1
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Perfilyeva YV, Kali A, Aben DS, Abdusattarova YR, Lushova AV, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Sharipov KO, Davlyatshin TI, Abdolla N. Effect of calcitriol on myeloid-derived suppressor cells in physiological aging. J Steroid Biochem Mol Biol 2025; 251:106768. [PMID: 40316223 DOI: 10.1016/j.jsbmb.2025.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The active hormonal form of vitamin D, 1,25(OH)2D, regulates many components of the immune system and previous research shows that 1,25(OH)2D reduces the number and suppressive activity of MDSCs in tumors. This study aimed to evaluate the effects of calcitriol treatment on MDSCs in aged mice. We showed that aged BALB/c and CD1 mice exhibited increased levels of CD11b+Gr1+ cells in both the spleen and bone marrow compared to young mice. These cells displayed a less mature phenotype marked by reduced F4/80 expression and demonstrated robust T cell suppressive activity, as evidenced by their ability to inhibit the production of IFNγ and TNFα. Treatment of aged mice with calcitriol, administered twice weekly at a dose equivalent to 1 µg/kg for 4 weeks, significantly increased the population of CD11b+Gr1+ cells in the spleen, but not in the bone marrow of the animals, and promoted their differentiation into a more mature phenotype characterized by elevated F4/80 expression. In addition, calcitriol-treated aged mice exhibited significantly improved T cell responses, as indicated by increased IFNγ production upon specific antigen stimulation compared to the control group of mice. In vitro, calcitriol treatment of bone marrow-derived MDSCs similarly enhanced F4/80 expression without altering other markers such as CD11b, CD11c, or MHCII, and led to reduced expression of reactive oxygen species by these cells. Our study highlights the consistency of MDSC expansion across inbred and outbred mouse strains and supports the immunomodulatory role of calcitriol in promoting MDSC maturation and alleviating immune suppression in aging.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Diana S Aben
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yulduz R Abdusattarova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Anzhelika V Lushova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Yekaterina O Ostapchuk
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Timur I Davlyatshin
- Clinical diagnostic laboratory 'Omikron 3D', 24 Amanzhol St., Almaty 050052, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan.
| |
Collapse
|
3
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
4
|
Ding C, Li Z, Zheng Y, Li K, Yu W, Kong L, Zhang Z. Effects of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide on inflammatory factors and immune function in breast cancer rats. Discov Oncol 2025; 16:716. [PMID: 40347365 PMCID: PMC12065689 DOI: 10.1007/s12672-025-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/30/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Tumor occurrence and growth are highly correlated with the degree of inflammation and immunological activity. Reducing the level of inflammation in tumor-bearing body to relieve immune suppression and enhance anti-tumor immune function has become an important strategy for tumor treatment. OBJECTIVE To investigate the effect of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide (SSP) on inhibiting inflammation, reducing immunosuppression, enhancing anti-tumor immune function and slowing the progression of tumor in tumor-bearing rats, and to provide certain scientific basis for the clinical application of combined drugs in tumor. METHODS The rats were put into three groups at random: normal control, model group, and drug treatment group. After the end of drug intervention, the tumor was taken out and weighed to observe the tumor growth of the rats. Tumor necrosis factor (TNF-α), interleukin (IL) 1β, IL-10, perforin, and granzyme B were found by Western blot in the local tumor tissues of experimental rats. The protein expression levels of Arginase-1 (Arg-1) and Cyclooxygenase 2 (COX-2) were determined. HE staining was used to observe the inflammatory infiltration of the tumor. Using flow cytometry, the proportions of anti-tumor immune cells-CD8 + T cells, NK cells, and immunosuppressive cells-in local tumor tissues were evaluated. In addition, spleen T cells isolated from normal rats were co-cultured with spleen myeloid derived suppressor cells (MDSC) from tumor-bearing rats in the model group and the combined treatment group. Cell Trace Far Red was used to identify T cell proliferation, flow cytometry was used to determine the level of T cell activation from CD25 expression, and in vivo immunosuppression in tumor-bearing rats was examined. RESULTS The combined therapy group experienced a considerable decrease in tumor weight as compared to the model group. TNF-α and IL-1p levels in the vicinity of the tumor tissues reduced following intervention, although IL-10 levels, which are anti-inflammatory cytokines, did not significantly change. The results of the HE staining revealed that the intervention group's tumor had less inflammatory infiltration than the model group did. After intervention, the percentages of CD8 + T cells and NK cells in local tumor tissues increased. Additionally, the intervention group's levels of protein expression for perforin and granzyme B were considerably higher than those of the model group. In the nearby tumor tissues, there were lots of MDSC. Following the intervention, the proportion of MDSC in the local tumor tissues was significantly reduced, and the expansion of MDSC was reduced. Additionally, the intervention group's COX-2 and Arg-1 protein expression levels in the tumor-specific tissues were significantly lower than those of the model group. The outcomes of in vitro co-culture demonstrated that rats in the combination group had higher levels of T cell proliferation and activation than animals in the model group. CONCLUSIONS Albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide can reduce the local inflammation level, promote the proportion of CDB + T cells and NK cells and cell killing function, reduce the proportion of MDSC and immunosuppressive level, enhance the anti-tumor immune function of tumor-bearing mice, and slow the growth of tumors.
