1
|
Scaife K, Phipps KR, Scalise D, Polgár O. Subchronic Toxicity Evaluation of Dietary Administration of a Fungal Biomass From Rhizomucor pusillus. J Appl Toxicol 2025; 45:400-417. [PMID: 39428601 DOI: 10.1002/jat.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Fungal-derived food products align with sustainable food supply principles and offer a sustainable and nutritious option for consumers. Rhizomucor pusillus strain CBS 143028 has emerged as a candidate food ingredient. Fermentation of R. pusillus CBS 143028 results in a mycelium biomass mainly comprising fungal proteins, cell wall components, and micronutrients. Although R. pusillus has a history of safe use in the production of food enzymes and in traditional fermented foods, the fungal biomass obtained after fermentation of R. pusillus CBS 143028 is considered a novel food and requires a thorough safety assessment. To this end, a 90-day oral toxicity study was conducted in which Wistar rats (10/sex/group) were provided diets containing 0, 100,000, 200,000, or 300,000 ppm of R. pusillus mycelium. Standard toxicity study parameters as given in OECD Test Guideline 408 were examined. The mean achieved dosages of R. pusillus mycelium were 6398, 12,738, or 19,668 mg/kg body weight/day for males and 7235, 14,949, or 22,461 mg/kg body weight/day for females in the low-, mid-, and high-dose groups, respectively. Although statistically significant differences were reported, these effects were not considered biologically relevant or test article-related due to atypical values in the control groups, the lack of a dose response relationship, or were attributed to normal biological variation. Thus, the no-observed-adverse-effect level (NOAEL) was established at 300,000 ppm (corresponding to 19,668 and 22,461 mg/kg body weight/day for males and females, respectively), the highest concentration tested.
Collapse
Affiliation(s)
- Kevin Scaife
- Intertek Health Sciences Inc, Mississauga, ON, Canada
| | - Kirt R Phipps
- Intertek Health Sciences Inc, Mississauga, ON, Canada
| | | | - Olivér Polgár
- Charles River Laboratories Hungary Kft., Veszprém, Hungary
| |
Collapse
|
2
|
Nguyen TTT, Kang KH, Kim SJ, Kim MK, Noh SJ, Lee HB. A New Species and Three New Records Belonging to Mucorales and Mortierellales from Korea. MYCOBIOLOGY 2025; 52:464-476. [PMID: 39845179 PMCID: PMC11749264 DOI: 10.1080/12298093.2024.2434293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
During an investigation of fungi of the orders Mucorales and Mortierellales in Korea, a new Backusella species, Backusella terrestris sp. nov., and three new records, Entomortierella sugadairana, Mucor nederlandicus, and Poitrasia circinans, were found in soil and freshwater samples. All species are described based on morphological and molecular evidence. Backusella terrestris is characterized by globose or subglobose sporangiospores, a variable (globose, subglobose, oval, or oblong) columellae, chlamydospore production, and a maximum growth temperature of 34 °C. The distinct characteristics of the new species and their closely related species are discussed. An identification key to the Backusella species of Korea is also presented.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Ki Hyun Kang
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Su Jin Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Min Kyung Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - So Jeong Noh
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Nguyen T, de A. Santiago A, Hallsworth J, Cordeiro T, Voigt K, Kirk P, Crous P, Júnior M, Elsztein C, Lee H. New Mucorales from opposite ends of the world. Stud Mycol 2024; 109:273-321. [PMID: 39717656 PMCID: PMC11663423 DOI: 10.3114/sim.2024.109.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/07/2024] [Indexed: 12/25/2024] Open
Abstract
The Mucorales is a group of ancient fungi with global distribution. In the current study we accessed mucoralean fungi isolated from two countries on opposite sides of the Earth and in different hemispheres: South Korea and Brazil. Mucorales isolates were obtained from freshwater, soil, invertebrates, and fruit seeds and identified using phenotypic techniques combined with the DNA sequence data. These analyses revealed 15 new species including one that we affiliated to a newly proposed genus, Neofennellomyces. Names proposed for these 15 new species are Absidia cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, A. tarda, A. variiprojecta, A. variispora, Backusella varians, Mucor albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and Neofennellomyces jeongsukae. Of these new species, 12 were isolated from South Korea: A. cheongyangensis, A. fluvii, A. kunryangriensis, A. paracylindrospora, B. varians, M. albicolonia, M. aurantiacus, M. cryophilus, M. glutinatus, M. paraorantomantidis, M. timomeni, and N. jeongsukae, and three from Brazil: A. tarda, A. variiprojecta, and A. variispora. Niche specificity of these fungi is discussed including newly recorded invertebrate hosts and a new geographic distribution for species of Backusella, Circinella, Cunninghamella, and Mucor. Given these findings, we provide an inventory of Mucorales. Taxonomic novelties: New genus: Neofennellomyces Hyang B. Lee & T.T.T. Nguyen. New species: Absidia cheongyangensis Hyang B. Lee & T.T.T. Nguyen, Absidia fluvii Hyang B. Lee, A.L. Santiago, P.M. Kirk, K. Voigt & T.T.T. Nguyen, Absidia kunryangriensis Hyang B. Lee & T.T.T. Nguyen, Absidia paracylindrospora Hyang B. Lee & T.T.T. Nguyen, Absidia tarda T.R.L. Cordeiro, Hyang B. Lee & A.L. Santiago, Absidia variiprojecta T.R.L. Cordeiro & A.L. Santiago, Absidia variispora T.R.L. Cordeiro & A.L. Santiago, Backusella varians Hyang B. Lee & T.T.T. Nguyen, Mucor aurantiacus Hyang B. Lee & T.T.T. Nguyen, Mucor cryophilus Hyang B. Lee & T.T.T. Nguyen, Mucor albicolonia Hyang B. Lee & T.T.T. Nguyen, Mucor glutinatus Hyang B. Lee & T.T.T. Nguyen, Mucor paraorantomantidis Hyang B. Lee & T.T.T. Nguyen, Mucor timomeni Hyang B. Lee & T.T.T. Nguyen, Neofennellomyces jeongsukae Hyang B. Lee & T.T.T. Nguyen. Citation: Nguyen TTT, de A. Santiago ALCM, Hallsworth JE, Cordeiro TRL, Voigt K, Kirk PM, Crous PW, Júnior MAM, Elsztein C, Lee HB (2024). New Mucorales from opposite ends of the world. Studies in Mycology 109: 273-321. doi: 10.3114/sim.2024.109.04.
Collapse
Affiliation(s)
- T.T.T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - A.L.C.M. de A. Santiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Recife 50740-600, Pernambuco, Brazil
| | - J.E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - T.R.L. Cordeiro
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Recife 50740-600, Pernambuco, Brazil
| | - K. Voigt
- JMRC at Leibniz Institute for Natural Product Research and Infection Biology e.V. HKI and Friedrich Schiller University Jena, 07745 Jena, Germany
| | - P.M. Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands
| | - M.A.M. Júnior
- Departamento de Genética, Universidade Federal de Pernambuco. Av. Prof. Nelson Chaves, s/n, 50670-420, Recife, Pernambuco, Brazil
| | - C. Elsztein
- Departamento de Genética, Universidade Federal de Pernambuco. Av. Prof. Nelson Chaves, s/n, 50670-420, Recife, Pernambuco, Brazil
| | - H.B. Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
4
|
Zhao H, Nie Y, Huang B, Liu XY. Unveiling species diversity within early-diverging fungi from China I: three new species of Backusella (Backusellaceae, Mucoromycota). MycoKeys 2024; 109:285-304. [PMID: 39439597 PMCID: PMC11494212 DOI: 10.3897/mycokeys.109.126029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
The species diversity of early-diverging fungi has long lagged behind that of higher fungi, posing a significant obstacle to our comprehensive understanding of the fungal kingdom. Our ongoing research endeavors aim to address this gap by exploring the species diversity of early-diverging fungi in China. In this study, we describe three novel species within the Backusella, namely B.elliptica sp. nov., B.fujianensis sp. nov., and B.variispora sp. nov., based on phylogenetic and morphological analyses. In the phylogenetic analysis of the ITS (internal transcribed spacer), LSU (large subunit of ribosomal RNA gene), and RPB1 (RNA polymerase II largest subunit gene) regions, the B.elliptica and B.fujianensis cluster closely with B.gigacellularis, B.ovalispora, and B.solicola, and the B.variispora is closely related to B.locustae and B.pernambucensis. Morphologically, B.elliptica is distinguished by elliptical sporangiospores, as well as cylindrical and hemispherical columellae. The B.fujianensis is characterized by elliptical sporangiospores, and various types of columellae such as hemispherical, subglobose, depressed globose and conical. The B.variispora is characterized by subglobose to globose sporangiospores, as well as hemispherical, subglobose to globose columellae. Additionally, the sporangiophores are long and monopodially branched in B.elliptica and B.fujianensis, while short and simple or sympodially branched in B.variispora. Physiologically, the maximum growth temperatures of B.elliptica (32 °C), B.fujianensis (35 °C), and B.variispora were (35 °C) were determined. With the inclusion of these newly described taxa, the total number of Backusella species known from China now stands at 12. Finally, we provide a key to facilitate the morphological identification of Backusella species from Asia.
