1
|
Kang A, Ni J, Cheng X, Wu S, Liu Y, Ma W, Wang D. Influence of α-Linolenic Acid on the Intestinal Barrier Integrity and Intestinal Antioxidant Status in Broilers. Food Sci Nutr 2025; 13:e70271. [PMID: 40438093 PMCID: PMC12117540 DOI: 10.1002/fsn3.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
This study aimed to investigate the beneficial effects of α-linolenic acid (ALA) on intestinal barrier function and antioxidant status in broilers, along with the associated molecular mechanisms. 320 one-day-old Arbor Acres broilers were randomly divided into four groups, each with eight replicates, and fed diets with 0 (control), 200, 400, and 600 mg of ALA/kg for 42 days. ALA supplementation did not significantly affect the broilers' overall growth performance. Supplementing diets with 400 and 600 mg/kg of ALA significantly enhanced (p < 0.05) jejunal and ileal villus height, the jejunal villus height to crypt depth ratio, and ileal mRNA expression and protein levels of Zonula occludens-1 (ZO-1) and occludin in broilers on Day 42. Broilers fed diets containing 600 mg/kg of ALA exhibited significantly increased (p < 0.05) serum catalase (CAT) activity, total antioxidant capacity (T-AOC), and jejunal and ileal activities of CAT and total superoxide dismutase (T-SOD), alongside reduced malondialdehyde (MDA) concentrations in serum, jejunum, and ileum on Days 21 and 42, compared to the control group. Supplementing 600 mg/kg of ALA significantly increased (p < 0.05) the mRNA expressions of CAT, SOD1, NRF2, and HO-1, along with the protein levels of cytoplasmic and nuclear NRF2 and HO-1 in the jejunum and ileum on Days 21 and 42. These findings demonstrate the protective effects of ALA in improving intestinal health in broilers. The underlying mechanisms may involve enhancing intestinal barrier integrity by increasing tight junction protein abundance and boosting intestinal antioxidant capacity by elevating antioxidant enzyme activity and activating the NRF2 pathway. In conclusion, our results showed that 600 mg/kg of ALA was identified as the optimal concentration for improving intestinal barrier function and antioxidant status in broilers, highlighting its potential for protecting intestinal health through ALA-based interventions.
Collapse
Affiliation(s)
- Ao Kang
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Jialei Ni
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Xinyu Cheng
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Shuyu Wu
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Yun Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinHeolongjiangPeople's Republic of China
| | - Weiming Ma
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
| | - Dong Wang
- College of Veterinary Medicine, Shandong Agricultural UniversityTai'anShandongPeople's Republic of China
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinHeolongjiangPeople's Republic of China
| |
Collapse
|
2
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
3
|
Salinas-Nolasco C, Pérez-Hernández E, Garza S, Park HG, Brenna JT, Castañeda-Hernández G, Reyes-López CA, Pérez-Hernández N, Chávez-Piña AE. Antioxidative Action of Alpha-Linolenic Acid during Its Gastroprotective Effect in an Indomethacin-Induced Gastric Injury Model. Prev Nutr Food Sci 2025; 30:132-140. [PMID: 40352293 PMCID: PMC12061533 DOI: 10.3746/pnf.2025.30.2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 05/14/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are known to have beneficial effects. In particular, the consumption of omega-3 PUFAs has recently increased because of their effects on human health. Previous studies have investigated the activity of alpha-linolenic acid (ALA; C:18 omega-3) in metabolism and inflammation models. In a murine model of colitis, treatment with ALA effectively reduced inflammation. Previously, our research group identified the protective action of docosahexaenoic acid against gastric damage caused by nonsteroidal anti-inflammatory drugs. The present study aimed to examine the impact of ALA in an indomethacin-induced gastric injury model and to determine its antioxidant activity in gastric tissue. Female Wistar rats were administered ALA over 10 days (20 mg/kg, orally). Two hours after the final ALA administration, the rats were given indomethacin (30 mg/kg, orally) to induce gastric injury. After 3 h, the rats were euthanized, and each stomach lesion was measured to determine the total damage. Stomach tissue samples were collected for the analysis of various antioxidant indicators. The results show ALA's gastroprotective effect following 10-day administration. ALA treatment significantly reduced gastric reactive oxygen species and malondialdehyde levels in the indomethacin-induced injury group. Moreover, ALA treatment decreased the levels of nitric oxide, myeloperoxidase, leukotriene B4, and increased glutathione following indomethacin administration. These results suggest that the gastroprotective effects of ALA are likely attributed to its role in the antioxidant pathway in indomethacin-induced gastric injury.
Collapse
Affiliation(s)
- Cristina Salinas-Nolasco
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Ciudad de México 07320, México
| | - Elizabeth Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, México
| | - Secilia Garza
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Chemistry, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Chemistry, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Chemistry, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
- Department of Nutrition, Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Gilberto Castañeda-Hernández
- Departamento de Farmacología, Centro de Investigaciones y Estudios Avanzados, CINVESTAV, Mexico City 07360, México
| | - César A.S. Reyes-López
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, México
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, México
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, México
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Doctorado en Ciencias en Biotecnología, Ciudad de México 07320, México
- Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ciudad de México 07320, México
| |
Collapse
|
4
|
Lu Y, Chen L, Lin Y, Zhang Y, Wang Y, Yu W, Ren F, Guo H. Fatty acid metabolism: The crossroads in intestinal homeostasis and tumor. Metabolism 2025; 169:156273. [PMID: 40280478 DOI: 10.1016/j.metabol.2025.156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Fatty acids (FAs) have various functions on cell regulation considering their abundant types and metabolic pathways. In addition, the relation between FA and other nutritional metabolism makes their functions more complex. As the first place for diet-derived FA metabolism, intestine is significantly influenced despite lack of clear conclusions due to the inconsistent findings. In this review, we discuss the regulation of fatty acid metabolism on the fate of intestinal stem cells in homeostasis and disorders, and also focus on the intestinal tumor development and treatment from the aspect of gut microbiota-epithelium-immune interaction. We summarize that the balances between FA oxidation and glycolysis, between oxidative phosphorylation and ketogenesis, between catabolism and anabolism, and the specific roles of individual FA types determine the diverse effects of intestinal FA metabolism in different cases. We hope this will inspire further dissection and suggest precise dietary/metabolic intervention for different demands related to intestinal health.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lining Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqi Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Li Y, Ju X, Liu X. Biochemical impact of ALAEm supplementation in late gestation on the reproductive performance of sows. Front Vet Sci 2025; 12:1548263. [PMID: 40336816 PMCID: PMC12055862 DOI: 10.3389/fvets.2025.1548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Adding plant extracts to diets to enhance sow performance and health is widely regarded as a healthy and sustainable practice. In promoting antibiotic-free farming, plant extracts have emerged as a leading solution for enhancing sow fertility through nutritional strategies. The aim of this study was to investigate the biochemical impacts of supplementation of sows with ALAEm (composed of nine plant extracts) on blood and placental indices of sows in late gestation. The components of ALAEm were determined by UPLC-MS/MS. 196 normal gestation parturient sows were randomly allocated into two groups (n = 98 per group): the control group and the test group fed 20 g/d ALAEm supplementation at 74-114 d of gestation. The study examined the various clinical indexes in the blood, the expression of genes and proteins and metabolomics in the placenta. Dietary ALAEm supplementation improved sow reproductive performance (total number of piglets born alive, number of piglets weaned, wean weight), serum biochemical indices, placental structure and increased gene and protein expression of ZO-1, Claudin-1 and other placental junction-associated factors. ALAEm attenuated placental tissue oxidation, inflammation, and apoptosis, promoted placental growth (EGF and IGF-1) and angiogenesis factors (VEGFA, PIGF and other factors), and increased the nutrient transport in placental (GLUT1 and SNAT2). Dietary ALAEm supplementation decreased the number of metabolites associated with lipid metabolism through alpha-linolenic acid metabolism. Therefore, dietary supplementation of ALAEm in the late gestation may improve fertility by reducing the levels of inflammation, oxidation and apoptosis in placental tissues via the EGFR/VEGFR2-PI3K-AKT1 pathway, promoting placental growth, angiogenesis and nutrient transport, and altering the levels of placental lipid metabolites via α-linolenic acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
6
|
Ronasi S, Mahdavi AH, Varnosfaderani SR, Kowsar R, Jafarpour F, Nasr-Esfahani MH. Punicic acid alleviates methylglyoxal-induced oocyte dysfunction during in vitro maturation in mouse species. PLoS One 2025; 20:e0314602. [PMID: 40131868 PMCID: PMC11936299 DOI: 10.1371/journal.pone.0314602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 03/27/2025] Open
Abstract
