1
|
Jung C, Park S, Kim H. Association between vitamin A, E, and folate levels and risk of non-alcoholic fatty liver disease in adults with diabetes mellitus. Sci Rep 2025; 15:11844. [PMID: 40195358 PMCID: PMC11976934 DOI: 10.1038/s41598-025-96500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
Antioxidant vitamin deficiency may contribute to the development of metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD). This study aimed to analyze the association between serum vitamin A, E, and folate levels and NAFLD in adults with diabetes mellitus. Using data from the Korean National Health and Nutrition Examination Survey (2016-2018), we conducted a cross-sectional analysis of adults over 19 with diabetes. NAFLD was identified through three prediction tools. Of 589 participants, 326, 445, and 527 had NAFLD according to the hepatic steatosis index, Framingham steatosis index (FSI), and comprehensive NAFLD score (CNS), respectively. Serum vitamin E levels were consistently higher in the NAFLD group across all diagnostic tools. Similarly, vitamin A levels were elevated in those with NAFLD as per the CNS. Folate levels were higher in the obese group according to the FSI. After adjusting for covariates, both vitamin A and E levels were positively associated with NAFLD. This suggests that higher serum levels of vitamins A and E may increase the risk of NAFLD in the Korean diabetic population. These findings highlight the importance of monitoring micronutrient levels in managing NAFLD in patients with diabetes.
Collapse
Affiliation(s)
- Choungwon Jung
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Soyoung Park
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Hyunah Kim
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.
- Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Franchi E, Colombo A, Manzini S, Busnelli M, Chiesa G. The lack of apoA-I in apoE-KO mice affects the liver transcriptome. Nutr Metab Cardiovasc Dis 2025:103920. [PMID: 40087046 DOI: 10.1016/j.numecd.2025.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND AIMS Liver is the major organ involved in apoA-I synthesis and HDL-C turnover, but the impact of apoA-I/HDL on hepatic transcriptome has never been investigated before. In the present study, a transcriptomic analysis by high-throughput RNA-seq was conducted in the liver of atherosclerosis-prone mice, with the aim of identifying new genes/pathways modulated by apoA-I/HDL with a potential effect on atherosclerosis development. METHODS AND RESULTS Eight-week-old apoE knockout (apoEKO) mice lacking apoA-I/HDL (DKO) and with physiological levels of apoA-I/HDL (DKO/hA-I) were fed either a standard rodent diet (SRD) or a Western diet (WD) for 22 weeks. After both dietary treatments, DKO mice were characterized by lower cholesterol levels, but increased atherosclerosis development, compared to DKO/hA-I mice. The liver transcriptome of DKO and DKO/hA-I mice fed SRD diverged in a relatively small number of genes, suggestive of a greater activation of the PPAR signaling pathway and the retinoid metabolism pathway in DKO/hA-I mice. Following WD, transcriptomic analysis highlighted in both genotypes an upregulated expression of immune/inflammatory genes and a reduced activation of the retinoid metabolism. The evaluation of the hepatic response of the two genotypes to the dietary switch from SRD to WD revealed strong divergences in genes involved in metabolic pathways only in the presence of apoA-I/HDL, with reduced endogenous sterol biosynthesis and glutathione metabolism, together with increased glucose metabolism. CONCLUSION The presence or absence of apoA-I expression differently alters hepatic pathways involved not only in cholesterol metabolism, but also in those of glutathione and glucose metabolism.
Collapse
Affiliation(s)
- Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy.
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Italy
| |
Collapse
|
3
|
Liu C, Liu Y, Liu J, Liu J, Lu T, Yu J, Zhang G, Xu K. Associations between intake of different types of vegetables and metabolic dysfunction-associated fatty liver disease: a population-based study. BMC Public Health 2025; 25:315. [PMID: 39856570 PMCID: PMC11762863 DOI: 10.1186/s12889-025-21331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) presently poses a threat to approximately 24% of the global population. The consumption of healthy diets rich in an abundant assortment of vegetables has been scientifically validated to mitigate the progression of MAFLD. However, it remains uncertain whether all categories of vegetables confer benefits for MAFLD. The objective of this study is to investigate the impact of different types of vegetables on MAFLD, aiming to provide a scientific basis for developing more appropriate dietary recommendations for individuals at high risk of MAFLD. METHODS We investigated the associations between various types of vegetable consumption and the risk of MAFLD, utilizing data sourced from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 cycle. Employing multiple logistic regression and subgroup analyses, we estimated odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Our analysis encompassed a total of 3162 participants. Remarkably, heightened intake of dark green vegetables demonstrated an innovative association with reduced odds of MAFLD (OR = 0.54; 95% CI: 0.36-0.81; p-value = 0.01), while other kinds of vegetable shown no significant association with MAFLD in the full adjusted model (all p-vale > 0.05). In the subgroup analysis, a prominent inverse correlation between the consumption of dark green vegetables and MAFLD was discerned among female and non-Hispanic white people with higher educational attainment. CONCLUSIONS Our study conclusively demonstrates that a heightened intake of dark green vegetables is linked to diminished odds of MAFLD.
Collapse
Affiliation(s)
- Chong Liu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Lu
- Department of Critical Care, Changsha Hospital of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jingjia Yu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guogang Zhang
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Xu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Chen J, Rao H, Zheng X. Identification of novel targets associated with cholesterol metabolism in nonalcoholic fatty liver disease: a comprehensive study using Mendelian randomization combined with transcriptome analysis. Front Genet 2024; 15:1464865. [PMID: 39359475 PMCID: PMC11445148 DOI: 10.3389/fgene.2024.1464865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background There is limited research on cholesterol metabolism-related genes (CM-RGs) in non-alcoholic fatty liver disease (NAFLD), despite hypercholesterolemia being a recognized risk factor. The role of CM-RGs in NAFLD remains unclear. Methods The differentially expressed genes (DEGs) between NAFLD and control were acquired by differential expression analysis. The differentially expressed genes associated with cholesterol metabolism (DE-CM-RGs) were identified and functional enrichment analyses were performed. Protein-protein interaction network analysis and a two-sample Mendelian randomization study were utilized for identifying hub genes. Nomogram model, competing endogenous RNA and messenger RNA-drug networks were established. In addition, immunoinfiltration analysis was performed. Results We identified four hub genes (MVK, HMGCS1, TM7SF2, and FDPS) linked to NAFLD risk. MVK and TM7SF2 were protective factors, HMGCS1 and FDPS were risk factors for NAFLD. The area under the curve values of nomograms in GSE135251 and GSE126848 were 0.79 and 0.848, respectively. The gene set enrichment analysis indicated that hub genes participated in calcium signaling pathways and biosynthesis of unsaturated fatty acids. NAFLD patients showed increased CD56dim NK cells and Th17. Tretinoin, alendronate, zoledronic acid, and quercetin are potential target agents in NAFLD. Conclusion Our study has linked cholesterol metabolism genes (MVK, HMGCS1, TM7SF2, and FDPS) to NAFLD, providing a promising diagnostic framework, identifying treatment targets, and offering novel perspectives into its mechanisms.
Collapse
Affiliation(s)
- Juan Chen
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Huajing Rao
- Emergency Internal Medicine, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoling Zheng
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
6
|
Yan L, Yan Y, Yang K, Chang Q, Zhang L. Metabolomics reveals dysregulated all-trans retinoic acid and polyunsaturated fatty acid metabolism contribute to PXR-induced hepatic steatosis in mice. Toxicol Lett 2024; 398:150-160. [PMID: 38971454 DOI: 10.1016/j.toxlet.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Activation of pregnane X receptor (PXR) by xenobiotics has been associated with metabolic diseases. This study aimed to reveal the impact of PXR activation on hepatic metabolome and explore novel mechanisms underlying PXR-mediated lipid metabolism disorder in the liver. Wild-type and PXR-deficient male C57BL/6 mice were used as in vivo models, and hepatic steatosis was induced by pregnenolone-16α-carbonitrile, a typical rodent PXR agonist. Metabolomic analysis of liver tissues showed that PXR activation led to significant changes in metabolites involved in multiple metabolic pathways previously reported, including lipid metabolism, energy homeostasis, and amino acid metabolism. Moreover, the level of hepatic all-trans retinoic acid (ATRA), the main active metabolite of vitamin A, was significantly increased by PXR activation, and genes involved in ATRA metabolism exhibited differential expression following PXR activation or deficiency. Consistent with previous research, the expression of downstream target genes of peroxisome proliferator-activated receptor α (PPARα) was decreased. Analysis of fatty acids by Gas Chromatography-Mass Spectrometer further revealed changes in polyunsaturated fatty acid metabolism upon PXR activation, suggesting inhibition of PPARα activity. Taken together, our findings reveal a novel metabolomic signature of hepatic steatosis induced by PXR activation in mice.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China.
| | - Yachun Yan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou Univerisity, Zhengzhou 450052, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
8
|
Liu Y, Qin X, Chen T, Chen M, Wu L, He B. Exploring the interactions between metabolic dysfunction-associated fatty liver disease and micronutrients: from molecular mechanisms to clinical applications. Front Nutr 2024; 11:1344924. [PMID: 38549744 PMCID: PMC10973017 DOI: 10.3389/fnut.2024.1344924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as a significant global health concern, representing a major cause of liver disease worldwide. This condition spans a spectrum of histopathologic stages, beginning with simple fatty liver (MAFL), characterized by over 5% fat accumulation, and advancing to metabolic (dysfunction)-associated steatohepatitis, potentially leading to hepatocellular carcinoma. Despite extensive research, there remains a substantial gap in effective therapeutic interventions. This condition's progression is closely tied to micronutrient levels, crucial for biological functions like antioxidant activities and immune efficiency. The levels of these micronutrients exhibit considerable variability among individuals with MAFLD. Moreover, the extent of deficiency in these nutrients can vary significantly throughout the different stages of MAFLD, with disease progression potentially exacerbating these deficiencies. This review focuses on the role of micronutrients, particularly vitamins A, D, E, and minerals like iron, copper, selenium, and zinc, in MAFLD's pathophysiology. It highlights how alterations in the homeostasis of these micronutrients are intricately linked to the pathophysiological processes of MAFLD. Concurrently, this review endeavors to harness the existing evidence to propose novel therapeutic strategies targeting these vitamins and minerals in MAFLD management and offers new insights into disease mechanisms and treatment opportunities in MAFLD.
