1
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Li CWD, Herpich C, Haß U, Kochlik B, Weber D, Grune T, Norman K. Essential amino acids and branched-chain amino acids are associated with skeletal muscle and inflammatory parameters in older age. Biogerontology 2025; 26:66. [PMID: 40045114 PMCID: PMC11882671 DOI: 10.1007/s10522-025-10206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Aging is associated with a decline in muscle mass and function, increasing the risk of adverse health outcomes. Amino acid profiling has emerged as a potential tool for assessing skeletal muscle health. This study examines the associations between fasting plasma amino acids, muscle function, and inflammation in healthy older and young adults. Data from 131 participants (101 older adults, 71.5±4.9 years; 30 young adults, 25.5±3.9 years) were analyzed. Skeletal muscle mass was assessed using bioimpedance analysis, and hand grip strength was measured with a dynamometer. Plasma amino acids, kynurenine, and inflammatory markers (CRP, IL-6) were quantified using ultraperformance liquid chromatography with tandem mass spectrometry and commercial immunosorbent assays, respectively. Older adults exhibited lower levels of glutamic acid, isoleucine, leucine, phenylalanine, kynurenine, and kynurenine-to-tryptophan (KYN:TRP) ratio compared to younger individuals (all p<0.05). In older adults, branched-chain and essential amino acids correlated positively with skeletal muscle index (SMI) and hand grip strength, whereas in young adults, only glutamic acid, proline, and KYN:TRP showed positive associations with SMI (all p<0.05). CRP and IL-6 were associated with several amino acids in older adults but not in younger individuals. These findings suggest that age-related shifts in amino acid profiles may reflect underlying changes in muscle metabolism and function, highlighting their potential as early indicators of muscle decline.
Collapse
Affiliation(s)
- Ching Wah Donna Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558
| | - Ulrike Haß
- Faculty of Health Science Brandenburg, Department of Rehabilitation Medicine, University of Potsdam, Potsdam, Germany, 14476
| | - Bastian Kochlik
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany, 10589
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 14558
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 14558
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558.
- Department of Geriatrics and Medical Gerontology, Charité - Unniversitätsmedizin Berlin, Berlin, Germany, 13347.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Ratuski AS, Theil JH, Ahloy-Dallaire J, Gaskill BN, Pritchett-Corning KR, Felt SA, Garner JP. Risk factors for barbering in laboratory mice. Sci Rep 2025; 15:7456. [PMID: 40033013 DOI: 10.1038/s41598-025-91687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Barbering is a common abnormal behavior in laboratory mice, where mice pluck their own fur and/or the fur or whiskers of their cage mates. Barbering mice are a concern for welfare and research quality, as well as serving as a spontaneous model of trichotillomania (a hair-pulling disorder in humans). Causes and prevention of barbering are poorly understood, although there is evidence that both biological and environmental factors play a role in its prevalence. Since initial work in this area was done 20 years ago, mouse husbandry has changed dramatically. We provide an updated analysis of risk factors for barbering in laboratory mice based on point prevalence of hair loss in 2544 cages over one year (7007 mice). We analyzed the effects of biological, environmental, and husbandry factors that are known to be stressors for mice. We found that certain risk factors for barbering, such as sex and breeding status, have persisted despite changes in housing. We additionally identified differences in prevalence based on genetic background, housing system, time of year, and a "hotspot" effect showing spatial clustering of barbering. Our findings can be used to increase understanding of this behavior and to inform changes in husbandry to reduce its prevalence.
Collapse
Affiliation(s)
- Anna S Ratuski
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA.
| | - Jacob H Theil
- Campus Veterinary Services, University of California, Davis, CA, USA
| | | | | | | | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ma Y, Chen M, Huang K, Chang W. The impact of cysteine on lifespan in three model organisms: A systematic review and meta-analysis. Aging Cell 2025; 24:e14392. [PMID: 39478327 PMCID: PMC11822635 DOI: 10.1111/acel.14392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 02/14/2025] Open
Abstract
Cysteine is an amino acid present in thiol proteins and often dictates their secondary structures. Although considered nonessential, cysteine may be essential for patients with certain metabolic diseases and can reduce the requirement for dietary methionine. Cysteine and some of its derivatives, such as N-acetylcysteine, are considered antioxidants and widely used in animal aging studies. To provide insights into the potential anti-aging effects of cysteine, we systematically reviewed and performed a meta-analysis to investigate the impact of cysteine supplementation on lifespan using three model organisms: mice, nematodes, and fruit flies. A total of 13 mouse studies, 13 C. elegans studies, and 5 Drosophila studies were included in the analysis. The findings revealed that cysteine supplementation significantly reduced the risk of mortality in mice and C. elegans. Subgroup analysis showed consistent results across different starting times and administration methods and revealed adverse effects of high doses on worms and a lack of effect in nondisease mouse models. Similar to mice, the effects of cysteine supplementation on Drosophila were not statistically significant, except in transgenic flies. The study identified certain limitations, including the quality of the included studies and the potential for publication bias. We also discussed uncertainties in the underlying molecular mechanisms and the clinical application of dietary cysteine.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Mengqi Chen
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Kaiyao Huang
- Key Laboratory of Algal BiologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanHubeiChina
| | - Wakam Chang
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| |
Collapse
|
6
|
Yang J, Qian C, Su H, Zhang J, Yu S, Yu X, Pu L. Fluorous-Phase- and Chiral-Axis-Enhanced Fluorescent Sensitivity and Chemoselectivity for Cysteine Recognition. Org Lett 2025; 27:571-576. [PMID: 39761029 PMCID: PMC11744791 DOI: 10.1021/acs.orglett.4c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/01/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Highly fluorinated naphthyl aldehyde 1 and binaphthyl aldehyde (R)-2 were designed and synthesized for fluorous-phase-based sensing. Greatly enhanced sensitivity and chemoselectivity in going from 1 to (R)-2 in the fluorescent detection of cysteine has been discovered. This is attributed to the increased structural rigidity of the axially chiral binaphthyl unit in (R)-2 upon reaction with cysteine to form the corresponding thiazolidine product. The fluorous-phase-based detection of cysteine not only can allow the analysis to be conducted in a phase away from the interference of other organic and inorganic species but also results in significantly increased fluorescence response.
