Medical Material and Instruments, Central South University, Changsha 410013, China
| |
Collapse
|
38
|
|
Tabaković A, Kester M, Adair JH. Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4:96-112. [PMID: 21965173 DOI: 10.1002/wnan.163] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bioimaging and therapeutic delivery applications are areas of biomedicine where nanoparticles have had significant impact, but the use of a nanomaterial in these applications can be limited by its physicochemical properties. Calcium phosphate-based composite nanoparticles are nontoxic and biodegradable, and are therefore considered attractive candidates for bioimaging and therapeutic drug delivery applications. Also, the pH-dependent solubility profiles of calcium phosphate materials make this class of nanoparticles especially useful for in vitro and in vivo delivery of dyes, oligonucleotides, and drugs. In this article, we discuss how calcium phosphate-based composite nanoparticles fulfill some of the requirements typically made for nanoparticles in biomedical applications. We also highlight recent studies in bioimaging and therapeutic delivery applications focusing on how these studies have addressed some of the challenges associated with using these nanoparticles in bioimaging and delivery of therapeutics.
Collapse
Affiliation(s)
- Amra Tabaković
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
39
|
|
Venkatesan P, Puvvada N, Dash R, Prashanth Kumar B, Sarkar D, Azab B, Pathak A, Kundu SC, Fisher PB, Mandal M. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 2011; 32:3794-806. [DOI: 10.1016/j.biomaterials.2011.01.027] [Citation(s) in RCA: 163] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
|
40
|
|
Venkatesan J, Qian ZJ, Ryu B, Thomas NV, Kim SK. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 2011; 6:035003. [PMID: 21487174 DOI: 10.1088/1748-6041/6/3/035003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 µm, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.
Collapse
|
41
|
|
Luo Y, Ling Y, Guo W, Pang J, Liu W, Fang Y, Wen X, Wei K, Gao X. Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. J Control Release 2010; 147:278-88. [DOI: 10.1016/j.jconrel.2010.07.108] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/11/2010] [Accepted: 07/16/2010] [Indexed: 01/28/2023]
|
42
|
|
Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2:219-31. [PMID: 20063369 DOI: 10.1002/wnan.54] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanomaterials are commonly defined as particles or fibers of less than 1 microm in diameter. For these reasons, they may be respirable in humans and have the potential, based upon their geometry, composition, size, and transport or durability in the body, to cause adverse effects on human health, especially if they are inhaled at high concentrations. Rodent inhalation models to predict the toxicity and pathogenicity of nanomaterials are prohibitive in terms of time and expense. For these reasons, a panel of in vitro assays is described below. These include cell culture assays for cytotoxicity (altered metabolism, decreased growth, lytic or apoptotic cell death), proliferation, genotoxicity, and altered gene expression. The choice of cell type for these assays may be dictated by the procedure or endpoint selected. Most of these assays have been standardized in our laboratory using pathogenic minerals (asbestos and silica) and non-pathogenic particles (fine titanium dioxide or glass beads) as negative controls. The results of these in vitro assays should predict whether testing of selected nanomaterials should be pursued in animal inhalation models that simulate physiologic exposure to inhaled nanomaterials. Conversely, intrathoracic or intrapleural injection of nanomaterials into rodents can be misleading because they bypass normal clearance mechanisms, and non-pathogenic fibers and particles can test positively in these assays.
Collapse
Affiliation(s)
- Jedd M Hillegass
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
43
|
|
Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 2010; 6:715-34. [PMID: 19861183 DOI: 10.1016/j.actbio.2009.10.031] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 02/05/2023]
Abstract
Recent developments in biomineralization have already demonstrated that nanosized crystals and particles play an important role in the formation of hard tissues of animals. Namely, it is well established that the basic inorganic building blocks of bones and teeth of mammals are nanosized and nanocrystalline calcium orthophosphates in the form of apatites. In mammals, tens to hundreds nanocrystals of a biological apatite have been found to be combined into self-assembled structures under the control of bioorganic matrixes. Therefore, application and prospective use of the nanosized and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also well known. For example, greater viability and better proliferation of various types of cells have been detected on smaller crystals of calcium orthophosphates. Thus, the nanosized and nanocrystalline forms of calcium orthophosphates have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reviews the current state of art and recent developments of various nanosized and nanocrystalline calcium orthophosphates, starting from synthesis and characterization to biomedical and clinical applications. The review also provides possible directions for future research and development.