Collapse
Affiliation(s)
- Heng Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250358, ChinaShandong Normal UniversityJinanChina
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100081, ChinaBeijing Forestry UniversityBeijingChina
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, ChinaAnhui University of TechnologyMa'anshanChina
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250358, ChinaShandong Normal UniversityJinanChina
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Siedlecki I, Kochanowski M, Pawłowska J, Reszotnik G, Okrasińska A, Wrzosek M. Ant's Nest as a microenvironment: Distinct Mucoromycota (Fungi) community of the red wood ants' ( Formica polyctena) mounds. Ecol Evol 2024; 14:e70333. [PMID: 39385841 PMCID: PMC11461907 DOI: 10.1002/ece3.70333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Many social insect species build nests, which differ from the surrounding environment and are often occupied by specific organismal communities. These organisms may interact mutualistically or parasitically with the nest-builders, or simply co-occur, being able to survive in these microenvironments. In temperate forests, red wood ants (e.g. Formica polyctena) are known to create distinct, highly developed nests, which consist of large, above-ground mounds, built primarily out of plant matter collected from the forest litter. The microorganismal communities of such mounds remain understudied. As representatives of Mucoromycota fungi commonly engage in the decomposition process of the forest litter, they would be expected to occur in the mounds. However, it is still not known whether the Mucoromycota community of these ants' nests differ from the one of the surrounding forest litter. In order to distinguish mound-associated taxa, we characterized Mucoromycota communities of Formica polyctena mounds and the surrounding forest litter. We sampled four sites, twice in a season. Sampled material was plated on agar media and emerging Mucoromycota colonies were identified based on their morphology. Fungal identification was further confirmed using DNA barcoding. In order to compare described communities, PERMANOVA test and non-metric multidimensional scaling ordinations were used. To distinguish taxa associated with the mounds, multilevel pattern analysis was performed. Our results show that the Mucoromycota community of Formica polyctena's mound differs from the community of the surrounding forest litter. While representatives of Entomortierella lignicola and Absidia cylindrospora clade were found to be associated with the mound environment, representatives of Umbelopsis curvata and Podila verticillata-humilis clade were associated with forest litter, and were rarely present in the mounds. Our findings strongly suggest that the red wood ants' nest is a specific microenvironment in the temperate forest floor, which is a preferred microhabitat for the mound-associated Mucoromycota, possibly adapted to live in proximity to ants.
Collapse
Affiliation(s)
- Igor Siedlecki
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Gabriela Reszotnik
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
- Faculty of Agriculture and EcologyWarsaw University of Life SciencesWarsawPoland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Marta Wrzosek
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
6
|
Joshi SV, Havaldar RR. Pre and Post Covid - 19 Experience of the 'Amphotericin Sandwich' Therapy in the Management of Mucormycosis. Indian J Otolaryngol Head Neck Surg 2024; 76:4184-4188. [PMID: 39376328 PMCID: PMC11456114 DOI: 10.1007/s12070-024-04812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 10/09/2024] Open
Abstract
Mucormycosis is caused by saprophytic fungi belonging to the species mucorales. The disease commonly affects patients with immunocompromised states such as uncontrolled diabetes, blood disorders and organ transplantation recepients. The usual mode of management is by using antifungals such as amphotericin B and surgery in the form of debridement of the necrotic tissue. A study was conducted on patients of mucormycosis during the pre-Covid-19 and Covid-19 era to evaluate the effectiveness of the Sandwich Therapy of amphotericin B. The mortality rate was found to be 3.57% during the pre- Covid-19 period and 18.8% during the Covid-19 period. This is very low as opposed to 50% quoted by many other studies. The Sandwich Therapy as discussed above for extensive mucormycosis can be useful in curtailing the disease already established to its present location and preventing its further spread either naturally or by the act of debridement per se. It also provides a sustained anti fungal umbrella in the blood to deal with the disease at microscopic level in the blood stream thus reducing mortality.
Collapse
Affiliation(s)
- Samir Vinayak Joshi
- K.J.Somaiya Medical College & Research Centre Sion East, Mumbai, Maharashtra 400022 India
| | | |
Collapse
|
7
|
Song B, Raza M, Zhang LJ, Xu BQ, Zhang P, Zhu XF. A new brown rot disease of plum caused by Mucor xinjiangensis sp. nov. and screening of its chemical control. Front Microbiol 2024; 15:1458456. [PMID: 39318429 PMCID: PMC11419995 DOI: 10.3389/fmicb.2024.1458456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Li-Juan Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Bing-Qiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Pan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Xiao-Feng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| |
Collapse
|
8
|
Li N, Bowling J, de Hoog S, Aneke CI, Youn JH, Shahegh S, Cuellar-Rodriguez J, Kanakry CG, Rodriguez Pena M, Ahmed SA, Al-Hatmi AMS, Tolooe A, Walther G, Kwon-Chung KJ, Kang Y, Lee HB, Seyedmousavi A. Mucor germinans, a novel dimorphic species resembling Paracoccidioides in a clinical sample: questions on ecological strategy. mBio 2024; 15:e0014424. [PMID: 38953355 PMCID: PMC11323738 DOI: 10.1128/mbio.00144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Dimorphism is known among the etiologic agents of endemic mycoses as well as in filamentous Mucorales. Under appropriate thermal conditions, mononuclear yeast forms alternate with multi-nucleate hyphae. Here, we describe a dimorphic mucoralean fungus obtained from the sputum of a patient with Burkitt lymphoma and ongoing graft-versus-host reactions. The fungus is described as Mucor germinans sp. nov. Laboratory studies were performed to simulate temperature-dependent dimorphism, with two environmental strains Mucor circinelloides and Mucor kunryangriensis as controls. Both strains could be induced to form multinucleate arthrospores and subsequent yeast-like cells in vitro. Multilateral yeast cells emerge in all three Mucor species at elevated temperatures. This morphological transformation appears to occur at body temperature since the yeast-like cells were observed in the lungs of our immunocompromised patient. The microscopic appearance of the yeast-like cells in the clinical samples is easily confused with that of Paracoccidioides. The ecological role of yeast forms in Mucorales is discussed.IMPORTANCEMucormycosis is a devastating disease with high morbidity and mortality in susceptible patients. Accurate diagnosis is required for timely clinical management since antifungal susceptibility differs between species. Irregular hyphal elements are usually taken as the hallmark of mucormycosis, but here, we show that some species may also produce yeast-like cells, potentially being mistaken for Candida or Paracoccidioides. We demonstrate that the dimorphic transition is common in Mucor species and can be driven by many factors. The multi-nucleate yeast-like cells provide an effective parameter to distinguish mucoralean infections from similar yeast-like species in clinical samples.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | - Jennifer Bowling
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | - Chioma I. Aneke
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sherin Shahegh
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Rodriguez Pena
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah A. Ahmed
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | | | - Ali Tolooe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Vet Veterinary Diagnostic Laboratory, Tehran, Iran
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Kyung J. Kwon-Chung
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Institution of One Health Research, Guizhou Medical University, Guiyang, China.
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Amir Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. mBio 2024; 15:e0166124. [PMID: 38980037 PMCID: PMC11323496 DOI: 10.1128/mbio.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.
Collapse
Affiliation(s)
- María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josie Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
11
|
Rolland N, Girard V, Monnin V, Arend S, Perrin G, Ballan D, Beau R, Collin V, D’Arbaumont M, Weill A, Deniel F, Tréguer S, Pawtowski A, Jany JL, Mounier J. Identification of Food Spoilage Fungi Using MALDI-TOF MS: Spectral Database Development and Application to Species Complex. J Fungi (Basel) 2024; 10:456. [PMID: 39057341 PMCID: PMC11277938 DOI: 10.3390/jof10070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Fungi, including filamentous fungi and yeasts, are major contributors to global food losses and waste due to their ability to colonize a very large diversity of food raw materials and processed foods throughout the food chain. In addition, numerous fungal species are mycotoxin producers and can also be responsible for opportunistic infections. In recent years, MALDI-TOF MS has emerged as a valuable, rapid and reliable asset for fungal identification in order to ensure food safety and quality. In this context, this study aimed at expanding the VITEK® MS database with food-relevant fungal species and evaluate its performance, with a specific emphasis on species differentiation within species complexes. To this end, a total of 380 yeast and mold strains belonging to 51 genera and 133 species were added into the spectral database including species from five species complexes corresponding to Colletotrichum acutatum, Colletotrichum gloeosporioides, Fusarium dimerum, Mucor circinelloides complexes and Aspergillus series nigri. Database performances were evaluated by cross-validation and external validation using 78 fungal isolates with 96.55% and 90.48% correct identification, respectively. This study also showed the capacity of MALDI-TOF MS to differentiate closely related species within species complexes and further demonstrated the potential of this technique for the routine identification of fungi in an industrial context.
Collapse
Affiliation(s)
- Nolwenn Rolland
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Victoria Girard
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Valérie Monnin
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Sandrine Arend
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Guillaume Perrin
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Damien Ballan
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Rachel Beau
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Valérie Collin
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Maëlle D’Arbaumont
- bioMérieux, R&D Microbiologie, Route de Port Michaud, F-38390 La Balme les Grottes, France; (N.R.); (V.G.); (V.M.); (S.A.); (G.P.); (R.B.); (V.C.); (M.D.)
| | - Amélie Weill
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
- Univ Brest, UBO Culture Collection, F-29280 Plouzané, France
| | - Franck Deniel
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Sylvie Tréguer
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Audrey Pawtowski
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (D.B.); (A.W.); (F.D.); (S.T.); (A.P.); (J.-L.J.)
| |
Collapse
|
12
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569667. [PMID: 38076934 PMCID: PMC10705545 DOI: 10.1101/2023.12.01.569667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis.
Collapse
|
13
|
Abramczyk BM, Wiktorowicz DG, Okrasińska A, Pawłowska JZ. Mucor thermorhizoides-A New Species from Post-mining Site in Sudety Mountains (Poland). Curr Microbiol 2024; 81:201. [PMID: 38822823 PMCID: PMC11144139 DOI: 10.1007/s00284-024-03708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Mucor representatives are mostly rapidly growing cosmopolitan soil saprotrophs of early diverged Mucoromycotina subphylum. Although this is the most speciose genus within the group, some lineages are still understudied. In this study, new species of Mucor was isolated from the post-mining area in southwestern Poland, where soil chemical composition analysis revealed high concentration of hydrocarbons and heavy metals. Phylogenetic analysis based on multigene phylogeny showed that the new isolate clusters distinctly from other Mucor species as a sister group to Mucor microsporus. New species Mucor thermorhizoides Abramczyk (Mucorales, Mucoromycota) is characterized by the extensive rhizoid production in elevated temperatures and formation of two layers of sporangiophores. It also significantly differs from M. microsporus in the shape of spores and the size of sporangia. M. thermorhizoides was shown to be able to grow in oligotrophic conditions at low temperatures. Together with M. microsporus they represent understudied and highly variable lineage of the Mucor genus.