Collapse
Affiliation(s)
- Jiaqiao Yang
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cheng Qian
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hanyu Su
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ji Zhang
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shanshan Yu
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoqi Yu
- Key
Laboratory of Green Chemistry and Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province,
Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Lin Pu
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Angelini A, Garcia Marquez G, Malovannaya A, Fiorotto ML, Saltzman A, Jain A, Trial J, Taffet GE, Cieslik KA. Sex Differences in Response to Diet Enriched With Glutathione Precursors in the Aging Heart. J Gerontol A Biol Sci Med Sci 2025; 80:glae258. [PMID: 39492659 PMCID: PMC11788829 DOI: 10.1093/gerona/glae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 11/05/2024] Open
Abstract
Common features of the aging heart are dysregulated metabolism, inflammation, and fibrosis. Elevated oxidative stress is another hallmark of cardiac aging that can exacerbate each of these conditions. We hypothesize that by increasing natural antioxidant levels (glutathione), we will improve cardiac function. Twenty-one-month-old mice were fed glycine and N-acetyl cysteine (GlyNAC; glutathione precursors)-supplemented or control diets for 12 weeks. Heart function was monitored longitudinally, and the exercise performance was determined at the end of the study. We found that the GlyNAC diet was beneficial for old male but not old female mice, leading to an increase of Ndufb8 expression (a subunit of the mitochondrial respiratory chain complex), and higher enzymatic activity for CPT1b and CrAT, 2 carnitine acyltransferases that are critical to cardiomyocyte metabolism. Although no quantifiable change of collagen turnover was detected, hearts from GlyNAC-fed old males exhibited a slight but significant enrichment in Fmod, a protein that can inhibit collagen fibril formation, possibly reducing extracellular matrix stiffness and thus improving diastolic function. Cardiac diastolic function was modestly improved in males but not females, and surprisingly GlyNAC-fed female mice showed a decline in exercise performance. In summary, our work supports the concept that aged male and female hearts are phenotypically different. These basic differences may affect the response to pharmacological and diet interventions, including antioxidants.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Grecia Garcia Marquez
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Geriatrics and Palliative Medicine, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - JoAnn Trial
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - George E Taffet
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Geriatrics and Palliative Medicine, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Katarzyna A Cieslik
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Ulusu NN. Revealing the secrets of Blue Zones. Front Pharmacol 2024; 15:1428111. [PMID: 39726786 PMCID: PMC11669513 DOI: 10.3389/fphar.2024.1428111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Aging is influenced by cellular senescence mechanisms that are associated with oxidative stress. Oxidative stress is the imbalance between antioxidants and free radicals. This imbalance affects enzyme activities and causes mitochondrial dysfunction. It also slows down cellular energy production and disrupts cellular homeostasis. Additionally, oxidative stress stimulates inflammation, increases the number of point mutations, and alters intercellular communication. It can lead to epigenetic alterations, genomic instability, telomere attrition, and loss of proteostasis. Ultimately, these factors contribute to aging and the development of chronic diseases. Glucose-6-phosphate dehydrogenase (G6PD) is an antioxidant enzyme that protects cells from oxidative and nitrosative damage. It helps restore redox balance, preserve macromolecule function, and rescue cells from cellular senescence, autophagy, and stress-induced apoptosis. G6PD is considered an anti-senescence enzyme. The World Health Organization classifies G6PD variants into five groups based on the enzyme's residual activity. The first four classes are categorized according to the degree of G6PD deficiency, while the fifth class includes variants with enzyme activities greater than normal. Increased G6PD activity does not exhibit clinical manifestations. Consequently, the full spectrum of mutations and the prevalence of increased G6PD activity in the population remain unknown. The world's oldest and healthiest people live in Blue Zones. These comprise isolated populations, and there may be a geographic prevalence of high-activity G6PD variants that protect against oxidative stress-induced senescence. To uncover the secret of centenarians' longevity, additional research is needed to determine whether the hidden factor is the increased activity of the G6PD enzyme.
Collapse
Affiliation(s)
- N. Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
9
|
Meegaswatte H, Speer K, McKune AJ, Naumovski N. Functional Foods and Nutraceuticals for the Management of Cardiovascular Disease Risk in Postmenopausal Women. Rev Cardiovasc Med 2024; 25:460. [PMID: 39742223 PMCID: PMC11683719 DOI: 10.31083/j.rcm2512460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death in women and risk of development is greatly increased following menopause. Menopause occurs over several years and is associated with hormonal changes, including a reduction in estradiol and an increase in follicle-stimulating hormone. This hormonal shift may result in an increased risk of developing abdominal adiposity, insulin resistance, dyslipidemia, vascular dysfunction, hypertension, type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated fatty liver disease (MAFLD), and metabolic syndrome (MetS). Furthermore, with the onset of menopause, there is an increase in oxidative stress that is associated with impaired vascular function, inflammation, and thrombosis, further increasing the risk of CVD development. Despite the harmful consequences of the menopause transition being well known, women in premenopausal, perimenopausal, and postmenopausal stages are unlikely to be enrolled in research studies. Therefore, investigations on the prevention and treatment of cardiovascular and metabolic disease in middle-aged women are still relatively limited. Whilst lifestyle interventions are associated with reduced CVD risk in this population sample, the evidence still remains inconclusive. Therefore, it is important to explore the effectiveness of early intervention and potential therapeutic approaches to maintain cellular redox balance, preserve endothelium, and reduce inflammation. Glycine, N-acetylcysteine, and L-theanine are amino acids with potential antioxidant and anti-inflammatory activity and are identified as therapeutic interventions in the management of age-related and metabolic diseases. The benefits of the intake of these amino acids for improving factors associated with cardiovascular health are discussed in this review. Future studies using these amino acids are warranted to investigate their effect on maintaining the vascular health and cardiovascular outcomes of postmenopausal women.
Collapse
Affiliation(s)
- Harshini Meegaswatte
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Kathryn Speer
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Andrew J. McKune
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, 4041 Durban, Republic of South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece
| |
Collapse
|
10
|
Currais A, Kepchia D, Liang Z, Maher P. The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator? Antioxid Redox Signal 2024; 41:e1173-e1186. [PMID: 35243895 PMCID: PMC11693968 DOI: 10.1089/ars.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
11
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
12
|
Broome SC, Whitfield J, Karagounis LG, Hawley JA. Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing. Sports Med 2024; 54:2291-2309. [PMID: 39060742 PMCID: PMC11393155 DOI: 10.1007/s40279-024-02072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The age-related loss of skeletal muscle mass and physical function leads to a loss of independence and an increased reliance on health-care. Mitochondria are crucial in the aetiology of sarcopenia and have been identified as key targets for interventions that can attenuate declines in physical capacity. Exercise training is a primary intervention that reduces many of the deleterious effects of ageing in skeletal muscle quality and function. However, habitual levels of physical activity decline with age, making it necessary to implement adjunct treatments to maintain skeletal muscle mitochondrial health and physical function. This review provides an overview of the effects of ageing and exercise training on human skeletal muscle mitochondria and considers several supplements that have plausible mechanistic underpinning to improve physical function in ageing through their interactions with mitochondria. Several supplements, including MitoQ, urolithin A, omega-3 polyunsaturated fatty acids (n3-PUFAs), and a combination of glycine and N-acetylcysteine (GlyNAC) can improve physical function in older individuals through a variety of inter-dependent mechanisms including increases in mitochondrial biogenesis and energetics, decreases in mitochondrial reactive oxygen species emission and oxidative damage, and improvements in mitochondrial quality control. While there is evidence that some nicotinamide adenine dinucleotide precursors can improve physical function in older individuals, such an outcome seems unrelated to and independent of changes in skeletal muscle mitochondrial function. Future research should investigate the safety and efficacy of compounds that can improve skeletal muscle health in preclinical models through mechanisms involving mitochondria, such as mitochondrial-derived peptides and mitochondrial uncouplers, with a view to extending the human health-span.
Collapse
Affiliation(s)
- Sophie C Broome
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
13
|
Salles J, Gueugneau M, Laleg K, Giraudet C, Sanchez P, Blot A, Richard R, Neveux N, Lefranc-Millot C, Perreau C, Guérin-Deremaux L, Boirie Y, Walrand S. Circulating Amino Acid Concentration after the Consumption of Pea or Whey Proteins in Young and Older Adults Affects Protein Synthesis in C2C12 Myotubes. Nutrients 2024; 16:2870. [PMID: 39275186 PMCID: PMC11397729 DOI: 10.3390/nu16172870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/16/2024] Open
Abstract
As older adults tend to reduce their intake of animal-source proteins, plant-source proteins may offer valuable resources for better protein intake. The aim of this study was to assess whether the pea proteins can be used to achieve blood amino acid levels that stimulate muscle protein synthesis. We measured variations in plasma amino acid concentrations in young and older adults given pea (NUTRALYS® S85 Plus) or whey proteins either alone or in a standardized meal. The effect of amino acid concentrations on protein synthesis in C2C12 myotubes was determined. In terms of results, plasma amino acid concentrations reflected the difference between the amino acid contents of whey and pea proteins. Blood leucine showed a greater increase of 91 to 130% with whey protein compared to pea protein, while the opposite was observed for arginine (A greater increase of 147 to 210% with pea compared to whey). Culture media prepared with plasmas from the human study induced age-dependent but not protein-type-dependent changes in myotube protein synthesis. In conclusion, pea and whey proteins have the same qualities in terms of their properties to maintain muscle protein synthesis. Pea proteins can be recommended for older people who do not consume enough animal-source proteins.