Dicarbonyl stress, characterized by the abnormal accumulation of reactive dicarbonyl metabolites and advanced glycation end-products (AGEs), is implicated in various pathological conditions, including obesity, diabetes, and reproductive disorders. Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite, has been shown to compromise oocyte quality and developmental competence. In this study, we investigated the protective role of punicic acid (PA), a potent antioxidant found in pomegranate seed oil, against MGO-induced oocyte dysfunction. Our findings revealed that 75 µM MGO exposure during in vitro oocyte maturation significantly reduced the maturation rate and impaired subsequent embryonic development, characterized by decreased pronucleus formation and blastocyst rates. Interestingly, PA supplementation partially ameliorated these adverse effects of MGO, highlighting its potential as a protective agent against dicarbonyl-induced oocyte dysfunction. Co-treatment with PA restored the imbalanced redox state induced by MGO, leading to reduction in ROS levels and an increase in GSH levels in matured oocytes. Additionally, co-supplementation with PA preserved mitochondrial distribution in oocytes challenged with MGO, further contributing to improved oocyte quality. At the molecular level, PA co-treatment modulated the expression of genes involved in dicarbonyl stress and oxidative responses, including Glo1, Rage, Nrf2, and Nf-κB, potentially regulating the detoxification of MGO and mitigating its harmful effects. Lastly, PA supplementation improved cell lineage allocation in blastocysts developed from MGO-challenged oocytes, emphasizing its role in enhancing the quality of preimplantation embryos. In conclusion, our study provides novel insights into the protective effects of punicic acid as an antioxidant against MGO-induced oocyte dysfunction, suggesting its potential as a dietary intervention to enhance reproductive health, particularly in individuals facing dicarbonyl stress-associated conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- Shahrzad Ronasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
7
|
Yu J, Liu C, Wang D, Wan P, Cheng L, Yan X. Integrated microbiome and metabolome analysis reveals altered gut microbial communities and metabolite profiles in dairy cows with subclinical mastitis. BMC Microbiol 2025; 25:115. [PMID: 40033186 PMCID: PMC11877966 DOI: 10.1186/s12866-025-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Dairy cow mastitis is a common and prevalent disease arose by various complicated pathogeny, which poses serious threat to the health of cows, safety of dairy product and economic benefits for pastures. Due to the high stealthiness and long incubation period, subclinical mastitis (SM) of cows causes enormous economic losses. Besides the infection by exogenous pathogenic microorganisms, previous studies demonstrated that gastrointestinal microbial dysbiosis is one of the crucial causes for occurrence and development of mastitis based on the theory of entero-mammary axis. Whereas, limited researches have been conducted on potential pathological metabolic mechanisms underlying the relationship between gut microbiota and SM in cows. RESULTS The differences in blood parameters, gut microbiome, plasma and fecal metabolome between healthy and SM cows were compared by performing 16 S rDNA sequencing and non-targeted metabolomic analysis in the current study. The content of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and activity of catalase (CAT), total antioxidant capacity(T-AOC) were significantly decreased, while malondialdehyde (MDA) concentration was dramatically increased in serum of SM cows in comparison with healthy cows. The gut of cows with SM harbored more abundant Cyanobacteria, Proteobacteria, Succinivibrio and Lactobacillus_iners. Moreover, the abundance of Paraprevotella, Coprococcus, Succiniclasticum, Desulfovibrio and Bifidobacterium_pseudolongum were observably reduced in the gut of SM cows. Furthermore, higher abundance of pro-inflammatory metabolites were observed in feces (9(S)-HPODE, 25-hydroxycholesterol, dodecanedioic acid, etc.) and plasma (9-hydroxy-10,12-octadecadienoic acid, 13,14-dihydro PGF1α, 5,6-dehydro arachidonic acid, myristic acid, histamine, etc.) of SM cows. The abundance of certain metabolites with anti-inflammatory and antioxidant properties (mandelic acid, gamma-tocotrienol, deoxycholic acid, etc.) were notably decreased in feces or plasma of cows with SM. CONCLUSIONS The intestinal microbial composition and metabolic profiles of healthy and SM cows were significantly distinct, that were characterized by decreased abundance of intestinal symbiotic bacteria, potential probiotics and anti-inflammatory, antioxidant compounds, along with increased abundance of potential pro-inflammatory bacteria, lipid metabolites, and the occurrence of oxidative stress in cows suffered from SM. The results of this study further enriched our understanding of the correlations between gut microbiota and metabolic profiles and SM, which provided insight into the formulation of management strategies for SM in cows.
Collapse
Affiliation(s)
- Jie Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Dingfa Wang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Pingmin Wan
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China.
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Yan L, Wang W, Dong M, Wang R, Li C. Skin Metabolic Signatures of Psoriasis and Psoriasis Concurrent with Metabolic Syndrome. J Inflamm Res 2025; 18:505-517. [PMID: 39810975 PMCID: PMC11730757 DOI: 10.2147/jir.s493338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Psoriasis is a complex inflammatory skin disorder that is closely associated with metabolic syndrome (MetS). Limited information is available on skin metabolic changes in psoriasis; the effect of concurrent MetS on psoriatic skin metabolite levels is unknown. We aimed to expand this information through skin metabolomic analysis. Patients and Methods Untargeted metabolomics was conducted using skin samples from 38 patients with psoriasis vulgaris with MetS (PVMS), 23 patients with psoriasis vulgaris without MetS (PVNMS), and 10 healthy controls (HC). Data analyses, including multivariate statistical analysis, KEGG pathway enrichment analysis, correlation analysis, and receiver operating characteristic curve analysis, were performed. Results Significant discrepancies were found between skin metabolites in the HC and PVNMS groups, particularly those involved in nucleotide and glycerophospholipid metabolism. Fifteen of these metabolites were positively correlated with psoriasis severity. Furthermore, MetS was found to affect the metabolic profiles of patients with psoriasis. There were some metabolites with consistent alterations in both the PVNMS/HC and PVMS/PVNMS comparisons. Conclusion This study may provide new insights into the link between skin metabolism and psoriatic inflammation and the mechanism underlying the interaction between psoriasis and MetS.
Collapse
Affiliation(s)
- Liang Yan
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Department of Dermatology, General Hospital of Central Theater Command of PLA, Wuhan, 430070, People’s Republic of China
| | - Wenqiu Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Meihan Dong
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Rui Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Chengxin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, 100853, People’s Republic of China
| |
Collapse
|
9
|
Méndez López LF, González Llerena JL, Vázquez Rodríguez JA, Medellín Guerrero AB, González Martínez BE, Solís Pérez E, López-Cabanillas Lomelí M. Dietary Modulation of the Immune System. Nutrients 2024; 16:4363. [PMID: 39770983 PMCID: PMC11676904 DOI: 10.3390/nu16244363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Recent insights into the influence of nutrition on immune system components have driven the development of dietary strategies targeting the prevention and management of major metabolic-inflammatory diseases. This review summarizes the bidirectional relationship between nutrition and immunocompetence, beginning with an overview of immune system components and their functions. It examines the effects of nutritional status, dietary patterns, and food bioactives on systemic inflammation, immune cell populations, and lymphoid tissues, as well as their associations with infectious and chronic disease pathogenesis. The mechanisms by which key nutrients influence immune constituents are delineated, focusing on vitamins A, D, E, C, and B, as well as minerals including zinc, iron, and selenium. Also highlighted are the immunomodulatory effects of polyunsaturated fatty acids as well as bioactive phenolic compounds and probiotics, given their expanding relevance. Each section addresses the implications of nutritional and nutraceutical interventions involving these nutrients within the broader context of major infectious, metabolic, and inflammatory diseases. This review further underscores that, while targeted nutrient supplementation can effectively restore immune function to optimal levels, caution is necessary in certain cases, as it may increase morbidity in specific diseases. In other instances, dietary counseling should be integrated to ensure that therapeutic goals are achieved safely and effectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manuel López-Cabanillas Lomelí
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey 64460, México; (L.F.M.L.)
| |
Collapse
|
10
|
Korsirikoon C, Techaniyom P, Kettawan A, Rungruang T, Metheetrairut C, Prombutara P, Kettawan AK. Cold-pressed extraction of perilla seed oil enriched with alpha-linolenic acid mitigates tumour progression and restores gut microbial homeostasis in the AOM/DSS mice model of colitis-associated colorectal cancer. PLoS One 2024; 19:e0315172. [PMID: 39652552 PMCID: PMC11627366 DOI: 10.1371/journal.pone.0315172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed. Male ICR mice, initiated at four weeks of age, were subjected to diets comprising 5%, 10%, or 20% PSO, 10% fish oil, or 5% soybean oil. All groups, with the exception of the control group (5% soybean oil), underwent induction with azoxymethane (AOM) and dextran sulphate sodium (DSS) to instigate CRC. Disease development, colon samples, preneoplastic lesions, dysplasia, and biomarkers were meticulously evaluated. Furthermore, gut microbiota composition was elucidated through 16S rRNA sequencing. The analysis revealed that PSO contained 61.32% ALA and 783.90 mg/kg tocopherols. Mice subjected to diets comprising 5% soybean or 10% fish oil exhibited higher tumour incidence, burden, multiplicity, and aberrant crypt counts. Remarkably, these parameters were significantly reduced in mice fed a 5% PSO diet. Additionally, 5% PSO-fed mice displayed reduced proliferative and pro-inflammatory markers in colon tissues, coupled with an alleviation of AOM/DSS-induced gut dysbiosis. Notably, PSO demonstrated inhibitory effects on colitis-associated CRC in the AOM/DSS mice model, achieved through the suppression of proliferative and pro-inflammatory protein levels, and mitigation of gut dysbiosis, with discernible efficacy observed at a 5% dietary concentration.