Collapse
|
44
|
|
Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010; 31:730-40. [PMID: 19836072 DOI: 10.1016/j.biomaterials.2009.09.088] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/23/2009] [Indexed: 11/26/2022]
Abstract
Hydroxyapatite nanoparticles (HAPN) have been discovered to exert cytotoxicity and apoptosis-induction in some cancer cells. But it is still not clear how tumor cells interact with HAPNs with various sizes. In this study, we investigated the effect of the particle size of the HAPN on the anti-tumor activity, apoptosis-induction and the levels of the apoptotic signaling proteins in human hepatoma HepG2 model cells. HAPNs within 20-180 nm size range were synthesized by a modified sol-gel method. The cellular internalization and biolocalization of the FITC-labeled HAPNs were also identified. The results showed that in HepG2 cells, the anti-tumor activity and HAPN-induced apoptosis strongly depended on the size of HAPNs, and the efficacies all decreased in the order of 45-nm>26-nm>78-nm>175-nm. HAPNs, ranging from 20 nm to 80 nm, were found to effectively activate caspase-3 and -9, decrease the Bcl-2 protein level, and increase the levels of Bax, Bid and the release of cytochrome c from mitochondria into cytoplasm, with the best efficiency from 45-nm HAPN. Correlating the cellular response with the cellular internalization, it can be inferred that the size of HAPN and thereby the cellular localization had predominant effect on the HAPN-induced cytotoxicity, apoptotis, and the levels of the apoptotic proteins in HepG2 cells. The findings presented here could provide new means to modulate the cellular behaviors of HAPN and to guide the design of HAPN-based delivery and therapeutic systems.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
45
|
|
Misra R, Sahoo SK. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. Eur J Pharm Sci 2010; 39:152-63. [DOI: 10.1016/j.ejps.2009.11.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 10/14/2009] [Accepted: 11/26/2009] [Indexed: 12/18/2022]
|
46
|
|
Dorozhkin S. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine. Materials 2009; 2:1975-2045. [DOI: 10.3390/ma2041975] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.
Collapse
|
47
|
|
Neumann S, Kovtun A, Dietzel ID, Epple M, Heumann R. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials 2009; 30:6794-802. [PMID: 19766304 DOI: 10.1016/j.biomaterials.2009.08.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/27/2009] [Indexed: 11/25/2022]
Abstract
Calcium phosphate-based transfection methods are frequently used to transfer DNA into living cells. However, it has so far not been studied in detail to what extend the different transfection methods lead to a net calcium uptake. Upon subsequent resolution of the calcium phosphate, intracellular free ionic calcium-surges could result, inducing as side effect various physiological responses that may finally result in cell death. Here we investigated the overall calcium uptake by the human bladder carcinoma cell line T24 during the standard calcium phosphate transfection method and also during transfection with custom-made calcium phosphate/DNA nanoparticles by isotope labelling with (45)calcium. (45)Calcium uptake was strongly increased after 7h of standard calcium phosphate transfection but not if the transfection was performed with calcium phosphate nanoparticles. Time lapse imaging microscopy using the calcium-sensitive dye Fura-2 revealed large transient increases of the intracellular free calcium level during the standard calcium phosphate transfection but not if calcium phosphate nanoparticles were used. Consistently, the viability of cells transfected by calcium phosphate/DNA nanoparticles was not changed, in remarkable contrast to the standard method where considerable cell death occurred.
Collapse
Affiliation(s)
- Sebastian Neumann
- Department of Biochemistry, Molecular Neurobiochemistry, University of Bochum, Universitaetsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
48
|
|
Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 2009; 30:3307-17. [PMID: 19304317 DOI: 10.1016/j.biomaterials.2009.02.044] [Citation(s) in RCA: 269] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 02/28/2009] [Indexed: 11/19/2022]
Abstract
Synthetic colloid and gel hydroxyapatite (HA) nanoparticles (NPs) were spray dried to form microparticles (MPs). These are intended for use as slow release vaccine vectors. The physico-chemical properties of gel and colloid NPs and MPs were compared to those of HA obtained commercially. Their cytotoxicity to human monocytes'-derived macrophages (HMMs) was assessed in vitro using a range of techniques. These included the MTT assay, LDH leakage and a confocal based live-dead cell assay. Cytotoxicity differed significantly between preparations, with the suspended gel preparation being the most toxic (31-500 microg/ml). Other preparations were also toxic but only at higher concentrations (>250 microg/ml). Transmission electron microscopy (TEM) and stereology showed variable cellular uptake and subsequent dissolution of the various forms of HA. We have demonstrated that HA particle toxicity varied considerably and that it was related to their physico-chemical properties. Cell death correlated strongly with particle load. The intracellular dissolution of particles as a function of time in HMM suggests that increased cytoplasmic calcium load is likely to be the cause of cell death. Some HA NPs eluded the phagocytic pathway and a few were even seen to enter the nuclei through nuclear pores.
Collapse
Affiliation(s)
- M Motskin
- Multi-Imaging Centre, School of Biological Sciences, Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | | | | | | | | | | | |
|