Collapse
Affiliation(s)
- Jérôme Salles
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Karima Laleg
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Christophe Giraudet
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Adeline Blot
- CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 63000 Clermont-Ferrand, France
| | - Ruddy Richard
- CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 63000 Clermont-Ferrand, France
| | - Nathalie Neveux
- Service de Biochimie, Hôpital Cochin, APHP, Université Paris Centre, 75679 Paris CEDEX 14, France
| | - Catherine Lefranc-Millot
- Life Sciences Research & Development, Nutrition & Health Department, Roquette, 62136 Lestrem, France
| | - Caroline Perreau
- Life Sciences Research & Development, Nutrition & Health Department, Roquette, 62136 Lestrem, France
| | - Laetitia Guérin-Deremaux
- Life Sciences Research & Development, Nutrition & Health Department, Roquette, 62136 Lestrem, France
| | - Yves Boirie
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, INRAE, CRNH Auvergne, 63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Feng Y, Gu XB, Zhou M, Wang HL, Feng RN, Zhang ZH. Association between dietary glycine intake and the prevalence of hypertension, hyperlipidemia, overweight or obesity in rural northern China: a cross-sectional study. Front Nutr 2024; 11:1364309. [PMID: 39070255 PMCID: PMC11272656 DOI: 10.3389/fnut.2024.1364309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Objective The objective of this research is to investigate the relationship between dietary glycine consumption and the prevalence of hypertension, hyperlipidemia, and overweight or obesity in economically disadvantaged areas of northern China using a cross-sectional study design. Methods A cross-sectional study involving 774 participants utilized a web-based dietary questionnaire (IDQC) and underwent physical measurements. Data analysis was conducted using IBM SPSS Statistics software (Version 21). Participants were stratified into four groups based on quartiles of their dietary glycine intake: Q1 (<1.32), Q2 (1.32-1.82), Q3 (1.82-2.26), and Q4 (>2.26). Continuous variables were reported as mean ± standard deviation and compared using ANOVA or the Kruskal-Wallis test, while categorical variables were presented as frequencies (%) and compared using the chi-square test. Finally, multivariable logistic regression with p-value of less than 0.05 was considered statistically significant. Results Significant differences in dietary glycine intake were observed between the highest quartile group (Q4) and the lowest quartile group (Q1), with corresponding dominance ratios of 0.590 (95% CI, 0.360-0.966), 0.547 (95% CI, 0.327-0.913), and 0.547 (95% CI, 0.353-0.850) for the risk of hypertension, hyperlipidemia, and overweight/obesity, respectively. Furthermore, no significant correlation was found between dietary glycine intake and hypertension or hyperlipidemia within each sex and age subgroup. Conclusion There exists a potential correlation between increased dietary glycine intake and reduced prevalence of hypertension, hyperlipidemia, and overweight/obesity. However, additional research is necessary to validate this finding through larger-scale studies conducted at a population level.
Collapse
Affiliation(s)
- Ying Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Xing-bo Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Meng Zhou
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | - Hong-lan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| | - Ren-nan Feng
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, China
| | - Zhi-hong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
15
|
Dimet-Wiley AL, Latham CM, Brightwell CR, Neelakantan H, Keeble AR, Thomas NT, Noehren H, Fry CS, Watowich SJ. Nicotinamide N-methyltransferase inhibition mimics and boosts exercise-mediated improvements in muscle function in aged mice. Sci Rep 2024; 14:15554. [PMID: 38969654 PMCID: PMC11226645 DOI: 10.1038/s41598-024-66034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.
Collapse
Affiliation(s)
| | - Christine M Latham
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Alexander R Keeble
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Haley Noehren
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Ruparell A, Alexander JE, Eyre R, Carvell-Miller L, Leung YB, Evans SJM, Holcombe LJ, Heer M, Watson P. Glycine supplementation can partially restore oxidative stress-associated glutathione deficiency in ageing cats. Br J Nutr 2024; 131:1947-1961. [PMID: 38418414 PMCID: PMC11361917 DOI: 10.1017/s0007114524000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Collapse
Affiliation(s)
- Avika Ruparell
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | | | - Ryan Eyre
- Royal Canin Pet Health and Nutrition Centre, 6574 State Route 503N, Lewisburg, OH, USA
| | | | - Y. Becca Leung
- Royal Canin Research & Development Center, Aimargues, France
| | | | - Lucy J. Holcombe
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Martina Heer
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| |
Collapse
|
17
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
18
|
He W, Connolly ED, Cross HR, Wu G. Dietary protein and amino acid intakes for mitigating sarcopenia in humans. Crit Rev Food Sci Nutr 2024; 65:2538-2561. [PMID: 38803274 DOI: 10.1080/10408398.2024.2348549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Adult humans generally experience a 0.5-1%/year loss in whole-body skeletal muscle mass and a reduction of muscle strength by 1.5-5%/year beginning at the age of 50 years. This results in sarcopenia (aging-related progressive losses of skeletal muscle mass and strength) that affects 10-16% of adults aged ≥ 60 years worldwide. Concentrations of some amino acids (AAs) such as branched-chain AAs, arginine, glutamine, glycine, and serine are reduced in the plasma of older than young adults likely due to insufficient protein intake, reduced protein digestibility, and increased AA catabolism by the portal-drained viscera. Acute, short-term, or long-term administration of some of these AAs or a mixture of proteinogenic AAs can enhance blood flow to skeletal muscle, activate the mechanistic target of rapamycin cell signaling pathway for the initiation of muscle protein synthesis, and modulate the metabolic activity of the muscle. In addition, some AA metabolites such as taurine, β-alanine, carnosine, and creatine have similar physiological effects on improving muscle mass and function in older adults. Long-term adequate intakes of protein and the AA metabolites can aid in mitigating sarcopenia in elderly adults. Appropriate combinations of animal- and plant-sourced foods are most desirable to maintain proper dietary AA balance.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H Russell Cross
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Lao ZL, Wu D, Li HR, Feng YF, Zhang LW, Jiang XY, Liu YS, Wu DW, Hu JJ. Uptake, translocation, and metabolism of organophosphate esters (OPEs) in plants and health perspective for human: A review. ENVIRONMENTAL RESEARCH 2024; 249:118431. [PMID: 38346481 DOI: 10.1016/j.envres.2024.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.