Collapse
Affiliation(s)
- Chawin Korsirikoon
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Peerapa Techaniyom
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | | | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Alan N, Oran NT, Yılmaz PA, Çelik A, Yılmaz O. Fig seed oil improves intestinal damage caused by 5-FU-induced mucositis in rats. Food Sci Nutr 2024; 12:6461-6471. [PMID: 39554361 PMCID: PMC11561788 DOI: 10.1002/fsn3.4283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 11/19/2024] Open
Abstract
Intestinal mucositis poses a significant concern associated with cancer therapy. This study aims to investigate the protective and/or healing effect of fig seed oil (FSO) on 5-fluorouracil (5-FU)-induced intestinal mucositis by targeting inflammatory markers and histologic changes in rats. Albino Wistar adult rats were randomly divided into four groups, including three male and three female animals. All the animals in the four groups had a normal standard diet and water throughout the experimental period, which lasted up to 11 days. Rats were administered FSO 0.6 mL (mucositis FSO group) and FSO 0.2 mL (mucositis FSO-R group) daily throughout the experiment. These two groups and one additional group (mucositis group) were given an intraperitoneal injection of 5-FU (300 mg/kg) on Day 5 of the experiment. In contrast, the fourth group (Control group) was given an intraperitoneal saline injection on Day 5 of the experiment. FSO treatment ameliorated 5-FU-induced intestinal mucositis. On immunohistologic examination, FSO suppressed significantly the activation of NF-κB and expression of IL-β and TNF-α of the harvested intestinal tissue. The reduced dose FSO (mucositis FSO-R) was as effective as the full dose (mucositis FSO) in suppressing IL-β and TNF-α production, but was not as effective as the full dose in suppressing NF-κB. On light microscopy, FSO attenuated significantly 5-FU-induced anomalies, such as the reduction of intestinal villus length and Goblet cell count. The reduced dose FSO (mucositis FSO-R) was as effective as the full dose (mucositis FSO) in restoring villus length, but was not as effective as the full dose in restoring Goblet cell count. The findings of the study suggest that FSO inhibits 5-FU-induced intestinal mucositis via modulation of mucosal inflammation.
Collapse
Affiliation(s)
- Nurten Alan
- Department of Fundementals of Nursing, Faculty of NursingDokuz Eylül UniversityIzmirTurkey
| | - Nazan Tuna Oran
- Department of Midwifery, Faculty of Health SciencesEge UniversityIzmirTurkey
| | | | - Aslı Çelik
- Department of DentistryVocational School of Health Services, Dokuz Eylul UniversityIzmirTurkey
| | - Osman Yılmaz
- Department of Laboratory Animal Science, Health Sciences InstituteDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
12
|
Iyengar P, Godoy-Brewer G, Maniyar I, White J, Maas L, Parian AM, Limketkai B. Herbal Medicines for the Treatment of Active Ulcerative Colitis: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:934. [PMID: 38612967 PMCID: PMC11013716 DOI: 10.3390/nu16070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Herbal medicines are used by patients with IBD despite limited evidence. We present a systematic review and meta-analysis of randomized controlled trials (RCTs) investigating treatment with herbal medicines in active ulcerative colitis (UC). A search query designed by a library informationist was used to identify potential articles for inclusion. Articles were screened and data were extracted by at least two investigators. Outcomes of interest included clinical response, clinical remission, endoscopic response, endoscopic remission, and safety. We identified 28 RCTs for 18 herbs. In pooled analyses, when compared with placebo, clinical response rates were significantly higher for Indigo naturalis (IN) (RR 3.70, 95% CI 1.97-6.95), but not for Curcuma longa (CL) (RR 1.60, 95% CI 0.99-2.58) or Andrographis paniculata (AP) (RR 0.95, 95% CI 0.71-1.26). There was a significantly higher rate of clinical remission for CL (RR 2.58, 95% CI 1.18-5.63), but not for AP (RR 1.31, 95% CI 0.86-2.01). Higher rates of endoscopic response (RR 1.56, 95% CI 1.08-2.26) and remission (RR 19.37, 95% CI 2.71-138.42) were significant for CL. CL has evidence supporting its use as an adjuvant therapy in active UC. Research with larger scale and well-designed RCTs, manufacturing regulations, and education are needed.
Collapse
Affiliation(s)
- Preetha Iyengar
- Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| | | | - Isha Maniyar
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| | - Jacob White
- Welch Library, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Laura Maas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Alyssa M. Parian
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Berkeley Limketkai
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| |
Collapse
|
13
|
Acosta JE, Burns JL, Hillyer LM, Van K, Brendel EBK, Law C, Ma DWL, Monk JM. Effect of Lifelong Exposure to Dietary Plant and Marine Sources of n-3 Polyunsaturated Fatty Acids on Morphologic and Gene Expression Biomarkers of Intestinal Health in Early Life. Nutrients 2024; 16:719. [PMID: 38474847 DOI: 10.3390/nu16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmβ and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmβ and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.
Collapse
Affiliation(s)
- Julianna E Acosta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessie L Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elaina B K Brendel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Camille Law
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Gong K, Chen J, Yin X, Wu M, Zheng H, Jiang L. Untargeted metabolomics analysis reveals spatial metabolic heterogeneity in different intestinal segments of type 1 diabetic mice. Mol Omics 2024; 20:128-137. [PMID: 37997452 DOI: 10.1039/d3mo00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Type 1 diabetes (T1D) has been reported to cause systematic metabolic disorders, but metabolic changes in different intestinal segments of T1D remain unclear. In this study, we analyzed metabolic profiles in the jejunum, ileum, cecum and colon of streptozocin-induced T1D and age-matched control (CON) mice by an LC-MS-based metabolomics method. The results show that segment-specific metabolic disorders occurred in the gut of T1D mice. In the jejunum, we found that T1D mainly led to disordered amino acid metabolism and most amino acids were significantly lower relative to CON mice. Moreover, fatty acid metabolism was disrupted mainly in the ileum, cecum and colon of T1D mice, such as arachidonic acid, alpha-linolenic acid and linoleic acid metabolism. Thus, our study reveals spatial metabolic heterogeneity in the gut of T1D mice and provides a metabolic view on diabetes-associated intestinal diseases.
Collapse
Affiliation(s)
- Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Lingling Jiang
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
15
|
Magisetty J, Gadiraju B, Kondreddy V. Genomic analysis in the colon tissues of omega-3 fatty acid-treated rats identifies novel gene signatures implicated in ulcerative colitis. Int J Biol Macromol 2024; 258:128867. [PMID: 38123036 DOI: 10.1016/j.ijbiomac.2023.128867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Several long-term intervention trials only studied the ex vivo immunological function to elucidate the beneficial mechanisms of n-3 polyunsaturated fatty acids (PUFA) in the ulcerative colitis (UC). An unbiased whole-transcriptome analysis would be more valuable to obtain a comprehensive understanding of the processes and genes regulated by n-3 PUFA in vivo. In this study, we have performed microarray analysis in the colon tissues of dextran sulfate sodium (DSS)-induced UC in rats supplemented with n-6 PUFA, n-3PUFA and long-chain n-3PUFA (LC-n3PUFA). We have identified the novel gene signatures previously not linked to colitis such as Etv3, Clec4d, CD180, CD72, Megf11, and Angptl4 which are most downregulated in both n-3PUFA and LC-n3PUFA groups compared to the n-6PUFA group. The most upregulated genes were Nr1i3, Nptx2, and Zfp810 in both n-3PUFA and LC-n3PUFA groups. The RT-PCR analysis confirmed similar results. Interestingly, LPS treatment in macrophages upregulated the Megf11, Etv3, CD180, and Angptl4, and correlated with increased secretion of cytokines. Gene silencing of Etv3, Megf11, and CD180 in rats using intravascular delivery of siRNA-lipoparticles attenuated the DSS-induced ulceration and mucosal damage. Thus, our genome-wide microarray analysis identified novel genes regulated by omega-3 PUFA and offers new drug targets that could prevent or reduce UC.
Collapse
Affiliation(s)
- Jhansi Magisetty
- Department of Biochemistry, Central Food Technological Research Institute, Mysore 570020, India
| | - Bhavani Gadiraju
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vijay Kondreddy
- Center for Lipid Science & Technology, The Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
16
|
Smyth M, Lunken G, Jacobson K. Insights Into Inflammatory Bowel Disease and Effects of Dietary Fatty Acid Intake With a Focus on Polyunsaturated Fatty Acids Using Preclinical Models. J Can Assoc Gastroenterol 2024; 7:104-114. [PMID: 38314173 PMCID: PMC10837003 DOI: 10.1093/jcag/gwad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
While the aetiology of inflammatory bowel disease (IBD) has been linked to genetic susceptibility coupled with environmental factors, the underlying molecular mechanisms remain unclear. Among the environmental factors, diet and the gut microbiota have been implicated as drivers of immune dysregulation in IBD. Indeed, epidemiologic studies have highlighted that the increase in incidence of IBD parallels the increase in dietary intake of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and the change in balance of intake of n-6 to n-3 fatty acids. Experimental evidence suggests that the increase in n-6 PUFA intake increases cell membrane arachidonic acid, which is accompanied by the production of pro-inflammatory mediators as well as increased oxidative stress; together, this contributes to the development of chronic inflammation. However, it is also increasingly clear that some of the n-6 PUFA-derived mediators exert beneficial effects depending on the settings and timing of ingestion. In contrast to n-6, when n-3 PUFA eicosapentaenoic acid and docosahexaenoic acid are incorporated into the cell membrane and are metabolized into less pro-inflammatory eicosanoids, as well as strong specialized pro-resolving mediators, which play a role in inflammation cessation. With a focus on preclinical models, we explore the relationship between dietary lipid, the gut microbiome, and intestinal inflammation.