Collapse
Affiliation(s)
- Yuan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Tianzhu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
9
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Song S, Zheng J, Zhao D, Zheng A, Zhu Y, Xu Q, Liu T. Quantitative proteomics analysis based on data-independent acquisition reveals the effect of Shenling Baizhu powder (SLP) on protein expression in MAFLD rat liver tissue. Clin Proteomics 2023; 20:55. [PMID: 38036981 PMCID: PMC10691125 DOI: 10.1186/s12014-023-09442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) has become the most common chronic liver disease worldwide, and it is also a high-risk factor for the development of other metabolic diseases. Shenling Baizhu powder (SLP) is a traditional Chinese herbal formula with good clinical efficacy against MAFLD. However, its molecular mechanism for the treatment of MAFLD is still not fully understood. This study used quantitative proteomics analysis to reveal the SLP action mechanism in the treatment of MAFLD by discovering the effect of SLP on protein expression in the liver tissue of MAFLD rats. MATERIALS AND METHODS Q-Orbitrap LC-MS/MS was used to identify the incoming blood compounds of SLP. The 18 SD male rats were randomly divided into 3 groups (n = 6): control group, HFD group and SLP group. The HFD group and SLP group were established as MAFLD rat models by feeding them a high-fat diet for 4 weeks. Afterwards, the SLP group was treated with SLP (10.89 g/kg/d) for 3 weeks. Biochemical parameters and liver pathological status were measured. Rat liver tissue was analyzed using DIA-based quantitative proteomics and the DEPs were validated by western blotting analysis. RESULTS A total of 18 active compounds of SLP were identified and isolated to enter the bloodstream. Comparison of DEPs between control group vs. HFD group and HFD group vs. SLP group revealed that SLP restored the expression of 113 DEPs. SLP catalyzes oxidoreductase activity and binding activity on mitochondria and endoplasmic reticulum to promote lipid oxidative catabolism, maintain oxoacid metabolic homeostasis in vivo and mitigate oxidative stress-induced hepatocyte injury. And 52 signaling pathways including PPAR signaling, arachidonic acid metabolism and glycine, serine and threonine metabolism were enriched by KEGG. PPI topology analysis showed that Cyp4a2, Agxt2, Fabp1, Pck1, Acsm3, Aldh1a1, Got1 and Hmgcs2 were the core DEPs. The western blotting analysis verified that SLP was able to reverse the increase in Fabp1 and Hmgcs2 and the decrease in Pck1 induced by HFD, and the results were consistent proteomic data. CONCLUSION SLP ameliorates hepatic steatosis to exert therapeutic effects on MAFLD by inhibiting the expression of lipid synthesis genes and inhibiting lipid peroxidation in mitochondria. This study provides a new idea and basis for the study of SLP in the treatment of MAFLD and provides an experimental basis for the clinical application of SLP.
Collapse
Affiliation(s)
- Sufei Song
- The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jixian Zheng
- Hainan Medical University, Haikou, 571199, China
| | - Dongmei Zhao
- Hainan Medical University, Haikou, 571199, China
| | - Anni Zheng
- Hainan Medical University, Haikou, 571199, China
| | - Ye Zhu
- The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Qiuling Xu
- Hainan Medical University, Haikou, 571199, China.
| | - Tao Liu
- The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
11
|
Abstract
Retinoic acid (RA) is a metabolite of vitamin A and is essential for development and growth as well as cellular metabolism. Through genomic and nongenomic actions, RA regulates a variety of physiological functions. Dysregulation of RA signaling is associated with many diseases. Targeting RA signaling has been proven valuable to human health. All-trans retinoic acid (AtRA) and anthracycline-based chemotherapy are the standard treatment of acute promyelocytic leukemia (APL). Both human and animal studies have shown a significant relationship between RA signaling and the development and progression of nonalcoholic fatty liver disease (NAFLD). In this review article, we will first summarize vitamin A metabolism and then focus on the role of RA signaling in NAFLD. AtRA inhibits the development and progression of NAFLD via regulating lipid metabolism, inflammation, thermogenesis, etc.
Collapse
Affiliation(s)
- Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA 44272
| |
Collapse
|
12
|
Song J, Jiang ZG. Low vitamin A levels are associated with liver-related mortality: a nationally representative cohort study. Hepatol Commun 2023; 7:e0124. [PMID: 37058112 PMCID: PMC10109132 DOI: 10.1097/hc9.0000000000000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Vitamin A, a fat-soluble vitamin that includes retinol and carotenoids, is implicated in liver fibrosis, whereas its deficiency has been associated with various liver diseases and higher overall mortality. This study aims to determine the relationship between levels of vitamin A species and liver fibrosis, as well as liver-related mortality in the population of the US. METHODS A total of 12,299 participants from the National Health and Nutrition Examination Survey III (NHANES III) were analyzed to provide nationally representative estimates of the relationship between the levels of vitamin A species and liver fibrosis measured by Fibrosis-4 (FIB-4) index and liver-related mortality. RESULTS A low blood level of retinol, but not other retinoid derivatives, was associated with significant liver fibrosis after adjustment for demographics, anthropometric measurements, medical history, retinol, and carotene intakes. Compared with vitamin D and E, retinol deficiency demonstrated much stronger associations with a high FIB-4 score. Individuals with known risks of chronic liver disease (CLD) and the lowest pentile of retinol levels had ORs of 3.12 (95% CI, 1.64-5.91) for possible fibrosis and 19.7 (95% CI, 5.71-67.7) for likely fibrosis, and an HR of 7.76 (95% CI, 1.19-50.5) for liver-related mortality compared with those in the highest retinol-level pentile. These relationships were more pronounced among individuals with known risks of chronic liver disease than without. CONCLUSIONS A low circulating retinol level is associated with liver fibrosis and liver-related mortality in chronic liver disease. This relationship is potentially driven by a mechanistic link rather than the malabsorption of fat-soluble vitamins and may be leveraged for disease prognostication and have therapeutic implications.
Collapse
Affiliation(s)
- Jiunn Song
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Z. Gordon Jiang
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
14
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients 2023; 15:nu15030687. [PMID: 36771394 PMCID: PMC9921401 DOI: 10.3390/nu15030687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
While non-alcoholic fatty liver disease (NAFLD) is a prevalent and frequent cause of liver-related morbidity and mortality, it is also strongly associated with cardiovascular disease-related morbidity and mortality, likely driven by its associations with insulin resistance and other manifestations of metabolic dysregulation. However, few satisfactory pharmacological treatments are available for NAFLD due in part to its complex pathophysiology, and challenges remain in stratifying individual patient's risk for liver and cardiovascular disease related outcomes. In this review, we describe the development and progression of NAFLD, including its pathophysiology and outcomes. We also describe different tools for identifying patients with NAFLD who are most at risk of liver-related and cardiovascular-related complications, as well as current and emerging treatment options, and future directions for research.
Collapse
|
16
|
Huang D, Qian X, Chen J, Peng Y, Zhu Y. Factors and Molecular Mechanisms of Vitamin A and Childhood Obesity Relationship: A Review. J Nutr Sci Vitaminol (Tokyo) 2023; 69:157-163. [PMID: 37394420 DOI: 10.3177/jnsv.69.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Childhood obesity has become a public health concern. As the importance of vitamin A (VA) in the body has become increasingly acknowledged, there is limited clinical trial evidence to substantiate the association between VA and childhood obesity. Vitamin A deficiency (VAD) increases the risk of childhood obesity, a finding consistently reported in pregnant women. VA could regulate the adipogenic process, inflammation, oxidative stress and metabolism-related gene expression in mature adipocytes. VAD disrupts the balance of obesity-related metabolism, thus affecting lipid metabolism and insulin regulation. Conversely, VA supplementation has a major impact on efficacy in obesity, and obese individuals typically have a lower VA status than normal-weight individuals. Several studies have attempted to identify the genetic and molecular mechanisms underlying the association between VA and obesity. In this review, we summarize and discuss recent new developments focusing on retinol, retinoic acid, and RBP4 and elucidate and provide an overview of the complex interrelationships between these critical components of VA and childhood obesity. However, the causal relationship between VA status and childhood obesity remains unclear. It is also unknown whether VA supplementation improves the overall obesogenic metabolic profile.
Collapse
Affiliation(s)
- Dan Huang
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Xia Qian
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Jinqing Chen
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Yating Peng
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| | - Yunxia Zhu
- Department of Child Health Care, Hangzhou Women's Hospital (Hangzhou Maternity and Child Care Hospital)
| |
Collapse
|
17
|
Suppressed serological vitamin A in patients with liver cirrhosis is associated with impaired liver function and clinical detoriation. Eur J Gastroenterol Hepatol 2022; 34:1053-1059. [PMID: 35895982 PMCID: PMC9439687 DOI: 10.1097/meg.0000000000002418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The liver is of critical importance for the homeostasis of metabolic and immunomodulatory properties as well as the storage of vitamins, especially vitamin A. In this prospective analysis, the incidence of serological vitamin A deficiency and the association with disease severity as well as clinical complications in patients with liver cirrhosis were investigated. METHOD From May 2017 to May 2018, 159 patients with primarily alcohol-associated and non-alcoholic steatohepatitis (NASH)-associated preexisting liver cirrhosis were prospectively enrolled and vitamin A status was collected. Clinical complications and infections were followed and recorded over a period of 1-year follow-up. Selected findings were validated in an independent cohort of 44 patients. RESULTS At study inclusion, 77% of patients showed decreased serological vitamin A. Suppressed vitamin A was more common in alcoholic (52 vs. 8%) and NASH-associated liver cirrhosis (16 vs. 9%) than in viral-associated liver cirrhosis. MELD score as well as Child-Pugh score were significantly associated with suppressed vitamin A ( P < 0.001). The association between the degree of vitamin A suppression and liver function was confirmed in univariate and multivariate regression analysis. After 1 year of follow-up, 57 patients died and 21 patients received a liver transplant. In addition, low vitamin A levels were more commonly observed in patients with severe ascites ( P = 0.001), hepatic encephalopathy ( P = 0.002) and hepatorenal syndromes ( P = 0.008). In addition, patients with reduced vitamin A showed an increased incidence of infections ( P = 0.02), especially respiratory infections ( P = 0.04). CONCLUSION Suppressed serological Vitamin A is common in patients with liver cirrhosis and is associated with liver function. Clinical complications and infections are more frequent in patients with liver cirrhosis and vitamin A suppression.