Collapse
Affiliation(s)
- Zhi-Lang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dan Wu
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Fei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Long-Wei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xue-Yi Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi-Shan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dong-Wei Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jun-Jie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
20
|
Xu X, Zhang CJ, Talifu Z, Liu WB, Li ZH, Wang XX, Du HY, Ke H, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. The Effect of Glycine and N-Acetylcysteine on Oxidative Stress in the Spinal Cord and Skeletal Muscle After Spinal Cord Injury. Inflammation 2024; 47:557-571. [PMID: 37975960 DOI: 10.1007/s10753-023-01929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Oxidative stress is a frequently occurring pathophysiological feature of spinal cord injury (SCI) and can result in secondary injury to the spinal cord and skeletal muscle atrophy. Studies have reported that glycine and N-acetylcysteine (GlyNAC) have anti-aging and anti-oxidative stress properties; however, to date, no study has assessed the effect of GlyNAC in the treatment of SCI. In the present work, we established a rat model of SCI and then administered GlyNAC to the animals by gavage at a dose of 200 mg/kg for four consecutive weeks. The BBB scores of the rats were significantly elevated from the first to the eighth week after GlyNAC intervention, suggesting that GlyNAC promoted the recovery of motor function; it also promoted the significant recovery of body weight of the rats. Meanwhile, the 4-week heat pain results also suggested that GlyNAC intervention could promote the recovery of sensory function in rats to some extent. Additionally, after 4 weeks, the levels of glutathione and superoxide dismutase in spinal cord tissues were significantly elevated, whereas that of malondialdehyde was significantly decreased in GlyNAC-treated animals. The gastrocnemius wet weight ratio and total antioxidant capacity were also significantly increased. After 8 weeks, the malondialdehyde level had decreased significantly in spinal cord tissue, while reactive oxygen species accumulation in skeletal muscle had decreased. These findings suggested that GlyNAC can protect spinal cord tissue, delay skeletal muscle atrophy, and promote functional recovery in rats after SCI.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
21
|
Paoletti A, Pencharz PB, Rafii M, Tomlinson C, Kong D, Xu L, Elango R, Courtney-Martin G. Protein intake affects erythrocyte glutathione synthesis in healthy adults aged ≥60 years in a repeated-measures trial. Am J Clin Nutr 2024; 119:917-926. [PMID: 38325765 DOI: 10.1016/j.ajcnut.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Protein recommendations for older adults are based on nitrogen balance data from young adults. Physiological studies using the indicator amino acid oxidation method suggest they need 30% to 50% more protein than current recommendations. We herein present glutathione (GSH) as a physiological estimate of protein adequacy in older adults. OBJECTIVES The objective was to measure GSH kinetics in response to varying protein intakes in a repeated-measures design in healthy adults aged ≥60 y using the precursor-product method. METHODS Sixteen healthy older adults (n = 8 male and n = 8 female; body mass index ≤30 kg/m2) were studied. Each received 4 of 6 protein intakes in random order (0.66, 0.8, 0.9, 1.1, 1.3 and 1.5 g⋅kg-1⋅d-1). At each intake level, participants underwent isotope infusion studies of 7 h duration following a 3-d adaptation to the test level of protein. On the fourth day, GSH fractional (FSR) and absolute synthesis (ASR) rates were quantified by measuring the incorporation of U-[13C2-15N]glycine into GSH at isotopic steady state. A mixed-effect change-point regression model was used to determine a breakpoint in FSR and ASR. Secondary outcomes included plasma concentrations of oxidative stress markers, homocysteine, 5-L-oxoproline (5-OP), and urinary sulfate. The effect of secondary outcomes on GSH kinetics was analyzed using a joint linear mixed-effect model and Tukey's post hoc test. RESULTS A protein intake of 1.08 g⋅kg-1⋅d-1 (95% confidence interval [CI]: 0.83, 1.32; Rm2 = 0.207; Rc2 = 0.671; P < 0.001) maximized GSH FSR. There was no effect of protein intake on concentrations of erythrocyte GSH, plasma homocysteine, oxidative stress markers, or 5-OP (P > 0.05). Protein intake had a positive effect on urinary sulfate excretion (P < 0.0001). CONCLUSION A protein intake of 1.08 g⋅kg-1⋅d-1 from a high-quality protein maximized GSH synthesis in adults ≥60 y. This lends support to data suggesting a requirement higher than the current recommendation. This study was registered at clinicaltrials.gov as NCT02971046.
Collapse
Affiliation(s)
- Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mahroukh Rafii
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher Tomlinson
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- School of Mathematical Sciences, Soochow University, Jiangsu Province, China
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Szwiega S, Xu L, Rafii M, Pencharz PB, Kong D, Tomlinson C, Elango R, Courtney-Martin G. Protein intake affects erythrocyte glutathione synthesis in young healthy adults in a repeated-measures trial. Am J Clin Nutr 2024; 119:371-383. [PMID: 37992970 DOI: 10.1016/j.ajcnut.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND In 2005, the Institute of Medicine advised using methods other than nitrogen balance (NB) for determining protein requirements. Since then, protein requirements using indicator amino acid oxidation (IAAO) have been published and are higher than NB. Glutathione (GSH), a tripeptide of cysteine, glutamate, and glycine, is a principal antioxidant that can be used as a functional indicator of protein adequacy. OBJECTIVES The aim of this study was to measure changes in erythrocyte GSH kinetics [fractional synthesis rate (FSR) and absolute synthesis rate (ASR)] in healthy adults following a range of protein intakes at and above the current recommendations. METHODS Sixteen healthy adults [8 males and 8 females, aged 25.6 ± 0.9 y (mean ± SEM)] were studied at 4 of 6 protein intakes ranging from 0.6 to 1.5 g⋅kg-1⋅d-1. Erythrocyte GSH kinetics were assessed during a 7-h infusion of [U-13C2-15N]glycine following 2 d of adaptation to each protein intake. Blood and urine tests were performed to measure oxidative stress markers, plasma homocysteine, triglycerides, plasma amino acid concentrations, 5-L-oxoproline (5-OP), and urinary sulfate. The protein intake that maximized GSH synthesis was determined using mixed-effect change-point regression in R. Primary and secondary outcomes were analyzed using linear mixed-effects and repeated-measures analysis of variance with Tukey's post hoc test. RESULTS The protein intake that maximized GSH FSR at 78%⋅d-1 was 1.0 g⋅kg-1⋅d-1 (95% confidence interval: 0.63, 1.39). GSH ASR was significantly lower at 0.6 and 0.8 g⋅kg-1⋅d-1 than at 1.5 g⋅kg-1⋅d-1 (2.03 and 2.17, respectively, compared with 3.71 mmol⋅L-1⋅d-1). Increasing the protein intake led to increased urinary sulfate but did not affect erythrocyte GSH concentration, plasma oxidative stress markers, triglycerides, homocysteine, or 5-OP. CONCLUSIONS A protein intake of 1.0 g⋅kg-1⋅d-1 maximized GSH synthesis, which is in agreement with earlier IAAO-derived protein requirements of 0.93 to 1.2 g⋅kg-1⋅d-1. These findings suggest that recommendations based on NB (0.66 g⋅kg-1⋅d-1) may underestimate protein needs for adequate health. This trial was registered at clinicaltrials.gov as NCT02971046.
Collapse
Affiliation(s)
- Sylwia Szwiega
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Libai Xu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada; School of Mathematical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Mahroukh Rafii
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Tomlinson
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
24
|
Xu X, Du HY, Talifu Z, Zhang CJ, Li ZH, Liu WB, Liang YX, Xu XL, Zhang JM, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. Glycine and N-Acetylcysteine (GlyNAC) Combined with Body Weight Support Treadmill Training Improved Spinal Cord and Skeletal Muscle Structure and Function in Rats with Spinal Cord Injury. Nutrients 2023; 15:4578. [PMID: 37960231 PMCID: PMC10649910 DOI: 10.3390/nu15214578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Skeletal muscle atrophy is a frequent complication after spinal cord injury (SCI) and can influence the recovery of motor function and metabolism in affected patients. Delaying skeletal muscle atrophy can promote functional recovery in SCI rats. In the present study, we investigated whether a combination of body weight support treadmill training (BWSTT) and glycine and N-acetylcysteine (GlyNAC) could exert neuroprotective effects, promote motor function recovery, and delay skeletal muscle atrophy in rats with SCI, and we assessed the therapeutic effects of the double intervention from both a structural and functional viewpoint. We found that, after SCI, rats given GlyNAC alone showed an improvement in Basso-Beattie-Bresnahan (BBB) scores, gait symmetry, and results in the open field test, indicative of improved motor function, while GlyNAC combined with BWSTT was more effective than either treatment alone at ameliorating voluntary motor function in injured rats. Meanwhile, the results of the skeletal muscle myofiber cross-sectional area (CSA), hindlimb grip strength, and acetylcholinesterase (AChE) immunostaining analysis demonstrated that GlyNAC improved the structure and function of the skeletal muscle in rats with SCI and delayed the atrophication of skeletal muscle.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Wu-Bo Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250100, China
| | - Yi-Xiong Liang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Xu-Luan Xu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Jin-Ming Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing 100069, China; (X.X.)