Collapse
Affiliation(s)
- Matthew Smyth
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
| | - Genelle Lunken
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
- British Columbia Children Hospital Research Institute,Vancouver, British Columbia, Canada, V5Z 4H4
| | - Kevan Jacobson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
- British Columbia Children Hospital Research Institute,Vancouver, British Columbia, Canada, V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2A1
| |
Collapse
|
17
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
18
|
Khammassi M, Amato G, Caputo L, Nazzaro F, Fratianni F, Kouki H, Amri I, Hamrouni L, De Feo V. Fatty Acid Profiles and Biological Activities of the Vegetable Oils of Argania spinosa, Pinus halepensis and Pistacia atlantica Grown in Tunisia: A Preliminary Study. Molecules 2023; 29:160. [PMID: 38202742 PMCID: PMC10779628 DOI: 10.3390/molecules29010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Several foods are used in both the nutraceutical and health sectors; vegetable oils, for example, can prevent the onset of numerous diseases. The properties of these oils are related to their chemical composition and primarily to the presence of fatty acids. The present work aimed to determine the chemical profiles of Argania spinosa, Pinus halepensis, and Pistacia altantica oils, used in traditional Tunisian foods, and to evaluate some biological properties. We evaluated their antioxidant, anti-enzymatic, antimicrobial, and anti-inflammatory properties. Linoleic acid was the main component of the three oils. P. atlantica oil showed more significant inhibitory activity against the enzymes studied than A. spinosa and P. halepensis. All three oils showed similar antioxidant and anti-inflammatory activity. Furthermore, A. spinosa and P. halepensis oils showed antibiofilm activity against P. aeruginosa, with 30-40% inhibition. These results focus on the possible use of these oils in the nutraceutical and healthcare sectors.
Collapse
Affiliation(s)
- Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering, Water, and Forests, Ariana 2080, Tunisia; (M.K.); (I.A.); (L.H.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.A.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.A.); (V.D.F.)
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, Via Roma, 83100 Avellino, Italy; (F.N.); (F.F.)
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, Via Roma, 83100 Avellino, Italy; (F.N.); (F.F.)
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, Ariana 2020, Tunisia;
| | - Ismail Amri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering, Water, and Forests, Ariana 2080, Tunisia; (M.K.); (I.A.); (L.H.)
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, Ariana 2020, Tunisia;
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering, Water, and Forests, Ariana 2080, Tunisia; (M.K.); (I.A.); (L.H.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.A.); (V.D.F.)
- Institute of Food Science, National Research Council, Via Roma, 83100 Avellino, Italy; (F.N.); (F.F.)
| |
Collapse
|
19
|
Yang J, Liu S, Zhao Q, Li X, Jiang K. Gut microbiota-related metabolite alpha-linolenic acid mitigates intestinal inflammation induced by oral infection with Toxoplasma gondii. MICROBIOME 2023; 11:273. [PMID: 38087373 PMCID: PMC10714487 DOI: 10.1186/s40168-023-01681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral infection with cysts is the main transmission route of Toxoplasma gondii (T. gondii), which leads to lethal intestinal inflammation. It has been widely recognized that T. gondii infection alters the composition and metabolism of the gut microbiota, thereby affecting the progression of toxoplasmosis. However, the potential mechanisms remain unclear. In our previous study, there was a decrease in the severity of toxoplasmosis after T. gondii α-amylase (α-AMY) was knocked out. Here, we established mouse models of ME49 and Δα-amy cyst infection and then took advantage of 16S rRNA gene sequencing and metabolomics analysis to identify specific gut microbiota-related metabolites that mitigate T. gondii-induced intestinal inflammation and analyzed the underlying mechanism. RESULTS There were significant differences in the intestinal inflammation between ME49 cyst- and Δα-amy cyst-infected mice, and transferring feces from mice infected with Δα-amy cysts into antibiotic-treated mice mitigated colitis caused by T. gondii infection. 16S rRNA gene sequencing showed that the relative abundances of gut bacteria, such as Lactobacillus and Bacteroides, Bifidobacterium, [Prevotella], Paraprevotella and Macellibacteroides, were enriched in mice challenged with Δα-amy cysts. Spearman correlation analysis between gut microbiota and metabolites indicated that some fatty acids, including azelaic acid, suberic acid, alpha-linolenic acid (ALA), and citramalic acid, were highly positively correlated with the identified bacterial genera. Both oral administration of ALA and fecal microbiota transplantation (FMT) decreased the expression of pro-inflammatory cytokines and restrained the MyD88/NF-κB pathway, which mitigated colitis and ultimately improved host survival. Furthermore, transferring feces from mice treated with ALA reshaped the colonization of beneficial bacteria, such as Enterobacteriaceae, Proteobacteria, Shigella, Lactobacillus, and Enterococcus. CONCLUSIONS The present findings demonstrate that the host gut microbiota is closely associated with the severity of T. gondii infection. We provide the first evidence that ALA can alleviate T. gondii-induced colitis by improving the dysregulation of the host gut microbiota and suppressing the production of pro-inflammatory cytokines via the MyD88/NF-κB pathway. Our study provides new insight into the medical application of ALA for the treatment of lethal intestinal inflammation caused by Toxoplasma infection. Video Abstract.
Collapse
Affiliation(s)
- Jing Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Songhao Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qian Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
20
|
Fan A, Hou BL, Tang Z, Wang T, Zhang D, Liang Y, Wang Z. Liquid Chromatography-Tandem Mass Spectrometry-Based Metabolomics Analysis of Indigo Naturalis Treatment of Ulcerative Colitis in Mice. J Med Food 2023; 26:877-889. [PMID: 38010862 DOI: 10.1089/jmf.2023.k.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ulcerative colitis (UC), often known as UC, is an inflammatory disease of the intestines that has frequent and long-lasting flare-ups. It is unknown precisely how the traditional Chinese drug Indigo Naturalis (IN) heals inflammatory bowel disease, despite its long-standing use in China and Japan. Finding new metabolite biomarkers linked to UC could improve our understanding of the disease, speed up the diagnostic process, and provide insight into how certain drugs work to treat the condition. Our work is designed to use a metabolomic method to analyze potential alterations in endogenous substances and their impact on metabolic pathways in a mouse model of UC. To determine which biomarkers and metabolisms are more frequently connected with IN's effects on UC, liquid chromatography-tandem mass spectrometry analysis of the serum metabolomics of UC mice and normal mice was performed. The outcomes demonstrated that IN boosted the health of UC mice and reduced the severity of their metabolic dysfunction. In the UC model, it was also found that IN changed the way 17 biomarkers and 3 metabolisms functioned.
Collapse
Affiliation(s)
- Anqi Fan
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Bao-Long Hou
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Ting Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| |
Collapse
|
21
|
Ocaña-Sánchez MF, Soto-Ojeda GA, Cocotle-Ronzón Y, Soria-Fregozo C, Sánchez-Medina A, García-Rodríguez RV, Rodríguez-Landa JF, Corro-Méndez EJ, Hernández-Lozano M. Flaxseed Oil ( Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients 2023; 15:4550. [PMID: 37960203 PMCID: PMC10647672 DOI: 10.3390/nu15214550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hyperammonemia is characterized by the excessive accumulation of ammonia in the body as a result of the loss of liver detoxification, leading to the development of hepatic encephalopathy (HE). These metabolic alterations carry cognitive and motor deficits and cause neuronal damage, with no effective treatment at present. In this study, we aimed to evaluate the effect of two subacute oral administrations of flaxseed oil (0.26 and 0.52 mL/kg) on short- and long-term memory, visuospatial memory, locomotor activity, motor coordination, and the neuronal morphology of the prefrontal cortex (PFC) via tests on Wistar rats with hyperammonemia. The goal was to identify its role in the regulation of cerebral edema, without liver damage causing cerebral failure. In contrast with an ammonium-rich diet, flaxseed oil and normal foods did not cause cognitive impairment or motor alterations, as evidenced in the short-term and visuospatial memory tests. Furthermore, the flaxseed oil treatment maintained a regular neuronal morphology of the prefrontal cortex, which represents a neuroprotective effect. We conclude that the oral administration of flaxseed oil prevents cognitive and motor impairments as well as neuronal alterations in rats with hyperammonemia, which supports the potential use of this oil to ameliorate the changes that occur in hepatic encephalopathy.
