1
|
Nakajima A, Arzamasov AA, Sakanaka M, Murakami R, Kozakai T, Yoshida K, Katoh T, Ojima MN, Hirose J, Nagao S, Xiao JZ, Odamaki T, Rodionov DA, Katayama T. In vitro competition with Bifidobacterium strains impairs potentially pathogenic growth of Clostridium perfringens on 2'-fucosyllactose. Gut Microbes 2025; 17:2478306. [PMID: 40102238 PMCID: PMC11956901 DOI: 10.1080/19490976.2025.2478306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Fortifying infant formula with human milk oligosaccharides, such as 2'-fucosyllactose (2'-FL), is a global trend. Previous studies have shown the inability of pathogenic gut microbes to utilize 2'-FL. However, the present study demonstrates that the type strain (JCM 1290T) of Clostridium perfringens, a pathobiont species often more prevalent and abundant in the feces of C-section-delivered infants, exhibits potentially pathogenic growth on 2'-FL. The expression of genes for α-toxin, an activator of NLRP3 inflammasome, and ethanolamine ammonia-lyase, a factor responsible for the progression of gas gangrene, was significantly upregulated during 2'-FL assimilation compared to growth on lactose. However, colony-forming unit of C. perfringens JCM 1290T markedly decreased when co-cultivated with selected strains of Bifidobacterium, a taxon frequently detected in the breastfed infant gut. Moreover, during co-cultivation, the expression of virulence-related genes, including the gene for perfringolysin O - another activator of NLRP3 inflammasome - were significantly downregulated, while the lactate oxidation genes were upregulated. This can occur through two different mechanisms: direct competition for 2'-FL between the two organisms, or cross-feeding of lactose, released from 2'-FL by C. perfringens JCM 1290T, to Bifidobacterium. Attenuation of α-toxin production by the selected Bifidobacterium strains was observed to varying extents in 2'-FL-utilizing C. perfringens strains clinically isolated from healthy infants. Our results warrant detailed in vivo studies using animal models with dysbiotic microbiota dominated by various types of C. perfringens strains to further validate the safety of 2'-FL for clinical interventions, particularly on vulnerable preterm infants.
Collapse
Affiliation(s)
- Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Ryuta Murakami
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Tomoya Kozakai
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yoshida
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junko Hirose
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto, Japan
| | | | - Jin-Zhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Innovative Research Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Wu X, Cao T, Ye J, Shi R, Bao X, Ge Y, Li D, Hao S, Liu F, Liu X. Supplementation of 2'-Fucosyllactose during the Growth Period Improves Neurodevelopmental Disorders in Offspring Mice Induced by Maternal Immune Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12292-12307. [PMID: 40350763 DOI: 10.1021/acs.jafc.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Autism spectrum disorder is a serious neurodevelopmental disorder whose early onset significantly affects an individual's social interactions and cognitive function. Recent research suggests that modulating the gut microbiota could be a potential intervention strategy for autism spectrum disorder symptoms. 2'-Fucosyllactose has been identified as a regulator of gut microbiota homeostasis, however, its effectiveness in addressing autism spectrum disorder remains unclear. In this study, the effects of daily supplementation of 2'-FL in 3-week-old male offspring mice for 5 weeks were examined. The results showed that 2'-fucosyllactose significantly improved autism spectrum disorder-like behavioral deficits. Furthermore, supplementation with 2'-fucosyllactose restored intestinal barrier integrity and increased relative abundance of beneficial gut bacteria, particularly Akkermansia and Bifidobacterium that are closely related to bile acid metabolism. Notably, 2'-fucosyllactose treatment elevated the content of bile acids and upregulated the expression of bile acid receptors in the brain. Co-housing experiments further confirmed the crucial role of gut microbiota in mediating the beneficial effects of 2'-fucosyllactose. Overall, this study suggests that 2'-fucosyllactose could alleviate maternal immune activation-induced behavioral deficits and neuroinflammation through the regulation of the gut-brain axis, offering potential therapeutic value.
Collapse
Affiliation(s)
- Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengzheng Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaowei Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yunshu Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dongning Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shijin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feitong Liu
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Salinas ML, Mulakala BK, Davidson LA, Cai JJ, Donovan SM, Chapkin RS, Yeruva L. Single-cell transcriptomics reveals that human milk feeding shapes neonatal immune cell interleukin signaling pathways in a nonrandomized clinical trial. Am J Clin Nutr 2025:S0002-9165(25)00241-2. [PMID: 40294751 DOI: 10.1016/j.ajcnut.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Several studies have indicated the benefits of human milk feeding to infants however, mechanisms behind positive health outcomes have not been investigated. OBJECTIVES The study aimed to characterize circulating immune cell subpopulation gene expression in human milk-fed (HMF) compared with cow milk formula-fed (FF) infants using single-cell transcriptomics. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from healthy HMF (n = 6), and FF (n = 3) infants who were 3-3.5 mo old and enrolled in a nonrandomized clinical trial. Single-cell RNA sequencing was used to generate a PBMC atlas and evaluate gene expression in immune cell subsets. Differential expression analysis was performed on each cell type independently after clustering the cells by similar marker gene expression using the scGEAToolbox. Differentially expressed genes were subjected to pathway analyses using an online functional enrichment analysis program. RESULTS The relative abundance (%) of T and B lymphocytes, natural killer (NK) cells, and plasmacytoid dendritic cells were similar, whereas monocytes were higher in FF infants than in HMF infants (22.6 ± 10.7 compared with 8.3 ± 5.6; P = 0.0314). In addition, innate and adaptive immune cells from FF infants exhibited a higher activation state compared with HMF infants. We identified 16 distinct cell subsets from the major immune cell types: 3 monocyte subsets, 4 NK subsets, 2 B cell subsets, and 7 T cell subsets. Transcriptional profiles of each peripheral innate and adaptive immune cell subtype varied between HMF and FF infants. Pathway enrichment analysis of cell-specific transcriptional changes within subsets of major cell types revealed that the interleukin (IL)-4/IL-13 signaling pathways were upregulated in FF infants relative to HMF infants. CONCLUSIONS These findings suggest that human milk downregulates peripheral immune cell cytokine transcriptional signatures linked to allergic inflammation and infection relative to formula feeding.
Collapse
Affiliation(s)
- Michael L Salinas
- Department of Nutrition, Texas A&M University, College Station, TX, United States; CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, United States; Texas A&M AgriLife Institute for Advancing Health Through Agriculture, College Station, TX, United States
| | - Bharath Kumar Mulakala
- Texas A&M AgriLife Institute for Advancing Health Through Agriculture, College Station, TX, United States; Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Laurie A Davidson
- Department of Nutrition, Texas A&M University, College Station, TX, United States; CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, United States
| | - James J Cai
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, United States; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, Personalized Nutrition Initiative, University of Illinois, Urbana, IL, United States
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX, United States; CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, United States; Texas A&M AgriLife Institute for Advancing Health Through Agriculture, College Station, TX, United States.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
4
|
Zhang Y, Han T, Zhang L, Yun S, Yuan Y, Wang X, Huang L, Wang Z, Lu Y. Unveiling the N-Glycomic Diversity of Goat Lactoferrin during Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8515-8530. [PMID: 40153570 DOI: 10.1021/acs.jafc.4c10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Goat lactoferrin is an N-glycoprotein, and its glycan moieties are essential for its biological activity. However, the structures of these glycans, particularly the sialylated isomers with α-2,3- or α-2,6-linkages, remain poorly characterized. Utilizing online hydrophilic liquid chromatography-tandem mass spectrometry, our study characterized N-glycans in goat lactoferrin across different lactation stages, and the putative structures of the 86 N-glycans of goat lactoferrin were presented, including 53 previously undetected ones. The content and variety of N-glycans decreased from colostrum to mature milk, with transitional milk exhibiting the highest levels of neutral and high-mannose N-glycans. Colostrum was particularly rich in fucose- and sialylated N-glycans, especially those with α-2,6-linkages. Notably, the α-2,6-linked sialylated N-glycan H5N4F1A1-1 was 7.09-fold and 12.85-fold more abundant in colostrum compared to transitional and mature milk, respectively. These findings provide valuable insights into the structure of lactoferrin and could facilitate the development of functional goat milk products.
Collapse
Affiliation(s)
- Yuyang Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lan Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shuai Yun
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yue Yuan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
Hojsak I, Dinleyici EC, van den Akker CHP, Domellöf M, Haiden N, Szajewska H, Vandenplas Y. Technical review by the ESPGHAN special interest group on gut microbiota and modifications on the health outcomes of infant formula supplemented with manufactured human milk oligosaccharides. J Pediatr Gastroenterol Nutr 2025. [PMID: 40123480 DOI: 10.1002/jpn3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025]
Abstract
This technical review, one of five developed by the European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) special interest group (SIG) on gut microbiota and modifications (GMM), supports the creation of a position paper on the use of biotic-supplemented formulas, including those containing human milk oligosaccharides (HMOs) produced through chemical synthesis or microbial biotechnology. Though these oligosaccharides are identical to the HMOs found in human milk, they do not originate from it. Therefore, we used human-identical milk oligosaccharides (HiMOs). This review focuses on the clinical outcomes related to the supplementation of infant formulas with these HiMOs. The ESPGHAN SIG-GMM conducted a systematic review to evaluate the clinical outcomes of HiMO-supplemented infant formulas in healthy infants (0-12 months) published before 2024. Six RCTs and two mechanistic substudies met the inclusion criteria and investigated different combinations of HiMOs added to the formula. The HiMOs studied so far show no difference compared to the control formula in outcomes such as: anthropometric data, regurgitation-related symptoms, crying, fussiness, or colic. A specific combination of five HMO-analogues (2'fucosyllactose [FL], 3-FL, lacto-N-tetraose [LNT], 3'-sialyllactose [SL], and 6'-SL) suggest a softer stool consistency and more frequent defecation in presumable healthy infants, but these studies also used the highest amount of HiMOs; however, the clinical relevance of this finding remains uncertain. Regarding infection prevention, no clear conclusion can be drawn. There was no difference in tolerability and no safety concerns were raised with the HiMO studied so far. This technical report serves as the background for formulating recommendations on the use of HiMOs-supplemented infant formula in healthy infants studied so far.