Collapse
Affiliation(s)
- Beniamin M Abramczyk
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Dorota G Wiktorowicz
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Julia Z Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
14
|
Fan Q, Cheng ZY, Xie LY, Tang M, Yang ZL, Shen PH, Wang YB. Molecular phylogeny and morphology of Sporodiniella sinensis sp. nov. ( Syzygitaceae, Mucorales), an invertebrate-associated species from Yunnan, China. Int J Syst Evol Microbiol 2024; 74. [PMID: 38639759 DOI: 10.1099/ijsem.0.006315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
During investigations of invertebrate-associated fungi in Yunnan Province of China, a new species, Sporodiniella sinensis sp. nov., was collected. Morphologically, S. sinensis is similar to Sporodiniella umbellata; however, it is distinguished from S. umbellata by its greater number of sporangiophore branches, longer sporangiophores, larger sporangiospores, and columellae. The novel species exhibits similarities of 91.62 % for internal transcribed spacer (ITS), 98.66-99.10 % for ribosomal small subunit (nrSSU), and 96.36-98.22 % for ribosomal large subunit (nrLSU) sequences, respectively, compared to S. umbellata. Furthermore, phylogenetic analyses based on combined sequences of ITS, nrLSU and nrSSU show that it forms a separate clade in Sporodiniella, and clusters closely with S. umbellata with high statistical support. The phylogenetic and morphological evidence support S. sinensis as a distinct species. Here, it is formally described and illustrated, and compared with other relatives.
Collapse
Affiliation(s)
- Qi Fan
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Zhu-Yu Cheng
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Liu-Yi Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, PR China
| | - Mei Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Pei-Hong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yuan-Bing Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| |
Collapse
|
15
|
Sharma B, Nonzom S. Thamnostylum piriforme, a novel etiological agent of superficial mycosis. Microb Pathog 2024; 188:106544. [PMID: 38246313 DOI: 10.1016/j.micpath.2024.106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Fungi are opportunistic eukaryotic entities often taking advantage of susceptibilities offered by a host due to its immunocompromised status, changed microbiome, or ruptured physical barriers and eventually cause infections. They either invade the skin superficially or are deep-seated. Superficial mycosis affects the skin, hair, and nails inhabiting the outermost layer, stratum corneum. In the present study, we report a case of superficial mycosis (onychomycosis in particular) in a 45-year-old immunocompetent man who was an ex-defense personnel and presently serving as a security guard at the University of Jammu, District Jammu, Jammu and Kashmir, India. The infection evolved 17 years ago and negatively affected the quality of life of the patient. For the identification of the causal agent, direct microscopy, cultural, micro-morphological, molecular characterization (ITS sequencing), and phylogenetic analysis were taken into account. A mucoralean fungal species, Thamnostylum piriforme, was isolated from the fingernails (left hand) of the investigated patient, which represents a new global report as the causal agent of superficial mycosis. In vitro antifungal susceptibility testing showed T. piriforme sensitivity to itraconazole, amphotericin B and ketoconazole while resistance to fluconazole. Careful selection of optimal therapy for fungal infection based primarily on correct identification and antifungal susceptibility testing could provide effective results during treatment against these opportunistic human fungal pathogens.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| | - Skarma Nonzom
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
16
|
Ostrowski G, Jaworska D, Płecha M, Przybylski W, Sałek P, Sawicki K, Pawłowska J. Cold adapted and closely related mucoraceae species colonise dry-aged beef (DAB). Fungal Biol 2023; 127:1397-1404. [PMID: 37993251 DOI: 10.1016/j.funbio.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023]
Abstract
The dry ageing is a historically relevant method of meat preservation, now used as a way to produce the dry-aged beef (DAB) known for its pronounced flavour. Partially responsible for the taste of the DAB may be various microorganisms that grow on the surface of the meat. Historically, the fungal species colonising the DAB were described as members of the genera Thamnidium and Mucor. In this study we used both culture based approach as well as ITS2 rDNA metabarcoding analysis to investigate the fungal community of the DAB, with special emphasis on the mucoralean taxa. Isolated fungi were members of 6 different species from the family Mucoraceae, belonging to the genera Mucor and Helicostylum. Metabarcoding data provided supplementary information regarding the presence of other fungi including those from the Thamnidium genus. In both approaches used in this study isolates closely related to the Mucor flavus strain CBS 992.68 dominated.
Collapse
Affiliation(s)
- Grzegorz Ostrowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Wiesław Przybylski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
17
|
Gajanayake AJ, Karunarathna SC, Jayawardena RS, Luangharn T, Balasuriya A. Fungicolous Mucor on mushrooms: One novel species and six host records from southwest China and northern Thailand. Mycologia 2023; 115:674-692. [PMID: 37409884 DOI: 10.1080/00275514.2023.2220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023]
Abstract
Mucor species are a group of common soil-borne fungi, known to cause infections on humans and animals, interfere in food production, and act as useful agents in biotechnological applications. This study reports one new Mucor species, M. yunnanensis, which was found to be fungicolous on an Armillaria sp. from southwest China. Further, M. circinelloides on Phlebopus sp., M. hiemalis on Ramaria sp. and Boletus sp., M. irregularis on Pleurotus sp., M. nederlandicus on Russula sp., and M. yunnanensis on Boletus sp. are reported as new host records. Mucor yunnanensis and M. hiemalis have been collected from Yunnan Province in China, whereas M. circinelloides, M. irregularis, and M. nederlandicus have been collected from Chiang Mai and Chiang Rai Provinces in Thailand. All the Mucor taxa reported herein were identified based on both morphology and phylogenetic analyses of a combined nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and partial nuc 28S rDNA (28S) sequence matrix. Comprehensive descriptions, illustrations, and a phylogenetic tree are provided for all the taxa reported in the study to show the placements of taxa, and the new taxon is compared with its sister taxa.
Collapse
Affiliation(s)
- Achala J Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy, Sri Lanka
| | - Ruvishika S Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
18
|
Scaife K, Vo TD, Dommels Y, Leune E, Albermann K, Pařenicová L. In silico and in vitro safety assessment of a fungal biomass from Rhizomucor pusillus for use as a novel food ingredient. Food Chem Toxicol 2023; 179:113972. [PMID: 37532172 DOI: 10.1016/j.fct.2023.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus strain CBS 143028. The whole genome sequence of this strain was annotated and subjected to sequence homology searches and in silico phenotype prediction tools to identify genetic elements encoding for protein toxins active via oral consumption, virulence factors associated with pathogenicity, and determinants of AMR. The in silico investigation revealed no genetic elements sharing significant sequence homology with putative virulence factors, protein toxins, or AMR determinants, including the absence of mucoricin, an essential toxin in the pathogenesis of mucormycosis. These in silico findings were corroborated in vitro based on the absence of clinically relevant mycotoxin or antibacterial secondary metabolites. Consequently, it is unlikely that R. pusillis strain CBS 143028 would pose a safety concern for use in food for human consumption.
Collapse
Affiliation(s)
- Kevin Scaife
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada.
| | - Trung D Vo
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada
| | - Yvonne Dommels
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Elisa Leune
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Kaj Albermann
- Labvantage - Biomax GmbH, Robert-Koch-Str. 2, 82152, Planegg, Germany
| | - Lucie Pařenicová
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands; BioXact, Böttgerwater 44, 2497, ZJ, Den Haag, Netherlands
| |
Collapse
|
19
|
Yin H, Tian M, Peng Y, Qin N, Lü H, Ren L, Zhao X. First Report on Choanephora cucurbitarum Causing Choanephora Rot in Chenopodium Plants and Its Sensitivity to Fungicide. J Fungi (Basel) 2023; 9:881. [PMID: 37754989 PMCID: PMC10532463 DOI: 10.3390/jof9090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Choanephora rot of Chenopodium plants (CRC) was observed at the flowering stages in seven plantations of Shanxi Province, China. CRC had caused leaf, stem, and panicle neck rot of C. quinoa, panicle neck and stem rot of C. formosanum, and stem rot of C. album. Typical symptoms included water-soaked, rapid soft rotting, and abundant sporulation on the whole panicle necks, stems, and leaves. Based on morphological characteristics, phylogenetic analyses, and pathogenicity tests, the pathogens were identified as Choanephoraceae cucurbitarum. Sporangiola and sporangiospore of C. cucurbitarum germinated at 30 °C and were able to germinate by two h post-inoculation (hpi). The germination rates of sporangiola and sporangiospore significantly increased at 3 to 4 hpi, and the germination rates ranged from 91.53 to 97.67%. The temperature had a significant effect on the pathogenicity of C. cucurbitarum the optimum pathogenic temperatures for stems of C. quinoa, C. formosanum and C. album were 30 °C after one day post-inoculation. Choanephoraceae cucurbitarum could infect white and red quinoa panicle necks between 20 and 30 °C, and the average lesion lengths were 0.21 to 3.62 cm. Among the five tested fungicides (boscalid, dimethomorph, isopyrazam, propiconazole, and tebuconazole), isopyrazam showed higher sensitivity to sporangiola germination of C. cucurbitarum, with an EC50 value of 0.6550 μg/mL. Isopyrazam and tebuconazole strongly inhibited the sporangiospore germination of C. cucurbitarum, which showed EC50 values of 0.4406 and 0.3857 μg/mL. To our knowledge, the present study found for the first time that C. cucurbitarum is a pathogen causing panicle neck of C. formosanum and stem rot of C. formosanum and C. album, while CRC first appeared in the quinoa panicle necks, and gradually expanded to stems and leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaojun Zhao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
20
|
Mishcherikova V, Lynikienė J, Marčiulynas A, Gedminas A, Prylutskyi O, Marčiulynienė D, Menkis A. Biogeography of Fungal Communities Associated with Pinus sylvestris L. and Picea abies (L.) H. Karst. along the Latitudinal Gradient in Europe. J Fungi (Basel) 2023; 9:829. [PMID: 37623600 PMCID: PMC10455207 DOI: 10.3390/jof9080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
We assessed the diversity and composition of fungal communities in different functional tissues and the rhizosphere soil of Pinus sylvestris and Picea abies stands along the latitudinal gradient of these tree species distributions in Europe to model possible changes in fungal communities imposed by climate change. For each tree species, living needles, shoots, roots, and the rhizosphere soil were sampled and subjected to high-throughput sequencing. Results showed that the latitude and the host tree species had a limited effect on the diversity and composition of fungal communities, which were largely explained by the environmental variables of each site and the substrate they colonize. The mean annual temperature and mean annual precipitation had a strong effect on root fungal communities, isothermality on needle fungal communities, mean temperature of the warmest quarter and precipitation of the driest month on shoot fungal communities, and precipitation seasonality on soil fungal communities. Fungal communities of both tree species are predicted to shift to habitats with a lower annual temperature amplitude and with increasing precipitation during the driest month, but the suitability of these habitats as compared to the present conditions is predicted to decrease in the future.