Collapse
Affiliation(s)
- Marcos F. Ocaña-Sánchez
- Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Gabriel A. Soto-Ojeda
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Yolanda Cocotle-Ronzón
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico;
| | - Alberto Sánchez-Medina
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | - Rosa V. García-Rodríguez
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | | | - Erick J. Corro-Méndez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán 94945, Mexico;
| | - Minerva Hernández-Lozano
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| |
Collapse
|
22
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Rodríguez-Mesa XM, Contreras Bolaños LA, Mejía A, Pombo LM, Modesti Costa G, Santander González SP. Immunomodulatory Properties of Natural Extracts and Compounds Derived from Bidens pilosa L.: Literature Review. Pharmaceutics 2023; 15:pharmaceutics15051491. [PMID: 37242733 DOI: 10.3390/pharmaceutics15051491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Bidens pilosa L. has been used in different parts of the world mainly to treat diseases associated with immune response disorders, such as autoimmunity, cancer, allergies, and infectious diseases. The medicinal properties of this plant are attributed to its chemical components. Nevertheless, there is little conclusive evidence that describes the immunomodulatory activity of this plant. In this review, a systematic search was carried out in the PubMed-NLM, EBSCO Host and BVS databases focused on the pre-clinical scientific evidence of the immunomodulatory properties of B. pilosa. A total of 314 articles were found and only 23 were selected. The results show that the compounds or extracts of Bidens modulate the immune cells. This activity was associated with the presence of phenolic compounds and flavonoids that control proliferation, oxidative stress, phagocytosis, and the production of cytokines of different cells. Most of the scientific information analyzed in this paper supports the potential use of B. pilosa mainly as an anti-inflammatory, antioxidant, antitumoral, antidiabetic, and antimicrobial immune response modulator. It is necessary that this biological activity be corroborated through the design of specialized clinical trials that demonstrate the effectiveness in the treatment of autoimmune diseases, chronic inflammation, and infectious diseases. Until now there has only been one clinical trial in phase I and II associated with the anti-inflammatory activity of Bidens in mucositis.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez-Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | | | - Antonio Mejía
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Luis Miguel Pombo
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Geison Modesti Costa
- Phytochemistry Research Group (GIFUJ), Pontificia Universidad Javeriana, Bogotá Carrera 7 #40-62, Bogota 110231, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| |
Collapse
|
24
|
Zhang D, Duan X, Sun H. Phospholipidomics and quantum chemistry calculation unravel the changes in phospholipid molecules of flaxseed oil during roasting. Food Chem 2023; 404:134579. [DOI: 10.1016/j.foodchem.2022.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
25
|
Du C, Quan S, Zhao Y, Nan X, Chen R, Tang X, Xiong B. Bovine milk-derived extracellular vesicles prevent gut inflammation by regulating lipid and amino acid metabolism. Food Funct 2023; 14:2212-2222. [PMID: 36757176 DOI: 10.1039/d2fo03975c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Inflammatory bowel disease (IBD) is a global health problem in which metabolite alteration plays an important pathogenic role. Bovine milk-derived extracellular vesicles (mEVs) have been shown to regulate nutrient metabolism in healthy animal models. This study investigated the effect of oral mEVs on metabolite changes in DSS-induced murine colitis. We performed metabolomic profiling on plasma samples and measured the concentrations of lipids and amino acids in both fecal samples and colonic tissues. Plasma metabolome analysis found that mEVs significantly upregulated 148 metabolite levels and downregulated 44 metabolite concentrations (VIP > 1, and p < 0.05). In the fecal samples, mEVs significantly increased the contents of acetate and butyrate and decreased the levels of tridecanoic acid (C13:0), methyl cis-10-pentadecenoate (C15:1) and cis-11-eicosenoic acid (C20:1). Moreover, the concentrations of eicosadienoic acid (C20:2), eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6) were decreased in colonic tissues with mEV supplementation. In addition, compared with the DSS group, mEVs significantly increased the content of L-arginine, decreased the level of L-valine in the fecal samples, and also decreased the levels of L-serine and L-glutamate in the colonic tissues. Collectively, our findings demonstrated that mEVs could recover the metabolic abnormalities caused by inflammation and provided novel insights into mEVs as a potential modulator for metabolites to prevent and treat IBD.
Collapse
Affiliation(s)
- Chunmei Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Suyu Quan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
27
|
Lao L, Yang G, Zhang A, Liu L, Guo Y, Lian L, Pan D, Wu Z. Anti-inflammation and gut microbiota regulation properties of fatty acids derived from fermented milk in mice with dextran sulfate sodium-induced colitis. J Dairy Sci 2022; 105:7865-7877. [PMID: 36055856 DOI: 10.3168/jds.2022-21877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2024]
Abstract
The by-products of milk fermentation by lactic acid bacteria provide potential health benefits to the balance of host intestinal microflora. In this study, the anti-inflammatory properties of fatty acids from monoculture-strain (Lactiplantibacillusplantarum A3) and multiple-strain (Streptococcus thermophilus, Lactobacillus bulgaricus, and L. plantarum A3 1:1:2) fermented milk were evaluated in a mouse model of dextran sulfate sodium-induced colitis, and the gut microbiota regulation properties of the fatty acids were also investigated. Results showed that fatty acids can attenuate the inflammatory response by inhibiting the expression of inflammatory factors IL-6 and tumor necrosis factor-α, and blocking the phosphorylation of the JNK in MAPK signal pathway. In addition, the relative abundance of the taxa Akkermansia and Lactobacillus were both enriched after the fatty acid intervention. This finding suggests that fatty acids from the milk fermentation with mixed lactic acid bacteria starters can reduce the severity of dextran sulfate sodium-induced colitis and enhance the abundance of the probiotics in the mice intestinal tract.
Collapse
Affiliation(s)
- Lifeng Lao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Guo Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Ao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China.
| |
Collapse
|
28
|
Ceylanlı D, Şehirli AÖ, Gençosman S, Teralı K, Şah H, Gülmez N, Sayıner S. Protective Effects of Alpha-Lipoic Acid against 5-Fluorouracil-Induced Gastrointestinal Mucositis in Rats. Antioxidants (Basel) 2022; 11:1930. [PMID: 36290656 PMCID: PMC9598092 DOI: 10.3390/antiox11101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 03/23/2024] Open
Abstract
Alpha-lipoic acid (ALA) is extensively utilized in multivitamin formulas and anti-aging products. The purpose of this study was to investigate the potential protective benefits of ALA on 5-fluorouracil (5-FU)-induced gastrointestinal mucositis in Wistar albino rats. Tissues from the stomach, small intestine, and large intestine were excised, and blood sera were obtained to identify biochemical indices such as TNF-α, IL-1β, MDA, GPx, SOD, MMP-1, -2, -8, and TIMP-1. A histopathological study was also performed. The results revealed mucositis-elevated TNF-, IL-1, MDA, MMP-1, -2, -8, and TIMP-1 levels in both tissues and sera, and these values dropped dramatically following ALA treatment. Reduced SOD and GPx activities in mucositis groups were reversed in ALA-treated groups. The damage produced by mucositis in the stomach and small intestine regressed in the ALA-treated group, according to histopathological evaluation. Consequently, the implementation of ALA supplementation in 5-FU therapy may act as a protective intervention for cancer patients with gastrointestinal mucositis. In light of the findings, ALA, a food-derived antioxidant with pleiotropic properties, may be an effective treatment for 5-FU-induced gastrointestinal mucositus, and prevent oxidative stress, inflammation, and tissue damage in cancer patients receiving 5-FU therapy.
Collapse
Affiliation(s)
- Deniz Ceylanlı
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Sevgi Gençosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, 99258 Nicosia, Northern Cyprus, Turkey
| | - Hüseyin Şah
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Nurhayat Gülmez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, 56100 Siirt, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| |
Collapse
|
29
|
Lee JE, Kim KS, Koh H, Lee DW, Kang NJ. Diet-Induced Host-Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Curr Dev Nutr 2022; 6:nzac110. [PMID: 36060223 PMCID: PMC9429970 DOI: 10.1093/cdn/nzac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease. Environmental sanitization, modern lifestyles, advanced medicines, ethnic origins, host genetics and immune systems, mucosal barrier function, and the gut microbiota have been delineated to explain how they cause mucosal inflammation. However, the pathogenesis of IBD and its therapeutic targets remain elusive. Recent studies have highlighted the importance of the human gut microbiota in health and disease, suggesting that the pathogenesis of IBD is highly associated with imbalances of the gut microbiota or alterations of epithelial barrier function in the gastrointestinal (GI) tract. Moreover, diet-induced alterations of the gut microbiota in the GI tract modulate immune responses and perturb metabolic homeostasis. This review summarizes recent findings on IBD and its association with diet-induced changes in the gut microbiota; furthermore, it discusses how diets can modulate host gut microbes and immune systems, potentiating the impact of personalized diets on therapeutic targets for IBD.
Collapse
Affiliation(s)
- Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
30
|
Dai ZB, Ren XL, Xue YL, Tian Y, He BB, Xu CL, Yang B. Association of Dietary Intake and Biomarker of α-Linolenic Acid With Incident Colorectal Cancer: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Front Nutr 2022; 9:948604. [PMID: 35873423 PMCID: PMC9301188 DOI: 10.3389/fnut.2022.948604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Objective There is keen interest in better understanding the impacts of alpha-linolenic acid (ALA), a plant-derived n-3 fatty acid, in ameliorating the development of cancer; however, results of several prospective cohorts present an inconsistent association between ALA intake and the incident colorectal cancer (CRC). We aimed to investigate the summary association of dietary intake and biomarkers of ALA with CRC risk based on the prospective cohorts. Methods Pertinent prospective cohorts were identified in Cochrane Library, PubMed, and EMBASE from inception to February 2022. Study-specific risk ratios (RRs) with 95% confidence intervals (CIs) for comparing the top with the bottom quartiles of ALA levels were combined using a random-effects model. Nonlinear dose-response relationships of ALA levels in diet and blood with CRC risk were assessed using the restricted cubic spline models, respectively. Results Over the duration of follow-up with a median of 9.3 years ranging from 1 to 28 years, 12,239 CRC cases occurred among 861,725 participants from 15 cohorts (11 studies on diet and 5 studies on biomarkers including 4 on blood and 1 on adipose tissue). The summary RR was 1.03 (95% CI: 0.97, 1.10; I2: 0.00%) for dietary intake and 0.83 (95% CI: 0.69, 0.99; I2: 0.00%) for biomarker. Each 0.1% increase in the levels of ALA in blood was associated with a 10% reduction in risk of CRC (summary RR: 0.90, 95% CI: 0.80, 0.99; I2: 38.60%), whereas no significant dose-response association was found between dietary intake of ALA and the incident CRC (p for non-linearity = 0.18; p for linearity = 0.24). Conclusions Blood levels of ALA were inversely and linearly associated with the risk of CRC, which suggested that increased intake of ALA to improve circulating levels was beneficial for CRC prevention.