Collapse
|
18
|
Cao J, Hua L, Zhang S, Tang J, Ke F, Wu Z, Xue G. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis 2022; 21:70. [PMID: 35948957 PMCID: PMC9364532 DOI: 10.1186/s12944-022-01676-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Insulin resistance, liver injury and dyslipidemia are reported in non-alcoholic fat liver disease (NAFLD) patients. Interleukin (IL)-38 may take part in the pathophysiology of insulin resistance. Nevertheless, the function of IL-38 in NAFLD is unknown. Herein, we determined whether serum IL-38 level might be utilised as a biochemical marker for diagnosing NAFLD. Methods NAFLD patients and healthy participants (n = 91 each) were enrolled. Circulating serum IL-38 levels were detected using enzyme-linked immunosorbent assay. Other metabolic and inflammatory indices related to NAFLD were also assessed. Results Patients with NAFLD had higher serum IL-38 levels than healthy individuals. Significantly higher serum IL-38 levels were found in patients with severe and moderate NAFLD than in patients with mild NAFLD. IL-38 showed a significant correlation with parameters of insulin resistance, inflammation, and liver enzyme in NAFLD cases. Anthropometric, insulin resistance, inflammatory parameters, lipids and frequency of NAFLD showed significant differences among the serum IL-38 level tertiles. Participants in the 2nd and 3rd tertiles of serum IL-38 levels had a greater risk of NAFLD than those in the 1st tertile. Furthermore, IL-38 ROC curve showed a high area under ROC with 0.861. Conclusions It is possible for serum IL-38 to be a biomarker for NAFLD.
Collapse
Affiliation(s)
- Jun Cao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiujiang University, 17# Lufeng Road, Jiujiang, 332000, Jiangxi Province, China
| | - Lin Hua
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, 48# The South of Taling Road, Jiujiang, 332000, Jiangxi Province, China
| | - Shipei Zhang
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, 48# The South of Taling Road, Jiujiang, 332000, Jiangxi Province, China
| | - Jinping Tang
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, 48# The South of Taling Road, Jiujiang, 332000, Jiangxi Province, China
| | - Fan Ke
- Department of Endocrinology, Jiujiang NO.1 People's Hospital, 48# The South of Taling Road, Jiujiang, 332000, Jiangxi Province, China
| | - Zhouhuan Wu
- Department of pharmacology, School of Medicine, Jiujiang University, 17# Lufeng Road, Jiujiang, 332000, Jiangxi Province, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, 48# The South of Taling Road, Jiujiang, 332000, Jiangxi Province, China.
| |
Collapse
|
19
|
Alalwani J, Eljazzar S, Basil M, Tayyem R. The impact of health status, diet and lifestyle on non-alcoholic fatty liver disease: Narrative review. Clin Obes 2022; 12:e12525. [PMID: 35412016 DOI: 10.1111/cob.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as the abnormal accumulation of triglycerides in the liver. NAFLD has a global prevalence of almost 30%, while incidence is rising with increasing levels of obesity, type 2 diabetes mellitus (T2DM) and metabolic syndrome. Nutrition plays a significant role in both the prevention and treatment of NAFLD. Therefore, the aim of this literature review is to explore the associations between dietary, lifestyle and other risk factors and the risk for developing NAFLD. Dietary patterns, lifestyle behaviours, comorbidities, or a combination of any may contribute to either the progression or prevention of NAFLD. Having diabetes, hypertension, or having obesity might increase the progression of NAFLD if not well treated and controlled. Diet influences the progression of NAFLD; following a western diet or simply a high-fat diet may contribute to the worsening of NAFLD and further progression to non-alcoholic steatohepatitis (NASH) and cirrhosis in later stages. On the other hand, the Mediterranean diet is the gold standard for both the treatment and prevention of NAFLD. Social behaviours, such as smoking, caffeine consumption and physical activity also play a role in the pathophysiology of NAFLD. Nutrition contributes significantly to the prevention or treatment of NAFLD, since this disease can be managed by diet and physical activity. However, further studies are still needed for a better understanding of the mechanisms of action. Randomized control trials are also needed to confirm findings in observational studies.
Collapse
Affiliation(s)
- Joud Alalwani
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Sereen Eljazzar
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Maya Basil
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Reema Tayyem
- Human Nutrition Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Bauer KC, Littlejohn PT, Ayala V, Creus-Cuadros A, Finlay BB. Nonalcoholic Fatty Liver Disease and the Gut-Liver Axis: Exploring an Undernutrition Perspective. Gastroenterology 2022; 162:1858-1875.e2. [PMID: 35248539 DOI: 10.1053/j.gastro.2022.01.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic condition affecting one quarter of the global population. Although primarily linked to obesity and metabolic syndrome, undernutrition and the altered (dysbiotic) gut microbiome influence NAFLD progression. Both undernutrition and NAFLD prevalence are predicted to considerably increase, but how the undernourished gut microbiome contributes to hepatic pathophysiology remains far less studied. Here, we present undernutrition conditions with fatty liver features, including kwashiorkor and micronutrient deficiency. We then review the gut microbiota-liver axis, highlighting key pathways linked to NAFLD progression within both overnutrition and undernutrition. To conclude, we identify challenges and collaborative possibilities of emerging multiomic research addressing the pathology and treatment of undernourished NAFLD.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Thoracic and Gastrointestinal Malignancies Branch, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Paula T Littlejohn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain; Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
| | - Anna Creus-Cuadros
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9233650. [PMID: 35602098 PMCID: PMC9117022 DOI: 10.1155/2022/9233650] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.
Collapse
|
22
|
Rajak S, Gupta P, Anjum B, Raza S, Tewari A, Ghosh S, Tripathi M, Singh BK, Sinha RA. Role of AKR1B10 and AKR1B8 in the pathogenesis of non-alcoholic steatohepatitis (NASH) in mouse. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166319. [PMID: 34954342 DOI: 10.1016/j.bbadis.2021.166319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a clinically important spectrum of non-alcoholic fatty liver disease (NAFLD) in humans. NASH is a stage of NAFLD progression wherein liver steatosis accompanies inflammation and pro-fibrotic events. Presently, there are no approved drugs for NASH, which has become a leading cause of liver transplant worldwide. To discover novel drug targets for NASH, we analyzed a human transcriptomic NASH dataset and found Aldo-keto reductase family 1 member B10 (AKR1B10) as a significantly upregulated gene in livers of human NASH patients. Similarly murine Akr1b10 and Aldo-keto reductase family 1 member B8 (Akr1b8) gene, which is a murine ortholog of human AKR1B10, were also found to be upregulated in a mouse model of diet-induced NASH. Furthermore, pharmacological inhibitors of AKR1B10 significantly reduced the pathological features of NASH such as steatosis, inflammation and fibrosis in mouse. In addition, genetic silencing of both mouse Akr1b10 and Akr1b8 significantly reduced the expression of proinflammatory cytokines from hepatocytes. These results, thus, underscore the involvement of murine AKR1B10 and AKR1B8 in the pathogenesis of murine NASH and raise an intriguing possibility of a similar role of AKR1B10 in human NASH.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pratima Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, Singapore; Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical School, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
23
|
Liu X, Shen H, Chen M, Shao J. Clinical Relevance of Vitamins and Carotenoids With Liver Steatosis and Fibrosis Detected by Transient Elastography in Adults. Front Nutr 2021; 8:760985. [PMID: 34869532 PMCID: PMC8632634 DOI: 10.3389/fnut.2021.760985] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Vitamins and carotenoids may be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Previously related publications mainly focused on vitamin D and vitamin E, and studies on other vitamins and carotenoids and NAFLD are scarce. Methods: This study aimed to explore the clinical relevance of vitamin A, B vitamins (vitamin B1, vitamin B2, niacin, vitamin B6, folate, vitamin B12, and choline), vitamin C and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein + zeaxanthin) with liver steatosis and fibrosis in the 2017-2018 NHANES (N = 4,352). Liver steatosis and fibrosis were detected by transient elastography. Logistic regression, linear regression and restricted cubic splines were adopted to explore the non-linear dose-response relationships. Results: Higher intakes of vitamin C [0.68 (0.50-0.93)] and β-carotene [0.71 (0.54-0.93)] were inversely associated with liver steatosis. Higher levels of serum vitamin C [0.45 (0.32-0.62)] were inversely associated with liver fibrosis, while higher intakes of choline [1.43 (1.04-1.98)] and α-carotene [1.67 (1.01-2.74)] were positively associated with liver fibrosis. In addition, marginally inverse association between lutein + zeaxanthin and liver steatosis and positive association between vitamin B12 and liver fibrosis were found. In linear regression, the above-mentioned associations between vitamin C, β-carotene, and lutein + zeaxanthin and liver steatosis, and serum vitamin C, choline, α-carotene, and vitamin B12 and liver fibrosis were also found. The above-mentioned associations were mainly linear, while the relationship between β-carotene and liver steatosis might be non-linear. Conclusion: Vitamin C, α-carotene, β-carotene, lutein + zeaxanthin, choline and vitamin B12 may be associated with liver steatosis and fibrosis.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Ultrasound Diagnosis, The First People's Hospital of Kunshan, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Hong Shen
- Department of Ultrasound Diagnosis, The First People's Hospital of Kunshan, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Mingfeng Chen
- Department of Ultrasound Diagnosis, The First People's Hospital of Kunshan, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Jun Shao
- Department of Ultrasound Diagnosis, The First People's Hospital of Kunshan, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
24
|
D'Espessailles A, Campos V, Juretić N, Tapia GS, Pettinelli P. Hepatic retinaldehyde dehydrogenases are modulated by tocopherol supplementation in mice with hepatic steatosis. Nutrition 2021; 94:111539. [PMID: 34974285 DOI: 10.1016/j.nut.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES An altered retinol metabolism might play a role in the development of nonalcoholic fatty liver disease (NAFLD). Tocopherols (TF) modulate metabolic pathways and have been proposed as a complementary treatment of obesity-induced metabolic alterations. Moreover, there is evidence suggesting that TF may modulate retinol metabolism. The aim of this study was to evaluate whether the dietary supplementation of α- and γ-TF modulates the expression of hepatic retinaldehyde dehydrogenases, RALDH1, RALDH2, and RALDH3 (involved in retinol metabolism) and, lipogenic factors sterol regulatory element binding protein-1c (SREBP-1c) and cluster differentiation 36 (CD36) in an animal model of diet-induced NAFLD. METHODS Male C57BL/6J mice were divided into four groups: a control diet (CD) group (10% fat, 20% protein, 70% carbohydrates); a CD + TF group (α-tocopherol: 0.7 mg·kg·d-1, γ-tocopherol: 3.5 mg·kg·d-1); a high-fat diet (HFD) group (60% fat, 20% protein, 20% carbohydrates); and a HFD + TF group (0.01 mL·g body weight·d-1), for 12 wk. General parameters (body-adipose tissue weight, glucose-triacylglyceride serum levels), liver steatosis (histology, liver triacylglycerides content), and hepatic RALDH1, RALDH2, RALDH3, SREBP-1c and CD36 (qPCR, quantitative polymerase chain reaction; IHQ, immunohistochemistry) were measured. RESULTS TF supplementation in HFD-fed mice decreased the presence of lipid vesicles (90%) and total lipid content (75%) and downregulated the expression of RALDH1, RALDH3, SREBP-1c, and CD36. CONCLUSIONS The present study demonstrated that α- and γ-TF (1:5 ratio) might play a role in modulating retinol metabolism in the prevention of NAFLD induced by a HFD.