Collapse
Affiliation(s)
- Changli Ding
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhuolin Li
- Department of Oncology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Lingzhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhiyong Zhang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China.
| |
Collapse
|
5
|
Ma J, Lu B, Wong P, Xu M, Yang Z, Jiang R, Dong C, Tao N. Sargassum henslowianum polysaccharides induce apoptosis of prostate cancer associated macrophages via the CD206-ERK-ROS pathway. Int J Biol Macromol 2025; 310:143482. [PMID: 40286960 DOI: 10.1016/j.ijbiomac.2025.143482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Tumor-associated macrophages (TAMs) are a predominant immunosuppressive cell type within the tumor microenvironment. Whether polysaccharides from Sargassum henslowianum C. Ag. (SH) exert anti-tumor effects by modulating TAMs remains under investigation. In this study, we isolated and characterized a uniform sulfated polysaccharide, SHA1P-2, from SH, with a molecular weight of 68,000 g/mol. Monosaccharide composition analysis revealed that fucose and galactose were the predominant components, with minor amounts of xylose and mannose. RM1-Raw264.7 cells, simulating TAMs, were induced by culturing Raw264.7 cells in the supernatant of prostate cancer RM1 cells, and their effects on T-cell proliferation were assessed. Unlike Raw264.7 cells, RM1-Raw264.7 cells significantly suppressed concanavalin A-induced T-cell proliferation, a suppression alleviated by SHA1P-2 treatment. Interestingly, SHA1P-2 did not induce apoptosis in Raw264.7 cells but effectively triggered apoptosis in RM1-Raw264.7 cells. The apoptotic mechanism was mediated via the upregulation of CD206 in TAMs, as evidenced by reduced apoptosis and reactive oxygen species (ROS) levels when CD206 was knocked down or p-ERK was inhibited in TAMs. These findings demonstrate that SHA1P-2 promotes TAM apoptosis via the CD206-ERK-ROS axis, indicating that elevated ROS levels serve as a key trigger for TAM apoptosis, thereby presenting a novel strategy for TAM-based anti-tumor therapies.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pathology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Urology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou 646000, China
| | - Bowen Lu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Pokyuen Wong
- Phillips Academy Andover, Andover, MA 01810, USA
| | - Mengdie Xu
- Department of Pathology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou 646000, China
| | - Zhihui Yang
- Department of Pathology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou 646000, China
| | - Rui Jiang
- Department of Urology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Caixia Dong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Ning Tao
- Department of Pathology, The affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Christopher BN, Golick L, Basar A, Reyes L, Robinson RM, Angerstein AO, Krieg C, Hobbs GA, Guttridge DC, O'Bryan JP, Dolloff NG. Modulating the CXCR2 Signaling Axis Using Engineered Chemokine Fusion Proteins to Disrupt Myeloid Cell Infiltration in Pancreatic Cancer. Biomolecules 2025; 15:645. [PMID: 40427538 DOI: 10.3390/biom15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers, and limited treatment options exist. Immunotherapy is effective in some cancer types, but the immunosuppressive tumor microenvironment (TME) of PDAC is a barrier to effective immunotherapy. CXCR2+ myeloid-derived suppressor cells (MDSCs) are abundant in PDAC tumors in humans and in mouse models. MDSCs suppress effector cell function, making them attractive targets for restoring anti-tumor immunity. In this study, we show that the most abundant soluble factors released from a genetically diverse set of human and mouse PDAC cells are CXCR2 ligands, including CXCL8, CXCL5, and CXCL1. Expression of CXCR2 ligands is at least partially dependent on mutant KRAS and NFκB signaling, which are two of the most commonly dysregulated pathways in PDAC. We show that MDSCs are the most prevalent immune cells in PDAC tumors. MDSCs expressed high levels of CXCR2, and we found that myeloid cells readily migrate toward conditioned media (CM) prepared from PDAC cultures. We designed CXCR2 ligand-Fc fusion proteins to modulate the CXCR2 chemotactic signaling axis. Unexpectedly, these fusion proteins were superior to native chemokines in binding and activation of CXCR2 on myeloid cells. These "superkines" were potent inhibitors of PDAC CM-induced myeloid cell migration and were superior to CXCR2 small-molecule inhibitors and neutralizing antibodies. Our findings suggest that CXCR2 superkines may disrupt myeloid cell recruitment to PDAC tumors, ultimately improving immunotherapy outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ashton Basar