Collapse
Affiliation(s)
- Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, V.N. Karazin Kharkiv National University, Svobody Sq., 61022 Kharkiv, Ukraine;
| | - Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
21
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Glandorf B, Herman L, Toldrá F, Aguilera J, Kovalkovičová N, Liu Y, Maia J, di Piazza G, Chesson A. Safety evaluation of the food enzyme triacylglycerol lipase from the non-genetically modified Rhizopus arrhizus strain AE-TL(B). EFSA J 2023; 21:e08099. [PMID: 37575621 PMCID: PMC10413181 DOI: 10.2903/j.efsa.2023.8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-TL(B) by Amano Enzyme Inc. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the modification of fats and oils by interesterification and in the manufacture of enzyme-modified dairy ingredients. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.057 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,960 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 34,386. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.
Collapse
|
22
|
Drogari-Apiranthitou M, Skiada A, Panayiotides I, Vyzantiadis TA, Poulopoulou A, Christofidou M, Antoniadou A, Roilides E, Iosifidis E, Mamali V, Argyropoulou A, Sympardi S, Charalampaki N, Antonakos N, Mantzana P, Mastora Z, Nicolatou-Galitis O, Orfanidou M, Pana ZD, Pavleas I, Pefanis A, Sakka V, Spiliopoulou A, Stamouli M, Tofas P, Vagiakou E, Petrikkos G. Epidemiology of Mucormycosis in Greece; Results from a Nationwide Prospective Survey and Published Case Reports. J Fungi (Basel) 2023; 9:425. [PMID: 37108880 PMCID: PMC10142618 DOI: 10.3390/jof9040425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Mucormycosis has emerged as a group of severe infections mainly in immunocompromised patients. We analysed the epidemiology of mucormycosis in Greece in a multicentre, nationwide prospective survey of patients of all ages, during 2005-2022. A total of 108 cases were recorded. The annual incidence declined after 2009 and appeared stable thereafter, at 0.54 cases/million population. The most common forms were rhinocerebral (51.8%), cutaneous (32.4%), and pulmonary (11.1%). Main underlying conditions were haematologic malignancy/neutropenia (29.9%), haematopoietic stem cell transplantation (4.7%), diabetes mellitus (DM) (15.9%), other immunodeficiencies (23.4%), while 22.4% of cases involved immunocompetent individuals with cutaneous/soft-tissue infections after motor vehicle accident, surgical/iatrogenic trauma, burns, and injuries associated with natural disasters. Additionally, DM or steroid-induced DM was reported as a comorbidity in 21.5% of cases with various main conditions. Rhizopus (mostly R. arrhizus) predominated (67.1%), followed by Lichtheimia (8.5%) and Mucor (6.1%). Antifungal treatment consisted mainly of liposomal amphotericin B (86.3%), median dose 7 mg/kg/day, range 3-10 mg/kg/day, with or without posaconazole. Crude mortality was 62.8% during 2005-2008 but decreased significantly after 2009, at 34.9% (p = 0.02), with four times fewer haematological cases, fewer iatrogenic infections, and fewer cases with advanced rhinocerebral form. The increased DM prevalence should alert clinicians for timely diagnosis of mucormycosis in this patient population.
Collapse
Affiliation(s)
- Maria Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Skiada
- 1st Department of Internal Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Medical School, Attikon University Hospital, 12462 Athens, Greece
| | | | - Aikaterina Poulopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Myrto Christofidou
- Department of Microbiology, University Hospital of Patras, 26504 Patras, Greece
| | - Anastasia Antoniadou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3nd Department of Paediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3nd Department of Paediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Vassiliki Mamali
- Department of Microbiology, Tzaneio General Hospital, 18536 Piraeus, Greece
| | - Athina Argyropoulou
- Department of Clinical Microbiology, Evangelismos General Hospital, 10676 Athens, Greece
| | - Styliani Sympardi
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 19600 Eleusis, Greece
| | - Nikoletta Charalampaki
- Clinical Microbiology Laboratory, Thriasio General Hospital of Eleusis, 19600 Eleusis, Greece
| | - Nikolaos Antonakos
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Zafeiria Mastora
- 1st Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, 10676 Athens, Greece
| | | | - Maria Orfanidou
- Clinical Microbiology Laboratory, General Hospital of Athens Georgios Gennimatas, 11527 Athens, Greece
| | - Zoi-Dorothea Pana
- School of Medicine, European University of Cyprus, Nicosia 2404, Cyprus
| | - Ioannis Pavleas
- Intensive Care Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Angelos Pefanis
- Department of Internal Medicine, Sotiria General and Chest Diseases Hospital of Athens, 11527 Athens, Greece
| | - Vissaria Sakka
- 3rd Department of Internal Medicine, Sotiria General and Chest Diseases Hospital of Athens, 11527 Athens, Greece
| | | | - Maria Stamouli
- 2nd Department of Internal Medicine, Propaedeutic, Haematology Unit, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Eleni Vagiakou
- Clinical Microbiology Laboratory, General Hospital of Athens Georgios Gennimatas, 11527 Athens, Greece
| | - George Petrikkos
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- School of Medicine, European University of Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
23
|
Nguyen TTT, Santiago ALCMDA, Kirk PM, Lee HB. Discovery of a New Lichtheimia (Lichtheimiaceae, Mucorales) from Invertebrate Niche and Its Phylogenetic Status and Physiological Characteristics. J Fungi (Basel) 2023; 9:jof9030317. [PMID: 36983485 PMCID: PMC10056009 DOI: 10.3390/jof9030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Species of Lichtheimia are important opportunistic fungal pathogens in the order Mucorales that are isolated from various sources such as soil, indoor air, food products, feces, and decaying vegetables. In recent years, species of Lichtheimia have become an emerging causative agent of invasive mucormycosis. In Europe and USA, Lichtheimia are the second and third most common causal fungus of mucormycosis, respectively. Thus, the aim of this study was to survey the diversity of species of Lichtheimia hidden in poorly studied hosts, such as invertebrates, in Korea. Eight Lichtheimia strains were isolated from invertebrate samples. Based on morphology, physiology, and phylogenetic analyses of ITS and LSU rDNA sequence data, the strains were identified as L. hyalospora, L. ornata, L. ramosa, and a novel species, L. koreana sp. nov. Lichtheimia koreana is characterized by a variable columellae, sporangiophores arising solitarily or up to three at one place from stolons, and slow growth on MEA and PDA at all temperatures tested. The new species grows best at 30 and 35 °C and has a maximum growth temperature of 40 °C. Detailed descriptions, illustrations, and a phylogenetic tree are provided.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK
| | - Hyang Burm Lee
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. da Engenharia, s/n, Recife 50740-4600, PE, Brazil
- Correspondence:
| |
Collapse
|
24
|
Umbelopsis (Mucoromycota) from Patagonia, Argentina: identification, phylogenetic analysis, and expression profiling of lipase activity and lipid accumulation in selected isolates. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
25
|
Liu J, Liang M, Lin T, Zhao Q, Wang H, Yang S, Guo Q, Wang X, Guo H, Cui L, Yan Y, Hieno A, Kageyama K, Suga H, Li M. A LAMP-Based Toolbox Developed for Detecting the Major Pathogens Affecting the Production and Quality of the Chinese Medicinal Crop Aconitum carmichaelii. PLANT DISEASE 2023; 107:658-666. [PMID: 35852903 DOI: 10.1094/pdis-05-22-1092-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aconitum carmichaelii Debeaux is a traditional Chinese medicinal herb that has been utilized for approximately 2,000 years. However, as cultivation has increased, there have been more reports of A. carmichaelii infections caused by four major pathogenic fungal species, Fusarium oxysporum, F. solani, Mucor circinelloides, and Sclerotium rolfsii, resulting in increased disease incidences and limited production and quality. To detect these infections, we developed a LAMP-based toolbox in this study. The cytochrome c oxidase subunit 1 (cox1) gene, translation elongation factor-1α (EF-1α), internal transcribed spacer (ITS) regions of rDNA, and alcohol dehydrogenase 1 (ADH1) gene, respectively, were used to design species-specific LAMP primer sets for F. oxysporum, F. solani, S. rolfsii, and M. circinelloides. The results showed that the LAMP-based toolbox was effective at detecting pathogens in soil and plant materials. We also used this toolbox to investigate pathogen infection in the main planting regions of A. carmichaelii. Before harvesting, F. oxysporum, M. circinelloides, and S. rolfsii were commonly found in the planting fields and in infected A. carmichaelii plants. Therefore, the toolbox we developed will be useful for tracking these infections, as well as for disease control in A. carmichaelii.
Collapse
Affiliation(s)
- Jingzhe Liu
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Mengyi Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Tao Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qing Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Shunyuan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qian Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xinyi Wang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Hua Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Langjun Cui
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Yaping Yan
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Mingzhu Li
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education (Shaanxi Normal University), Xi'an, Shaanxi 710119, P.R. China
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| |
Collapse
|
26
|
Antifungal Activity of Isavuconazole and Comparator Agents against Contemporaneous Mucorales Isolates from USA, Europe, and Asia-Pacific. J Fungi (Basel) 2023; 9:jof9020241. [PMID: 36836355 PMCID: PMC9960003 DOI: 10.3390/jof9020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Isavuconazole is the only US FDA-approved antifungal for treating invasive mucormycosis. We evaluated isavuconazole activity against a global collection of Mucorales isolates. Fifty-two isolates were collected during 2017-2020 from hospitals located in the USA, Europe, and the Asia-Pacific. Isolates were identified by MALDI-TOF MS and/or DNA sequencing and susceptibility tested by the broth microdilution method following CLSI guidelines. Isavuconazole (MIC50/90, 2/>8 mg/L) inhibited 59.6% and 71.2% of all Mucorales isolates at ≤2 mg/L and ≤4 mg/L, respectively. Among comparators, amphotericin B (MIC50/90, 0.5/1 mg/L) displayed the highest activity, followed by posaconazole (MIC50/90, 0.5/8 mg/L). Voriconazole (MIC50/90, >8/>8 mg/L) and the echinocandins (MIC50/90, >4/>4 mg/L) had limited activity against Mucorales isolates. Isavuconazole activity varied by species and this agent inhibited at ≤4 mg/L 85.2%, 72.7%, and 25% of Rhizopus spp. (n = 27; MIC50/90, 1/>8 mg/L), Lichtheimia spp. (n = 11; MIC50/90, 4/8 mg/L), and Mucor spp. (n = 8; MIC50, >8 mg/L) isolates, respectively. Posaconazole MIC50/90 values against Rhizopus, Lichtheimia, and Mucor species were 0.5/8 mg/L, 0.5/1 mg/L, and 2/- mg/L, respectively; amphotericin B MIC50/90 values were 1/1 mg/L, 0.5/1 mg/L, and 0.5/- mg/L, respectively. As susceptibility profiles varied among Mucorales genera, species identification and antifungal susceptibility testing are advised whenever possible to manage and monitor mucormycosis.