Collapse
Affiliation(s)
| | - Valeria Campos
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Nevenka Juretić
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gladys S Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paulina Pettinelli
- Department of Health Sciences, Nutrition and Dietetics Career, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Study on association of non-alcoholic fatty liver disease and serum vitamin A, E, and selenium levels in high-fat fed diet rats. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Gillespie J. "You Are What You Eat": The Role of Dietary Macronutrients and Micronutrients in MAFLD. Clin Liver Dis (Hoboken) 2021; 18:67-71. [PMID: 34584670 PMCID: PMC8450468 DOI: 10.1002/cld.1083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 02/04/2023] Open
|
27
|
Vilar-Gomez E, Pirola CJ, Sookoian S, Wilson LA, Liang T, Chalasani N. The Protection Conferred by HSD17B13 rs72613567 Polymorphism on Risk of Steatohepatitis and Fibrosis May Be Limited to Selected Subgroups of Patients With NAFLD. Clin Transl Gastroenterol 2021; 12:e00400. [PMID: 34506332 PMCID: PMC8437218 DOI: 10.14309/ctg.0000000000000400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Our study aimed to explore how PNPLA3 rs738409 or phenotypic risk factors may moderate the relationship between HSD17B13 rs72613567 and risk of steatohepatitis and fibrosis. METHODS This analysis consisted of 1,153 non-Hispanic whites with biopsy-proven nonalcoholic fatty liver disease enrolled in the nonalcoholic steatohepatitis Clinical Research Network studies. Nonalcoholic fatty liver disease severity was determined by liver histology scored centrally according to the nonalcoholic steatohepatitis Clinical Research Network criteria. Moderation and logistic regression analyses were performed to identify the influence of moderators (PNPLA3 rs738409, age, sex, body mass index, and diabetes) on the relationship between HSD17B13 rs72613567 and risk of steatohepatitis and fibrosis. RESULTS HSD17B13 rs72613567 genotype frequency was as follows: (-/-), 64%; (-/A), 30%; (A/A), 6%. Moderation analysis showed that the protective effect of HSD17B13 rs72613567 A-allele on risk of steatohepatitis remained only significant among patients with PNPLA3 rs738409 genotype CC (β coeff: -0.19, P = 0.019), women (β coeff: -0.18, P < 0.001), patients of age ≥ 45 years (β coeff: -0.18, P < 0.001), patients with body mass index ≥ 35 kg/m2 (β coeff: -0.17, P < 0.001), and patients with diabetes (β coeff: -0.18, P = 0.020). Among women, the protective effect of HSD17B131 rs72613567 A-allele on risk of steatohepatitis was stronger in those aged ≥ 51 years. Logistic regression-based sensitivity analysis including various important subgroups confirmed our observations. DISCUSSION The protection conferred by HSD17B13 rs72613567 A-allele on risk of steatohepatitis and fibrosis may be limited to selected subgroups of individuals who are aged ≥ 45 years, women and have class ≥ 2 obesity or diabetes, and those with PNPLA3 rs738409 CC genotype.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carlos J. Pirola
- Molecular Genetics and Biology of Complex Diseases, University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina;
| | - Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Laura A. Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Serum Retinal and Retinoic Acid Predict the Development of Type 2 Diabetes Mellitus in Korean Subjects with Impaired Fasting Glucose from the KCPS-II Cohort. Metabolites 2021; 11:metabo11080510. [PMID: 34436451 PMCID: PMC8398291 DOI: 10.3390/metabo11080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
We aimed to investigate whether retinal and retinoic acid (RA), which are newly discovered biomarkers from our previous research, reliably predict type 2 diabetes mellitus (T2DM) development in subjects with impaired fasting glucose (IFG). Among the Korean Cancer Prevention Study (KCPS)-II cohort, subjects were selected and matched by age and sex (IFG-IFG group, n = 100 vs. IFG-DM group, n = 100) for study 1. For real-world validation of two biomarkers (study 2), other participants in the KCPS-II cohort who had IFG at baseline (n = 500) were selected. Targeted LC/MS was used to analyze the baseline serum samples; retinal and RA levels were quantified. In study 1, we revealed that both biomarkers were significantly decreased in the IFG-DM group (retinal, p = 0.017; RA, p < 0.001). The obese subjects in the IFG-DM group showed markedly lower retinal (p = 0.030) and RA (p = 0.003) levels than those in the IFG-IFG group. In study 2, the results for the two metabolites tended to be similar to those of study 1, but no significant difference was observed. Notably, the predictive ability for T2DM was enhanced when the metabolites were added to conventional risk factors for T2DM in both studies (study 1, AUC 0.682 → 0.775; study 2, AUC 0.734 → 0.786). The results suggest that retinal- and RA-related metabolic pathways are altered before the onset of T2DM.
Collapse
|
29
|
Yang FC, Xu F, Wang TN, Chen GX. Roles of vitamin A in the regulation of fatty acid synthesis. World J Clin Cases 2021; 9:4506-4519. [PMID: 34222419 PMCID: PMC8223857 DOI: 10.12998/wjcc.v9.i18.4506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary macronutrients and micronutrients play important roles in human health. On the other hand, the excessive energy derived from food is stored in the form of triacylglycerol. A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase, fatty acid synthase, fatty acid elongases, and desaturases. As a micronutrient, vitamin A is essential for the health of humans. Recently, vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism. This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis. It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo. It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis. Future research directions are also discussed.
Collapse
Affiliation(s)
- Fu-Chen Yang
- Food College, Jiangsu Food and Pharmaceutical College, Huaian 223003, Jiangsu Province, China
| | - Feng Xu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Tian-Nan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37909, United States
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37909, United States
| |
Collapse
|
30
|
Kartasheva-Ebertz DM, Pol S, Lagaye S. Retinoic Acid: A New Old Friend of IL-17A in the Immune Pathogeny of Liver Fibrosis. Front Immunol 2021; 12:691073. [PMID: 34211477 PMCID: PMC8239722 DOI: 10.3389/fimmu.2021.691073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Despite all the medical advances mortality due to cirrhosis and hepatocellular carcinoma, the end stages of fibrosis, continuously increases. Recent data suggest that liver fibrosis is guided by type 3 inflammation with IL-17A at the top of the line. The storage of vitamin A and its active metabolites, as well as genetics, can influence the development and progression of liver fibrosis and inflammation. Retinoic acid (active metabolite of vitamin A) is able to regulate the differentiation of IL-17A+/IL-22–producing cells as well as the expression of profibrotic markers. IL-17A and its pro-fibrotic role in the liver is the most studied, while the interaction and communication between IL-17A, IL-22, and vitamin A–active metabolites has not been investigated. We aim to update what is known about IL-17A, IL-22, and retinoic acid in the pathobiology of liver diseases.
Collapse
Affiliation(s)
| | - Stanislas Pol
- Institut Pasteur, INSERM U1223, Paris, France.,Université de Paris, Paris, France.,APHP, Groupe Hospitalier Cochin, Département d'Hépatologie, Paris, France
| | | |
Collapse
|
31
|
Raza S, Tewari A, Rajak S, Sinha RA. Vitamins and non-alcoholic fatty liver disease: A Molecular Insight ⋆. LIVER RESEARCH (BEIJING, CHINA) 2021; 5:62-71. [PMID: 34221537 PMCID: PMC7611112 DOI: 10.1016/j.livres.2021.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly across the globe. NAFLD pathogenesis is largely driven by an imbalance in hepatic energy metabolism and at present, there is no approved drug for its treatment. The liver plays a crucial role in micronutrient metabolism and deregulation of this micronutrient metabolism may contribute to the pathogenesis of NAFLD. Vitamins regulate several enzymatic processes in the liver, and derangement in vitamin metabolism is believed to play a critical role in NAFLD progression. The anti-oxidant activities of vitamin C and E have been attributed to mitigate hepatocyte injury, and alterations in the serum levels of vitamin D, vitamin B12 and folate have shown a strong correlation with NAFLD severity. This review aims to highlight the role of these vitamins, which represent promising therapeutic targets for the management of NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Archana Tewari
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
32
|
Esteban J, Sánchez-Pérez I, Hamscher G, Miettinen HM, Korkalainen M, Viluksela M, Pohjanvirta R, Håkansson H. Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reprod Toxicol 2021; 101:33-49. [PMID: 33607186 DOI: 10.1016/j.reprotox.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Young adult wild-type and aryl hydrocarbon receptor knockout (AHRKO) mice of both sexes and the C57BL/6J background were exposed to 10 weekly oral doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; total dose of 200 μg/kg bw) to further characterize the observed impacts of AHR as well as TCDD on the retinoid system. Unexposed AHRKO mice harboured heavier kidneys, lighter livers and lower serum all-trans retinoic acid (ATRA) and retinol (REOH) concentrations than wild-type mice. Results from the present study also point to a role for the murine AHR in the control of circulating REOH and ATRA concentrations. In wild-type mice, TCDD elevated liver weight and reduced thymus weight, and drastically reduced the hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid (CORA) and retinyl palmitate (REPA). In female wild-type mice, TCDD increased the hepatic concentration of ATRA as well as the renal and circulating REOH concentrations. Renal CORA concentrations were substantially diminished in wild-type male mice exclusively following TCDD-exposure, with a similar tendency in serum. In contrast, TCDD did not affect any of these toxicity or retinoid system parameters in AHRKO mice. Finally, a distinct sex difference occurred in kidney concentrations of all the analysed retinoid forms. Together, these results strengthen the evidence of a mandatory role of AHR in TCDD-induced retinoid disruption, and suggest that the previously reported accumulation of several retinoid forms in the liver of AHRKO mice is a line-specific phenomenon. Our data further support participation of AHR in the control of liver and kidney development in mice.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Ismael Sánchez-Pérez
- Instituto De Bioingeniería, Universidad Miguel Hernández De Elche, Elche, Alicante, Spain.