Collapse
Affiliation(s)
- Ze-Bin Dai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Li Ren
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi-Lang Xue
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Tian
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Bing-Bing He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Long Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Chang-Long Xu
| | - Bo Yang
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Bo Yang
| |
Collapse
|
31
|
Morya S, Menaa F, Jiménez-López C, Lourenço-Lopes C, BinMowyna MN, Alqahtani A. Nutraceutical and Pharmaceutical Behavior of Bioactive Compounds of Miracle Oilseeds: An Overview. Foods 2022; 11:foods11131824. [PMID: 35804639 PMCID: PMC9265468 DOI: 10.3390/foods11131824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
India plays an important role in the production of oilseeds, which are mainly cultivated for future extraction of their oil. In addition to the energic and nutritional contribution of these seeds, oilseeds are rich sources of bioactive compounds (e.g., phenolic compounds, proteins, minerals). A regular and moderate dietary supplementation of oilseeds promotes health, prevents the appearance of certain diseases (e.g., cardiovascular diseases (CVDs), cancers) and delays the aging process. Due to their relevant content in nutraceutical molecules, oilseeds and some of their associated processing wastes have raised interest in food and pharmaceutical industries searching for innovative products whose application provides health benefits to consumers. Furthermore, a circular economy approach could be considered regarding the re-use of oilseeds’ processing waste. The present article highlights the different oilseed types, the oilseeds-derived bioactive compounds as well as the health benefits associated with their consumption. In addition, the different types of extractive techniques that can be used to obtain vegetable oils rich from oilseeds, such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE) and supercritical fluid extraction (SFE), are reported. We conclude that the development and improvement of oilseed markets and their byproducts could offer even more health benefits in the future, when added to other foods.
Collapse
Affiliation(s)
- Sonia Morya
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University (LPU), Punjab 144001, India
- Correspondence: (S.M.); (F.M.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation (Fluorotronics-CIC), San Diego 92037, CA, USA
- Correspondence: (S.M.); (F.M.)
| | | | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain;
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
32
|
Fang H, Zhuang Z, Huang L, Zhao W, Niu J. Dietary Klebsormidium sp. Supplementation Improves Growth Performance, Antioxidant and Anti-Inflammatory Status, Metabolism, and Mid-Intestine Morphology of Litopenaeus Vannamei. Front Nutr 2022; 9:857351. [PMID: 35634387 PMCID: PMC9136981 DOI: 10.3389/fnut.2022.857351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
Filamentous microalga Klebsormidium sp. has huge potential to become a natural and healthy additive in aquatic feed since it contains various bioactive nutrients, such as linoleic acid (LA), carotenoids, and chlorophylls. Therefore, an eight-week feeding experiment was performed to evaluate the effects of dietary Klebsormidium sp. on the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of Litopenaeus vannamei. Two isonitrogenous and isolipid diets supplemented with and without 5% Klebsormidium sp. were prepared. Results showed that L. vannamei fed with Klebsormidium sp. had better growth performance and feed utilization by optimizing mid-intestine morphology and improving the carbohydrate metabolism. In addition, Klebsormidium sp. also enhanced the antioxidant capacity of L. vannamei by downregulating antioxidant parameters (hepatopancreas T-SOD, hepatopancreas GSH-PX, hemolymph T-SOD, hemolymph MDA) and RNA expression levels of antioxidant genes (gsh-px and cat). Furthermore, the supplementations of dietary Klebsormidium sp. significantly improved hepatopancreas health by downregulating RNA expression levels of pro-inflammatory related genes (relish and rho). Therefore, a dose of 5% Klebsormidium sp. is recommended for the daily diet of L. vannamei to improve the growth performance, antioxidant and anti-inflammatory status, metabolism, and mid-intestine morphology of shrimp.
Collapse
Affiliation(s)
- HaoHang Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Institute of Marine Research, Bergen, Norway
| | - ZhenXiao Zhuang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - LuoDong Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Zhao
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Jin Niu
| |
Collapse
|
33
|
Antoniussen CS, Rasmussen HH, Holst M, Lauridsen C. Reducing Disease Activity of Inflammatory Bowel Disease by Consumption of Plant-Based Foods and Nutrients. Front Nutr 2021; 8:733433. [PMID: 34957174 PMCID: PMC8696360 DOI: 10.3389/fnut.2021.733433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease is a chronic and recurring inflammatory condition of the gastrointestinal tract encompassing ulcerative colitis and Crohn's disease. Although the pathogenesis of inflammatory bowel disease remains to be fully elucidated, environmental factors such as diet are believed to play a pivotal role in the onset and management of inflammatory bowel disease. Diet is thought to play an essential role in intestinal inflammation due to its regulatory effects on the microbiota, gut immune system, and epithelial barrier function. Although the evidence remains insufficient to draw firm conclusions on the role of specific dietary components in gastrointestinal diseases, studies have suggested that a Western diet with high intakes of total fats, omega-6 fatty acids, and meat have been associated with intestinal inflammation and relapse of inflammatory bowel disease. In contrast to a Western diet, plant-based diets often result in a reduced intake of total fats and meats and an increased intake of plant fibers which may contribute to reduced intestinal inflammation. This review critically examines the influence of plant-based dietary components on the clinical disease course of inflammatory bowel disease. Furthermore, this review discusses the benefits and possible limitations of plant-derived dietary components in the treatment of inflammatory bowel disease while addressing the principal type of disease and the anatomic site of inflammation within the gastrointestinal tract. Finally, this review points out important directions for future research on the role of diet in inflammatory bowel disease. A better understanding of the role of diet and intestinal inflammation may pave the way for novel dietary interventions and specific foods- or food supplements, which can support the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Henrik H Rasmussen
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Gastroenterology, Center for Nutrition and Bowel Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Holst
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Gastroenterology, Center for Nutrition and Bowel Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Lauridsen
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Foulum, Denmark
| |
Collapse
|
34
|
Piotrowska M, Binienda A, Fichna J. The role of fatty acids in Crohn's disease pathophysiology - An overview. Mol Cell Endocrinol 2021; 538:111448. [PMID: 34480991 DOI: 10.1016/j.mce.2021.111448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) which is characterized by chronic and relapsing inflammation of the gastrointestinal (GI) tract. The etiology of CD is unknown, but factors such as epithelial barrier dysfunction, immune system imbalance, microbiota dysbiosis and environmental influences are thought to be involved in its pathogenesis. Recent studies have shown that short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) play a vital role in pathophysiology and development of CD by various mechanisms affecting pro- and anti-inflammatory mediators, and maintaining the intestinal homeostasis and regulation of gene expression. SCFAs and LCFAs activate signaling cascades that control immune functions through interaction with cell surface free fatty acid receptors (FFARs), i.e. FFAR1, FFAR2, FFAR3, and FFAR4. This review highlights the role of fatty acids in maintenance of intestinal and immune homeostasis and supports the supplementation of fatty acids as a promising adjunctive treatment for CD.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
35
|
The structure of nutrition of Russian students as a risk factor for the development of nutritional diseases. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The paper analyzes the literature data on the peculiarities of nutrition of students studying in higher educational institutions of various regions of Russia, and the risks of developing food-related diseases. They are largely associated with the adaptation of students to study at a university, the lack of self-organization skills and a lack of knowledge in matters of rational nutrition. The actual nutrition of students, on the one hand, is characterized by a lack of macronutrients and micronutrients intake, on the other hand, by excessive consumption of substances that contribute to the development of obesity. The results of numerous studies show a general pattern of unbalanced nutrition of students in terms of the ratio of saturated and polyunsaturated fatty acids, insufficient consumption of dietary fiber, full-fledged proteins, and excessive intake of simple carbohydrates. Dietary fiber deficiency can lead to changes in the composition of the microbiocenosis of the digestive tract, a deficiency of omega-3 fatty acids, and consequently, the imbalance of fatty acid composition of the blood cell membrane. 20–40 % of Russian students show signs of severe hypovitaminosis, especially calciferol, which is caused not only by its deficiency in the diet, but also by physical, geographical, climatic and seasonal factors. The analysis of the content of the main minerals in students shows a sufficient content of calcium in the body, an excess of sodium and a lack of magnesium, potassium and iron, which is due to both the composition of the food consumed and the peculiarities of the accumulation and excretion of these ions. An analysis of the actual nutrition of students shows the need for counseling young people, especially in the first years of study. The introduction of an educational program on optimal nutrition is possible through the practice of curatorial work during the adaptation of the first-year students to student’s life.
Collapse
|
36
|
Xie J, Li LF, Dai TY, Qi X, Wang Y, Zheng TZ, Gao XY, Zhang YJ, Ai Y, Ma L, Chang SL, Luo FX, Tian Y, Sheng J. Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation. Mol Nutr Food Res 2021; 66:e2100408. [PMID: 34708542 DOI: 10.1002/mnfr.202100408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Indexed: 12/18/2022]
Abstract
SCOPE The proliferation and differentiation of intestinal stem cells (ISCs) are the basis of intestinal renewal and regeneration, and gut microbiota plays an important role in it. Dietary nutrition has the effect of regulating the activity of ISCs; however, the regulation effect of α-linolenic acid (ALA) has seldom been reported. METHODS AND RESULTS After intervening mice with different doses of ALA for 30 days, it is found that ALA (0.5 g kg-1 ) promotes small intestinal and villus growth by activating the Wnt/β-catenin signaling pathway to stimulate the proliferation of ISCs. Furthermore, ALA administration increases the abundance of the Ruminococcaceae and Prevotellaceae, and promotes the production of short-chain fatty acids (SCFAs). Subsequent fecal transplantation and antibiotic experiments demonstrate that ALA on the proliferation of ISCs are gut microbiota dependent, among them, the functional microorganism may be derived from Ruminococcaceae. Administration of isobutyrate shows a similar effect to ALA in terms of promoting ISCs proliferation. Furthermore, ALA mitigates 5-fluorouracil-induced intestinal mucosal damage by promoting ISCs proliferation. CONCLUSION These results indicate that SCFAs produced by Ruminococcaceae mediate ALA promote ISCs proliferation by activating the Wnt/β-catenin signaling pathway, and suggest the possibility of ALA as a prebiotic agent for the prevention and treatment of intestinal mucositis.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tian-Yi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xin Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tiao-Zhen Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xiao-Yu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yun-Juan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yu Ai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Song-Lin Chang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Feng-Xian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| |
Collapse
|
37
|
Herrera Vielma F, Valenzuela R, Videla LA, Zúñiga-Hernández J. N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune-Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients 2021; 13:3384. [PMID: 34684386 PMCID: PMC8539469 DOI: 10.3390/nu13103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.