Collapse
|
27
|
Cordeiro TRL, Walther G, Lee HB, Nguyen TTT, de Souza CAF, Lima DX, de Oliveira RJV, Góes-Neto A, Tomé LMR, Kurzai O, Voigt K, de Azevedo Santiago ALCM. A polyphasic approach to the taxonomy of Backusella reveals two new species. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Dziurzynski M, Gorecki A, Pawlowska J, Istel L, Decewicz P, Golec P, Styczynski M, Poszytek K, Rokowska A, Gorniak D, Dziewit L. Revealing the diversity of bacteria and fungi in the active layer of permafrost at Spitsbergen island (Arctic) - Combining classical microbiology and metabarcoding for ecological and bioprospecting exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159072. [PMID: 36179845 DOI: 10.1016/j.scitotenv.2022.159072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Arctic soils are constantly subjected to extreme environmental conditions such as low humidity, strong winds, high salinity, freeze-thaw cycles, UV exposition, and low nutrient availability, therefore, they have developed unique microbial ecosystems. These environments provide excellent opportunities to study microbial ecology and evolution within pristine (i.e. with limited anthropogenic influence) regions since the High Arctic is still considered one of the wildest and least explored environments on the planet. This environment is also of interest for the screening and recovery of unique microbial strains suitable for various biotechnological applications. In this study, a combination of culture-depended and culture-independent approaches was used to determine the cultivation bias in studies of the diversity of cold-active microorganisms. Cultivation bias is a reduction in recovered diversity, introduced when applying a classical culturing technique. Six different soil types, collected in the vicinity of the Polish Polar Station Hornsund (Spitsbergen, Norway), were tested. It was revealed that the used media allowed recovery of only 6.37 % of bacterial and 20 % of fungal genera when compared with a culture-independent approach. Moreover, it was shown that a combination of R2A and Marine Broth media recovered as much as 93.6 % of all cultivable bacterial genera detected in this study. Based on these results, a novel protocol for genome-guided bioprospecting, combining a culture-dependent approach, metabarcoding, next-generation sequencing, and genomic data reuse was developed. With this methodology, 14 psychrotolerant, multi-metal-resistant strains, including the highly promising Rhodococcus spp., were obtained. These strains, besides increased metal tolerance, have a petroleum hydrocarbon utilization capacity, and thus may be good candidates for future bioremediation technologies, also suited to permanently cold regions.
Collapse
Affiliation(s)
- Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrian Gorecki
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-89 Warsaw, Poland
| | - Lukasz Istel
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-89 Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Golec
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Styczynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Poszytek
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Rokowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dorota Gorniak
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
29
|
Niu C, Tu Y, Jin Q, Chen Z, Yuan K, Wang M, Zhang P, Luo J, Li H, Yang Y, Liu X, Mao M, Dong T, Tan W, Hu X, Pan Y, Hou L, Ma R, Huang Z. Mapping the human oral and gut fungal microbiota in patients with metabolic dysfunction-associated fatty liver disease. Front Cell Infect Microbiol 2023; 13:1157368. [PMID: 37180439 PMCID: PMC10170973 DOI: 10.3389/fcimb.2023.1157368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a phenotype of liver diseases associated with metabolic syndrome. The pathogenesis MAFLD remains unclear. The liver maintains is located near the intestine and is physiologically interdependent with the intestine via metabolic exchange and microbial transmission, underpinning the recently proposed "oral-gut-liver axis" concept. However, little is known about the roles of commensal fungi in the disease development. This study aimed to characterize the alterations of oral and gut mycobiota and their roles in MAFLD. Twenty-one MAFLD participants and 20 healthy controls were enrolled. Metagenomics analyses of saliva, supragingival plaques, and feces revealed significant alterations in the gut fungal composition of MAFLD patients. Although no statistical difference was evident in the oral mycobiome diversity within MAFLD and healthy group, significantly decreased diversities were observed in fecal samples of MAFLD patients. The relative abundance of one salivary species, five supragingival species, and seven fecal species was significantly altered in MAFLD patients. Twenty-two salivary, 23 supragingival, and 22 fecal species were associated with clinical parameters. Concerning the different functions of fungal species, pathways involved in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and carbon metabolism were abundant both in the oral and gut mycobiomes. Moreover, different fungal contributions in core functions were observed between MAFLD patients and the healthy controls, especially in the supragingival plaque and fecal samples. Finally, correlation analysis between oral/gut mycobiome and clinical parameters identified correlations of certain fungal species in both oral and gut niches. Particularly, Mucor ambiguus, which was abundant both in saliva and feces, was positively correlated with body mass index, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase, providing evidence of a possible "oral-gut-liver" axis. The findings illustrate the potential correlation between core mycobiome and the development of MAFLD and could propose potential therapeutic strategies.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ye Tu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiaoqiao Jin
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhanyi Chen
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Min Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Zhang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junyuan Luo
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yueyi Yang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaoyu Liu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenduo Tan
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuchen Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yihuai Pan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lili Hou
- Department of Nursing, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- *Correspondence: Zhengwei Huang, ; Rui Ma,
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- National Center for Stomatology, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- *Correspondence: Zhengwei Huang, ; Rui Ma,
| |
Collapse
|
30
|
Xie Z, Liu YL, Luo JQ, Lian SW, Cheng PY, Xie JJ, Li ZJ. First report of Alternaria alternata causing leaf yellow spot on Heteropanax fragrans in China. PLANT DISEASE 2022; 107:2219. [PMID: 36510431 DOI: 10.1094/pdis-04-22-0754-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heteropanax fragrans (Roxb.) Seem is a common garden landscape tree in China. In December 2020, a leaf disease on H. fragrans was observed in a 2 ha field in Zhanjiang (20.85° N, 109.28° E), Guangdong province, China. Early symptoms were small yellow spots on leaves. Later, the spots gradually expanded and turned into necrotic tissues with a clear yellow halo and a white center. The disease incidence on plants was 100%. Twenty diseased leaves were collected from the field. The margin of the diseased tissues was cut into 2 mm × 2 mm pieces, surface disinfected with 75% ethanol and 2% sodium hypochlorite for 30 and 60 s, respectively, and rinsed thrice with sterile water before isolation. The tissues were plated onto potato dextrose agar (PDA) medium and incubated at 28 ℃. After 2-day incubation, grayish fungal colonies appeared on the PDA, then pure cultures were produced by transferring hyphal tips to new PDA plates. Single-spore isolation method was used to recover pure cultures for three isolates (HFA-1, HFA-2, and HFA-3). The colonies first produced a light-grayish aerial mycelia, which turned dark grayish upon maturity. Conidiophores were branched. Conidia numbered from two to four in chains, were dark brown, ovoid, or ellipsoid and mostly beakless; had 1-4 transverse and 0-3 longitudinal septa; measured within 7.2-17.8 (average = 10.2) × 2.5-7.5 (average = 4.3) µm (n = 30). Molecular identification was performed using the colony polymerase chain reaction method with MightyAmp DNA Polymerase (Takara-Bio, Dalian, China) (Lu et al. 2012) to amplify the large subunit (LSU), internal transcribed spacer (ITS) region, translation elongation factor (TEF) , and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with NL1/LR3, ITS1/ITS4, EF-1α-F/EF-1α-R, and GDF1/GDR1 (Walther et al. 2013;Woudenberg et al. 2015; Nishikawa and Nakashima. 2020). Amplicons of the isolates were sequenced and submitted to GenBank (LSU, ON088978-ON088980; ITS, MW629797, ON417005 and ON417006; TEF, MW654167, ON497264,and ON497265;GAPDH, MW654166, ON497262,and ON497263). The obtained sequences were 100% identical with those of Alternaria alternata strain CBS 102600 upon BLAST analysis . The sequences were also concatenated for phylogenetic analysis by maximum likelihood. The isolates clustered with A. alternata (CBS 102600, CBS 102598, CBS 118814, CBS 918.96,CBS 106.24, CBS 119543, CBS 916.96). The fungus associated with leaf yellow spot on H. fragrans was thus identified as A. alternata. Pathogenicity tests were conducted in a greenhouse at 24 ℃-30 ℃ with 80% relative humidity. Individual plants were grown in pots (n = 5, 1 month old). The unwounded leaflets were inoculated with 5 mm-diameter mycelial plugs of the isolates or agar plugs (as control). The test was performed thrice. Disease symptoms were found on the leaves after 7 days, whereas the controls remained healthy. The pathogen was re-isolated from infected leaves and phenotypically identical to the original isolates to fulfill Koch's postulates. To our knowledge, this report is the first one on A. alternata causing leaf yellow spot on H. fragrans. Thus, this work provides an important reference for the control of this disease in the future.