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aaron O Angerstein
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Denis C Guttridge
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- MUSC Darby Children's Research Institute, Charleston, SC 29425, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John P O'Bryan
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Song M, Sun J, Lv K, Li J, Shi J, Xu Y. A comprehensive review of pathology and treatment of staphylococcus aureus osteomyelitis. Clin Exp Med 2025; 25:131. [PMID: 40299136 PMCID: PMC12040984 DOI: 10.1007/s10238-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 04/30/2025]
Abstract
Osteomyelitis (OM) is an inflammation of the bone and bone marrow triggered by infectious pathogens which may induce progressive bone destruction. The majority of OM cases, especially the chronic OM cases, are induced by the most prevalent and devastating pathogen Staphylococcus aureus (S. aureus), partially due to its resistance mechanisms against the immune system and antibiotic therapies. Regarding the high rate of morbidity and recurrence in patients, it is pivotal to elucidate underlying mechanisms that how S. aureus enter and survive in hosts. The accumulated discoveries have identified multiple distinct strategies associated with chronicity and recurrence include biofilm development, small colony variants (SCVs), staphylococcus abscess communities (SACs), the osteocyte lacuno-canalicular network invasion (OLCN) of cortical bones, and S. aureus protein A (SpA). Unfortunately, little clinical progress has been achieved for the diagnosis and therapeutic treatment for OM patients, indicating that numerous questions remain to be solved. Therefore, we still have a long way to obtain the clear elucidation of the host-pathogen interactions which could be applied for clinical treatment of OM. In this review, we provide insights of current knowledge about how S. aureus evades immune eradication and remains persistent in hosts with recent discoveries. The common and novel treatment strategies for OM are also described. The purpose of this review is to have in-dept understanding of S. aureus OM and bring new perspectives to therapeutic fields which may be translated to the clinic.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Sun
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Junyi Li
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
8
|
Müller T, Dzanibe S, Day C, Mpangase PT, Chimbetete T, Pedretti S, Schwager S, Gray CM, Sturrock E, Peter J. Integrated renin angiotensin system dysregulation and immune profiles predict COVID-19 disease severity in a South African cohort. Sci Rep 2025; 15:12799. [PMID: 40229302 PMCID: PMC11997227 DOI: 10.1038/s41598-025-96161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Renin-angiotensin system (RAS) dysregulation is an important component of the complex pathophysiology of SARS-CoV-2 and other coronavirus infections. Thus, angiotensin-converting enzyme 2 (ACE2), the entry receptor and key to the alternative RAS, was proposed as a severity/prognostic biomarker for risk-stratification. However, experimental RAS data from diverse cohorts are limited, particularly analyses integrating RAS with immune biomarkers. Participants (n = 172) in Cape Town were sampled longitudinally (including a recovery timepoint [> 3-month]), across WHO asymptomatic to critical severity. Using fluorometric assays and LC-MS/MS RAS Fingerprinting®, results show serum ACE1 activity significantly decreases with increasing COVID-19 severity (P < 0.01) and mortality (P < 0.05), while increased ACE2 activity is associated with worse severity (P < 0.01). Neither enzyme activity correlates with viral load proxy or nasal ACE mRNA levels. ACE1 and ACE2 activities were the most effective severity biomarkers compared to 96 established immune markers obtained via proximity extension assay, as demonstrated by principal component analysis. A multivariate variable selection model using random forest classification identified biomarkers discriminating COVID-19 severity (AUC = 0.82), the strongest being HGF, EN-RAGE, cathepsin L. Adding ACE1 activity and anti-SARS-CoV-2 antibody titres improved differentiation between ambulatory and hospitalised participants. Notably, RAS dysregulation has unique severity associations in coronavirus infections with implications for treatment and pathophysiological mechanisms.