Collapse
Affiliation(s)
- Iva Hojsak
- Children's Hospital Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ener C Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkiye
| | - Chris H P van den Akker
- Department of Pediatrics - Neonatology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Reproduction & Development Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Magnus Domellöf
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | - Nadja Haiden
- Department of Neonatology, Kepler University Hospital, Linz, Austria
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Ahn S, Chung H, Zhao D, Chung D. Moisture sorption characteristics of crystalline and amorphous 2'-fucosyllactose, a human milk oligosaccharide. Food Chem 2025; 468:142505. [PMID: 39700813 DOI: 10.1016/j.foodchem.2024.142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
The moisture sorption characteristics of crystalline and amorphous forms of 2'-fucosyllactose (2'-FL) were investigated and compared with those of two forms of lactose. The moisture sorption isotherms showed that, relative to crystalline α-lactose monohydrate (α-LM), crystalline 2'-FL was more susceptible to moisture sorption. Crystalline 2'-FL exhibited a lower deliquescence point (89.8 %) but threefold greater water solubility (57.1 %) than crystalline α-LM at 25 °C. Time-dependent moisture sorption, X-ray diffraction, and scanning electron microscopy analyses confirmed that amorphous 2'-FL underwent moisture-induced crystallisation (similar to amorphous lactose), but required more humid conditions (aw > 0.53; aw > 0.33 for amorphous lactose) due to lower molecular mobility. Dynamic oscillatory rheology showed that amorphous 2'-FL exhibited a higher sticky point temperature (Ts) compared with amorphous lactose at any given aw, and Ts decreased from 78.9 °C to 43.6 °C as aw increased from 0.23 to 0.53 due to the plasticizing effect of moisture.
Collapse
Affiliation(s)
- Sungahm Ahn
- Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; CJ BIO Research Institute, CJ CheilJedang, Suwan 16495, Republic of Korea
| | - Hee Chung
- Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Dong Zhao
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Donghwa Chung
- Food Technology Major, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Lazarini T, Tonon KM, de Araujo Filho HB, de Morais MB. Bifidogenic Effect of 2'-Fucosyllactose (2'-FL) on the Gut Microbiome of Healthy Formula-Fed Infants: A Randomized Clinical Trial. Nutrients 2025; 17:973. [PMID: 40290019 PMCID: PMC11944528 DOI: 10.3390/nu17060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Breast milk is rich in bioactive components, especially human milk oligosaccharides (HMOs), which are crucial for establishing gut microbiota. The 2'-FL (2-Fucosyllactose), one of the most abundant oligosaccharides in breast milk, functions as a selective prebiotic. Objective: To examine the effect of adding 2'-FL (2-Fucosyllactose) to an infant formula containing prebiotic galacto-oligosaccharides (GOSs) and fructo-oligosaccharides (FOSs) on the gut microbiome of healthy formula-fed infants. Methods: This study enrolled infants from three groups: an HMO experimental group (n = 29), a GOS/FOS control group (n = 30), and an exclusively breastfed (breast milk [BM]) reference group (n = 28). Fecal samples from the three groups in the first and fourth months of life were analyzed. The V3 and V4 regions of the 16S rRNA gene were amplified and sequenced on the Illumina MiSeq. ANOVA, Kruskal-Wallis, richness indices (Chao1, Shannon), UniFrac distances, and the Adonis tests were used to perform statistical analyses on the relative abundance of phyla and genera, as well as the alpha and beta-diversity of the gut microbiota. Results: After intervention, Actinobacteriota emerged as the predominant phylum in both the HMO (60.4%) and BM (46.6%) groups. Bifidobacterium and Escherichia-Shigella were identified as the two most abundant bacterial genera in both groups. Nevertheless, the statistical analysis showed that the relative abundance of Bifidobacterium in the HMO formula-fed group after intervention was similar to that in the BM group (p > 0.05). Infants in the HMO and GOS/FOS groups showed higher relative abundance of [Ruminococcus]_gnavus_group bacteria compared to those in the BM group. Groups fed with infant formula demonstrated higher alpha-diversity of gut microbiota compared to breastfed infants (p < 0.05), at the time of admission as well as after the intervention. Beta-diversity was significantly different among the three groups, according to type of feeding. Infants fed a 2'-FL-supplemented infant formula exhibited growth comparable to that of breastfed infants throughout the intervention period, demonstrating that the formula was both safe and well tolerated. Conclusions: Adding 2'-FL to an infant formula containing 4 g/L of GOS + FOS resulted in a stronger bifidogenic effect compared to the formula without 2'-FL.
Collapse
Affiliation(s)
- Tamara Lazarini
- Nutrition Postgraduate Program, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Karina Merini Tonon
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | | | - Mauro Batista de Morais
- Nutrition Postgraduate Program, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Division of Pediatric Gastroenterology, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| |
Collapse
|
8
|
Renwick S, Furst A, Knip M, Bode L, Danska JS, Allen-Vercoe E. Modulating the developing gut microbiota with 2'-fucosyllactose and pooled human milk oligosaccharides. MICROBIOME 2025; 13:44. [PMID: 39920790 PMCID: PMC11803978 DOI: 10.1186/s40168-025-02034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Synthetic human milk oligosaccharides (HMOs) are used to supplement infant formula despite limited understanding of their impact on the post-weaned developing gut microbiota. Here, we assess the influence of 0.5 g/L 2-fucosyllactose (2'FL) and 4.0 g/L pooled HMOs (pHMOs) on the composition and activity of cultured fecal-derived microbial communities from seven healthy young children. RESULTS Exposure to pHMOs induced significant shifts in both the microbial community composition and metabolic output, including an increased abundance of several genera, notably Bacteroides, and the production of health-associated metabolites. In contrast, 2'FL alone did not lead to substantial changes in the communities. A total of 330 bacterial isolates, spanning 157 species, were cultured from these communities and individually evaluated for their responses to HMOs. Over 100 non-Bifidobacterium species showed enhanced growth upon pHMOs treatment and a high degree of intraspecies variation in HMO metabolism was observed. CONCLUSION Our study provides valuable insight into the health-enhancing properties of HMOs while highlighting the need for future research into the efficacy of incorporating individual structures into infant formula, particularly when aiming to modulate the gut microbiota. Video Abstract.
Collapse
Affiliation(s)
- Simone Renwick
- Family Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), the Human Milk Institute (HMI), Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Annalee Furst
- Family Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), the Human Milk Institute (HMI), Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mikael Knip
- Research Programs Unit, Medical Faculty, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Lars Bode
- Family Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), the Human Milk Institute (HMI), Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jayne S Danska
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology and Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
9
|
Cai R, Zheng Y, Lane JA, Huang P, Hu R, Huang Q, Liu F, Zhang B. In Vitro Infant Fecal Fermentation Metabolites of Osteopontin and 2'-Fucosyllactose Support Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1642-1655. [PMID: 39705716 DOI: 10.1021/acs.jafc.4c07683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway. OPN/2'-FL cofermentation altered the metabolic pathways, and the protective effect of fermentation metabolites on intestinal barrier function was related to differential metabolite expression such as short-chain fatty acids, deoxycholic acid, and 4-aminobutyric acid. Our findings provide in vitro evidence to support the application of the OPN/2'-FL combination in infant formula for the advancement of formulation functionality, including intestinal barrier function.
Collapse
Affiliation(s)
- Ran Cai
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| | - Yuxing Zheng
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Jonathan A Lane
- H&H Research, Global Research and Technology Centre, H&H Group, P61 K202 Co. Cork, Ireland
| | - Pantian Huang
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Ruibiao Hu
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Qiang Huang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| | - Feitong Liu
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| |
Collapse
|
10
|
López-Rodríguez R, Vermetten J, Domínguez L, Fernández-Ruiz V, Cámara M. A critical review of synthetic novel foods within the European regulation: proposed classification, toxicological concerns and potential health claims. Crit Rev Food Sci Nutr 2025:1-21. [PMID: 39810437 DOI: 10.1080/10408398.2024.2449246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The NF concept was first established by Regulation (EC) 258/97 and includes any food that has not been used to a significant extent for human consumption in the EU before 15 May 1997. Synthetic novel foods (SNF) are a currently undefined group of NF without a universal definition. The objectives of this work are to perform an analysis of those currently authorized in the EU, identify their potential adverse effects and health benefits, and their health claims. For that, an extensive review of the available legislative documents and scientific literature regarding SNF was performed, and a market analysis was performed regarding their commercial availability. This review considers SNF as those that are obtained by chemical synthesis, excluding genetically modified foods. A total of 29 SNF were identified and classified into 9 categories, and their potential risks and benefits were described. All SNF were considered safe and different health benefits were studied and suggested for various categories. Currently, 22 SNF are available on the EU market. This work characterizes a previously unexplored food group and expands the knowledge in a new and promising research area combining health and toxicological perspectives with legislation for more optimal risk management in the EU.