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany.
| | - Hanna M Miettinen
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Merja Korkalainen
- Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Matti Viluksela
- School of Pharmacy (Toxicology) and Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Environmental Health Unit, Finnish Insitute for Health and Welfare (THL), Kuopio, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Mustialankatu 1, FI-00790 Helsinki, Finland.
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Moreto F, Ferron AJT, Francisqueti-Ferron FV, D'Amato A, Garcia JL, Costa MR, Silva CCVA, Altomare A, Correa CR, Aldini G, Ferreira ALA. Differentially expressed proteins obtained by label-free quantitative proteomic analysis reveal affected biological processes and functions in Western diet-induced steatohepatitis. J Biochem Mol Toxicol 2021; 35:1-11. [PMID: 33729641 DOI: 10.1002/jbt.22751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a pathological manifestation with a progressive incidence in response to the epidemic of hepatic steatosis caused primarily by excessive energy intake. The present study unravels affected biological processes and functions by the presence of NASH in rats using a label-free quantitative proteomic strategy. NASH was induced by a Western high-sugar and high-fat diet for 20 weeks. The liver tissue was collected for histology and for a mass spectrometry-based proteomic protocol. The NASH group showed severe lipidosis, hepatocyte ballooning, and the presence of collagen deposition. Among upregulated proteins in NASH perilipin-2 (Plin-2; F6QBA3; difference [diff]: 2.29), ferritin heavy (Fth1; Q66HI5; diff: 2.19) and light (Ftl1; P02793; diff: 1.75) chains, macrophage migration inhibitory factor 1 (Mif; P30904; diff: 1.69), and fibronectin (Fn1; F1LST1; diff: 0.35) were observed, whereas among downregulated proteins, plectin (Q6S399; diff: -3.34), some Cyp2 family proteins of the cytochrome P450 complex, glutathione S-transferases, flavin-containing monooxygenase 1 (Fmo1; P36365; diff: -2.08), acetyl-CoA acetyltransferase 2 (Acat2; Q5XI22; diff: -2.25), acyl-CoA oxidase 2 (Acox2; F1LNW3; diff: -1.59), and acyl-CoA oxidase 3 (Acox3; F1M9A7; diff: -2.41) were observed. Also, biological processes and functions such as LPS/IL-1 inhibition of RXR, fatty acid metabolism, Nrf2-mediated oxidative stress response, xenobiotic metabolism, and PXR/RXR and CAR/RXR activations were predicted to be affected. In conclusion, the liver of rats with NASH induced by Western diet shows a decreased capacity of metabolizing lipids, fatty acids, and xenobiotic compounds that predispose fibrosis development.
Collapse
Affiliation(s)
- Fernando Moreto
- Medical School, Sao Paulo State University, Botucatu, Brazil
| | | | | | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Mariane R Costa
- Medical School, Sao Paulo State University, Botucatu, Brazil
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
34
|
Morgenstern J, Fleming T, Kliemank E, Brune M, Nawroth P, Fischer A. Quantification of All-Trans Retinoic Acid by Liquid Chromatography-Tandem Mass Spectrometry and Association with Lipid Profile in Patients with Type 2 Diabetes. Metabolites 2021; 11:metabo11010060. [PMID: 33478094 PMCID: PMC7835841 DOI: 10.3390/metabo11010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
Retinoic acids are vitamin A metabolites that have numerous essential functions in humans, and are also used as drugs to treat acne and acute promyelocytic leukemia. All-trans retinoic acid (atRA) is the major occurring metabolite of retinoic acid in humans. This study provides a sensitive and specific liquid chromatography-tandem mass spectrometry approach in order to quantify atRA in human plasma samples. The isolation of atRA by hyperacidified liquid-liquid extraction using hexane and ethyl acetate resulted in a recovery of 89.7 ± 9.2%. The lower limit of detection was 20 pg·mL-1, and 7 point calibration displayed good linearity (R2 = 0.994) in the range of 50-3200 pg mL-1. Selectivity was guaranteed by the use of two individual mass transitions (qualifier and quantifier), and precision and accuracy were determined intraday and interday with a coefficient variation of 9.3% (intraday) and 14.0% (interday). Moreover, the method could be used to isolate atRA from hyperlipidemic samples. Applying this method to plasma samples from patients with poorly controlled Type 2 diabetes significantly decreased atRA plasma levels as compared to those of the healthy controls. In addition, atRA concentrations were highly associated with increased low-density lipoprotein (LDL) and decreased high-density lipoprotein (HDL) cholesterol levels.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- Correspondence: ; Fax: +49-6221-565-226
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kliemank
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
| | - Andreas Fischer
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (T.F.); (E.K.); (M.B.); (P.N.); (A.F.)
- Division Vascular Signaling and Cancer (A270), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
35
|
Chatelaine H, Dey P, Mo X, Mah E, Bruno RS, Kopec RE. Vitamin A and D Absorption in Adults with Metabolic Syndrome versus Healthy Controls: A Pilot Study Utilizing Targeted and Untargeted LC-MS Lipidomics. Mol Nutr Food Res 2021; 65:e2000413. [PMID: 33167078 PMCID: PMC7902427 DOI: 10.1002/mnfr.202000413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SCOPE Persons with metabolic syndrome (MetS) absorb less vitamin E than healthy controls. It is hypothesized that absorption of fat-soluble vitamins (FSV) A and D2 would also decrease with MetS status and that trends would be reflected in lipidomic responses between groups. METHODS AND RESULTS Following soymilk consumption (501 IU vitamin A, 119 IU vitamin D2 ), the triglyceride-rich lipoprotein fractions (TRL) from MetS and healthy subjects (n = 10 age- and gender-matched subjects/group) are assessed using LC-MS/MS. Absorption is calculated using area under the time-concentration curves (AUC) from samples collected at 0, 3, and 6 h post-ingestion. MetS subjects have ≈6.4-fold higher median vitamin A AUC (retinyl palmitate) versus healthy controls (P = 0.07). Vitamin D2 AUC is unaffected by MetS status (P = 0.48). Untargeted LC-MS lipidomics reveals six phospholipids and one cholesterol ester with concentrations correlating (r = 0.53-0.68; P < 0.001) with vitamin A concentration. CONCLUSIONS The vitamin A-phospholipid association suggests increased hydrolysis by PLB, PLRP2, and/or PLA2 IB may be involved in the trend in higher vitamin A bioavailability in MetS subjects. Previously observed differences in circulating levels of these vitamins are likely not due to absorption. Alternate strategies should be investigated to improve FSV status in MetS.