Collapse
Affiliation(s)
- Talitha Müller
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sonwabile Dzanibe
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Cascia Day
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Phelelani Thokozani Mpangase
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Tafadzwa Chimbetete
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sylva Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Edward Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa.
| |
Collapse
|
9
|
Santibanez JF. Myeloid-Derived Suppressor Cells: Implications in Cancer Immunology and Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:25203. [PMID: 40152373 DOI: 10.31083/fbl25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are believed to be key promoters of tumor development and are recognized as a hallmark of cancer cells' ability to evade the immune system evasion. MDSC levels often increase in peripheral blood and the tumor microenvironment (TME). These cells exert immunosuppressive functions, weakening the anticancer immune surveillance system, in part by repressing T-cell immunity. Moreover, MDSCs may promote tumor progression and interact with cancer cells, increasing MDSC expansion and favoring an immunotolerant TME. This review analyzes the primary roles of MDSCs in cancer and T-cell immunity, discusses the urgent need to develop effective MDSC-targeted therapies, and highlights the potential synergistic combination of MDSC targeting with chimeric antigen receptors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, 8370993 Santiago, Chile
| |
Collapse
|
10
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
11
|
Zhang Y, Li Z, Zhang J, Mafa T, Zhang J, Zhu H, Chen L, Zong Z, Yang L. Fibrinogen: A new player and target on the formation of pre-metastatic niche in tumor metastasis. Crit Rev Oncol Hematol 2025; 207:104625. [PMID: 39826884 DOI: 10.1016/j.critrevonc.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Tumor metastasis involves a series of complex and coordinated processes, which is the main cause of patient death and still a significant challenge in cancer treatment. Pre-metastatic niches (PMN), a specialized microenvironment that develops in distant organs prior to the arrival of metastatic cancer cells, plays a crucial role in driving tumor metastasis. The development of PMN depends on a complex series of cellular and molecular components including tumor-derived factors, bone marrow-derived cells, resident immune cells, and extracellular matrix. Fibrinogen, a key factor in the typical blood clotting process, is related to tumor metastasis and prognosis, according to a growing body of evidence in recent years. Fibrinogen has emerged as an important factor in mediating the formation of tumor microenvironment. Nevertheless, a clear and detailed mechanism by which fibrinogen promotes tumor metastasis remains unknown. In this review, we first explore the roles of fibrinogen in the development of PMN from four perspectives: immunosuppression, inflammation, angiogenesis, and extracellular matrix remodeling. We highlight the significance of fibrinogen in shaping PMN and discuss its potential therapeutic values, opening new avenues for targeting fibrinogen to prevent or treat metastasis.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Zelin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Jiamao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College, Nanchang University, No. 1299 Xuefu Ave, Nanchang, Jiangxi 330031, China
| | - Tatenda Mafa
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Jingyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Hui Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Lifang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang, Jiangxi 330006, China
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Rd, Nanchang, Jiangxi 330006, China; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
12
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
13
|
Yu X, Zhong M, Wang C, Shi Y, Xing C, Yu K, Lin Y, Ou R, Yang J, Zhu L. Effect of peripheral blood absolute monocyte count at admission on relapse-free survival in patients with idiopathic thrombotic thrombocytopenic purpura in remission. Front Med (Lausanne) 2024; 11:1463086. [PMID: 39736971 PMCID: PMC11683109 DOI: 10.3389/fmed.2024.1463086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Peripheral monocytes have been reported to correlate with clinical outcomes in various types of malignancies. Previous reports have also shown that acute-phase thrombotic thrombocytopenic purpura (TTP) plasma could induce the activation of monocytes. However, the significance of peripheral blood absolute monocyte count (AMC) in idiopathic TTP remains an unanswered question. The primary aim of this retrospective study was to evaluate the prognostic value of AMC at admission in idiopathic TTP patients in remission. Methods A total of 37 patients with idiopathic TTP who survived their first episode of the disease and achieved remission following treatment were eligible for inclusion in the study. SPSS and Stata were used to analysis. Results There were 1 patient (2.7%) with low AMC (< 0.12 × 109/L), 27 patients (73.0%) with normal AMC (0.12-0.80 × 109/L), and 9 patients (24.3%) with high AMC (> 0.80 × 109/L) at admission. Ten (27.0%) of 37 patients in our cohort subsequently relapsed (1 in the low AMC group and 9 in the normal AMC group). Survival analysis showed that there was a trend of higher relapse-free survival (RFS) rate in patients having increased A MC (log-rank test, p = 0.026). Univariate analysis revealed that increased AMC at admission was significantly associated with higher RFS (hazard ratio = 0.12, 95% confidence interval: 0.02-0.62, p = 0.011). Discussion Our results suggest that increased AMC at admission could represent a predictor of higher RFS in TTP patients having survived their first episode of the disease and achieved remission following treatment.