| |
Collapse
|
25
|
Homolak J. Gastrointestinal redox homeostasis in ageing. Biogerontology 2023; 24:741-752. [PMID: 37436501 DOI: 10.1007/s10522-023-10049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The gastrointestinal (GI) barrier acts as the primary interface between humans and the external environment. It constantly faces the risk of inflammation and oxidative stress due to exposure to foreign substances and microorganisms. Thus, maintaining the structural and functional integrity of the GI barrier is crucial for overall well-being, as it helps prevent systemic inflammation and oxidative stress, which are major contributors to age-related diseases. A healthy gut relies on maintaining gut redox homeostasis, which involves several essential elements. Firstly, it requires establishing a baseline electrophilic tone and an electrophilic mucosal gradient. Secondly, the electrophilic system needs to have sufficient capacity to generate reactive oxygen species, enabling effective elimination of invading microorganisms and rapid restoration of the barrier integrity following breaches. These elements depend on physiological redox signaling mediated by electrophilic pathways such as NOX2 and the H2O2 pathway. Additionally, the nucleophilic arm of redox homeostasis should exhibit sufficient reactivity to restore the redox balance after an electrophilic surge. Factors contributing to the nucleophilic arm include the availability of reductive substrates and redox signaling mediated by the cytoprotective Keap1-Nrf2 pathway. Future research should focus on identifying preventive and therapeutic strategies that enhance the strength and responsiveness of GI redox homeostasis. These strategies aim to reduce the vulnerability of the gut to harmful stimuli and address the decline in reactivity often observed during the aging process. By strengthening GI redox homeostasis, we can potentially mitigate the risks associated with age-related gut dyshomeostasis and optimize overall health and longevity.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
26
|
Paoletti A, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. The Minimum Methionine Requirement for Adults Aged ≥60 Years Is the Same in Males and Females. Nutrients 2023; 15:4112. [PMID: 37836396 PMCID: PMC10574673 DOI: 10.3390/nu15194112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The minimum methionine requirement in the presence of excess dietary cysteine has not been determined in older adults. This study aimed to determine the minimum methionine requirement in healthy older adults using the indicator amino acid oxidation (IAAO) method. Fifteen healthy adults ≥ 60 years of age received seven methionine intakes (0 to 20 mg/kg/d) plus excess dietary cysteine (40 mg/kg/d). Oxidation of the indicator, L-[1-13C]phenylalanine (F13CO2), was used to estimate the mean minimum methionine requirement using a change-point mixed-effect model. There was no statistical difference between male and female requirement estimates, so the data were pooled to generate a mean of 5.1 mg/kg/d (Rm2 = 0.46, Rc2 = 0.77; p < 0.01; 95% CI: 3.67, 6.53 mg/kg/d). This is the first study to estimate the minimum methionine requirement in healthy older adults, which is the same between the sexes and as our lab's previous estimate in young adults. The findings are relevant considering current recommendations for increased consumption of plant foods, which will help to establish the appropriate balance of methionine and cysteine intake required to satisfy the sulphur amino acid requirements of older adults.
Collapse
Affiliation(s)
- Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (P.B.P.)
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul B. Pencharz
- Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (P.B.P.)
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1X8, Canada
| | - Ronald O. Ball
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 1X6, Canada;
| | - Libai Xu
- School of Mathematical Sciences, Soochow University, Suzhou 215006, China;
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC V6H 0B3, Canada;
- British Columbia Children’s Hospital Research Institute, British Columbia Children’s Hospital, Vancouver, BC V6H 3N1, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (P.B.P.)
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 3J7, Canada
| |
Collapse
|
27
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
29
|
Paoletti A, Pencharz PB, Ball RO, Kong D, Xu L, Elango R, Courtney-Martin G. The dietary requirement for total sulfur amino acids in adults aged ≥60 years appears to be higher in males than in females. Am J Clin Nutr 2023; 118:538-548. [PMID: 37356549 DOI: 10.1016/j.ajcnut.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND The total sulfur amino acid (TSAA) recommendation in older adults is based on data from young adults. Physiological evidence suggests that older adults have a higher requirement than young adults. OBJECTIVES The objective of this study was to determine the TSAA requirement in healthy men and women aged ≥60 y. METHODS The TSAA requirement was determined using the indicator amino acid oxidation method with L-[1-13C]phenylalanine as the indicator. At recruitment, 15 older adults (n = 7 men and n = 8 women; BMI < 30 kg/m2) were assigned to receive 7 methionine intakes (5, 10, 15, 19, 25, 35, and 40 mg/kg/d) without dietary cysteine. Intake levels were randomly assigned to each subject. Following enrollment, 2 subjects completed 2 intakes and 3 completed 3, while the remainder completed all 7. Mean TSAA requirement was determined from oxidation of L-[1-13C]phenylalanine using a mixed-effect change-point model. The 95% CI was calculated using parametric bootstrap. To test whether breakpoints were different between men and women, the overlap in the 95% CI was calculated. RESULTS The mean TSAA requirement was 26.2 (Rm2 = 0.39, Rc2 = 0.89; P < 0.001) and 17.1 mg/kg/d (Rm2 = 0.22, Rc2 = 0.79; P < 0.001) for men and women, respectively. The requirement was significantly higher in men than in women (difference in CI: 9.1 ± 8.85). CONCLUSIONS To our knowledge, this is the first study to determine the TSAA requirement in older adults. The requirement in older women is similar to current recommendations but is 75% higher in older men. These findings are important given recommendations for increased plant protein consumption. They will help in the assessment of diet quality and provide the basis of dietary guidelines for older adults consuming a plant-based diet. This trial was registered at clinicaltrials.gov as NCT04595188.
Collapse
Affiliation(s)
- Alyssa Paoletti
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald O Ball
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Libai Xu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajavel Elango
- Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
31
|
Shi S, Geng Z, Yu X, Hu B, Liu L, Chi Z, Qu L, Zhang M, Jin Y. Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption. Genes (Basel) 2023; 14:1729. [PMID: 37761869 PMCID: PMC10530922 DOI: 10.3390/genes14091729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Salidroside (Sal) possesses several pharmacological activities, such as antiaging, and anti-inflammatory, antioxidant, anticancer activities, and proliferation-promoting activities, but the effects of Sal on oocytes have rarely been reported. In the present study, we evaluated the beneficial effects of Sal, which is mainly found in the roots of Rhodiola. Porcine cumulus oocyte complexes were cultured in IVM medium supplemented (with 250 μmol/L) with Sal or not supplemented with Sal. The maturation rate in the Sal group increased from 88.34 ± 4.32% to 94.12 ± 2.29%, and the blastocyst rate in the Sal group increased from 30.35 ± 3.20% to 52.14 ± 7.32% compared with that in the control group. The experimental groups showed significant improvements in the cumulus expansion area. Sal reduced oocyte levels of reactive oxygen species (ROS) and enhanced intracellular GSH levels. Sal supplementation enhanced the mitochondrial membrane potential (MMP), ATP level, and mtDNA copy number, which shows that Sal enhances the cytoplasmic maturation of oocytes. Oocytes in the Sal group exhibited slowed apoptosis and reduced DNA breakage. Cell cycle signals and oocyte meiosis play important roles in oocyte maturation. The mRNA expressions of the MAPK pathway and MAPK phosphorylation increased significantly in the Sal group. The mRNA expression of the oocyte meiosis gene also increased significantly. These results show that Sal enhances the nuclear maturation of oocytes. Moreover, Sal increased the number of blastocyst cells, the proliferation of blastocysts, and the expressions of pluripotency genes. Sal down-regulated apoptosis-related genes and the apoptotic cell rate of blastocysts. In summary, our results demonstrate that Sal is helpful to improving the quality of porcine oocytes in vitro, and their subsequent embryonic development.