Collapse
Affiliation(s)
- Ricardo López-Rodríguez
- Nutrition and Food Science department, Faculty of Pharmacy, University Complutense de Madrid, Madrid, Spain
| | - Johanne Vermetten
- Nutrition and Food Science department, Faculty of Pharmacy, University Complutense de Madrid, Madrid, Spain
| | - Laura Domínguez
- Nutrition and Food Science department, Faculty of Pharmacy, University Complutense de Madrid, Madrid, Spain
| | - Virginia Fernández-Ruiz
- Nutrition and Food Science department, Faculty of Pharmacy, University Complutense de Madrid, Madrid, Spain
| | - Montaña Cámara
- Nutrition and Food Science department, Faculty of Pharmacy, University Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
12
|
Ge H, Zhu W, Zhang J, Wang Z, Shi H, Sun J, Shi M. Human milk microbiota and oligosaccharides in colostrum and mature milk: comparison and correlation. Front Nutr 2024; 11:1512700. [PMID: 39726867 PMCID: PMC11670000 DOI: 10.3389/fnut.2024.1512700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Background The interaction between the human breast milk microbiota and human milk oligosaccharides (HMOs) plays a crucial role in the healthy growth and development of infants. We aimed to clarify the link between the breast milk microbiota and HMOs at two stages of lactation. Methods The microbiota and HMOs of 20 colostrum samples (C group, 1-5 days postpartum) and 20 mature milk samples (S group, 42 days postpartum) collected from postpartum mothers were analyzed using 16S rRNA gene high-throughput sequencing and high-performance liquid chromatography-tandem mass spectrometry. Result The total average HMO content was significantly higher in the C group than in the S group (6.76 ± 1.40 g/L vs. 10.27 ± 2.00 g/L, p < 0.05). Among the HMOs, the average values of 2'-fucosyllactose (2'-FL, 1.64 ± 1.54 g/L vs. 3.03 ± 1.79 g/L), 3'-sialyllactose (3'-SL, 0.10 ± 0.02 g/L vs. 0.21 ± 0.06), 6'-SL (0.22 ± 0.09 g/L vs. 0.33 ± 0.11 g/L), and lacto-N-triaose 2 (LNT2, 0.03 ± 0.01 g/L vs. 0.16 ± 0.08 g/L) were significantly lower in the S group than in the C group (p < 0.05), while that of 3'-FL was significantly higher in the S group than in the C group (1.35 ± 1.00 g/L vs. 0.41 ± 0.43 g/L, p < 0.05). The diversity and structure of the microbiota in the S and C groups were also significantly different (p < 0.05). Comparative analysis of the microbial communities revealed that Proteobacteria and Firmicutes were the most abundant phyla, in both groups, with the keystone species (Serratia, Streptococcus and Staphylococcus) of breast milk closely interacting with HMOs, including 3'-SL, 6'-SL, and LNT2. In PICRUSt2 functional prediction analysis, the S group exhibited significant reduction in the expression of genes involved in several infectious disease pathways. Discussion Our findings support the recognition of human milk as a synbiotic comprising beneficial bacteria and prebiotic HMOs.
Collapse
Affiliation(s)
- Hongda Ge
- Department of Clinical Laboratory, Dalian Women and Children’s Medical Group, Dalian, China
| | - Wenxiu Zhu
- Centre for Reproductive and Genetic Medicine, Dalian Women and Children’s Medical Group, Dalian, China
| | - Jing Zhang
- Department of Clinical Laboratory, Central Hospital of Dalian University of Technology, Dalian Municipal Central Hospital, Dalian, China
| | - Zijing Wang
- Maternity Ward, Dalian Women and Children’s Medical Group, Dalian, China
| | - Huijing Shi
- Maternity Ward, Dalian Women and Children’s Medical Group, Dalian, China
| | - Jie Sun
- Child Health Care Clinic, Dalian Women and Children’s Medical Group, Dalian, China
| | - Ming Shi
- Department of Clinical Laboratory, Dalian Women and Children’s Medical Group, Dalian, China
- Centre for Reproductive and Genetic Medicine, Dalian Women and Children’s Medical Group, Dalian, China
| |
Collapse
|
13
|
Liu Y, Wu F, Zhang M, Jin Y, Yuan X, Hao Y, Chen L, Fang B. 2'-Fucosyllactose and 3'-Sialyllactose Reduce Mortality in Neonatal Enteroaggregative Escherichia coli Infection by Improving the Construction of Intestinal Mucosal Immunity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26165-26177. [PMID: 39535070 DOI: 10.1021/acs.jafc.4c06524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human milk oligosaccharides could prevent pathogenic bacterial infections in neonates; however, direct in vivo anti-infection evidence was still lacking. Here, we systematically evaluated the effects of 2'-fucosyllactose (2'-FL) and 3'-sialyllactose (3'-SL) on the structural development and functional maturation in neonates and their defense against enteroaggregative Escherichia coli infection. It was found that supplementation with 2'-FL and 3'-SL improved the resistance of weaned mice to enteroaggregative E. coli. The mechanism related to the promotion of 2'-FL and 3'-SL in the maturation of intestinal mucosal immunity by promoting stem cell differentiation, mucus layer integrity, and tight junction formation. 2'-FL and 3'-SL significantly increased the ratio of Th1 and Treg cells in the lamina propria, contents of short-chain fatty acids, as well as the serum content of IgA. This study lays a theoretical basis for the application of 2'-FL and 3'-SL in infant formula, as well as the development of intestinal health products.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Vassilopoulou E, Agostoni C, Feketea G, Alberti I, Gianni ML, Milani GP. The Role of Breastfeeding in Acute Respiratory Infections in Infancy. Pediatr Infect Dis J 2024; 43:1090-1099. [PMID: 38986006 DOI: 10.1097/inf.0000000000004454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND Acute respiratory infections (ARIs) affect the respiratory tract, are often caused by viruses such as respiratory syncytial virus and rhinovirus, and present symptoms such as coughing, fever, respiratory distress, and breathing difficulty. The global adherence to exclusive breastfeeding (BF) for the first 6 months of life has reached 44%, supported by the World Health Organization and United Nations International Children's Emergency Fund efforts. BF provides vital nutrients and contributes to infant immune system development, protecting against infections. The role of BF in preventing and reducing complications of ARIs in infants is gaining attention, prompting a review of current data and future research needs. This review aims to summarize the evidence on the role of BF in reducing the risk and severity of ARIs in infants, elucidate the adaptations in breast milk composition during infections, and identify relevant research needs. METHODS AND RESULTS Human milk (HM) is rich in immunoglobulins, antimicrobial peptides, and immunomodulatory factors that protect against various pathogens, including respiratory viruses. Several studies have demonstrated that BF is associated with a significant reduction in hospitalization, oxygen requirements, and mortality in infants with ARIs. The effectiveness of BF varies according to the specific respiratory virus, and a longer duration of exclusive BF appears to enhance its protective effect. It is documented that the composition of HM adjusts dynamically in response to infections, fortifying the infant's immune defenses. Specific immunological components of HM, including leukocytes and immunoglobulins, increase in response to infection in the infant, contributing to the enhancement of the immune defense in infants. Immune-boosting microRNAs enhance immune transfer to the infants and promote early gut maturation, and the HM microbiome along with other factors modifies the infant's gut microbiome and immune system. CONCLUSIONS BF defends infants from respiratory infections, and the investigation of the microRNAs in HM offers new insights into its antiviral properties. The promotion of BF, especially in vulnerable communities, is of paramount importance in alleviating the global burden of ARIs in infancy.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carlo Agostoni
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gavriela Feketea
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, Greece
| | - Ilaria Alberti
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Lorella Gianni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
| | - Gregorio Paolo Milani
- From the Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Daniels VC, Monaco MH, Hirvonen J, Ouwehand AC, Jensen HM, Mukerjea R, Christensen N, Lehtinen MJ, Dilger RN, Donovan SM. Interactions between the human milk oligosaccharide 2'-fucosyllactose and Bifidobacterium longum subspecies infantis in influencing systemic immune development and function in piglets. Front Nutr 2024; 11:1444594. [PMID: 39525504 PMCID: PMC11543533 DOI: 10.3389/fnut.2024.1444594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The oligosaccharide 2'-fucosyllactose (2'-FL) is a predominant component of human milk, serving as a prebiotic for gut microbiota and influencing immune development in infants. Bifidobacterium longum subspecies infantis (B. infantis) is a commensal bacterium found in breastfed infants. Both 2'-FL and a specific strain of B. infantis, Bi-26™, are commercially available. This study investigates the potential synbiotic relationship between 2'-FL and Bi-26™ on immune development. Methods Two-day-old piglets (n = 53) were randomized in a 2 × 2 design, receiving either a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2'-FL (FL). Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26™ (109 CFU) (BI and FLBI) orally once daily. On postnatal day (PND) 34/35, animals were euthanized, and blood was collected for serum cytokine analysis. Additionally, peripheral blood mononuclear cells (PBMCs) were isolated for ex vivo stimulation and flow cytometry analysis. Serum and ex vivo cytokines were analyzed using a multivariate model. All other outcomes were analyzed using a two-way ANOVA, considering prebiotic and probiotic fixed effects. The significance level was set at a p value <0.05, with trends reported for 0.05 < p < 0.1. Results Immune cell populations in PBMCs were unaffected by the experimental treatment. However, serum interleukin (IL)-1RA, IL-1β, IL-12, and IL-18 were all higher (p < 0.05) in the FL group than in the CON group. In isolated PBMCs, lipopolysaccharide (LPS) stimulation resulted in higher IL-1RA and a trend for higher IFN-γ secretion in the FL group vs. the CON group. Conclusion 2'-FL stimulates a balanced cytokine profile in healthy piglets without changing immune cell populations. When immune cells are stimulated ex vivo with LPS, 2'-FL primes T-cells for a proinflammatory response, which is moderated by co-administration of Bi-26™.