Collapse
Affiliation(s)
- Haley Chatelaine
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Eunice Mah
- Biofortis, Merieux NutriSciences, Addison, IL
| | - Richard S. Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH
| | - Rachel E. Kopec
- Human Nutrition Program, The Ohio State University, Columbus, OH
- Foods for Health Discovery Theme, The Ohio State University, Columbus, OH
| |
Collapse
|
36
|
Simbrunner B, Semmler G, Stadlmann A, Scheiner B, Schwabl P, Paternostro R, Bucsics T, Bauer D, Eigenbauer E, Pinter M, Stättermayer AF, Quehenberger P, Marculescu R, Trauner M, Mandorfer M, Reiberger T. Vitamin A levels reflect disease severity and portal hypertension in patients with cirrhosis. Hepatol Int 2020; 14:1093-1103. [PMID: 33289910 PMCID: PMC7803875 DOI: 10.1007/s12072-020-10112-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS The liver plays a key role in the storage, metabolism and homeostasis of fat-soluble vitamins. We investigated the relation of Vitamin(Vit)A/D/E serum levels with severity of liver disease and portal hypertension (PHT). METHODS VitA/D/E serum levels were assessed in 234 patients with advanced chronic liver disease (ACLD, i.e. hepatic venous pressure gradient [HVPG] ≥ 6 mmHg). Patients with hepatocellular carcinoma, pre-/post-hepatic PHT, TIPS or liver transplantation were excluded. RESULTS Most patients were male (n = 153; 65%) with a median age of 57.6 (49.7-64.5) years. Thirty-two (14%) patients had HVPG 6-9 mmHg, 66 (28%) 10-15 mmHg, and 136 (58%) ≥ 16 mmHg, respectively. VitD deficiency (25-OH-vitamin-D <50 nmol/L) was found in 133 (57%) with higher prevalence in Child-Turcotte-Pugh (CTP)-C: 85% vs. B: 66% vs. A: 47% (p < 0.001). VitD levels displayed significant but weak correlations with hepatic dysfunction and PHT. VitE levels were normal in 227 (97%) patients and displayed no relevant association with hepatic dysfunction or PHT. Only 63 (27%) patients had normal (>1.05 µmol/L) VitA levels, while 58 (25%) had mild (0.70-1.04 µmol/L), 71 (30%) moderate (0.35-0.69 µmol/L), and 42(18%) severe(<0.35 µmol/L) VitA deficiency. VitA correlated with HVPG (Rho = -0.409), CTP score (Rho = -0.646), and serum bile acid levels (Rho = -0.531; all p < 0.001). The prevalence of decompensated ACLD (dACLD) continuously increased with severity of VitA deficiency (no: 40% vs. mild: 51% vs. moderate: 67% vs. severe: 91% had dACLD; p < 0.001). CTP score (per point; OR 2.46; 95%CI 1.80-3.37; p <0.001), age (per year; OR 0.95; 95%CI 0.92-0.98; p = 0.001) and elevated bile acid levels(>10 µmol/L; OR 3.62; 95%CI 1.61-8.14; p = 0.002) were independently associated with VitA deficiency. CONCLUSION VitA and VitD but not VitE deficiencies are highly prevalent in ACLD. VitA deficiency strongly correlates with hepatic dysfunction, PHT and bile acid levels and is associated with decompensated ACLD. TRIAL REGISTRATION NUMBER NCT03267615.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Alexander Stadlmann
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
- Klinikum Hietzing, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Theresa Bucsics
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | | | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Albert-Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Vienna Hepatic Hemodynamic Laboratory, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Kimura M, Mikami K, Endo T, Matsuzaka M, Sawada N, Igarashi G, Iino C, Hasegawa T, Sawada K, Ando M, Tokuda I, Suganuma H, Matsumoto M, Nakaji S, Fukuda S. Association between serum β-carotene-to-retinol ratio and severity of hepatic steatosis in non-alcoholic fatty liver disease in Japan: A cross-sectional study. Nutrition 2020; 79-80:110984. [PMID: 32966920 DOI: 10.1016/j.nut.2020.110984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Retinol and β-carotene have been reported to be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, clinical studies are limited. The aim of this study was to investigate the relationship between serum the ratio of β-carotene to retinol (SC/SR) and hepatic steatosis in NAFLD diagnosed by ultrasonography. METHODS The participants were 606 Japanese adults who were enrolled in a health survey. Clinical profile, dietary nutrition intake, blood biochemistry, serum retinol, and carotenoids were analyzed. NAFLD was defined as fatty liver on ultrasonography in the absence of other causes of steatosis. RESULTS Women had higher daily intake of α- and β-carotene, although there were no differences in daily retinol and carotenoid intake between participants with or without NAFLD in both men and women. Women had a higher SC/SR ratio than men regardless of the presence or absence of NAFLD, and the SC/SR ratio in women decreased with exacerbation of hepatic steatosis, whereas the SC/SR ratio in men did not change despite exacerbation of hepatic steatosis. After adjusting for confounding factors, the likelihood of NAFLD among participants in the highest quartile of SC/SR ratio decreased by two-thirds compared with participants in the lowest quartile (adjusted odds ratio, 0.64; 95% confidence interval, 0.21-1.92; P = 0.041). The SC/SR ratio was positively correlated with serum high-density lipoprotein cholesterol level, and negatively correlated with serum triacylglycerol level. CONCLUSIONS The SC/SR ratio was lower in NAFLD with sex differences, and was associated with the severity of hepatic steatosis and lipid profile. Future studies are needed to expand on these findings.
Collapse
Affiliation(s)
- Masayo Kimura
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichiro Mikami
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Tetsu Endo
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masashi Matsuzaka
- Clinical Research Support Center, Hirosaki University Hospital, Hirosaki, Japan
| | - Naoya Sawada
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Go Igarashi
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Iino
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuma Hasegawa
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kaori Sawada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masataka Ando
- Department of Diet and health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Itoyo Tokuda
- Department of Oral Health Care, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Mai Matsumoto
- Innovation Division, KAGOME CO., LTD., Nasushiobara, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
38
|
Bauer KC, Huus KE, Brown EM, Bozorgmehr T, Petersen C, Cirstea MS, Woodward SE, McCoy J, Hun J, Pamplona R, Ayala V, Finlay BB. Dietary Intervention Reverses Fatty Liver and Altered Gut Microbiota during Early-Life Undernutrition. mSystems 2020; 5:e00499-20. [PMID: 32900869 PMCID: PMC7483509 DOI: 10.1128/msystems.00499-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), largely studied as a condition of overnutrition, also presents in undernourished populations. Like NAFLD, undernutrition disrupts systemic metabolism and has been linked to gut microbiota dysbiosis. Indeed, chronic exposures to fecal microbes contribute to undernutrition pathology in regions with poor sanitation. Despite a growing prevalence of fatty liver disease, the influence of undernutrition and the gut microbiota remain largely unexplored. Here, we utilize an established murine model (C57BL/6J mice placed on a malnourished diet that received iterative Escherichia coli/Bacteroidales gavage [MBG mice]) that combines a protein/fat-deficient diet and iterative exposure to specific, fecal microbes. Fecal-oral contamination exacerbates triglyceride accumulation in undernourished mice. MBG livers exhibit diffuse lipidosis accompanied by striking shifts in fatty acid, glycerophospholipid, and retinol metabolism. Multiomic analyses revealed metabolomic pathways linked to the undernourished gut microbiome and hepatic steatosis, including phenylacetate metabolism. Intriguingly, fatty liver features were observed only in the early-life, but not adult, MBG model despite similar liver metabolomic profiles. Importantly, we demonstrate that dietary intervention largely mitigates aberrant metabolomic and microbiome features in MBG mice. These findings indicate a crucial window in early-life development that, when disrupted by nutritional deficiency, may significantly influence liver function. Our work provides a multifaceted study of how diet and gut microbes inform fatty liver progression and reversal during undernutrition.IMPORTANCE Nonalcoholic fatty liver disease (NAFLD) remains a global epidemic, but it is often studied in the context of obesity and aging. Nutritional deficits, however, also trigger hepatic steatosis, influencing health trajectories in undernourished pediatric populations. Here, we report that exposure to specific gut microbes impacts fatty liver pathology in mice fed a protein/fat-deficient diet. We utilize a multiomics approach to (i) characterize NAFLD in the context of early undernutrition and (ii) examine the impact of diet and gut microbes in the pathology and reversal of hepatic steatosis. We provide compelling evidence that an early-life, critical development window facilitates undernutrition-induced fatty liver pathology. Moreover, we demonstrate that sustained dietary intervention largely reverses fatty liver features and microbiome shifts observed during early-life malnutrition.
Collapse
Affiliation(s)
- K C Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - K E Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Petersen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - M S Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - S E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - J McCoy
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Hun
- The Metabolomics Innovation Centre, University of Victoria, British Columbia, Canada
| | - R Pamplona
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - V Ayala
- Institut de Recerca Biomèdica de Lleida (IRB-Lleida), Lleida, Spain
- Department of Metabolomic Physiology, Universitat de Lleida, Lleida, Spain
| | - B B Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Microbiology and Immunology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Eduardo VG, Silvia S, Jose PC, Tiebing L, Samer G, Oscar C, Wanqing L, Naga C. ADH1B∗2 Is Associated With Reduced Severity of Nonalcoholic Fatty Liver Disease in Adults, Independent of Alcohol Consumption. Gastroenterology 2020; 159:929-943. [PMID: 32454036 PMCID: PMC7502531 DOI: 10.1053/j.gastro.2020.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alcohol dehydrogenase 1B (ADH1B) is involved in alcohol metabolism. The allele A (ADH1B∗2) of the rs1229984: A>G variant in ADH1B is associated with a higher alcohol metabolizing activity compared to the ancestral allele G (ADH1B∗1). Moderate alcohol consumption is associated with reduced severity of nonalcoholic fatty liver disease (NAFLD), based on histologic analysis, compared with no alcohol consumption. However, it is unclear whether ADH1B∗2 modifies the relationship between moderate alcohol consumption and severity of NAFLD. We examined the association between ADH1B∗2 and moderate alcohol consumption and histologic severity of NAFLD. METHODS We collected data from 1557 multiethnic adult patients with biopsy-proven NAFLD enrolled into 4 different studies conducted by the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network. Histories of alcohol consumption were obtained from answers to standardized questionnaires. Liver biopsy samples were analyzed by histology and scored centrally according to the NASH Clinical Research Network criteria. We performed covariate adjusted logistic regressions to identify associations between histologic features of NAFLD severity and moderate alcohol consumption and/or ADH1B∗2. RESULTS A higher proportion of Asians/Pacific Islanders/Hawaiians carried the ADH1B∗2 allele (86%) than other racial groups (4%-13%). However, the study population comprised mostly non-Hispanic whites (1153 patients, 74%), so the primary analysis focused on this group. Among them, 433 were moderate drinkers and 90 were ADH1B∗2 carriers. After we adjusted for confounders, including alcohol consumption status, ADH1B∗2 was associated with lower frequency of steatohepatitis (odds ratio [OR], 0.52; P < .01) or fibrosis (odds ratio, 0.69; P = .050) compared with ADH1B∗1. Moderate alcohol consumption (g/d) reduced the severity of NAFLD in patients with ADH1B∗1 or ADH1B∗2. However, ADH1B∗2, compared to ADH1B∗1, was associated with a reduced risk of definite NASH (ADH1B∗2: OR, 0.80; P < .01 vs ADH1B∗1: OR, 0.96; P = .036) and a reduced risk of an NAFLD activity score of 4 or higher (ADH1B∗2: OR, 0.83; P = .012 vs ADH1B∗1: OR, 0.96; P = .048) (P < .01 for the difference in the effect of moderate alcohol consumption between alleles). The relationship between body mass index and NAFLD severity was significantly modified by ADH1B∗2, even after we controlled for alcohol consumption. CONCLUSIONS ADH1B∗2 reduces the risk of NASH and fibrosis in adults with NAFLD regardless of alcohol consumption status. ADH1B∗2 might modify the association between high body mass index and NAFLD severity.