Collapse
Affiliation(s)
- Francisca Herrera Vielma
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Jessica Zúñiga-Hernández
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| |
Collapse
|
38
|
Yuan Q, Xie F, Huang W, Hu M, Yan Q, Chen Z, Zheng Y, Liu L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother Res 2021; 36:164-188. [PMID: 34553434 DOI: 10.1002/ptr.7295] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
α-linolenic acid (ALA, 18:3n-3) is a carboxylic acid composed of 18 carbon atoms and three cis double bonds, and is an essential fatty acid indispensable to the human body. This study aims to systematically review related studies on the dietary sources, metabolism, and pharmacological effects of ALA. Information on ALA was collected from the internet database PubMed, Elsevier, ResearchGate, Web of Science, Wiley Online Library, and Europe PMC using a combination of keywords including "pharmacology," "metabolism," "sources." The following findings are mainly contained. (a) ALA can only be ingested from food and then converted into eicosapentaenoic acid and docosahexaenoic acid in the body. (b) This conversion process is relatively limited and affected by many factors such as dose, gender, and disease. (c) Pharmacological research shows that ALA has the anti-metabolic syndrome, anticancer, antiinflammatory, anti-oxidant, anti-obesity, neuroprotection, and regulation of the intestinal flora properties. (d) There are the most studies that prove ALA has anti-metabolic syndrome effects, including experimental studies and clinical trials. (e) The therapeutic effect of ALA will be affected by the dosage. In short, ALA is expected to treat many diseases, but further high quality studies are needed to firmly establish the clinical efficacy of ALA.
Collapse
Affiliation(s)
- Qianghua Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Mei Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qilu Yan
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Zemou Chen
- Hanyuan Hospital of Traditional Chinese Medicine, Yaan, China
| | - Yan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Yang C, Qiao Z, Xu Z, Wang X, Deng Q, Chen W, Huang F. Algal Oil Rich in Docosahexaenoic Acid Alleviates Intestinal Inflammation Induced by Antibiotics Associated with the Modulation of the Gut Microbiome and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9124-9136. [PMID: 33900083 DOI: 10.1021/acs.jafc.0c07323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the effect of algal oil rich in docosahexaenoic acid on the mucosal injury with gut microbiota disorders caused by ceftriaxone sodium (CS) was evaluated. The results showed that algal oil treatment (500 mg kg-1 day-1) significantly reduced the levels of pro-inflammatory cytokines, including interleukin 6 , interleukin 1β, and tumor necrosis factor α, in the colon. Algal oil restored the CS-induced gut microbiota dysbiosis by elevating some short-chain-fatty-acid-producing bacteria, e.g., Ruminococcus and Blautia. The CS-induced metabolic disorder was also regulated by algal oil, which was characterized by the modulations of tryptophan metabolism, phospholipid metabolism, and bile acid metabolism. Our results suggested that supplementation of algal oil could alleviate inflammation and promote mucosal healing, which could be a functional food ingredient to protect aganist antibiotic-induced alteration of gut microbiota and metabolic dysbiosis.
Collapse
Affiliation(s)
- Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430060, People's Republic of China
| | - Zhenxia Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Xu Wang
- Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
40
|
Ahmed AZ, Mumbrekar KD, Satyam SM, Shetty P, D'Souza MR, Singh VK. Chia Seed Oil Ameliorates Doxorubicin-Induced Cardiotoxicity in Female Wistar Rats: An Electrocardiographic, Biochemical and Histopathological Approach. Cardiovasc Toxicol 2021; 21:533-542. [PMID: 33740233 PMCID: PMC8169504 DOI: 10.1007/s12012-021-09644-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) is a potent anti-cancer antibiotic that was widely used for treatment of various cancers. It produces free radicals which result in extreme dose-limiting cardiotoxicity. This study investigated the cardioprotective potential of chia seed oil, an active polyphenolic nutraceutical against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats were divided into four groups (n = 6) which consist of normal control, DOX control, test-A and test-B group. Animals were prophylactically treated with two different doses of test drug, i.e. chia seed oil 2.5 ml/kg/day and 5 ml/kg/day in test-A and test-B groups orally for 7 days. Doxorubicin (25 mg/kg; single dose) was administered intraperitoneally to DOX control, Test-A and Test-B animals on the seventh day to induce cardiotoxicity. ECG analysis was done before and after treatment. Besides ECG, CK, CK-MB, LDH, AST, MDA and GSH were analyzed. DOX had significantly altered ECG, CK, CK-MB, LDH, AST, MDA and GSH. Pre-treatment with chia seed oil significantly alleviated DOX-induced ECG changes and also guarded against DOX-induced rise of serum CK, CK-MB and AST levels. Chia seed oil alleviated histopathological alteration in DOX-treated rats. It also significantly inhibited DOX-induced GSH depletion and elevation of MDA. The present study revealed that chia seed oil exerts cardioprotection against doxorubicin-induced cardiotoxicity in female Wistar rats. Our study opens the perspective to clinical studies to precisely consider chia seed oil as a potential chemoprotectant nutraceutical in the combination chemotherapy with doxorubicin to limit its cardiotoxicity.
Collapse
Affiliation(s)
- Akheruz Zaman Ahmed
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology &Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shakta Mani Satyam
- Department of Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakashchandra Shetty
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Melanie Rose D'Souza
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Varun Kumar Singh
- Department of Pathology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
41
|
Liu B, Yan W. Quantitative Polyunsaturated Fatty Acid Analysis of Chia Seed Oil by High-Performance Liquid Chromatography. J Chromatogr Sci 2021; 59:120-127. [PMID: 33169127 DOI: 10.1093/chromsci/bmaa084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 11/14/2022]
Abstract
Alpha-linolenic acid (ALA) and linoleic acid (LA), abundant in chia seed oil, are useful polyunsaturated fatty acids (PUFA) with numerous health benefits. The objectives of the present study were to explore the optimum extraction condition of chia seed oil and the possibilities of direct analysis of ALA and LA in chia seed oil by reversed-phase high-performance liquid chromatography with ultraviolet detection (RP-HPLC-UV). The optimized chia seed oil extraction condition was set by the usage of Soxhlet extrator with hexane as a solvent, with the solvent to solid ratio of 8 and the extraction time of 8 h. Prior to HPLC-UV analysis, the oil was saponified in order to get the free fatty acids for detection. The results showed that the proposed HPLC-UV method allowed the quantification of ALA and LA in chia seed oil. The method was simple, rapid (within 18 min) and sensitive (limit of detection 0.006 mg/mL for ALA and 0.02 mg/mL for LA) and precise (RSD ≤ 2%). Thus, the proposed experimental designs were shown to offer considerable advantages over traditional derivatization approaches in the ALA and LA analyses.
Collapse
Affiliation(s)
- Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Weidong Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Morshedzadeh N, Shahrokh S, Chaleshi V, Karimi S, Mirmiran P, Zali MR. The effects of flaxseed supplementation on gene expression and inflammation in ulcerative colitis patients: An open-labelled randomised controlled trial. Int J Clin Pract 2021; 75:e14035. [PMID: 33482045 DOI: 10.1111/ijcp.14035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
AIMS Inflammatory bowel disease, a chronic inflammatory disorder of the intestinal mucosa, is a clinical presentation of Crohn's disease and ulcerative colitis (UC). This study investigated the effect of grounded flaxseed (GF) and flaxseed oil (FO) on clinical biomarkers, quality of life and diseases activity in patients with UC. This research was conducted among 90 patients with UC for 12 weeks using an open-labelled randomised controlled trial design. METHODS The participants were randomly assigned into two intervention groups supplemented with GF (30 gr/day) and FO (10 gr/day) as well as a control group. The participants' data were collected prior to and 12 weeks after the intervention. The one-way analysis of variance was run to compare variables. RESULTS A total of 75 patients completed the study. After the intervention, hs-CRP (P < .001) and Mayo score (P < .001) were reduced significantly, but quality of life was increased significantly (P < .001) in the GF and FO groups compared with the control. A significant increase was observed in IL-10 concentration in the FO group, but no significant change was found in serum levels of IL-10 in the control group. Moreover, the decrease in Mayo score was greater in patients at more severe stages of the disease (P < .05). No difference was observed between the intervention groups and control group in mRNA expression level of TLR4 at the 12th week. CONCLUSION In conclusion, grounded flaxseed and FO attenuated systemic inflammation and improved disease severity in UC patients.
Collapse
Affiliation(s)
- Nava Morshedzadeh
- Department of Nutrition, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Karimi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Miao F, Shan C, Ma T, Geng S, Ning D. Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb Pathog 2021; 154:104866. [PMID: 33775855 DOI: 10.1016/j.micpath.2021.104866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) has become a global disease and closely related to changes in intestinal oxidative stress, inflammatory factors and gut microbiota. Furthermore, the NLRP3 inflammasome activation is a key cause in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Recent data showed the potential antioxidative and anti-inflammatory advantage of walnut oil, which widely used in traditional medicine and has become a dietary supplement for some patients. Therefore, we investigated whether walnut oil exerts an anti-inflammatory effect on DSS-induced colitis mice by targeting NLRP3 inflammasome and gut microbiota. Our data showed that walnut oil ameliorated the pathological morphology, decreased the reactive oxygen species (ROS) production and pro-inflammatory cytokines release, down-regulated the related gene proteins expression of NLRP3/ASC/Caspase-1 inflammatory pathway, inhibited apoptosis, shifted from more pathogens towards probiotics, and increased the levels of short-chain fatty acids (SCFAs) in DSS-induced damaging process. Collectively, our study concludes that walnut oil exerts anti-inflammatory effect on DSS-induced colitis in mice by inhibiting the NLRP3 inflammasome activation and modulating gut microbiota, and may be a prominent functional food candidate for UC treatment.