Collapse
Affiliation(s)
- Shuming Shi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Zhaojun Geng
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Xianfeng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Bing Hu
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun 130062, China;
| | - Liying Liu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Zhichao Chi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Linyi Qu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| | - Mingjun Zhang
- Animal Genome Editing Technology Innovation Center, College of Animal Science, Jilin University, Changchun 130062, China;
| | - Yongxun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (S.S.); (Z.G.); (X.Y.); (L.L.); (Z.C.); (L.Q.)
| |
Collapse
|
32
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023; 43:2627-2642. [PMID: 36988772 PMCID: PMC11410137 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
33
|
Martinez-Banaclocha MA. Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond. Antioxidants (Basel) 2023; 12:1373. [PMID: 37507913 PMCID: PMC10376658 DOI: 10.3390/antiox12071373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Encouraging recent data on the molecular pathways underlying aging have identified variants and expansions of genes associated with DNA replication and repair, telomere and stem cell maintenance, regulation of the redox microenvironment, and intercellular communication. In addition, cell rejuvenation requires silencing some transcription factors and the activation of pluripotency, indicating that hidden molecular networks must integrate and synchronize all these cellular mechanisms. Therefore, in addition to gene sequence expansions and variations associated with senescence, the optimization of transcriptional regulation and protein crosstalk is essential. The protein cysteinome is crucial in cellular regulation and plays unexpected roles in the aging of complex organisms, which show cumulative somatic mutations, telomere attrition, epigenetic modifications, and oxidative dysregulation, culminating in cellular senescence. The cysteine thiol groups are highly redox-active, allowing high functional versatility as structural disulfides, redox-active disulfides, active-site nucleophiles, proton donors, and metal ligands to participate in multiple regulatory sites in proteins. Also, antioxidant systems control diverse cellular functions, including the transcription machinery, which partially depends on the catalytically active cysteines that can reduce disulfide bonds in numerous target proteins, driving their biological integration. Since we have previously proposed a fundamental role of cysteine-mediated redox deregulation in neurodegeneration, we suggest that cellular rejuvenation of the cysteine redox proteome using GSH precursors, like N-acetyl-cysteine, is an underestimated multitarget therapeutic approach that would be particularly beneficial in Parkinson's disease.
Collapse
|
34
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. How to Increase Cellular Glutathione. Antioxidants (Basel) 2023; 12:antiox12051094. [PMID: 37237960 DOI: 10.3390/antiox12051094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) has special antioxidant properties due to its high intracellular concentration, ubiquity, and high reactivity towards electrophiles of the sulfhydryl group of its cysteine moiety. In most diseases where oxidative stress is thought to play a pathogenic role, GSH concentration is significantly reduced, making cells more susceptible to oxidative damage. Therefore, there is a growing interest in determining the best method(s) to increase cellular glutathione for both disease prevention and treatment. This review summarizes the major strategies for successfully increasing cellular GSH stores. These include GSH itself, its derivatives, NRf-2 activators, cysteine prodrugs, foods, and special diets. The possible mechanisms by which these molecules can act as GSH boosters, their related pharmacokinetic issues, and their advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
35
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Madathil AK, Ghaskadbi S, Kalamkar S, Goel P. Pune GSH supplementation study: Analyzing longitudinal changes in type 2 diabetic patients using linear mixed-effects models. Front Pharmacol 2023; 14:1139673. [PMID: 36992833 PMCID: PMC10040593 DOI: 10.3389/fphar.2023.1139673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Oral GSH supplementation along with antidiabetic treatment was shown to restore the body stores of GSH significantly and reduce oxidative DNA damage (8-OHdG) in Indian Type 2 diabetic (T2D) patients over 6 months in our recent clinical study. Post hoc analysis of the data also suggested that elder patients benefit from improved HbA1c and fasting insulin. We modeled longitudinal changes in diabetic individuals using a linear mixed-effects (LME) framework and obtained i) the distribution of individual trajectories with and without GSH supplementation and ii) the overall rates of changes in the different study arms. Serial changes in elder and younger diabetic individuals were also modeled independently to examine differences in their progression. The average linear trajectories obtained from the model explain how biochemical parameters in T2D patients progress over 6 months on GSH supplementation. Model estimates show improvements in erythrocytic GSH of 108 µM per month and a reduction in 8-OHdG at a rate of 18.5 ng/μg DNA per month in T2D patients. GSH replenishes faster in younger people than in the elder. 8-OHdG reduced more rapidly in the elder (24 ng/μg DNA per month) than in younger (12 ng/μg DNA per month) individuals. Interestingly, elder individuals show a substantial reduction in HbA1c (0.1% per month) and increased fasting insulin (0.6 µU/mL per month). Changes in GSH correlate strongly with changes in HbA1c, 8-OHdG, and fasting insulin in the elder cohort. The model estimates strongly suggest it improves the rate of replenishment in erythrocytic GSH stores and reduces oxidative DNA damage. Elder and younger T2D patients respond differently to GSH supplementation: It improves the rate of reduction in HbA1c and increases fasting insulin in elder patients. These model forecasts have clinical implications that aid in personalizing treatment targets for using oral GSH as adjuvant therapy in diabetes.
Collapse
Affiliation(s)
- Arjun Kolappurath Madathil
- Biology Division, Indian Institute of Science Education and Research, Pune, India
- *Correspondence: Arjun Kolappurath Madathil,
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Saurabh Kalamkar
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Pranay Goel
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
37
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
38
|
Long S, Hamilton PB, Fu B, Xu J, Han L, Suo X, Lai Y, Shen G, Xu F, Li B. Bioaccumulation and emission of organophosphate esters in plants affecting the atmosphere's phosphorus cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120803. [PMID: 36503012 DOI: 10.1016/j.envpol.2022.120803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.