Collapse
Affiliation(s)
- Vilar-Gomez Eduardo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sookoian Silvia
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Pirola Carlos Jose
- Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Liang Tiebing
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gawrieh Samer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Cummings Oscar
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Liu Wanqing
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; Department of Pharmacology, School of Medicine; Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Chalasani Naga
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
40
|
Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R, Ghaskadbi S. miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158777. [PMID: 32755726 DOI: 10.1016/j.bbalip.2020.158777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023]
Abstract
AIMS PPARγ is a crucial transcription factor involved in development of hepatic steatosis, an early stage of NAFLD. PPARγ is tightly regulated through various positive and negative regulators including miRNAs. In this study, we report for the first time miR-3666 as a negative regulator of PPARγ and its involvement in development of hepatic steatosis. METHODS Binding of miR-3666 to regulate PPARγ was checked by luciferase assay and was confirmed by mutating PPARγ 3'UTR. Regulation of PPARγ was determined by overexpression of miR-3666 in HepG2 cells. Hepatic steatotic state in HepG2 cells was developed by exposure to excess palmitic acid and expression of PPARγ, miR-3666 and some PPARγ target and non-target genes was checked. Involvement of mir-3666 by regulating PPARγ in hepatic steatosis was also examined in liver of HFD fed mice. RESULTS On overexpression of miR-3666, PPARγ expression decreased significantly in a dose-dependent manner in HepG2 cells. Binding of miR-3666 to PPARγ was confirmed as the luciferase activity using pMIR-REPORT with PPARγ 3'UTR decreased in PA treated HepG2 cells overexpressing miR-3666 and remained unchanged when PPARγ 3'UTR was mutated. In PA treated HepG2 cells during development of hepatic steatosis PPARγ was significantly up-regulated concomitant with down-regulation of miR-3666. Overexpression of miR-3666 in these cells decreased the extent of hepatic steatosis. Significant up-regulation of PPARγ and down-regulation of miR-3666 was also observed in liver of HFD fed mice indicating that miR-3666 regulates PPARγ in vivo. CONCLUSIONS miR-3666 negatively regulates PPARγ by binding to its 3'UTR during development of hepatic steatosis.
Collapse
Affiliation(s)
- Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Shrirang Inamdar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Jhankar Acharya
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Saurabh Kalamkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | | | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
41
|
Saeed A, Bartuzi P, Heegsma J, Dekker D, Kloosterhuis N, de Bruin A, Jonker JW, van de Sluis B, Faber KN. Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:309-325.e3. [PMID: 32698042 PMCID: PMC7768561 DOI: 10.1016/j.jcmgh.2020.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. METHODS Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. RESULTS Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh's and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. CONCLUSION NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Paulina Bartuzi
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daphne Dekker
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels Kloosterhuis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain de Bruin
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory Medicine, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
42
|
Shi L, Guo S, Zhang S, Gao X, Liu A, Wang Q, Zhang T, Zhang Y, Wen A. Glycyrrhetinic acid attenuates disturbed vitamin a metabolism in non-alcoholic fatty liver disease through AKR1B10. Eur J Pharmacol 2020; 883:173167. [PMID: 32485245 DOI: 10.1016/j.ejphar.2020.173167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Abnormal vitamin A (retinol) metabolism plays an important role in the occurrence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this study, NAFLD and NASH models were established to investigate the effects of food additives glycyrrhizic acid (GL) on retinol metabolism in NAFLD/NASH mice. Potential targets of GL and its active metabolite glycyrrhetinic acid (GA) were analyzed by RNA sequence, bioinformatics, and molecular docking analyses. Gene transfection and enzymatic kinetics were used to identify the target of GL. The results showed that GL could resolve the fatty and inflammatory lesions in the mouse liver, thereby improving the disorder of retinol metabolism. RNA sequence analysis of model mice liver revealed significant changes in AKR1B10 (retinol metabolic enzymes). Bioinformatics and molecular docking analyses showed that AKR1B10 is a potential target of GA but not GL. GA could inhibit AKR1B10 activity, which then affects retinol metabolism, whereas GL only had the same effect after hydrolysis into GA. In AKR1B10-KO hepatocytes, GA, GL, and hydrolysates of GL had no regulatory effect on retinol metabolism. Therefore, GA, the active metabolite of GL, as a novel AKR1B10 inhibitor, could promote retinoic acid synthesis. GL restored the balance of retinol metabolism in NAFLD/NASH mice by metabolizing to GA.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China; Department of Pharmacy, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Shun Guo
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Song Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Xiaobo Gao
- Department of Pharmacy, The No.987 Hospital of the PLA Joint Logistics Support Force, Baoji, 610303, PR China
| | - An Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Qinhui Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Yan Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China.
| | - Aidong Wen
- Department of Pharmacy, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China.
| |
Collapse
|
43
|
Yang CD, Cheng ML, Liu W, Zeng DH. Association of serum retinoic acid with depression in patients with acute ischemic stroke. Aging (Albany NY) 2020; 12:2647-2658. [PMID: 32040942 PMCID: PMC7041768 DOI: 10.18632/aging.102767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA), produced by the metabolism of vitamin A, makes effects on depression and stroke. This study was aimed to evaluate the relationship between RA levels in serum and post-stroke depression (PSD). A single-center (Chengdu, China) prospective cohort study was conducted on patients with acute ischemic stroke. The RA serum level was measured at admission. The PSD was assessed in the 3-month follow-up. The RA-PSD relationship was evaluated with conditional logistic regression. In total, 239 ischemic stroke cases and 100 healthy controls were included. The median RA serum level in patients with ischemic stroke was 2.45 ng/ml (interquartile range [IQR], 0.72-4.33), lower(P<0.001) than 3.89 ng/ml of those in control cases ([IQR]: 2.62-5.39). The crude and adjusted odds ratios [OR] (and 95% confidence intervals [CI]) of PSD associated with an IQR increase for RA were 0.54 (0.44, 0.67) and 0.66 (0.52, 0.79), respectively. Higher ORs of PSD associated with reduced RA levels (
Collapse
Affiliation(s)
- Cai-Di Yang
- Department of Neurology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610101, China
| | - Ming-Li Cheng
- Department of Neurology, People's Hospital of Jianyang, Jianyang 641400, China
| | - Wen Liu
- The Clinical Laboratory Department, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ding-Hua Zeng
- Department of Neurology, Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610101, China
| |
Collapse
|
44
|
Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, Kasikara C, Davra V, Meroni M, Chung RT, Rothlin CV, Schwabe RF, Blaner WS, Birge RB, Valenti L, Tabas I. Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:406-421.e7. [PMID: 31839486 PMCID: PMC7004886 DOI: 10.1016/j.cmet.2019.11.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a leading cause of chronic liver disease. However, therapeutic options are limited by incomplete understanding of the mechanisms of NASH fibrosis, which is mediated by activation of hepatic stellate cells (HSCs). In humans, human genetic studies have shown that hypomorphic variations in MERTK, encoding the macrophage c-mer tyrosine kinase (MerTK) receptor, provide protection against liver fibrosis, but the mechanisms remain unknown. We now show that holo- or myeloid-specific Mertk targeting in NASH mice decreases liver fibrosis, congruent with the human genetic data. Furthermore, ADAM metallopeptidase domain 17 (ADAM17)-mediated MerTK cleavage in liver macrophages decreases during steatosis to NASH transition, and mice with a cleavage-resistant MerTK mutant have increased NASH fibrosis. Macrophage MerTK promotes an ERK-TGFβ1 pathway that activates HSCs and induces liver fibrosis. These data provide insights into the role of liver macrophages in NASH fibrosis and provide a plausible mechanism underlying MERTK as a genetic risk factor for NASH fibrosis.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Kathleen E Corey
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Igor O Shmarakov
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Raymond T Chung
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine and Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Transfusion Medicine and Hematology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Departments of Pathology & Cell Biology and Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
45
|
Berná G, Romero-Gomez M. The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int 2020; 40 Suppl 1:102-108. [PMID: 32077594 DOI: 10.1111/liv.14360] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/13/2023]
Abstract
A healthy diet together with physical activity could induce weight loss and control the progression of non-alcoholic fatty liver disease (NAFLD). However, the composition of diet has not been clearly established. Macronutrients such as saturated fatty acids (SFA), trans-fats, simple sugars and animal proteins have a harmful effect on the liver. On the other hand, monounsaturated fats (MUFAs), polyunsaturated (PUFAs) omega-3-fats, plant-based proteins and dietary fibres are considered to be beneficial to the liver. The impact of specific micronutrients is less well-known. Nutrients are part of the food we eat. Food makes up our meals, which compose our dietary patterns. Non-alcoholic fatty liver disease patients usually follow Western diets which are rich in soda, frozen junk food, juice, red meat, lard, processed meats, whole fat dairy foods, fatty snack foods, take-away foods, cakes and biscuits and poor in cereals, whole grains, fruit, vegetables, extra virgin olive oil (EVOO) and fish. On the other hand, the Mediterranean diet (MD) is beneficial for NAFLD even when it is iso-caloric or there are no changes in body weight. A new approach, called 'nutritional geometry' considers the importance of integrating nutrition, animals and the environment. The goal of this approach is to combine nutrients and foods in a model to understand how food components interact to regulate the properties of diets affecting health and disease. The use of algorithms developed by artificial intelligence (AI) to create a personalized diet for patients can provide customized nutritional counselling to prevent and treat NAFLD.
Collapse
Affiliation(s)
- Genoveva Berná
- CABIMER, University Pablo Olavide and CIBERDEM, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Romero-Gomez
- UCM Digestive Diseases and CIBERehd, Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío/CSIC/US, University of Seville, Seville, Spain
| |
Collapse
|
46
|
Allam AS, Salama MM, Nasser HM, Kabiel WAY, Elsayed EH. Comparison between NAFLD fibrosis score and retinoic acid serum level in NAFLD. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-019-0014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is described by the abnormal accumulation of fats in livers of individuals without significant alcohol intake. It includes a spectrum of diseases from simple steatosis to steatohepatitis (NASH) with fibrosis and cirrhosis. The prevalence of NAFLD is rising in association with increasing obesity worldwide. Retinoic acid (RA), a metabolite of vitamin A, mediates the functions of vitamin A required for growth and development. Also, RA has been shown to reduce adiposity not only in fat cells but also in the liver through increasing triglyceride hydrolysis and fat oxidation. This could put a future trial of preventing NASH and cirrhosis development by vitamin A supplementation. This work aimed to study the role of retinoic acid in NAFLD, whether it can differentiate simple steatosis from NASH and correlate the result with the NAFLD fibrosis score. It is a cross-sectional study done on 180 patients divided into three groups. Group 1 is composed of 80 patients with simple steatosis and normal ALT; group 2 is composed of 80 patients with NASH and high ALT in addition to group 3 with 20 healthy subjects served as a control group. All patients were proven to have fatty liver by ultrasonography. Serum RA was assayed by using enzyme-linked immunosorbent assay (ELISA) technique, and the NAFLD fibrosis score was calculated and compared with the retinoic acid level.