Collapse
Affiliation(s)
- Victoria C. Daniels
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | | | | | | | - Ratna Mukerjea
- IFF Health and Biosciences, Saint Louis, MO, United States
| | | | | | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| |
Collapse
|
16
|
Chen Y, Wen Y, Zhao R, Zhu Y, Chen Z, Zhao C, Mu W. Human milk oligosaccharides in preventing food allergy: A review through gut microbiota and immune regulation. Int J Biol Macromol 2024; 278:134868. [PMID: 39163965 DOI: 10.1016/j.ijbiomac.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Food allergy (FA) has increasingly attracted global attention in past decades. However, the mechanism and effect of FA are complex and varied, rendering it hard to prevention and management. Most of the allergens identified so far are macromolecular proteins in food and may have potential cross-reactions. Human milk oligosaccharides (HMOs) have been regarded as an ideal nutrient component for infants, as they can enhance the immunomodulatory capacity to inhibit the progress of FA. HMOs may intervene in the development of allergies by modifying gut microbiota and increasing specific short-chain fatty acids levels. Additionally, HMOs could improve the intestinal permeability and directly or indirectly regulate the balance of T helper cells and regulatory T cells by enhancing the inflammatory signaling pathways to combat FA. This review will discuss the influence factors of FA, key species of gut microbiota involved in FA, types of FA, and profiles of HMOs and provide evidence for future research trends to advance HMOs as potential therapeutic aids in preventing the progress of FA.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Park S, Park Y, Jeong YJ, Oh JG, Yoo HJ, Yang J, Kwon JI, Lee KW. Combining 2'-fucosyllactose and galactooligosaccharides exerts anti-inflammatory effects and promotes gut health. J Dairy Sci 2024:S0022-0302(24)01117-2. [PMID: 39245164 DOI: 10.3168/jds.2024-25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
This study investigated the potential of 2'-Fucosyllactose (2'-FL) and galactooligosaccharides (GOS) combinations as a novel and cost-effective substitute for human milk oligosaccharides (HMOs) in promoting gut health and reducing inflammation. In vitro studies using Caco-2 cells showed that 2'-FL and GOS combinations (H1: GOS:2'-FL ratio of 1.8:1; H2: ratio of 3.6:1) reduced lipopolysaccharide-induced inflammation by decreasing pro-inflammatory markers, while individual treatments had no significant effects. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, combined 2'-FL and GOS supplementation alleviated symptoms, improved gut permeability, and enhanced intestinal structure, with the GH1 group (H1 combo with DSS) being the most effective. 2'-FL and GOS combinations also enhanced short-chain fatty acid production in infant fecal batch fermentation and mouse fecal analysis, with GH1 showing the most promising results. GH1 supplementation altered gut microbiota in mice with DSS-induced colitis, promoting microbial diversity and a more balanced Firmicutes to Bacteroidota ratio. Infant formula products (IFPs) containing 2'-FL and GOS combinations (IFP2: 174 mg GOS and 95 mg 2'-FL per 14 g serving, 1.8:1 ratio; IFP3: 174 mg GOS and 48 mg 2'-FL per 14 g serving, 3.6:1 ratio) demonstrated gastrointestinal protective and anti-inflammatory properties in a coculture model of Caco-2 and THP-1 cells. These findings suggest that 2'-FL and GOS combinations have potential applications in advanced infant formulas and supplements to promote gut health and reduce inflammation.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Yoonhee Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Yu-Jin Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Jun Gu Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea
| | - Jiyeon Yang
- Department of Integrated Biomedical and Life Science, Graduate School, 02841, Korea University, Seoul, Republic of Korea
| | - Jung-Il Kwon
- Department of Integrated Biomedical and Life Science, Graduate School, 02841, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, 02841, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Falsaperla R, Sortino V, Gambilonghi F, Vitaliti G, Striano P. Human Milk Oligosaccharides and Their Pivotal Role in Gut-Brain Axis Modulation and Neurologic Development: A Narrative Review to Decipher the Multifaceted Interplay. Nutrients 2024; 16:3009. [PMID: 39275324 PMCID: PMC11397282 DOI: 10.3390/nu16173009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), which are unique bioactive components in human milk, are increasingly recognized for their multifaceted roles in infant health. A deeper understanding of the nexus between HMOs and the gut-brain axis can revolutionize neonatal nutrition and neurodevelopmental strategies. METHODS We performed a narrative review using PubMed, Embase, and Google Scholar to source relevant articles. The focus was on studies detailing the influence of HMOs on the gut and brain systems, especially in neonates. Articles were subsequently synthesized based on their exploration into the effects and mechanisms of HMOs on these interconnected systems. RESULTS HMOs significantly influence the neonatal gut-brain axis. Specific concentrations of HMO, measured 1 and 6 months after birth, would seem to agree with this hypothesis. HMOs are shown to influence gut microbiota composition and enhance neurotransmitter production, which are crucial for brain development. For instance, 2'-fucosyllactose has been demonstrated to support cognitive development by fostering beneficial gut bacteria that produce essential short-chain fatty acids. CONCLUSIONS HMOs serve as crucial modulators of the neonatal gut-brain axis, underscoring their importance in infant nutrition and neurodevelopment. Their dual role in shaping the infant gut while influencing brain function presents them as potential game-changers in neonatal health strategies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Francesco Gambilonghi
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, University of Catania, 95123 Catania, Italy; (V.S.); (G.V.)
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| |
Collapse
|
19
|
Gonzalez-Prendes R, Crooijmans RPMA, Dibbits B, Laport K, Breunig S, Keijzer P, Pellis L, Bovenhuis H. Genetic and environmental factors shaping goat milk oligosaccharide composition. J Dairy Sci 2024:S0022-0302(24)01101-9. [PMID: 39218066 DOI: 10.3168/jds.2024-25132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Oligosaccharides (OS) in milk have been suggested to influence the health and development of the newborn by promoting growth of beneficial gut bacteria, stimulating brain development, and enhancing immune functions. Goat milk is a natural source of specific OS, which could be a potential beneficial ingredient for infant formula. In this study, goat milk oligosaccharide (gMOS) content from approximately 1,000 dairy goats across 18 commercial farms was studied. A genomic relationship matrix was used to unravel genetic and environmental factors shaping gMOS content. The most abundant gMOS identified was 3'-NGL, with a concentration of 32.05 mg/kg, while 3-FL exhibited the lowest concentration at 1.85 mg/kg. Acidic OS had a notably higher content (81.67 mg/kg) than neutral OS (24.88 mg/kg). High variability in gMOS content was observed among individual goats, which could for a large extent be attributed to genetic differences. Heritability estimates ranged from 31% for 3'-GL to 85% for 3-FL. High positive genetic correlations (>0.57) were estimated between 3'-SL and 6'-SL, and between 6'-GL and 3'-GL. The contribution of differences between farms to variation in milk OS content varied from 3% for 3'-NGL to 45% for 6'-SL. While gMOS like 3'-GL, 6'-GL, and 6'-NGL, were significantly influenced by systematic environmental factors such as the lactation stage, the impact of these factors was relatively minor compared with the importance of genetic and farm effects. This research, which stands out due to its relatively large sample size, underscores the pivotal role of genetics, and to a smaller extent farm practices like feed ration, in determining gMOS composition.
Collapse
Affiliation(s)
- R Gonzalez-Prendes
- Ausnutria BV, Zwolle, The Netherlands,; Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R P M A Crooijmans
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - B Dibbits
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - K Laport
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - S Breunig
- Ausnutria BV, Zwolle, The Netherlands,; Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - P Keijzer
- Ausnutria BV, Zwolle, The Netherlands
| | - L Pellis
- Ausnutria BV, Zwolle, The Netherlands
| | - H Bovenhuis
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Moon S, Lee KW, Park M, Moon J, Park SH, Kim S, Hwang J, Yoon JW, Jeon SM, Kim JS, Jeon YJ, Kweon DH. 3-Fucosyllactose-mediated modulation of immune response against virus infection. Int J Antimicrob Agents 2024; 64:107187. [PMID: 38697577 DOI: 10.1016/j.ijantimicag.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeonghui Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea; Advanced Protein Technologies Corp., Suwon, Republic of Korea.