Collapse
Affiliation(s)
- Xiaomin Yu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingzhu Zhong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongyun Xing
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Lin
- Department of Hematology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjun Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqing Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
15
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
16
|
Pednekar K, Minnee J, de Vries IJM, Prakash J. Targeted nanomedicine for reprogramming the tumor innate immune system: From bench to bedside. Eur J Pharm Biopharm 2024; 204:114510. [PMID: 39307440 DOI: 10.1016/j.ejpb.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Tumor-associated innate immune cells such as tumor-associated macrophages, neutrophils, dendritic cells play a crucial role in tumor progression, angiogenesis and metastasis. These cells also control the efficacy of chemotherapy and immunotherapy by inducing drug resistance and immunosuppression, leading to therapeutic failures. Therefore, targeting the tumor-associated innate immune cells has gained high attention for the development of effective cancer therapy. Nanomedicine based strategies to target these cells are highly relevant and can be used to reprogram these cells. In this review, we discuss the fundamental roles of the tumor-associated innate immune cells in the tumor microenvironment and different strategies to modulate them. Then, nanomedicine-based strategies to target different tumor innate immune cells are explained in detail. While the clinical development of the targeted nanomedicine remains a great challenge in practice, we have provided our perspectives on various factors such as pharmaceutical aspects, preclinical testing and biological aspects which are crucial to consider before translating these targeting strategies to clinics.
Collapse
Affiliation(s)
- Kunal Pednekar
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Julia Minnee
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
17
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
18
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
19
|
Poyia F, Neophytou CM, Christodoulou MI, Papageorgis P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int J Mol Sci 2024; 25:9555. [PMID: 39273502 PMCID: PMC11395109 DOI: 10.3390/ijms25179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer comprises different subtypes, where most cases include ductal adenocarcinoma (PDAC). It is one of the deadliest tumor types, with a poor prognosis. In the majority of patients, the disease has already spread by the time of diagnosis, making full recovery unlikely and increasing mortality risk. Despite developments in its detection and management, including chemotherapy, radiotherapy, and targeted therapies as well as advances in immunotherapy, only in about 13% of PDAC patients does the overall survival exceed 5 years. This may be attributed, at least in part, to the highly desmoplastic tumor microenvironment (TME) that acts as a barrier limiting perfusion, drug delivery, and immune cell infiltration and contributes to the establishment of immunologically 'cold' conditions. Therefore, there is an urgent need to unravel the complexity of the TME that promotes PDAC progression and decipher the mechanisms of pancreatic tumors' resistance to immunotherapy. In this review, we provide an overview of the major cellular and non-cellular components of PDAC TME, as well as their biological interplays. We also discuss the current state of PDAC therapeutic treatments and focus on ongoing and future immunotherapy efforts and multimodal treatments aiming at remodeling the TME to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Fotini Poyia
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Christiana M Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
20
|
Kumar D, Da Silva VC, Chaves NL. Myeloid‑derived suppressor cells as targets of emerging therapies and nanotherapies (Review). MEDICINE INTERNATIONAL 2024; 4:46. [PMID: 38983795 PMCID: PMC11228699 DOI: 10.3892/mi.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Victor Carlos Da Silva
- Microscopy and Microanalysis Laboratory, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Natalia Lemos Chaves
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| |
Collapse
|
21
|
Persaud NV, Park JA, Cheung NKV. High-Risk Neuroblastoma Challenges and Opportunities for Antibody-Based Cellular Immunotherapy. J Clin Med 2024; 13:4765. [PMID: 39200906 PMCID: PMC11355836 DOI: 10.3390/jcm13164765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/02/2024] Open
Abstract