Result
Serum RA level was significantly decreased in the patient groups as compared to the controls; the lowest serum level was observed among the NASH group, followed by the steatosis group. NAFLD fibrosis score was calculated, and it was higher in the NASH group than in the steatosis group. Besides, there was a significant negative correlation between retinoic acid and NAFLD score among the patient groups.
Conclusion
Serum RA level was lower in patients with simple steatosis and NASH. RA had a high statistically significant difference in differentiation between the patient groups and the control group. The results were comparable to the NAFLD fibrosis score. Thus, retinoic acid could be used for diagnosis and accessing the degree of NAFLD.
Collapse
|
47
|
Hepatoprotective Effect of the Ethanol Extract of Illicium henryi against Acute Liver Injury in Mice Induced by Lipopolysaccharide. Antioxidants (Basel) 2019; 8:antiox8100446. [PMID: 31581526 PMCID: PMC6826918 DOI: 10.3390/antiox8100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
The root bark of Illicium henryi has been used in traditional Chinese medicine to treat lumbar muscle strain and rheumatic pain. Its ethanol extract (EEIH) has been previously reported to attenuate lipopolysaccharide (LPS)-induced acute kidney injury in mice. The present study aimed to evaluate the in vitro antioxidant activities and in vivo protective effects of EEIH against LPS-induced acute liver injury (ALI) in mice as well as explore its molecular mechanisms. The mice were injected intraperitoneally (i.p.) with EEIH at the doses of 1.25, 2.5, and 5.0 mg/kg every day for 5 days. One hour after the last administration, the mice were administered i.p. with LPS (8 mg/kg). After fasting for 12 h, blood and liver tissues were collected to histopathological observation, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH possessed 2,2-diphenyl-1-picrylhydrazil (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiozoline-6-sulfonic acid) disodium salt (ABTS) radical scavenging activities and ferric-reducing antioxidant capacity in vitro. The histopathological examination, serum biochemical analysis, and liver myeloperoxidase (MPO) activity showed that EEIH pretreatment alleviated LPS-induced liver injury in mice. EEIH significantly dose-dependently decreased the mRNA and protein expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and COX-2 in liver tissue of LPS-induced ALI mice via downregulating the mRNA and protein expressions of toll-like receptor 4 (TLR4) and inhibiting the phosphorylation of nuclear factor-κB (NF-κB) p65. Furthermore, EEIH markedly ameliorated liver oxidative and nitrosative stress burden in LPS-treated mice through reducing the content of thiobarbituric acid reactive substances (TBARS), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) levels, restoring the decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and up-regulating nuclear factor erythroid 2 related factor 2 (Nrf2). These results demonstrate that EEIH has protective effects against ALI in mice via alleviating inflammatory response, oxidative and nitrosative stress burden through activating the Nrf2 and suppressing the TLR4/NF-κB signaling pathways. The hepatoprotective activity of EEIH might be attributed to the flavonoid compounds such as catechin (1), 3',4',7-trihydroxyflavone (2), and taxifolin (7) that most possibly act synergistically.
Collapse
|
48
|
Zhong G, Kirkwood J, Won KJ, Tjota N, Jeong H, Isoherranen N. Characterization of Vitamin A Metabolome in Human Livers With and Without Nonalcoholic Fatty Liver Disease. J Pharmacol Exp Ther 2019; 370:92-103. [PMID: 31043436 PMCID: PMC6548984 DOI: 10.1124/jpet.119.258517] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Retinoids are essential endogenous compounds involved in regulation of critical biologic processes, including maintenance of metabolic homeostasis in the liver. Much of the knowledge of altered retinoid homeostasis in human disease states is derived from changes in indirect markers such as mRNA expression of retinoid-related genes and circulating concentrations of retinol or its binding protein RBP4. We hypothesized that in the human liver, concentrations of the active retinoid all-trans-retinoic acid (atRA) correlate with the concentrations of retinyl palmitate (RP), the storage form of atRA, retinol, the inactive vitamin A, and the mRNA expression of retinoid-related genes. On the basis of existing knowledge of altered vitamin A homeostasis in metabolic syndrome, we also predicted that in human livers with nonalcoholic fatty liver disease (NAFLD) retinoid concentrations would be decreased. Using novel liquid chromatography-tandem mass spectrometry methods, the hepatic vitamin A metabolome was quantified in normal human livers (n = 50) and 22 livers from donors with NAFLD. The hepatic concentrations of RP, atRA, 13-cisRA, and 4-oxo-atRA were significantly decreased in NAFLD samples in comparison with normal liver samples, whereas retinol levels remained unchanged. The concentrations of atRA were positively correlated with RP and 13-cisRA but not with retinol or the relative mRNA expression of LRAT, ALDH1A1, CYP26A1, RARα, and RARβ An active metabolite of atRA, 4-oxo-atRA was, for the first time, detected in human tissues at comparable concentration with RA isomers, suggesting this retinoid may contribute to retinoid signaling in humans. SIGNIFICANCE STATEMENT: This study shows that in NAFLD liver vitamin A homeostasis is disrupted potentially contributing to disease progression. The results show that interpretation of retinoid homeostasis on the basis of indirect markers such as retinol concentrations or mRNA data is probably misleading when evaluating human disease processes, and analysis of the broader retinoid metabolome is needed to characterize disease effects on retinoid signaling.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| | - Jay Kirkwood
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| | - Kyoung-Jae Won
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| | - Natalie Tjota
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| | - Hyunyoung Jeong
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington (G.Z., J.K., N.T., N.I.) and Department of Pharmacy Practice, University of Illinois, Chicago, Illinois (K.-J.W., H.J.)
| |
Collapse
|
49
|
Tu WJ, Qiu HC, Zhang Y, Cao JL, Wang H, Zhao JZ, Liu Q, Zeng X. Lower serum retinoic acid level for prediction of higher risk of mortality in ischemic stroke. Neurology 2019; 92:e1678-e1687. [PMID: 30850446 DOI: 10.1212/wnl.0000000000007261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To explore the association between serum retinoic acid (RA) level in patients with acute ischemic stroke (AIS) and mortality risk in the 6 months after admission. METHODS From January 2015 through December 2016, patients admitted to 3 stroke centers in China for first-ever AIS were screened. The primary endpoint was all-cause mortality or cardiovascular disease (CVD) mortality in the 6 months after admission. The significance of serum RA level, NIH Stroke Scale score, and established risk factors in predicting mortality were determined. The integrated discrimination improvement (IDI) and net reclassification improvement (NRI) statistics were applied in statistical analysis. RESULTS Of the 1,530 patients enrolled, 325 died within 6 months of admission, with an all-cause mortality of 21.2% and CVD-related mortality of 13.1%. In multivariable analysis, RA levels were expressed as quartiles with the clinical variables. The results of the second to fourth quartiles (Q2-Q4) were compared with the first quartile (Q1); RA levels showed prognostic significance, with decreased all-cause and CVD mortality of 55% and 63%, respectively. After RA was added to the existing risk factors, all-cause mortality could be better reclassified, in association with only the NRI statistic (p = 0.005); CVD mortality could be better reclassified with significance, in association with both the IDI and NRI statistics (p < 0.01). CONCLUSIONS Low circulating levels of RA were associated with increased risk of all-cause and CVD mortality in a cohort of patients with first-incidence AIS, indicating that RA level could be a predictor independent of established conventional risk factors.
Collapse
Affiliation(s)
- Wen-Jun Tu
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han-Cheng Qiu
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiqun Zhang
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Lei Cao
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Wang
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ji-Zong Zhao
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Qiang Liu
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xianwei Zeng
- From the Institute of Radiation Medicine (W.-J.T., H.W., Q.L.), China Academy of Medical Science & Peking Union Medical College, Tianjin; Department of Neurosurgery (W.-J.T., H.-C.Q., J.-Z.Z.), Beijing Tiantan Hospital of Capital Medical University, Beijing; Department of Neurosurgery (W.-J.T., X.Z.), Qilu Hospital of Shandong University, Jinan, Shandong Province; Department of Vascular Neurosurgery (H.-C.Q., Y.Z.), New Era Stroke Care and Research Institute, the General Hospital of the PLA Rocket Force, Beijing; and Department of Cardiology (J.l.-C.), Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
50
|
Esteban J, Serrano-Maciá M, Sánchez-Pérez I, Alonso-Magdalena P, Pellín MDLC, García-Arévalo M, Nadal Á, Barril J. In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring. Food Chem Toxicol 2019; 126:142-151. [PMID: 30790712 DOI: 10.1016/j.fct.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/19/2022]
Abstract
The retinoid system controls essential cellular processes including mitosis, differentiation and metabolism among others. Although the retinoid-signalling pathway is a potential target for the action of several endocrine disrupting chemicals (EDCs), the information about the developmental effects of bisphenol-A (BPA) on the hepatic retinoid system is scarce. Herein, male mice were in utero exposed to BPA following maternal subcutaneous doses of 0, 10 and 100 μg/kg bw/day from gestational day 9-16 and they were sacrificed at post-natal day 30. Retinoid concentrations and gene expression of key elements involved in the retinoid system were determined in liver. BPA increased all-trans-retinoic acid concentration and expression of Adh1, Aox1 and Cyp1a2 (biosynthesis of retinoic acid), while reduced Mrp3 (efflux from hepatocyte to blood), increased Bcrp expression (biliary excretion) and changed the retinoid-dependent signalling system after reducing expression of Rxrβ and increasing that of Fgf21. Furthermore, we found bivariate associations of Rarγ and Rxrγ expressions with all-trans-retinoic acid concentrations and of Fgf21 expression with that of Rarγ. Those findings occurred in animals which showed altered pancreatic function and impaired glucose metabolism during adulthood. The present information should be useful for enhancing testing methods for the identification of EDCs.
Collapse
Affiliation(s)
- Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain.
| | | | | | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche, Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | | | - Marta García-Arévalo
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Ángel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche, Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica En Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jose Barril
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Spain
| |
Collapse
|