| |
Collapse
|
21
|
Ferreres-Serafini L, Martín-Orúe SM, Sadurní M, Jiménez J, Moreno-Muñoz JA, Castillejos L. Supplementing infant milk formula with a multi-strain synbiotic and osteopontin enhances colonic microbial colonization and modifies jejunal gene expression in lactating piglets. Food Funct 2024; 15:6536-6552. [PMID: 38807503 DOI: 10.1039/d4fo00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A total of ninety-six weaned piglets were assigned to four dietary treatments in a 2 × 2 design. The treatments included: a standard milk formula (CTR); CTR + probiotics (6.4 × 108 cfu L-1Bifidobacterium longum subsp. infantis CECT 7210 and 1.1 × 108 cfu L-1Lactobacillus rhamnosus NH001) + prebiotics (galacto-oligosaccharides 4.36 g L-1 and human-milk-oligosaccharide 0.54 g L-1) (SYN); CTR + osteopontin (0.43 g L-1) (OPN); and CTR + SYN + OPN (CON). Daily records including feed intake, body weight, and clinical signs, were maintained throughout the 15-day trial. At the end of the study samples from blood, digestive content, and gut tissues were collected to determine serum TNF-α, intestinal fermentative activity (SCFA and ammonia), colonic microbiota (16S rRNA Illumina-MiSeq), histomorphology, and jejunal gene expression (Open-Array). No statistical differences were found in weight gain; however, the animals supplemented with osteopontin exhibited higher feed intake. In terms of clinical signs, synbiotic supplementation led to a shorter duration of diarrhoea episodes. Regarding gut health, the sequenced faecal microbiota revealed better control of potentially dysbiotic bacteria with the CON diet at day 15. In the colon compartment, a significant increase in SCFA concentration, a decrease in ammonia concentration, and a significant decrease in intraepithelial lymphocyte counts were particularly observed in CON animals. The supplemented diets were also associated with modified jejunal gene expression. The synbiotic combination was characterized by the upregulation of genes related to intestinal maturation (ALPI, SI) and nutrient transport (SLC13A1, SLC15A1, SLC5A1, SLC7A8), and the downregulation of genes related to the response to pathogens (GBP1, IDO, TLR4) or the inflammatory response (IDO, IL-1β, TGF-β1). Osteopontin promoted the upregulation of a digestive function gene (GCG). Correlational analysis between the microbiota population and various intestinal environmental factors (SCFA concentration, histology, and gene expression) proposes mechanisms of communication between the gut microbiota and the host. In summary, these results suggest an improvement in the colonic colonization process and a better modulation of the immune response when milk formula is supplemented with the tested synbiotic combined with osteopontin, benefiting from a synergistic effect.
Collapse
Affiliation(s)
- Laia Ferreres-Serafini
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Susana Mª Martín-Orúe
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Meritxell Sadurní
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Jiménez
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - José Antonio Moreno-Muñoz
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
22
|
Ramirez-Farias C, Oliver JS, Schlezinger J, Stutts JT. Tolerance of Infants Fed a Hydrolyzed Rice Infant Formula with 2'-Fucosyllactose (2'-FL) Human Milk Oligosaccharide (HMO). Nutrients 2024; 16:1863. [PMID: 38931218 PMCID: PMC11206301 DOI: 10.3390/nu16121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The purpose of this research was to assess the growth, tolerance, and compliance outcomes associated with the consumption of a hydrolyzed rice infant formula (HRF) enriched with 2'-Fucosyllactose (2'-FL) a Human Milk Oligosaccharide (HMO), and nucleotides in an intended population of infants. METHODS This was a non-randomized single-group, multicenter study. The study formula was a hypoallergenic HRF with 2'-FL, Docosahexaenoic acid (DHA), Arachidonic acid (ARA), and nucleotides. Infants 0-90 days of age who were formula fed and experiencing persistent feeding intolerance symptoms, symptoms of suspected food protein (milk and/or soy) allergy, or other conditions where an extensively hydrolyzed infant formula was deemed an appropriate feeding option were recruited by pediatricians from their local populations. The primary outcome was maintenance of weight-for-age z-score. Weight, length, head circumference, formula intake, tolerance measures, clinical symptoms and questionnaires were collected. Thirty-three infants were enrolled, and 27 completed the study, on study product. RESULTS Weight-for-age z-scores of infants showed a statistically significant improvement from Visit 1 to Visit 4 (p = 0.0331). There was an adequate daily volume intake of 762 ± 28 mL/day, average daily number of stools of 2.1 ± 0.3, and mean rank stool consistency of 2.38 ± 0.18. After 28 days of switching to a HRF, 86.8 ± 5.9% of the symptoms resolved or got better by Visit 4 as reported by parents. CONCLUSIONS HRF with 2'-FL HMO was safe, well tolerated, and supported weight gain in infants with suspected cow's milk allergy or persistent feeding intolerance.
Collapse
Affiliation(s)
- Carlett Ramirez-Farias
- Scientific & Medical Affairs, Abbott Nutrition, Columbus, OH 43219, USA; (J.S.O.); (J.T.S.)
| | | | | | | |
Collapse
|
23
|
Jepsen SD, Lund A, Matwiejuk M, Andresen L, Christensen KR, Skov S. Human milk oligosaccharides regulate human macrophage polarization and activation in response to Staphylococcus aureus. Front Immunol 2024; 15:1379042. [PMID: 38903508 PMCID: PMC11187579 DOI: 10.3389/fimmu.2024.1379042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are present in high numbers in milk of lactating women. They are beneficial to gut health and the habitant microbiota, but less is known about their effect on cells from the immune system. In this study, we investigated the direct effect of three structurally different HMOs on human derived macrophages before challenge with Staphylococcus aureus (S. aureus). The study demonstrates that individual HMO structures potently affect the activation, differentiation and development of monocyte-derived macrophages in response to S. aureus. 6´-Sialyllactose (6'SL) had the most pronounced effect on the immune response against S. aureus, as illustrated by altered expression of macrophage surface markers, pointing towards an activated M1-like macrophage-phenotype. Similarly, 6'SL increased production of the pro-inflammatory cytokines TNF-α, IL-6, IL-8, IFN-γ and IL-1β, when exposing cells to 6'SL in combination with S. aureus compared with S. aureus alone. Interestingly, macrophages treated with 6'SL exhibited an altered proliferation profile and increased the production of the classic M1 transcription factor NF-κB. The HMOs also enhanced macrophage phagocytosis and uptake of S. aureus. Importantly, the different HMOs did not notably affect macrophage activation and differentiation without S. aureus exposure. Together, these findings show that HMOs can potently augment the immune response against S. aureus, without causing inflammatory activation in the absence of S. aureus, suggesting that HMOs assist the immune system in targeting important pathogens during early infancy.
Collapse
Affiliation(s)
- Stine Dam Jepsen
- dsm-firmenich, Hørsholm, Denmark
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Astrid Lund
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars Andresen
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Søren Skov
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
24
|
Tonon KM, Chutipongtanate S, Morrow AL, Newburg DS. Human Milk Oligosaccharides and Respiratory Syncytial Virus Infection in Infants. Adv Nutr 2024; 15:100218. [PMID: 38583862 PMCID: PMC11107461 DOI: 10.1016/j.advnut.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
In infants worldwide, respiratory syncytial virus (RSV) is the leading cause of lower respiratory infections, including bronchiolitis, which is a major source of infant mortality. Bronchiolitis is the most common lower respiratory infection and the major cause of hospitalization in the first 6 mo of life. Infant responses to RSV infection are highly diverse, with symptoms varying from asymptomatic or mild to so severe as to require mechanical ventilation. Breastfed infants present a lower incidence and less severe forms of RSV lower respiratory infections. Among the multitude of human milk bioactive compounds, human milk oligosaccharides (hMOSs) are strong candidates for having a protective effect against RSV. hMOS reduces the viral load and the inflammatory signaling in cultured RSV-infected respiratory human cells. In addition to this direct effect, indirect mechanisms, notably gut microbiota composition and metabolism, have been proposed to mediate the protective effect of hMOS. Intake of infant formula containing synthetic hMOS has been shown to increase Bifidobacterium abundance and that of its metabolites, especially acetate, in infant feces and to reduce lower respiratory tract infections during the first year of life. Breastfeeding and the use of hMOS are promising approaches to protect against and treat RSV disease. Here, we review current evidence on the role of hMOS with regard to RSV infection and disease, attending to knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Karina M Tonon
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Somchai Chutipongtanate
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ardythe L Morrow
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David S Newburg
- Department of Environmental Health and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
25
|
Wong CB, Huang H, Ning Y, Xiao J. Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health. Microorganisms 2024; 12:1014. [PMID: 38792843 PMCID: PMC11124435 DOI: 10.3390/microorganisms12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiome of infants in industrialized nations, underscoring the importance of restoring this beneficial bacterium. With the growing understanding of the gut microbiome, probiotics, especially infant-type human-residential bifidobacteria (HRB) strains like B. infantis, are gaining prominence for their unique ability to utilize HMOs and positively influence infant health. This article delves into the physiology of a probiotic strain, B. infantis M-63, its symbiotic relationship with HMOs, and its potential in improving gastrointestinal and allergic conditions in infants and children. Moreover, this article critically assesses the role of HMOs and the emerging trend of supplementing infant formulas with the prebiotic HMOs, which serve as fuel for beneficial gut bacteria, thereby emulating the protective effects of breastfeeding. The review highlights the potential of combining B. infantis M-63 with HMOs as a feasible strategy to improve health outcomes in infants and children, acknowledging the complexities and requirements for further research in this area.
Collapse
Affiliation(s)
- Chyn Boon Wong
- International Division, Morinaga Milk Industry Co., Ltd., 5-2, Higashi Shimbashi 1-Chome, Minato-ku, Tokyo 105-7122, Japan
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Jinzhong Xiao
- Morinaga Milk Industry (Shanghai) Co., Ltd., Room 509 Longemont Yes Tower, No. 369 Kaixuan Road, Changning District, Shanghai 200050, China
- Department of Microbiota Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| |
Collapse
|
26
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
27
|
Chen Y, Chen Z, Zhu Y, Wen Y, Zhao C, Mu W. Recent Progress in Human Milk Oligosaccharides and Its Antiviral Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7607-7617. [PMID: 38563422 DOI: 10.1021/acs.jafc.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Versluis DM, Schoemaker R, Looijesteijn E, Geurts JM, Merks RM. 2'-Fucosyllactose helps butyrate producers outgrow competitors in infant gut microbiota simulations. iScience 2024; 27:109085. [PMID: 38380251 PMCID: PMC10877688 DOI: 10.1016/j.isci.2024.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2'-fucosyllactose (2'-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2'-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2'-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites.