Collapse
Affiliation(s)
- Shengxing Long
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Paul B Hamilton
- Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada
| | - Bo Fu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Jing Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Luchao Han
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Xinhao Suo
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Yuqin Lai
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Fuliu Xu
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China
| | - Bengang Li
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, Peking University, Beijing, 100871, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
39
|
Yeap BB. Toward Healthy Aging: A Clinical Trial Builds on Mechanistic Insights. J Gerontol A Biol Sci Med Sci 2023; 78:73-74. [PMID: 36702765 DOI: 10.1093/gerona/glac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley Hospital , Perth, Western Australia, Australia
| |
Collapse
|
40
|
Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, Minard CG, Taffet GE, Sekhar RV. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2023; 78:75-89. [PMID: 35975308 PMCID: PMC9879756 DOI: 10.1093/gerona/glac135] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Elevated oxidative stress (OxS), mitochondrial dysfunction, and hallmarks of aging are identified as key contributors to aging, but improving/reversing these defects in older adults (OA) is challenging. In prior studies, we identified that deficiency of the intracellular antioxidant glutathione (GSH) could play a role and reported that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improved GSH deficiency, OxS, mitochondrial fatty-acid oxidation (MFO), and insulin resistance (IR). To test whether GlyNAC supplementation in OA could improve GSH deficiency, OxS, mitochondrial dysfunction, IR, physical function, and aging hallmarks, we conducted a placebo-controlled randomized clinical trial. METHODS Twenty-four OA and 12 young adults (YA) were studied. OA was randomized to receive either GlyNAC (N = 12) or isonitrogenous alanine placebo (N = 12) for 16-weeks; YA (N = 12) received GlyNAC for 2-weeks. Participants were studied before, after 2-weeks, and after 16-weeks of supplementation to assess GSH concentrations, OxS, MFO, molecular regulators of energy metabolism, inflammation, endothelial function, IR, aging hallmarks, gait speed, muscle strength, 6-minute walk test, body composition, and blood pressure. RESULTS Compared to YA, OA had GSH deficiency, OxS, mitochondrial dysfunction (with defective molecular regulation), inflammation, endothelial dysfunction, IR, multiple aging hallmarks, impaired physical function, increased waist circumference, and systolic blood pressure. GlyNAC (and not placebo) supplementation in OA improved/corrected these defects. CONCLUSION GlyNAC supplementation in OA for 16-weeks was safe and well-tolerated. By combining the benefits of glycine, NAC and GSH, GlyNAC is an effective nutritional supplement that improves and reverses multiple age-associated abnormalities to promote health in aging humans. Clinical Trials Registration Number: NCT01870193.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Chun Liu
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - James Suliburk
- Department of Surgery
- Baylor College of Medicine, Houston, TX, USA
| | - Jean W Hsu
- Baylor College of Medicine, Houston, TX, USA
- Baylor-St. Luke’s Medical Center
| | - Raja Muthupillai
- Baylor-St. Luke’s Medical Center
- Baylor College of Medicine, Houston, TX, USA
| | - Farook Jahoor
- USDA/ARS Children’s Nutrition Research Center
- Baylor College of Medicine, Houston, TX, USA
| | - Charles G Minard
- Institute of Clinical and Translational Research
- Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- Section of Geriatrics, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Sun E, Huang R, Ding K, Wang L, Hou J, Tan X, Wei Y, Feng L, Jia X. Integrating strategies of metabolomics, network pharmacology, and experiment validation to investigate the processing mechanism of Epimedium fried with suet oil to warm kidney and enhance yang. Front Pharmacol 2023; 14:1113213. [PMID: 36762111 PMCID: PMC9905240 DOI: 10.3389/fphar.2023.1113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Epimedium, a traditional Chinese medicine (TCM) commonly used in ancient and modern China, is one of the traditional Chinese medicines clinically used to treat kidney yang deficiency syndrome (KYDS). There are differences in the efficacy of Epimedium before and after processing, and the effect of warming the kidney and enhancing yang is significantly enhanced after heating with suet oil. However, the active compounds, corresponding targets, metabolic pathways, and synergistic mechanism of frying Epimedium in suet oil to promote yang, remain unclear. Methods: Herein, a strategy based on comprehensive GC-TOF/MS metabolomics and network pharmacology analysis was used to construct an "active compounds-targets-metabolic pathways" network to identify the active compounds, targets and metabolic pathways involved. Subsequently, the targets in kidney tissue were further validated by real-time quantitative polymerase chain reaction (RT-qPCR). Histopathological analysis with physical and biochemical parameters were performed. Results: Fifteen biomarkers from urine and plasma, involving five known metabolic pathways related to kidney yang deficiency were screened. The network pharmacology results showed 37 active compounds (13 from Epimedium and 24 from suet oil), 159 targets, and 267 pathways with significant correlation. Importantly, integrated metabolomics and network pharmacologic analysis revealed 13 active compounds (nine from Epimedium and four from suet oil), 7 corresponding targets (ALDH2, ARG2, GSTA3, GSTM1, GSTM2, HPGDS, and NOS2), two metabolic pathways (glutathione metabolism, arginine and proline metabolism), and two biomarkers (Ornithine and 5-Oxoproline) associated with improved kidney yang deficiency by Epimedium fried with suet oil. Discussion: These finds may elucidate the underlying mechanism of yang enhancement via kidney warming effects. Our study indicated that the mechanism of action mainly involved oxidative stress and amino acid metabolism. Here, we demonstrated the novel strategies of integrating metabolomics and network pharmacology in exploring of the mechanisms of traditional Chinese medicines.
Collapse
Affiliation(s)
- E. Sun
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| | - Ran Huang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Ding
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaobin Tan
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yingjie Wei
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaobin Jia
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: E. Sun, ; Xiaobin Jia,
| |
Collapse
|
42
|
Strutynska N, Goshovska Y, Mys L, Strutynskyi R, Luchkova A, Fedichkina R, Okhai I, Korkach Y, Sagach V. Glutathione restores the mitochondrial redox status and improves the function of the cardiovascular system in old rats. Front Physiol 2023; 13:1093388. [PMID: 36699688 PMCID: PMC9868586 DOI: 10.3389/fphys.2022.1093388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Aging is accompanied by cardiovascular disorders which is associated with an imbalance of pro- and antioxidant systems, the mitochondrial dysfunction, etc. Glutathione (GSH) plays a critical role in protecting cells from oxidative damage. The aim of the work was to study the effect of exogenous glutathione on the redox status of mitochondria, the content of H2S and the function of the cardiovascular system in old rats. Methods: Experiments were performed on adult (6 months) and old (24 months) Wistar rats divided into three groups: adult, old and glutathionetreated old rats. Glutathione was injected intraperitoneally at a dose of 52 mg/kg. We investigated glutathione redox balance, H2S levels, oxidative stress, the opening of the mitochondrial permeability transition pore (mPTP), the resistance of isolated heart to ischemia/reperfusion in Langendorff model, endothelium-dependent vasorelaxation of isolated aortic rings, and cardiac levels of 3-MST, CSE, and UCP3 mRNA were determined using real-time PCR analysis. Results: Our data shows that in old rats treated with glutathione, the balance of its oxidized and reduced form changes in the direction of a significant increase (by 53.6%) of the reduced form. Glutathione pretreatment significantly increased the H2S levels, mtNOS activity, and UCP3 expression which considered as protective protein, and conversely, significantly decreased oxidative stress markers (the rate of O2•- generation, the levels of H2O2, diene conjugates and malone dialdehyde, in 2.5, 2.3, 2, and 1.6 times, respectively) in heart mitochondria. This was associated with the inhibition mitochondrial permeability transition pore opening and increased resistance of the isolated heart to ischemia/reperfusion in these animals. At the same time, in glutathione-treated old rats, we also observed restoration of endothelium-dependent vasorelaxation responses to acetylcholine, which were almost completely abolished by the NO-synthase inhibitor L-NAME. Conclusion: Thus, the pretreatment of old rats with glutathione restores the mitochondrial redox status and improves the function of the cardiovascular system.