Collapse
Affiliation(s)
| | - Yue Lian Liu
- Guangdong Ocean University, 74780, Mazhang District Huguangyan East Road 1, Zhanjiang, China, 524088;
| | | | | | | | | | | |
Collapse
|
31
|
Andersson (Aino) M, Varga A, Mikkola R, Vornanen-Winqvist C, Salo J, Kredics L, Kocsubé S, Salonen H. Aspergillus Was the Dominant Genus Found during Diversity Tracking of Potentially Pathogenic Indoor Fungal Isolates. Pathogens 2022; 11:1171. [PMID: 36297230 PMCID: PMC9610493 DOI: 10.3390/pathogens11101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 09/29/2023] Open
Abstract
Viable airborne pathogenic fungi represent a potential health hazard when exposing vulnerable persons in quantities exceeding their resilience. In this study, 284 indoor fungal isolates from a strain collection of indoor fungi were screened for pathogenic potential through the ability to grow in neutral pH at 37 °C and 30 °C. The isolates were collected from 20 locations including 14 problematic and 6 non-problematic ordinary buildings. Out of the screened isolates, 170 isolates were unable to grow at 37 °C, whereas 67 isolates growing at pH 7.2 at 37 °C were considered as potential opportunistic pathogens. Forty-seven isolates growing at 30 °C but not at 37 °C were considered as less likely pathogens. Out of these categories, 33 and 33 strains, respectively, were identified to the species level. The problematic buildings included known opportunistic pathogens: Aspergillus calidoustus, Trichoderma longibrachiatum, Rhizopus arrhizus and Paecilomyces variotii, as well as less likely pathogens: Aspergillus versicolor, Chaetomium cochliodes, Chaetomium globosum and Chaetomium rectangulare. Opportunistic pathogens such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger and Aspergillus tubingensis and less likely pathogens such as Aspergillus westerdijkiae, Chaetomium globosum and Dichotomopilus finlandicus were isolated both from ordinary and from problematic buildings. Aspergillus was the dominant, most diverse genus found during screening for potentially pathogenic isolates in the indoor strain collection. Studies on Aspergillus niger and Aspergillus calidodoustus revealed that tolerance to cleaning chemicals may contribute to the adaptation of Aspergillus species to indoor environments.
Collapse
Affiliation(s)
| | - András Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, FI-00076 Aalto, Finland
| | | | - Johanna Salo
- Department of Civil Engineering, Aalto University, FI-00076 Aalto, Finland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
32
|
Two New Species of Backusella ( Mucorales, Mucoromycota) from Soil in an Upland Forest in Northeastern Brazil with an Identification Key of Backusella from the Americas. J Fungi (Basel) 2022; 8:jof8101038. [PMID: 36294603 PMCID: PMC9604803 DOI: 10.3390/jof8101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
During a survey of Mucorales from a forest located in Pernambuco state, Brazil, two new Backusella species were discovered and described based on morphological and molecular data (internal transcribed spacer and large subunit ribosomal DNA sequences). Both species were characterized as unbranched sporangiophores and sporangia with columellae of varied shapes forming. Multispored sporangiola were frequent, whereas unispored sporangiola were rare. URM 8395 forms sporangiophores that may support hyaline, slightly curved or circinate pedicels with multispored sporangiola at their apical portion, and abundant giant cells and chlamydospores. Columellae of sporangia are hyaline, conical (majority), or ellipsoidal with a truncate base, globose to subglobose or subglobose to conical, and, rarely, with slight medial constriction. URM 8427 does not form sporangiola from pedicels, giant cells are not observed, and columellae of sporangia are globose to subglobose, cylindrical with a truncate base, some with a slight constriction, applanate, obovoid, ellipsoidal, or, rarely, conical. Some columellae may have one side more swollen than the other and some are arranged obliquely on the sporangiophores. Sterile sporangia may or may not be formed on short sporophores. The detailed description and illustration of both novel species as well as an identification key for Backusella from the Americas are provided.
Collapse
|
33
|
Spectrum of Mucormycosis Before and During COVID-19: Epidemiology, Diagnosis, and Current Therapeutic Interventions. CURRENT FUNGAL INFECTION REPORTS 2022; 16:131-142. [PMID: 35967987 PMCID: PMC9364274 DOI: 10.1007/s12281-022-00438-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Purpose of Review More than half a billion people have been infected and 6.2 million killed by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) since the start of the pandemic in 2019. Systemic glucocorticoids are a double-edged sword, on the one hand, life-saving in treating COVID-19 complications while on the other hand, potentially leading to life-and-limb-threatening opportunistic fungal infections. Mucormycosis (MM) is caused by the mucormycetes family. Although rare, it is characterized by high mortality and significant morbidity. The gross similarities observed with other fungal infections which respond to different treatment regimens have made it all the more imperative to quickly and sensitively diagnose and treat MM. This review discusses the epidemiology of MM before and during the COVID-19 pandemic, associated risk factors, COVID-19-associated MM, diagnosis, and current therapeutic interventions. Recent Findings There has been a widespread and worrisome trend of rising in cases of MM, worldwide, but more so in the Indian subcontinent, where it is nicknamed the “black fungus.” This upsurge has picked up the pace ever since the start of the COVID-19 pandemic. Necrosis is secondary to the angio-invasive and pro-thrombotic nature of the mold resulting in extensive lesions presenting mostly as rhino-orbital MM (ROM) and rhino-orbito-cerebral MM (ROCM). Infection is mostly observed in subjects with underlying risk factors such as uncontrolled diabetes, those receiving hematopoietic stem cell transplant, and/or on corticosteroid or immunosuppressive therapy, although it is widely suspected that other factors such as iron and zinc may play a role in the pathogenesis of MM. The “One world one guideline” strategy advocates both prophylactic anti-fungal therapy along with aggressive, prompt, and individualized treatment with anti-fungal drugs such as amphotericin B in addition to vigorous surgical intervention. High-risk groups need particularly rapid diagnosis although empirical anti-fungal therapy may not be delayed. Speeding diagnostic turnaround times are essential to institute early therapy, and there is much scope for newer modalities such as PCR, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and whole-genome sequencing in such endeavors. The results of strict monitoring of blood glucose levels along with rational and limited use of steroids and immunomodulatory drugs have proven to be a significant preventive measure. Summary The significant rise in cases of MM worldwide has necessitated viewing each case with a strong index of suspicion. Adoption of rapid diagnostics, early antifungal therapy, and prompt surgical interventions are essential, while high-risk groups need particular focused care which may include prophylactic anti-fungal therapy, limited steroid use, and meticulous control of the underlying disease. Developing quicker and more sensitive diagnostic modalities has great potential to improve the detection and management of MM.
Collapse
|
34
|
Baumann AJ, Díaz GV, Sadañoski MA, Szylak IBJ, Belardita AA, Argüello BDV, Zapata PD. High tolerance and degradation of fungicides by fungal strains isolated from contaminated soils. Mycologia 2022; 114:813-824. [PMID: 35862659 DOI: 10.1080/00275514.2022.2079368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this work was to isolate fungal strains from phytotoxic agricultural soils, screen them, categorize the most tolerant fungi to three fungicides, and identify them by a molecular approach. In this study, 28 fungal strains were isolated from phytotoxic agricultural soil with intensive use of pesticides. The capacity of fungi to resist and degrade different concentrations of carbendazim, captan, and zineb was determined by an exploratory multivariate analysis. Actinomucor elegans LBM 239 was identified as the most tolerant fungus to these fungicides, degrading a 86.62% of carbendazim after 7 days of treatment. In conclusion, A. elegans LBM 239 demonstrated the highest tolerance and capacity to biodegrade carbendazim, becoming a potential candidate for bioremediation of contaminated soils with carbendazim, captan, or zineb.
Collapse
Affiliation(s)
- Alicia Jeannette Baumann
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina
| | - Gabriela Verónica Díaz
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Marcela Alejandra Sadañoski
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Ingrid Belén Judith Szylak
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina
| | - Agustín Alfredo Belardita
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina
| | - Beatriz Del Valle Argüello
- Departamento de Química, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas 3300, Argentina
| | - Pedro Darío Zapata
- Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Félix de Azara 1552, Posadas 3300, Misiones, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
35
|
Zhang YN, Wang ZJ, Swingle B, Niu BY, Xu J, Ma X, Wei H, Gao M. First Report of Rhizopus arrhizus (syn. R. oryzae) Causing Garlic Bulb Soft Rot in Hebei Province, China. PLANT DISEASE 2022; 107:949. [PMID: 35857369 DOI: 10.1094/pdis-05-22-1024-pdn] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhizopus soft rot occurs on the succulent tissues of vegetables, fruits, and ornamental plants throughout the world (Cui et al. 2019). When the garlic is in the seedling stage in the fields (Fig. S1) in November 2021, a disease outbreak on garlic bulbs suspected as Rhizopus soft rot occurred in Daming County, Handan City, Hebei Province of China (N 36°17', E 115° 13'). This disease symptom was first found in the garlic seedling stage in China. Disease incidence was 10% to 30% in cultivated garlic bulbs. There were soft water-soaked lesions on the surface of diseased garlic bulbs and the interiors were brown and soft. In the disease severe field, white to gray mycelia were observed on the diseased garlic bulbs. Infected garlic bulbs were sampled to isolate and determine the identity of the disease-causing organism. Symptomatic bulbs were surface sterilized with 1% NaClO for 2 min, dipped in 75% ethanol for 3 min and rinsed three times with autoclaved distilled water. Small pieces of the inner decayed tissue were removed and cultured on potato dextrose agar (PDA) at 28°C for 2 to 3 days. Five white colonies grew on PDA and then they became brownish gray to blackish-gray mycelium. The fungal strains were purified by hyphal-tip isolation method. To determine the identity of the five isolated fungi, we analyzed their internal transcribed spacer (ITS) region sequences (Jung et al. 2012). BLAST analysis of the ITS sequences from DSF-0-2 (accession no. ON706022), DSF-0-3 (accession no. ON706021), DSF-0-4 (accession no. ON706020), DSF-0-5 (accession no. ON706019) and DSF-0-6 (accession no. ON706018) were all 100% identical with Rhizopus arrhizus (syn. Rhizopus oryzae). Phylogenetic trees were constructed using the neighbor-joining method of MEGA11 based on the sequences of ITS rRNA gene (Walther et al. 2013). Phylogenetic trees indicated that isolates were most likely Rhizopus arrhizus (syn. Rhizopus oryzae) (Fig. S2). We selected one isolated strain, DSF-0-2, for characterize the morphology and test its ability to cause garlic bulb soft rot. Under the microscope, nonseptate rhizoids, sporangia, and sporangiospores were observed (Fig. S1). Sporangiospores were unequal, subglobose, numerous irregular, or oval, and 9.7 (6.2 - 12.5) × 6.5 (4.1 - 8.5) μm (n = 50) in diameter. The sporangia were globose, black, 121.5 (65 - 198) μm (n = 50) in diameter. Based on the rDNA-ITS sequencing and the morphological characteristics, the DSF-0-2 isolate was identified as Rhizopus arrhizus (syn. Rhizopus oryzae) (Zheng et al. 2007; Abeywickrama et al. 2020). To complete Koch's postulates, surface-sterilized healthy garlic bulbs were inoculated with R. arrhizus isolate DSF-0-2. A 1.0-ml sterile syringe was used to inject 50 μl of a 106 conidia/ml suspension into each of five healthy bulbs. As a control, garlic bulbs were treated with sterile distilled water. The inoculated and control bulbs were incubated at 28°C for 7 days. The bulbs inoculated with R. arrhizus DSF-0-2 showed symptoms of water soaking, and the tissues were brown and soft throughout the bulb at 7 days (Fig. S1). Results of the three trials were the same. No symptoms were observed in the control group. R. arrhizus was reisolated from the symptomatic garlic bulb and confirmed as such based-on colony and sporangia morphology and ITS sequence. There were some reports that R. arrhizus infects cassava tubers and potato tubers (Amadioha and Markson 2007; Cui et al. 2019). To our knowledge, this is the first report of R. arrhizus (syn. Rhizopus oryzae) associated with soft rot on garlic bulb in the seedling stage in China. This disease has posed a potential threat during garlic seedling stage in the field. Management measures should be considered before this disease outbreaks widely. Garlic bulbs died in the seedling stage, which caused production reduction, serious economic loss and soil pollution. This finding may help to take effective control measures for this disease.