Collapse
Affiliation(s)
- David M. Versluis
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
| | | | | | | | - Roeland M.H. Merks
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
- Leiden University, Mathematical Institute, 2300 RA Leiden, the Netherlands
| |
Collapse
|
29
|
Boll EJ, Lopez DV, Terne M, Hessing S, Parschat K, Jensen SR. Human milk oligosaccharides differentially support gut barrier integrity and enhance Th1 and Th17 cell effector responses in vitro. Front Immunol 2024; 15:1359499. [PMID: 38510254 PMCID: PMC10950922 DOI: 10.3389/fimmu.2024.1359499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) can modulate the intestinal barrier and regulate immune cells to favor the maturation of the infant intestinal tract and immune system, but the precise functions of individual HMOs are unclear. To determine the structure-dependent effects of individual HMOs (representing different structural classes) on the intestinal epithelium as well as innate and adaptive immune cells, we assessed fucosylated (2'FL and 3FL), sialylated (3'SL and 6'SL) and neutral non-fucosylated (LNT and LNT2) HMOs for their ability to support intestinal barrier integrity, to stimulate the secretion of chemokines from intestinal epithelial cells, and to modulate cytokine release from LPS-activated dendritic cells (DCs), M1 macrophages (MØs), and co-cultures with naïve CD4+ T cells. The fucosylated and neutral non-fucosylated HMOs increased barrier integrity and protected the barrier following an inflammatory insult but exerted minimal immunomodulatory activity. The sialylated HMOs enhanced the secretion of CXCL10, CCL20 and CXCL8 from intestinal epithelial cells, promoted the secretion of several cytokines (including IL-10, IL-12p70 and IL-23) from LPS-activated DCs and M1 MØs, and increased the secretion of IFN-γ and IL-17A from CD4+ T cells primed by LPS-activated DCs and MØs while reducing the secretion of IL-13. Thus, 3'SL and 6'SL supported Th1 and Th17 responses while reducing Th2 responses. Collectively, our data show that HMOs exert structure-dependent effects on the intestinal epithelium and possess immunomodulatory properties that confer benefits to infants and possibly also later in life.
Collapse
Affiliation(s)
| | | | - Mandy Terne
- Chr. Hansen A/S, Applied HMOs, Hoersholm, Denmark
| | - Sara Hessing
- Chr. Hansen A/S, Applied HMOs, Hoersholm, Denmark
| | | | | |
Collapse
|
30
|
Kadia BM, Allen SJ. Effect of Pre-, Pro-, and Synbiotics on Biomarkers of Systemic Inflammation in Children: A Scoping Review. Nutrients 2024; 16:336. [PMID: 38337621 PMCID: PMC10856957 DOI: 10.3390/nu16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic inflammation plays a central role in many diseases and is, therefore, an important therapeutic target. In a scoping review, we assessed the evidence base for the anti-inflammatory effects of pre-, pro-, and synbiotics in children. Of the 1254 clinical trials published in English in Ovid Medline and Cochrane Library PubMed from January 2003 to September 2022, 29 were included in the review. In six studies of healthy children (n = 1552), one reported that fructo-oligosaccharides added to infant formula significantly reduced pro-inflammatory biomarkers, and one study of a single-strain probiotic reported both anti- and pro-inflammatory effects. No effects were seen in the remaining two single-strain studies, one multi-strain probiotic, and one synbiotic study. In 23 studies of children with diseases (n = 1550), prebiotics were tested in 3, single-strain in 16, multi-strain probiotics in 6, and synbiotics in 2 studies. Significantly reduced inflammatory biomarkers were reported in 7/10 studies of atopic/allergic conditions, 3/5 studies of autoimmune diseases, 1/2 studies of preterm infants, 1 study of overweight/obesity, 2/2 studies of severe illness, and 2/3 studies of other diseases. However, only one or two of several biomarkers were often improved; increased pro-inflammatory biomarkers occurred in five of these studies, and a probiotic increased inflammatory biomarkers in a study of newborns with congenital heart disease. The evidence base for the effects of pre-, pro-, and synbiotics on systemic inflammation in children is weak. Further research is needed to determine if anti-inflammatory effects depend on the specific pre-, pro-, and synbiotic preparations, health status, and biomarkers studied.
Collapse
Affiliation(s)
| | - Stephen John Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| |
Collapse
|
31
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Monaco MH, Wang M, Hauser J, Yan J, Dilger RN, Donovan SM. Formula supplementation with human and bovine milk oligosaccharides modulates blood IgG and T-helper cell populations, and ex vivo LPS-stimulated cytokine production in a neonatal preclinical model. Front Immunol 2023; 14:1327853. [PMID: 38179055 PMCID: PMC10765566 DOI: 10.3389/fimmu.2023.1327853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Human milk contains structurally diverse oligosaccharides (HMO), which are multifunctional modulators of neonatal immune development. Our objective was to investigate formula supplemented with fucosylated (2'FL) + neutral (lacto-N-neotetraose, LNnt) oligosaccharides and/or sialylated bovine milk oligosaccharides (BMOS) on immunological outcomes. Methods Pigs (n=46) were randomized at 48h of age to four diets: sow milk replacer formula (CON), BMOS (CON + 6.5 g/L BMOS), HMO (CON + 1.0 g/L 2'FL + 0.5 g/L LNnT), or BMOS+HMO (CON + 6.5 g/L BMOS + 1.0 g/L 2'FL + 0.5 g/L LNnT). Blood and tissues were collected on postnatal day 33 for measurement of cytokines and IgG, phenotypic identification of immune cells, and ex vivo lipopolysaccharide (LPS)-stimulation of immune cells. Results Serum IgG was significantly lower in the HMO group than BMOS+HMO but did not differ from CON or BMOS. The percentage of PBMC T-helper cells was lower in BMOS+HMO than the other groups. Splenocytes from the BMOS group secreted more IL-1β when stimulated ex vivo with LPS compared to CON or HMO groups. For PBMCs, a statistical interaction of BMOS*HMO was observed for IL-10 secretion (p=0.037), with BMOS+HMO and HMO groups differing at p=0.1. Discussion The addition of a mix of fucosylated and sialylated oligosaccharides to infant formula provides specific activities in the immune system that differ from formulations supplemented with one oligosaccharide structure.
Collapse
Affiliation(s)
- Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
33
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
34
|
Golden RK, Sutkus LT, Bauer LL, Donovan SM, Dilger RN. Determining the safety and efficacy of dietary supplementation with 3'-sialyllactose or 6'-sialyllactose on growth, tolerance, and brain sialic acid concentrations. Front Nutr 2023; 10:1278804. [PMID: 37927504 PMCID: PMC10620723 DOI: 10.3389/fnut.2023.1278804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Sialylated oligosaccharides, including 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), comprise a large portion of human milk and have been known to support development over the first year of life. While research has investigated the impact of early-life supplementation, longer-term supplementation remains relatively unexplored. Consequently, the following study assesses the impact of supplementation of either 3'-SL or 6'-SL on growth performance, tolerance, and brain sialic acid concentrations. Two-day-old piglets (n = 75) were randomly assigned to a commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added at 0.2673% on an as-is basis). Daily body weight and feed disappearance were recorded to assess growth performance and tolerance. Pigs were euthanized for sample collection on postnatal day 33 (n = 30) or 61 (n = 33), respectively. Across growth performance, clinical chemistry and hematology, histomorphology, and sialic acid quantification, dietary differences were largely unremarkable at either time-point. Overall, SA was well-tolerated both short-term and long-term.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Laura L. Bauer
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
35
|
Chen R, Zhu Y, Wang H, Liu Y, Meng J, Chen Y, Mu W. Engineering Escherichia coli MG1655 for Highly Efficient Biosynthesis of 2'-Fucosyllactose by De Novo GDP-Fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14678-14686. [PMID: 37773050 DOI: 10.1021/acs.jafc.3c05052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
2'-Fucosyllactose (2'-FL), the most typical human milk oligosaccharide, is used as an additive in premium infant formula. Herein, we constructed two highly effective 2'-FL synthesis producers via a de novo GDP-fucose pathway from engineered Escherichia coli MG1655. First, lacZ and wcaJ, two competitive pathway genes, were disrupted to block the invalid consumption of lactose and GDP-fucose, respectively. Next, the lacY gene was strengthened by switching its native promoter to PJ23119. To enhance the supply of endogenous GDP-fucose, the promoters of gene clusters manC-manB and gmd-fcl were strengthened individually or in combination. Subsequently, chromosomal integration of a constitutive PJ23119 promoter-based BKHT expression cassette (PJ23119-BKHT) was performed in the arsB and recA loci. The most productive plasmid-based and plasmid-free strains produced 76.9 and 50.1 g/L 2'-FL by fed-batch cultivation, respectively. Neither of them generated difucosyl lactose nor 3-fucosyllactose as byproducts.