Collapse
Affiliation(s)
- Nataliіa Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine,*Correspondence: Lidiia Mys,
| | - Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alina Luchkova
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vadym Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
43
|
Li X, He W, Wu G. Dietary glycine supplementation enhances the growth performance of hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci 2023; 101:skad345. [PMID: 37801645 PMCID: PMC10635675 DOI: 10.1093/jas/skad345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
This study was conducted to test the hypothesis that supplementing 1% and 2% glycine to soybean meal (SBM)-based diets can improve the growth performance of juvenile hybrid striped bass (HSB). The basal diets contained 15% fishmeal and 58% SBM (DM basis). Alanine was used as the isonitrogenous control in different diets. All diets contained 44% crude protein and 10% lipids (DM basis). There were four tanks (15 fish per tank) per dietary group, with the mean of the initial body weight (BW) of fish being 5.3 g. Fish were fed to apparent satiation twice daily, and their BW was recorded every 2 wk. The trial lasted for 8 wk. Results indicated that the BW, weight gain, protein efficiency ratio, and retention of dietary lipids in fish were enhanced (P < 0.05) by dietary supplementation with 1% or 2% glycine. In addition, dietary supplementation with glycine did not affect (P > 0.05) the feed intake of fish but increased (P < 0.05) the retention of dietary nitrogen, most amino acids, and phosphorus in the body, compared to the 0% glycine group. Dietary supplementation with 1% and 2% glycine dose-dependently augmented (P < 0.05) the villus height of the proximal intestine and reduced the submucosal thickness of the gut, while preventing submucosal and lamina propria hemorrhages. Compared with the 0% glycine group, dietary supplementation with 1% or 2% glycine decreased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 40 to 60 µm but increased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 80 to 100 µm and > 100 µm. Collectively, these findings indicate that glycine in SBM-based diets is inadequate for maximum growth of juvenile HSB and that dietary supplementation with 1% or 2% glycine is required to improve their weight gain and feed efficiency. Glycine is a conditionally essential amino acid for this fish.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
44
|
Kimble A, Robbins ME, Perez M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from 'Omics' Studies. Antioxidants (Basel) 2022; 11:2380. [PMID: 36552588 PMCID: PMC9774798 DOI: 10.3390/antiox11122380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review 'omics' data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional 'omics' studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Ashley Kimble
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mary E. Robbins
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Turathum B, Gao EM, Yang F, Liu YB, Yang ZY, Liu CC, Xue YJ, Wu MH, Wang L, Grataitong K, Chian RC. Role of pyroglutamic acid in cumulus cells of women with polycystic ovary syndrome. J Assist Reprod Genet 2022; 39:2737-2746. [PMID: 36322230 PMCID: PMC9790836 DOI: 10.1007/s10815-022-02647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Polycystic ovary syndrome is a complex heterogeneous endocrine disorder associated with established metabolic abnormalities and is a common cause of infertility in females. Glutathione metabolism in the cumulus cells (CCs) of women with PCOS may be correlated to the quality of oocytes for infertility treatment; therefore, we used a metabolomics approach to examine changes in CCs from women with PCOS and oocyte quality. METHODS Among 135 women undergoing fertility treatment in the present study, there were 43 women with PCOS and 92 without. CCs were collected from the two groups and levels of pyroglutamic acid were measured using LC-MS/MS followed by qPCR and Western blot analysis to examine genes and proteins involved in pyroglutamic acid metabolism related to glutathione synthesis. RESULTS Women with PCOS showed increased levels of L-pyroglutamic acid, L-glutamate, and L-phenylalanine and decreased levels of Cys-Gly and N-acetyl-L-methionine. Gene expression of OPLAH, involved in pyroglutamic synthesis, was significantly increased in women with PCOS compared with those without. Gene expression of GSS was significantly decreased in women with PCOS and synthesis of glutathione synthetase protein was decreased. Expression of nuclear factor erythroid 2-related factor 2, involved in resistance to oxidative stress, was significantly increased in women with PCOS. CONCLUSIONS CCs of women with PCOS showed high concentrations of pyroglutamic acid and reduced glutathione synthesis, which causes oxidative stress in CCs, suggesting that decreased glutathione synthesis due to high levels of pyroglutamic acid in CCs may be related to the quality of oocytes in women with PCOS.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Er-Meng Gao
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
- Shanghai Clinical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Feng Yang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Yu-Bing Liu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Zhi-Yong Yang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Chen-Chen Liu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Yun-Jing Xue
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Meng-Hua Wu
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Ling Wang
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China
| | - Khwanthana Grataitong
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10Th People Hospital of Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
46
|
Nobile V, Pisati M, Cestone E, Insolia V, Zaccaria V, Malfa GA. Antioxidant Efficacy of a Standardized Red Orange ( Citrus sinensis (L.) Osbeck) Extract in Elderly Subjects: A Randomized, Double Blind, Controlled Study. Nutrients 2022; 14:4235. [PMID: 36296919 PMCID: PMC9611767 DOI: 10.3390/nu14204235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The world population is rapidly aging. This should cause us to reflect on the need to develop a new nutritional approach to mitigate the accumulation of reactive oxygen species (ROS)-induced damage. A randomized, double blind, controlled study was carried out on 60 elderly male and female subjects. Product efficacy was measured before and after 2 and 8 weeks of product intake. The reduced (GSH) and oxidized (GSSG) glutathione concentrations in the erythrocytes and the reactive oxygen metabolites (d-ROMs) hematic concentration were measured to assess the antioxidant efficacy. The tumor necrosis factor-alpha (TNF-α) levels in the serum were measured to assess the anti-inflammatory effectiveness. The wellbeing was assessed by Short Form Health Survey (SF-36) questionnaire (male) and by Menopause Rating Scale (MRS) (female). Blood, urine analysis and electrocardiography (ECG) were carried out to assess the product's safety. The results showed that GSH/GSSG ratio increased by 22.4% and 89.0% after 2 and 8 weeks of product intake. Serum TNF-α levels decreased by 2.5% after 8 weeks of product intake. The SF-36 QoL and the MRS questionnaire outputs indicate, preliminarily, a positive effect of the extract intake in ameliorating the wellbeing of both male and female subjects. The product was well-tolerated. Our findings suggest that the test product has antioxidant and anti-inflammatory efficacy and has a positive effect on the wellbeing of elderly female and male subjects.
Collapse
Affiliation(s)
- Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| | - Marta Pisati
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| | - Enza Cestone
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, PV, Italy
| | | | | | - Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria, 95125 Catania, CT, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, Viale A. Doria, 95125 Catania, CT, Italy
| |
Collapse
|
47
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
48
|
Matye D, Gunewardena S, Chen J, Wang H, Wang Y, Hasan MN, Gu L, Clayton YD, Du Y, Chen C, Friedman JE, Lu SC, Ding WX, Li T. TFEB regulates sulfur amino acid and coenzyme A metabolism to support hepatic metabolic adaptation and redox homeostasis. Nat Commun 2022; 13:5696. [PMID: 36171419 PMCID: PMC9519740 DOI: 10.1038/s41467-022-33465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.
Collapse
Affiliation(s)
- David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cheng Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
49
|
Study of the Association between Thiols and Oxidative Stress Markers in Children with Obesity. Nutrients 2022; 14:nu14173637. [PMID: 36079892 PMCID: PMC9460844 DOI: 10.3390/nu14173637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity has reached epidemic proportions, and the World Health Organization defined childhood overweight and obesity as a noncommunicable disease that represents the most serious public health challenges of the twenty-first century. Oxidative stress, defined as an imbalance between oxidants and antioxidants causing an impairment of the redox signals, is linked to the development of metabolic diseases. In addition, reactive oxygen species generated during metabolic disorder could increase inflammation, causing the development of insulin resistance, diabetes, and cardiovascular disease. We analyze serum levels of cysteine (Cys), cysteinyl-glycine (Cys-Gly), homocysteine (Hcy), and glutathione (GSH), and other markers of oxidative stress, such as thiobarbituric acid reactive substances (T-BARS), 8-isoprostane, and protein carbonyl in our children with obesity. Total antioxidant status was also determined. We found lower GSH and Cys-Gly levels, and higher Hcy and oxidative stress markers levels. We also found a positive correlation between Body Mass Index (BMI), Cys, GSH, and Hcy levels, between insulin and Cys levels, and between BMI and the homeostasis model assessment-estimated insulin resistance (HOMA-IR) with 8-isoprostane levels. Finally, we found a correlation between age and GSH and Cys levels. The deficiency of GSH could be restored by dietary supplementation with GSH precursors, supplying an inexpensive approach to oppose oxidative stress, thus avoiding obesity complications.
Collapse
|
50
|
Pelton R. Lactobacillus fermentum ME-3: A Breakthrough in Glutathione Therapy. Integr Med (Encinitas) 2022; 21:54-58. [PMID: 36644601 PMCID: PMC9542933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is difficult to overstate the importance of glutathione because it performs many critical biological functions. The purpose of this article is to briefly review glutathione's functions, explain why most people have low levels of glutathione and make the case that increasing glutathione levels is one of the most important pro-active steps people can take to improve their health and slow down the onset of age-related diseases. This article will also introduce practitioners to Lactobacillus fermentum ME-3, which is a unique strain of probiotic bacteria that synthesizes glutathione.
Collapse
|