Collapse
Affiliation(s)
| | | | - Bryan Swingle
- Cornell University, Plant Pathology, Ithaca, United States;
| | | | | | - Xing Ma
- Cornell University, Plant Pathology and Plant-Microbe Biology, 304 Plant Science Building, Ithaca, New York, United States, 14853;
| | - Hailei Wei
- Chinese Academy of Agricultural Sciences Institute of Agricultural Resources and Regional Planning, Beijing , China;
| | - Miao Gao
- Chinese Academy of Agricultural Sciences, Institute of Agricultural Resources and Regional Planning, Zhongguancun street No12, Haidian District, Beijng, China, 100081;
| |
Collapse
|
36
|
Nguyen TTT, Lee HB. Discovery of Three New Mucor Species Associated with Cricket Insects in Korea. J Fungi (Basel) 2022; 8:jof8060601. [PMID: 35736084 PMCID: PMC9224827 DOI: 10.3390/jof8060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Species in the genus Mucor have a worldwide distribution and are isolated from various substrata and hosts, including soil, dung, freshwater, and fruits. However, their diversity from insects is still much too little explored. The aim of this study was to characterize three new species of Mucor: Mucor grylli sp. nov., M. hyangburmii sp. nov., and M. kunryangriensis sp. nov., discovered in Kunryang-ri, Cheongyang in the Chungnam Province of Korea, during an investigation of Mucorales from cricket insects. The new species are described using morphological characters and molecular data including ITS and LSU rDNA regions. Mucor grylli is characterized by the highly variable shape of its columellae, which are subglobose to oblong, obovoid, strawberry-shaped, and sometimes slightly or strongly constricted in the center. Mucor hyangburmii is characterized by the production of azygospores and growth at 40 °C. Mucor kunryangriensis is characterized by the variable shape of its columellae, which are elongated-conical, obovoid, cylindrical ellipsoid, cylindrical, and production of abundant yeast-like cells on PDA, MEA, and SMA media. Based on the sequence analysis of two genetic markers, our phylogenic assessment strongly supported M. grylli, M. hyangburmii, and M. kunryangriensis as new species. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Thuong T T Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
37
|
Galosi L, Falcaro C, Danesi P, Zanardello C, Berardi S, Biagini L, Attili AR, Rossi G. Atypical Mycosis in Psittacine Birds: A Retrospective Study. Front Vet Sci 2022; 9:883276. [PMID: 35647088 PMCID: PMC9135461 DOI: 10.3389/fvets.2022.883276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
A retrospective study was conducted on parrots submitted from necropsy to the Department of Veterinary Pathology, School of Biosciences and Veterinary, University of Camerino, Italy, from 2007 to 2018. From a total of 2,153 parrots examined at post-mortem, four cases were diagnosed with atypical mycosis and were considered for determination of the fungus species by PCR. A Fischer's lovebird (Agapornis fischeri), Peach-faced lovebirds (Agapornis roseicollis), and two Blue and Gold Macaws (Ara ararauna) from four different aviaries died after some days of lethargy and ruffled feathers. Records of gross necropsy and histopathological exams (H&E, PAS, and Grocott stain) were described and biomolecular analyses were carried out. No specific gross lesions were appreciated at necropsy, while histopathology evidenced a systemic mycosis in several organs, particularly in the lungs. In affected organs, broad and non-septate hyphae, suggestive of mycoses, were observed. Molecularly, Mucor racemosus (Fischer's lovebird) and M. circinelloides (Peach-faced lovebirds) were identified from formalin-fixed and paraffin-embedded (FFPE) lung and liver tissue. In addition, Alternaria alternata and Fusicladium spp. (respectively in male and female Blue and Gold macaws) were identified in FFPE tissue from several organs; whereas the role of Mucor spp. as true pathogens is well-demonstrated, and the behavior of A. alternata and Fusicladium spp. in macaws as opportunistic pathogens have been discussed. To our knowledge, this report is the first one reporting mucormycosis caused by M. racemosus and M. circinelloides in lovebirds, and A. alternata and Fusicladium spp. in macaws.
Collapse
Affiliation(s)
- Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
- *Correspondence: Livio Galosi
| | - Christian Falcaro
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Patrizia Danesi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudia Zanardello
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
38
|
First Molecular Identification of Three Clinical Isolates of Fungi Causing Mucormycosis in Honduras. Infect Dis Rep 2022; 14:258-265. [PMID: 35447883 PMCID: PMC9027499 DOI: 10.3390/idr14020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Mucormycoses are rare but serious opportunistic fungal infections caused by filamentous organisms of the order Mucorales. Here we report the first molecular identification of Rhizopus oryzae (heterotypic synonym Rhizopus arrhizus), R. delemar, and Apophysomyces ossiformis as the etiological agents of three cases of severe mucormycosis in Honduras. Conventional microbiological cultures were carried out, and DNA was extracted from both clinical samples and axenic cultures. The ITS ribosomal region was amplified and sequenced. Molecular tools are suitable strategies for diagnosing and identifying Mucorales in tissues and cultures, especially in middle-income countries lacking routine diagnostic strategies.
Collapse
|
39
|
Liu CY, Liu YL, Xie Z, Yin XG, Lu JN. First Report of Seedling Rot of Castor (Ricinus communis) caused by Choanephora cucurbitarum in China. PLANT DISEASE 2022; 106:2521. [PMID: 35253494 DOI: 10.1094/pdis-01-22-0111-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Castor (Ricinus communis L.) oil is used in the manufacture of cosmetics, lubricants, plastics, pharmaceuticals, and soaps and is grown in more than 40 countries with India and China leading in oil production(Tunaru et al. 2012). In June 2021, a seedling rot disease was observed on castor cv. Zibi-5 in a plant nursery in Zhanjiang (21°17' N, 110°18' E), China. Initial symptoms on leaves and stems were water-soaked and dark green lesions that resulted in rapid rotting. Disease incidence was 25% and resulted in seedling death. White fungal mycelia developed on the rotting plant tissues. Leaves and stems were collected from 10 diseased plants, surface disinfected in 0.5% sodium hypochlorite and 75% ethyl alcohol, and tissue pieces placed in plates of potato dextrose agar (PDA) which were maintained at 28℃. Hyphal tips from fungal mycelia that developed in the PDA plates were selected to establish pure cultures and three representative fungal isolates, designated RCC-1, RCC-2, and RCC-3, were selected for further study. The fungal isolates produced sporangiophores that were smooth, hyaline, aseptate, and apically swollen. Sporangiophores bore monosporous sporangiola that were broadly ellipsoidal, longitudinally coarsely striate, brown to dark brown, and measured 6.2 to 14.8 x 10.5 to 26.5 um (n=30). Sporangia contained few to many spores that were spherical, brown, and measured 59 to 150 um in diameter (n=20). Sporangiospores were ellipsoid, striate, and brown with multiple hyaline polar appendages and measured 6.6 to 12.3 x 10.6 to 25.5 um (n=30) in size. Based on these morphological characteristics, the fungus was identified as Choanephora cucurbitarum (Berk. & Ravenel) Thaxt. (Kirk, 1984). Molecular identification was done using the colony PCR method with MightyAmp DNA Polymerase (Takara-Bio, Dalian, China) (Lu et al. 2012) used to amplify the internal transcribed spacer (ITS) region and large subunit (LSU) with ITS1/ITS4 and NL1/LR3 (Walther et al. 2013). The amplicons were sequenced and the sequences were deposited in GenBank with accession numbers ITS, OL376748-OL376750, and LSU, OL763430-OL763432. BLAST analysis of these sequences revealed a 100% to 99% identity with the sequences (ITS, MG650194; 573/573, 573/573, and 573/573; LSU, AF157181; 673/676, 673/676, and 673/676) of C. cucurbitarum in GenBank. Pathogenicity tests, to fulfill Koch's postulates, were performed in a greenhouse with a temperature range of 24℃ to 30℃ and 80% relative humidity. Thirty-day-old cv. Zibi-5 castor plants were grown in pots and used for inoculation tests. Ten plants were inoculated by placing agar plugs with mycelia of fungal isolate RCC-1 on leaves or stems. Ten control plants were inoculated with agar plugs only and the test was repeated three times in total. Five days after inoculation, all plants, with either leaf or stem inoculations, became infected and began rotting. Symptom progression was consistent with that observed in the nursery and all control plants remained healthy. C. cucurbitarum was successfully reisolated from all inoculated plants and identified by morphological characteristics and by sequence analysis. This fungus is known to cause serious damage on a wide range of hosts (Liu et al. 2019) and previously was reported on castor in India (Shaw 1984) and Papua New Guinea (Peregrin and Ahmad 1982). We observed that the pathogen grows very rapidly and causes serious damage to castor seedlings, warranting further investigation on the epidemiology and control of this disease.