Collapse
Affiliation(s)
- Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan 250010, Shandong, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Selvamani S, Kapoor N, Ajmera A, El Enshasy HA, Dailin DJ, Sukmawati D, Abomoelak M, Nurjayadi M, Abomoelak B. Prebiotics in New-Born and Children's Health. Microorganisms 2023; 11:2453. [PMID: 37894112 PMCID: PMC10608801 DOI: 10.3390/microorganisms11102453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
At present, prebiotics, like probiotics, are receiving more attention as a promising tool for health maintenance. Many studies have recognized the role of prebiotics in preventing and treating various illnesses including metabolic disorders, gastrointestinal disorders, and allergies. Naturally, prebiotics are introduced to the human body in the first few hours of life as the mother breastfeeds the newborn. Prebiotic human milk oligosaccharides (HMOs) are the third largest constituent of human breastmilk. Studies have proven that HMOs modulate an infant's microbial composition and assist in the development of the immune system. Due to some health conditions of the mother or beyond the recommended age for breastfeeding, infants are fed with formula. Few types of prebiotics have been incorporated into formula to yield similar beneficial impacts similar to breastfeeding. Synthetic HMOs have successfully mimicked the bifidogenic effects of breastmilk. However, studies on the effectiveness and safety of consumption of these synthetic HMOs are highly needed before massive commercial production. With the introduction of solid foods after breastfeeding or formula feeding, children are exposed to a range of prebiotics that contribute to further shaping and maturing their gut microbiomes and gastrointestinal function. Therefore, this review evaluates the functional role of prebiotic interventions in improving microbial compositions, allergies, and functional gastrointestinal disorders in children.
Collapse
Affiliation(s)
- Shanmugaprakasham Selvamani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Nutrition Technologies SDN. BHD., No 1 & No 3, Jalan SiLC 2, Kawasan Perindustrian SiLC, Iskandar Puteri, Johor Bahru 80150, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
| | - Nidhi Kapoor
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
| | - Arun Ajmera
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21500, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia; (S.S.); (H.A.E.E.); (D.J.D.)
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 80000, Malaysia
| | - Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur 13530, Indonesia; (D.S.); (M.N.)
| | | | - Muktiningsih Nurjayadi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur 13530, Indonesia; (D.S.); (M.N.)
| | - Bassam Abomoelak
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA (A.A.)
- Specialty Diagnostic Laboratory, Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| |
Collapse
|
37
|
van der Toorn M, Chatziioannou AC, Pellis L, Haandrikman A, van der Zee L, Dijkhuizen L. Biological Relevance of Goat Milk Oligosaccharides to Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13935-13949. [PMID: 37691562 PMCID: PMC10540210 DOI: 10.1021/acs.jafc.3c02194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Milk is often regarded as the gold standard for the nourishment of all mammalian offspring. The World Health Organization (WHO) recommends exclusive breastfeeding for the first 6 months of the life of the infant, followed by a slow introduction of complementary foods to the breastfeeding routine for a period of approximately 2 years, whenever this is possible ( Global Strategy for Infant and Young Child Feeding; WHO, 2003). One of the most abundant components in all mammals' milk, which is associated with important health benefits, is the oligosaccharides. The milk oligosaccharides (MOS) of humans and other mammals differ in terms of their concentration and diversity. Among those, goat milk contains more oligosaccharides (gMOS) than other domesticated dairy animals, as well as a greater range of structures. This review summarizes the biological functions of MOS found in both human and goat milk to identify the possible biological relevance of gMOS in human health and development. Based on the existing literature, seven biological functions of gMOS were identified, namely, MOS action as prebiotics, immune modulators, and pathogen traps; their modulation of intestinal cells; protective effect against necrotizing enterocolitis; improved brain development; and positive effects on stressor exposure. Overall, goat milk is a viable alternate supply of functional MOS that could be employed in a newborn formula.
Collapse
Affiliation(s)
| | - Anastasia Chrysovalantou Chatziioannou
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Department
of Chemistry, Laboratory of Analytical Biochemistry, University of Crete, Heraklion, 70013, Greece
| | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
38
|
Xu Y. Editorial: Milk oligosaccharides and lipids, their impact on human health. Front Nutr 2023; 10:1255077. [PMID: 37781113 PMCID: PMC10541213 DOI: 10.3389/fnut.2023.1255077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
- Peking University Health Science Center, China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| |
Collapse
|
39
|
Liu S, Mao Y, Wang J, Tian F, Hill DR, Xiong X, Li X, Zhao Y, Wang S. Lactational and geographical variation in the concentration of six oligosaccharides in Chinese breast milk: a multicenter study over 13 months postpartum. Front Nutr 2023; 10:1267287. [PMID: 37731395 PMCID: PMC10508235 DOI: 10.3389/fnut.2023.1267287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Understanding the variations of oligosaccharide in breast milk contribute to better study how human milk oligosaccharides (HMOs) play a role in health-promoting benefits in infants. Methods Six abundant HMOs, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), in breast milk collected at 0-5 days, 10-15 days, 40-45 days, 200-240 days, and 300-400 days postpartum from six locations across China were analyzed using high-performance anion-exchange chromatography-pulsed amperometric detector. Results The concentration of individual HMO fluctuated dynamically during lactational stages. The median ranges of 2'-FL, 3-FL, LNT, LNnT, 3'-SL, and 6'-SL across the five lactational stages were 935-2865 mg/L, 206-1325 mg/L, 300-1473 mg/L, 32-317 mg/L, 106-228 mg/L, and 20-616 mg/L, respectively. The prominent variation was observed in the content of 6'-SL, which demonstrates a pattern of initial increase followed by a subsequent decrease. Among the five lactational stages, the transitional milk has the highest concentration, which was 31 times greater than the concentration in mature milk at 300-400 days postpartum, where the content is the lowest. Geographical location also influenced the content of HMOs. LNT and LNnT were the highest in mature milk of mothers from Lanzhou among the six sites at 40-240 days postpartum. Breast milks were categorized into two groups base on the abundance of 2'-FL (high and low). There was no significant difference in the proportions of high and low 2'-FL phenotypes among the six sites, and the percentages of high and low 2'-FL phenotypes were 79% and 21%, respectively, across all sites in China. Discussion This study provided a comprehensive dataset on 6 HMOs concentrations in Chinese breast milk during the extended postpartum period across a wide geographic range and stratified by high and low 2'-FL phenotypes.
Collapse
Affiliation(s)
- Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - David R. Hill
- Abbott Nutrition Research & Development Center, Columbus, OH, United States
| | - Xiaoying Xiong
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
40
|
Schönknecht YB, Moreno Tovar MV, Jensen SR, Parschat K. Clinical Studies on the Supplementation of Manufactured Human Milk Oligosaccharides: A Systematic Review. Nutrients 2023; 15:3622. [PMID: 37630811 PMCID: PMC10458772 DOI: 10.3390/nu15163622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are a major component of human milk. They are associated with multiple health benefits and are manufactured on a large scale for their addition to different food products. In this systematic review, we evaluate the health outcomes of published clinical trials involving the supplementation of manufactured HMOs. We screened the PubMed database and Cochrane Library, identifying 26 relevant clinical trials and five publications describing follow-up studies. The clinical trials varied in study populations, including healthy term infants, infants with medical indications, children, and adults. They tested eight different HMO structures individually or as blends in varying doses. All trials included safety and tolerance assessments, and some also assessed growth, stool characteristics, infections, gut microbiome composition, microbial metabolites, and biomarkers. The studies consistently found that HMO supplementation was safe and well tolerated. Infant studies reported a shift in outcomes towards those observed in breastfed infants, including stool characteristics, gut microbiome composition, and intestinal immune markers. Beneficial gut health and immune system effects have also been observed in other populations following HMO supplementation. Further clinical trials are needed to substantiate the effects of HMO supplementation on human health and to understand their structure and dose dependency.
Collapse
|
41
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
42
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
43
|
Endika MF, Barnett DJM, Klostermann CE, Schols HA, Arts ICW, Penders J, Nauta A, Smidt H, Venema K. Microbiota-dependent influence of prebiotics on the resilience of infant gut microbiota to amoxicillin/clavulanate perturbation in an in vitro colon model. Front Microbiol 2023; 14:1131953. [PMID: 37275167 PMCID: PMC10232780 DOI: 10.3389/fmicb.2023.1131953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Antibiotic exposure disturbs the developing infant gut microbiota. The capacity of the gut microbiota to recover from this disturbance (resilience) depends on the type of antibiotic. In this study, infant gut microbiota was exposed to a combination of amoxicillin and clavulanate (amoxicillin/clavulanate) in an in vitro colon model (TIM-2) with fecal-derived microbiota from 1-month-old (1-M; a mixed-taxa community type) as well as 3-month-old (3-M; Bifidobacterium dominated community type) breastfed infants. We investigated the effect of two common infant prebiotics, 2'-fucosyllactose (2'-FL) or galacto-oligosaccharides (GOS), on the resilience of infant gut microbiota to amoxicillin/clavulanate-induced changes in microbiota composition and activity. Amoxicillin/clavulanate treatment decreased alpha diversity and induced a temporary shift of microbiota to a community dominated by enterobacteria. Moreover, antibiotic treatment increased succinate and lactate in both 1- and 3-M colon models, while decreasing the production of short-chain (SCFA) and branched-chain fatty acids (BFCA). The prebiotic effect on the microbiota recovery depended on the fermenting capacity of antibiotic-exposed microbiota. In the 1-M colon model, the supplementation of 2'-FL supported the recovery of microbiota and restored the production of propionate and butyrate. In the 3-M colon model, GOS supplementation supported the recovery of microbiota and increased the production of acetate and butyrate.