Collapse
Affiliation(s)
- Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ting Ma
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China.
| |
Collapse
|
44
|
Pistol GC, Bulgaru CV, Marin DE, Oancea AG, Taranu I. Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods 2021; 10:foods10030530. [PMID: 33806347 PMCID: PMC7999447 DOI: 10.3390/foods10030530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammations associated with progressive degradation of intestinal epithelium and impairment of the local innate immune response. Restoring of epithelial integrity and of the mucosal barrier function, together with modulation of inflammatory and innate immune markers, represent targets for alternative strategies in IBD. The aim of our study was to evaluate the effects of a diet including 8% grape seed meal (GSM), rich in bioactive compounds (polyphenols, polyunsaturated fatty acids (PUFAs), fiber) on the markers of colonic epithelial integrity, mucosal barrier function, pro-inflammatory, and innate immunity in DSS-treated piglets used as animal models of intestinal inflammation. Our results have demonstrated the beneficial effects of bioactive compounds from dietary GSM, exerted at three complementary levels: (a) restoration of the epithelial integrity and mucosal barrier reinforcement by modulation of claudins, Occludin (OCCL) and Zonula-1 (ZO-1) tight junction genes and proteins, myosin IXB (MYO9B) and protein tyrosine phosphatase (PTPN) tight junction regulators and mucin-2 (MUC2) gene; (b) reduction of pro-inflammatory MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) genes and activities; and (c) suppression of the innate immune TLR-2 (Toll-like receptor-2) and TLR-4 (Toll-like receptor-4) genes and attenuation of the expression of MyD88 (Myeloid Differentiation Primary Response 88)/MD-2 (Myeloid differentiation factor-2) signaling molecules. These beneficial effects of GSM could further attenuate the transition of chronic colitis to carcinogenesis, by modulating the in-depth signaling mediators belonging to the Wnt pathway.
Collapse
Affiliation(s)
- Gina Cecilia Pistol
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
- Correspondence: ; Tel.: +40-21-351-2082
| | - Cristina Valeria Bulgaru
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| | - Alexandra Gabriela Oancea
- Laboratory of Chemistry and Nutrition Physiology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania;
| | - Ionelia Taranu
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| |
Collapse
|
45
|
Basson AR, Chen C, Sagl F, Trotter A, Bederman I, Gomez-Nguyen A, Sundrud MS, Ilic S, Cominelli F, Rodriguez-Palacios A. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 2021; 11:604989. [PMID: 33603741 PMCID: PMC7884479 DOI: 10.3389/fimmu.2020.604989] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Collapse
Affiliation(s)
- Abigail R. Basson
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christy Chen
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Filip Sagl
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ashley Trotter
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Hospital Medicine, Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark S. Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - Sanja Ilic
- Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, United States
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Digestive Diseases Research Core, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Digestive Health Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
46
|
Durkin LA, Childs CE, Calder PC. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021; 10:foods10010199. [PMID: 33478161 PMCID: PMC7835870 DOI: 10.3390/foods10010199] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between the internal and external environments, and responsible for maintaining regulated intestinal absorption and immunological control. Under inflammatory conditions, the intestinal barrier and its component enterocytes become inflamed, leading to changes in barrier histology, permeability, and chemical mediator production. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) can influence the inflammatory state of a range of cell types, including endothelial cells, monocytes, and macrophages. This review aims to assess the current literature detailing the effects of ω-3 PUFAs on epithelial cells. Marine-derived ω-3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes, prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids. Altered inflammatory markers have been attributed to changes in activity and/or expression of proteins involved in inflammatory signalling including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator activated receptor (PPAR) α and γ, G-protein coupled receptor (GPR) 120 and cyclooxygenase (COX)-2. Effective doses for each ω-3 PUFA are difficult to determine due to inconsistencies in dose and time of exposure between different in vitro models and between in vivo and in vitro models. Further research is needed to determine the anti-inflammatory potential of less-studied ω-3 PUFAs, including docosapentaenoic acid and stearidonic acid.
Collapse
Affiliation(s)
- Luke A. Durkin
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Correspondence:
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
47
|
Rosa F, Matazel KS, Bowlin AK, Williams KD, Elolimy AA, Adams SH, Bode L, Yeruva L. Neonatal Diet Impacts the Large Intestine Luminal Metabolome at Weaning and Post-Weaning in Piglets Fed Formula or Human Milk. Front Immunol 2020; 11:607609. [PMID: 33365033 PMCID: PMC7750455 DOI: 10.3389/fimmu.2020.607609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
The impact of human milk (HM) or dairy milk-based formula (MF) on the large intestine’s metabolome was not investigated. Two-day old male piglets were randomly assigned to HM or MF diet (n = 26/group), from postnatal day (PND) 2 through 21 and weaned to a solid diet until PND 51. Piglets were euthanized at PND 21 and PND 51, luminal contents of the cecum, proximal (PC) and distal colons (DC), and rectum were collected and subjected to metabolomics analysis. Data analyses were performed using Metaboanalyst. In comparison to MF, the HM diet resulted in higher levels of fatty acids in the lumen of the cecum, PC, DC, and rectum at PND 21. Glutamic acid was greater in the lumen of cecum, PC, and DC relative to the MF group at PND 21. Also, spermidine was higher in the DC and rectal contents of HM relative to MF at PND 21. MF diet resulted in greater abundances of amino acids in the cecal lumen relative to HM diet at PND 21. Additionally, several sugar metabolites were higher in various regions of the distal gut of MF fed piglets relative to HM group at PND 21. In contrast, at PND 51, in various regions there were higher levels of erythritol, maltotriose, isomaltose in HM versus MF fed piglets. This suggests a post weaning shift in sugar metabolism that is impacted by neonatal diet. The data also suggest that infant diet type and host-microbiota interactions likely influence the lower gut metabolome.
Collapse
Affiliation(s)
- Fernanda Rosa
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katelin S Matazel
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Anne K Bowlin
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keith D Williams
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock AR, United States
| | - Ahmed A Elolimy
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
48
|
Alhouayek M, Ameraoui H, Muccioli GG. Bioactive lipids in inflammatory bowel diseases - From pathophysiological alterations to therapeutic opportunities. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158854. [PMID: 33157277 DOI: 10.1016/j.bbalip.2020.158854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are lifelong diseases that remain challenging to treat. IBDs are characterized by alterations in intestinal barrier function and dysregulation of the innate and adaptive immunity. An increasing number of lipids are found to be important regulators of inflammation and immunity as well as gut physiology. Therefore, the study of lipid mediators in IBDs is expected to improve our understanding of disease pathogenesis and lead to novel therapeutic opportunities. Here, through selected examples - such as fatty acids, specialized proresolving mediators, lysophospholipids, endocannabinoids, and oxysterols - we discuss how lipid signaling is involved in IBD physiopathology and how modulating lipid signaling pathways could affect IBDs.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
49
|
Thomas SS, Cha YS, Kim KA. Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation. Nutr Res Pract 2020; 14:425-437. [PMID: 33029284 PMCID: PMC7520558 DOI: 10.4162/nrp.2020.14.5.425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND/OBJECTIVES Different fatty acids exert different health benefits. This study investigated the potential protective effects of perilla, olive, and safflower oils on high-fat diet-induced obesity and colon inflammation. MATERIALS/METHODS Five-week old, C57BL/6J mice were assigned to 5 groups: low-fat diet (LFD), high-fat diet (HFD) and high-fat diet supplemented with-perilla oil (HPO), olive oil (HOO), and safflower oil (HSO). After 16 weeks of the experimental period, the mice were sacrificed, and blood and tissues were collected. The serum was analyzed for obesity- and inflammation-related biomarkers. Gene expression of the biomarkers in the liver, adipose tissue, and colon tissue was analyzed. Micro-computed tomography (CT) analysis was performed one week before sacrifice. RESULTS Treatment with all the three oils significantly improved obesity-induced increases in body weight, liver weight, and epididymal fat weight as well as serum triglyceride and leptin levels. Treatment with perilla oil (PO) and safflower oil (SO) increased adiponectin levels. The micro-CT analysis revealed that PO and SO reduced abdominal fat volume considerably. The mRNA expression of lipogenic genes was reduced in all the three oil-supplemented groups and PO upregulated lipid oxidation in the liver. Supplementation of oils improved macroscopic score, increased colon length, and decreased serum endotoxin and proinflammatory cytokine levels in the colon. The abundance of Bifidobacteria was increased and that of Enterobacteriaceae was reduced in the PO-supplemented group. All three oils reduced proinflammatory cytokine levels, as indicated by the mRNA expression. In addition, PO increased the expression of tight junction proteins. CONCLUSIONS Taken together, our data indicate that the three oils exert similar anti-obesity effects. Interestingly, compared with olive oil and SO, PO provides better protection against high-fat diet-induced colon inflammation, suggesting that PO consumption helps manage inflammation-related diseases and provides omega-3 fatty acids needed by the body.
Collapse
Affiliation(s)
- Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.,Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
50
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|