Collapse
Affiliation(s)
- Chao Yu Liu
- Guangdong Ocean University, 74780, Zhanjiang, Guangdong, China;
| | - Yue Lian Liu
- Guangdong Ocean University, 74780, Mazhang District Huguangyan East Road 1, Zhanjiang, China, 524088;
| | - Zhihao Xie
- Guangdong Ocean University, 74780, Zhanjiang, Guangdong, China;
| | - Xue Gui Yin
- Guangdong Ocean University, 74780, Zhanjiang, Guangdong, China;
| | - Jian Nong Lu
- Guangdong Ocean University, 74780, Zhanjiang, Guangdong, China;
| |
Collapse
|
40
|
Biosurfactant-Producing Mucor Strains: Selection, Screening, and Chemical Characterization. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biosurfactants are amphiphilic molecules with surface tension reducing activities. Among biosurfactant producers, fungi have been identified as promising organisms. While many studies have investigated biosurfactant production in fungal species from the Ascomycota and Basidiomycota phyla, less is known concerning species from the Mucoromycota phylum. In this context, the aim of this study was to screen and optimize biosurfactant production in 24 fungal strains, including seven Mucor, three Lichtheimia, and one Absidia species. After cultivation in a medium stimulating surfactant production, the surface activity of cell-free supernatants was measured using both oil spreading and parafilm M tests. Among them, five Mucor strain cell-free supernatants belonging to M. circinelloides, M. lanceolatus, M. mucedo, M. racemosus, and M. plumbeus, showed oil repulsion. Then, the impact of the medium composition on surfactant production was evaluated for eight strains. Three of them, i.e., Mucor circinelloides UBOCC-A-109190, Mucor plumbeus UBOCC-A-111133, and Mucor mucedo UBOCC-A-101353 showed an interesting surfactant production potential, reducing the medium surface tension to 36, 31, and 32 mN/m, respectively. A preliminary characterization of the surfactant molecules produced by these strains was performed and showed that these compounds belonged to the glycolipid family.
Collapse
|
41
|
Minutillo SA, Ruano-Rosa D, Abdelfattah A, Schena L, Malacrinò A. The Fungal Microbiome of Wheat Flour Includes Potential Mycotoxin Producers. Foods 2022; 11:foods11050676. [PMID: 35267309 PMCID: PMC8908971 DOI: 10.3390/foods11050676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Consumers are increasingly demanding higher quality and safety standards for the products they consume, and one of this is wheat flour, the basis of a wide variety of processed products. This major component in the diet of many communities can be contaminated by microorganisms before the grain harvest, or during the grain storage right before processing. These microorganisms include several fungal species, many of which produce mycotoxins, secondary metabolites that can cause severe acute and chronic disorders. Yet, we still know little about the overall composition of fungal communities associated with wheat flour. In this study, we contribute to fill this gap by characterizing the fungal microbiome of different types of wheat flour using culture-dependent and -independent techniques. Qualitatively, these approaches suggested similar results, highlighting the presence of several fungal taxa able to produce mycotoxins. In-vitro isolation of fungal species suggest a higher frequency of Penicillium, while metabarcoding suggest a higher abundance of Alternaria. This discrepancy might reside on the targeted portion of the community (alive vs. overall) or in the specific features of each technique. Thus, this study shows that commercial wheat flour hosts a wide fungal diversity with several taxa potentially representing concerns for consumers, aspects that need more attention throughout the food production chain.
Collapse
Affiliation(s)
- Serena A. Minutillo
- CIHEAM—Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, Italy;
| | - David Ruano-Rosa
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, 47007 Valladolid, Spain;
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering Potsdam (ATB), University of Potsdam, 14469 Potsdam, Germany;
| | - Leonardo Schena
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, 89122 Reggio Calabria, Italy;
| | - Antonino Malacrinò
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, 89122 Reggio Calabria, Italy;
- Correspondence:
| |
Collapse
|
42
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
43
|
G Alshahawey M, S El-Housseiny G, S Elsayed N, Y Alshahrani M, Wakeel LM, M Aboshanab K. New insights on mucormycosis and its association with the COVID-19 pandemic. Future Sci OA 2022; 8:FSO772. [PMID: 35059222 PMCID: PMC8686842 DOI: 10.2144/fsoa-2021-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
COVID-19 continues to cause significant fatality worldwide. Glucocorticoids prove to play essential roles in COVID-19 management; however, the extensive use of steroids together with the virus immune dysregulation may increase the danger of secondary infections with mucormycosis, an angioinvasive fungal infection. Unfortunately, a definite correlation between COVID-19 and elevated mucormycosis infection cases is now clear worldwide. In this review, we discuss the historical record and epidemiology of mucormycosis as well as pathogenesis and associated host immune response, risk factors, clinical presentation, diagnosis and treatment. Special emphasis is given to its association with the current COVID-19 pandemic, including latest updates on COVID-19-associated mucormycosis cases globally, with recommendations for efficacious management.
Collapse
Affiliation(s)
- Mona G Alshahawey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Noha S Elsayed
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Lamia M EL Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
44
|
Sjamsuridzal W, Khasanah M, Febriani R, Vebliza Y, Oetari A, Santoso I, Gandjar I. The effect of the use of commercial tempeh starter on the diversity of Rhizopus tempeh in Indonesia. Sci Rep 2021; 11:23932. [PMID: 34907227 PMCID: PMC8671487 DOI: 10.1038/s41598-021-03308-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
At present, only a single Rhizopus species, R. microsporus, can be found in fresh tempeh produced in Java, Indonesia. The loss of diversity of Rhizopus in tempeh has been associated with the widespread use of commercial tempeh starter in Indonesia since the 2000s. However, the identities of the previous Rhizopus strains associated with tempeh, which have been preserved in a culture collection in Indonesia, have not been verified. The present study aimed to verify the identities of 22 Rhizopus strains isolated from tempeh produced using the traditional tempeh starters from the 1960s to the 2000s. Phylogenetic analysis based on the ITS regions in the rRNA gene sequence data, revealed that the Rhizopus strains belonged to the species R. arrhizus (five strains); R. delemar (14 strains); and R. microsporus (three strains). Verification of the identities of these Rhizopus strains in the present study confirmed the loss of diversity of Rhizopus species in tempeh produced in Indonesia, particularly in Java. Our findings confirmed that the morphological changes in Rhizopus species isolated from tempeh as a result of centuries of domestication.
Collapse
Affiliation(s)
- Wellyzar Sjamsuridzal
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia. .,Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| | - Mangunatun Khasanah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Rela Febriani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Yura Vebliza
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Ariyanti Oetari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.,Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Iman Santoso
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.,Center of Excellence for Indigenous Biological Resources-Genome Studies, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Indrawati Gandjar
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
45
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, et alBoonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
46
|
Dimov SG, Gyurova A, Zagorchev L, Dimitrov T, Georgieva-Miteva D, Peykov S. NGS-Based Metagenomic Study of Four Traditional Bulgarian Green Cheeses from Tcherni Vit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Wang F, Tang T, Mao T, Guo J, Duan Y, Guo X, Yuan B, You J. First Report of Blight on Pinellia ternata (Banxia) Caused by Choanephora cucurbitarum in China. PLANT DISEASE 2021; 105:4165. [PMID: 34241535 DOI: 10.1094/pdis-12-20-2558-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Fanfan Wang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Tao Tang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Ting Mao
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Jie Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yuanyuan Duan
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaoliang Guo
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Bing Yuan
- Key Laboratory of Integrated Management of Crops of Central China, Ministry of Agriculture, P.R. China/Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jingmao You
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| |
Collapse
|
48
|
Nartey LK, Pu Q, Zhu W, Zhang S, Li J, Yao Y, Hu X. Antagonistic and plant growth promotion effects of Mucor moelleri, a potential biocontrol agent. Microbiol Res 2021; 255:126922. [PMID: 34839169 DOI: 10.1016/j.micres.2021.126922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
With the increasing demand for high quality and environmentally safe or green food, Biological Control Agents (BCAs) are playing critical roles in green agriculture, which in turn has paved the way for the requirement of effective, appropriate microbial antagonists. In this study, Mucor moelleri AA1 was isolated and investigated for its growth promotion and antagonism against Athelia rolfsii and Colletotrichum gloeosporiodes. The results showed a high antagonistic activity of M. moelleri against A. rolfsii and C. gloeosporiodes with percentage inhibitions of 73 % and 86 % respectively using the dual plate method, and the same antagonistic activity was also observed in liquid cocultures. A pot study analysis showed significant suppression of the diseases as well as growth promotion on tomato. Scanning electron microscopy (SEM) indicated that M. moelleri inhibited the growth of mycelium and the production of web-like materials. Based on headspace-solid phase microextraction (HS-SPME) analysis, microbial volatile compounds were determined, which were mainly aromatic compounds and alkaloids. Also, several antagonistic enzymes, such as β-1, 3- glucanase, proteases, catalase and ACC deaminase as well as the phytohormone IAA, were found to be produced by M. moelleri. Overall, these results combine to make M. moelleri a good prospective candidate for biological control and as a plant growth-promoting agent. The present study appears to be the first report identifying M. moelleri as a biological control agent.
Collapse
Affiliation(s)
- Linda Korkor Nartey
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuaishuai Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
49
|
Hurdeal VG, Gentekaki E, Hyde KD, Nguyen TTT, Lee HB. Novel Mucor species (Mucoromycetes, Mucoraceae) from northern Thailand. MycoKeys 2021; 84:57-78. [PMID: 34759734 PMCID: PMC8575866 DOI: 10.3897/mycokeys.84.71530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
Mucor species are common fast-growing fungi found in soil. Two new species of Mucor and one new geographical record of M.nederlandicus were collected from northern Thailand and are described in this study. Evidence from morphophysiological data and phylogenetic analysis supports the introduction of the new taxa. Phylogenetic analysis based on the internal transcribed spacer (ITS) and large subunit of the nuclear ribosomal RNA (LSU) data showed that the new isolates cluster distinctly from other Mucor species with high or maximum bootstrap support. Mucoraseptatophorus is characterized by aseptate sporangiophores, globose columella, resistant and deliquescent sporangia, has sympodial, and monopodial branches and shows growth at 37 °C. It also differs from M.irregularis in having smaller sporangiospores, and larger sporangia. Mucorchiangraiensis has subglobose or slightly elongated globose columella, produces hyaline sporangiospores, and resistant and deliquescent sporangia. Furthermore, this species has wider sporangiophore, smaller sporangia and lower growth than M.nederlandicus. A detailed description of the species and illustrations are provided for the novel species.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Thuong T T Nguyen
- Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Dept. of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
50
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|