Collapse
Affiliation(s)
- Martha F. Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - David J. M. Barnett
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Cynthia E. Klostermann
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen, Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Ilja C. W. Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation (HEFI), Maastricht University—Campus Venlo, Venlo, Netherlands
| |
Collapse
|
44
|
Hill DR, Buck RH. Infants Fed Breastmilk or 2'-FL Supplemented Formula Have Similar Systemic Levels of Microbiota-Derived Secondary Bile Acids. Nutrients 2023; 15:nu15102339. [PMID: 37242222 DOI: 10.3390/nu15102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Human milk represents an optimal source of nutrition during infancy. Milk also serves as a vehicle for the transfer of growth factors, commensal microbes, and prebiotic compounds to the immature gastrointestinal tract. These immunomodulatory and prebiotic functions of milk are increasingly appreciated as critical factors in the development of the infant gut and its associated microbial community. Advances in infant formula composition have sought to recapitulate some of the prebiotic and immunomodulatory functions of milk through human milk oligosaccharide (HMO) fortification, with the aim of promoting healthy development both within the gastrointestinal tract and systemically. Our objective was to investigate the effects of feeding formulas supplemented with the HMO 2'-fucosyllactose (2'-FL) on serum metabolite levels relative to breastfed infants. A prospective, randomized, double-blinded, controlled study of infant formulas (64.3 kcal/dL) fortified with varying levels of 2'-FL and galactooligosaccharides (GOS) was conducted [0.2 g/L 2'-FL + 2.2 g/L GOS; 1.0 g/L 2'-FL + 1.4 g/L GOS]. Healthy singleton infants age 0-5 days and with birth weight > 2490 g were enrolled (n = 201). Mothers chose to either exclusively formula-feed or breastfeed their infant from birth to 4 months of age. Blood samples were drawn from a subset of infants at 6 weeks of age (n = 35-40 per group). Plasma was evaluated by global metabolic profiling and compared to a breastfed reference group (HM) and a control formula (2.4 g/L GOS). Fortification of control infant formula with the HMO 2'-FL resulted in significant increases in serum metabolites derived from microbial activity in the gastrointestinal tract. Most notably, secondary bile acid production was broadly increased in a dose-dependent manner among infants receiving 2'-FL supplemented formula relative to the control formula. 2'-FL supplementation increased secondary bile acid production to levels associated with breastfeeding. Our data indicate that supplementation of infant formula with 2'-FL supports the production of secondary microbial metabolites at levels comparable to breastfed infants. Thus, dietary supplementation of HMO may have broad implications for the function of the gut microbiome in systemic metabolism. This trial was registered at with the U.S. National library of Medicine as NCT01808105.
Collapse
Affiliation(s)
- David R Hill
- Abbott, Nutrition Division, Columbus, OH 43219, USA
| | | |
Collapse
|
45
|
Sáez-Fuertes L, Azagra-Boronat I, Massot-Cladera M, Knipping K, Garssen J, Franch À, Castell M, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Effect of Rotavirus Infection and 2'-Fucosyllactose Administration on Rat Intestinal Gene Expression. Nutrients 2023; 15:nu15081996. [PMID: 37111215 PMCID: PMC10146148 DOI: 10.3390/nu15081996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Viral infections are described as modifying host gene expression; however, there is limited insight regarding rotavirus (RV) infections. This study aimed to assess the changes in intestinal gene expression after RV infection in a preclinical model, and the effect of 2-fucosyllactose (2'-FL) on this process. From days 2 to 8 of life, rats were supplemented with the dietary oligosaccharide 2'-FL or vehicle. In addition, an RV was inoculated on day 5 to nonsupplemented animals (RV group) and to 2'-FL-fed animals (RV+2'-FL group). Incidence and severity of diarrhea were established. A portion from the middle part of the small intestine was excised for gene expression analysis by microarray kit and qPCR. In nonsupplemented animals, RV-induced diarrhea upregulated host antiviral genes (e.g., Oas1a, Irf7, Ifi44, Isg15) and downregulated several genes involved in absorptive processes and intestinal maturation (e.g., Onecut2, and Ccl19). The 2'-FL-supplemented and infected animals had less diarrhea; however, their gene expression was affected in a similar way as the control-infected animals, with the exception of some immunity/maturation markers that were differentially expressed (e.g., Ccl12 and Afp). Overall, assessing the expression of these key genes may be useful in the evaluation of the efficacy of nutritional interventions or treatments for RV infection.
Collapse
Affiliation(s)
- Laura Sáez-Fuertes
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
46
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
47
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Li Z, Wang X, Deng X, Song J, Yang T, Liao Y, Gong G, Huang L, Lu Y, Wang Z. High-sensitivity qualitative and quantitative analysis of human, bovine and goat milk glycosphingolipids using HILIC-MS/MS with internal standards. Carbohydr Polym 2023; 312:120795. [PMID: 37059535 DOI: 10.1016/j.carbpol.2023.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Glycosphingolipids (GSLs) in human milk regulate the immune system, support intestinal maturation, and prevent gut pathogens. The structural complexity and low abundance of GSLs limits their systematic analysis. Here, we coupled the use of monosialoganglioside 1-2-amino-N-(2-aminoethyl) benzamide (GM1-AEAB) derivatives as internal standards with HILIC-MS/MS to qualitatively and quantitatively compare GSLs in human, bovine, and goat milk. One neutral glycosphingolipid (GB) and 33 gangliosides were found in human milk, of which 22 were newly detected and three were fucosylated. Five GB and 26 gangliosides were identified in bovine milk, of which 21 were newly discovered. Four GB and 33 gangliosides were detected in goat milk, 23 of them newly reported. GM1 was the main GSL in human milk; whereas disialoganglioside 3 (GD3) and monosialogangloside 3 (GM3) were dominant in bovine and goat milk, respectively; N-acetylneuraminic acid (Neu5Ac) was detected in >88 % of GSLs in bovine and goat milk. N-hydroxyacetylneuraminic acid (Neu5Gc)-modified GSLs were 3.5 times more abundant in goat than in bovine milk; whereas GSLs modified with both Neu5Ac and Neu5Gc were 3 times more abundant in bovine than in goat milk. Given the health benefits of different GSLs, these results will facilitate the development of custom-designed human milk-based infant formula.
Collapse
|
49
|
Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and Postbiotics in Infant Formulas: What Are the Immune Benefits for Infants? Nutrients 2023; 15:1231. [PMID: 36904230 PMCID: PMC10004767 DOI: 10.3390/nu15051231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The first objective of infant formulas is to ensure the healthy growth of neonates and infants, as the sole complete food source during the first months of life when a child cannot be breastfed. Beyond this nutritional aspect, infant nutrition companies also try to mimic breast milk in its unique immuno-modulating properties. Numerous studies have demonstrated that the intestinal microbiota under the influence of diet shapes the maturation of the immune system and influences the risk of atopic diseases in infants. A new challenge for dairy industries is, therefore, to develop infant formulas inducing the maturation of immunity and the microbiota that can be observed in breastfed delivered vaginally, representing reference infants. Streptococcus thermophilus, Lactobacillus reuteri DSM 17938, Bifidobacterium breve (BC50), Bifidobacterium lactis Bb12, Lactobacillus fermentum (CECT5716), and Lactobacillus rhamnosus GG (LGG) are some of the probiotics added to infant formula, according to a literature review of the past 10 years. The most frequently used prebiotics in published clinical trials are fructo-oligosaccharides (FOSs), galacto-oligosaccharides (GOSs), and human milk oligosaccharides (HMOs). This review sums up the expected benefits and effects for infants of pre-, pro-, syn-, and postbiotics added to infant formula regarding the microbiota, immunity, and allergies.
Collapse
Affiliation(s)
- Anaïs Lemoine
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| | - Patrick Tounian
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies pour la Santé (DMTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAe, F-91190 Gif-sur-Yvette, France
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| |
Collapse
|
50
|
Zhang G, Sun H, Xu Z, Tan Z, Xiao L, He M, Shang J, Tsapieva AN, Zhang L. Screening of Bifidobacteria with Probiotic Potential from Healthy Infant Feces by Using 2'-Fucosyllactose. Foods 2023; 12:foods12040858. [PMID: 36832933 PMCID: PMC9957139 DOI: 10.3390/foods12040858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Using 2'-fucosyllactose (2'-FL) as the sole carbon source can be an efficient way to screen bifidobacteria with superior probiotic capabilities since 2'-FL is a key element in promoting the growth of intestinal bifidobacteria in newborns. This approach was used in this work to screen eight bifidobacteria strains, including one strain of Bifidobacterium longum subsp. infantis BI_Y46 and seven strains of Bifidobacterium bifidum (BB_Y10, BB_Y30, BB_Y39, BB_S40, BB_H4, BB_H5 and BB_H22). Studies on their probiotic properties showed that BI_Y46 had a unique morphology with pilus-like structure, a high resistance to bile salt stimulation and a potent inhibitory action on Escherichia coli ATCC 25922. Similarly, BB_H5 and BB_H22 produced more extracellular polysaccharides and had a higher protein content than other strains. In contrast, BB_Y22 displayed considerable auto-aggregation activity and a high resistance to bile salt stimulation. Interestingly, BB_Y39 with weak self-aggregation ability and acid resistance had very excellent bile salt tolerance, extracellular polysaccharides (EPS) production and bacteriostatic ability. In conclusion, 2'-FL was used as sole carbon source to identify eight bifidobacteria with excellent probiotic properties.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihe Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ze Tan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Anna N. Tsapieva
- Department of Molecular Microbiology, FSBSI Institute of Experimental Medicine, Acad. Pavlov Street, 12, 197376 St. Petersburg, Russia
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-5519-0675
| |
Collapse
|