Immunotherapy has emerged as an attractive option for patients with relapsed or refractory high-risk neuroblastoma (HRNB). Neuroblastoma (NB), a sympathetic nervous system cancer arising from an embryonic neural crest cell, is heterogeneous clinically, with outcomes ranging from an isolated abdominal mass that spontaneously regresses to a widely metastatic disease with cure rates of about 50% despite intensive multimodal treatment. Risk group stratification and stage-adapted therapy to achieve cure with minimal toxicities have accomplished major milestones. Targeted immunotherapeutic approaches including monoclonal antibodies, vaccines, adoptive cellular therapies, their combinations, and their integration into standard of care are attractive therapeutic options, although curative challenges and toxicity concerns remain. In this review, we provide an overview of immune approaches to NB and the tumor microenvironment (TME) within the clinical translational framework. We propose a novel T cell-based therapeutic approach that leverages the unique properties of tumor surface antigens such as ganglioside GD2, incorporating specific monoclonal antibodies and recent advancements in adoptive cell therapy.
Collapse
Affiliation(s)
- Natasha V. Persaud
- Department of Pediatrics Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Jeong A. Park
- Pediatrics Inha University Hospital, Icheon 22332, Republic of Korea;
| | - Nai Kong V. Cheung
- Department of Pediatrics Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
22
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
24
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
26
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Singh D, Siddique HR. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev 2024; 43:155-173. [PMID: 37775641 DOI: 10.1007/s10555-023-10141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
28
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
29
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
30
|
Hou C, Wang Z, Lu X. Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors. CANCER PATHOGENESIS AND THERAPY 2024; 2:24-30. [PMID: 38328711 PMCID: PMC10846300 DOI: 10.1016/j.cpt.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 02/09/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are employed in immunotherapeutic applications for patients with weakened immune systems and can improve the ability of T cells to kill cancer cells. Although ICIs can potentially treat different types of cancers in various groups of patients, their effectiveness may differ among older individuals. The reason ICIs are less effective in older adults is not yet clearly understood, but age-related changes in the immune system, such as immunosenescence and inflammation, may play a role. Therefore, this review focuses on recent advances in understanding the effects of immunosenescence and inflammation on the efficacy of ICIs.
Collapse
Affiliation(s)
- Chuandong Hou
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zining Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
31
|
Shao F, Pan J, Xie Y, Ding J, Sun X, Xia L, Zhu D, Wang S, Qi C. Sulforaphane Attenuates AOM/DSS-Induced Colorectal Tumorigenesis in Mice via Inhibition of Intestinal Inflammation. Nutr Cancer 2023; 76:137-148. [PMID: 37897077 DOI: 10.1080/01635581.2023.2274622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants. It has received considerable attention in recent years due to its effectiveness in cancer prevention and anti-inflammatory properties. The purpose of this study was to evaluate the antitumor potential of sulforaphane on colitis-associated carcinogenesis (CAC) through the establishment of a mouse model with AOM/DSS. First, AOM/DSS and DSS-induced model were established and administered SFN for 10 wk, and then the severity of colitis-associated colon cancer was examined macroscopically and histologically. Subsequently, immune cells and cytokines in the tumor microenvironment (TME) were quantified. Finally, the influence of sulforaphane was also investigated using different colon cell lines. We found that sulforaphane treatment decreased tumor volume, myeloid-derived suppressor cells (MDSC) expansion, the expression of the proinflammatory cytokine IL-1β, and the level of IL-10 in serum. Also, it enhanced the antitumor activities of CD8+ T cells and significantly reduced tumorigenesis as induced by AOM/DSS. SFN also attenuated intestinal inflammation in DSS-induced chronic colitis by reshaping the inflammatory microenvironment. This work demonstrates that sulforaphane suppresses carcinogenesis-associated intestinal inflammation and prevents AOM/DSS-induced intestinal tumorigenesis and progression.
Collapse
Affiliation(s)
- Fang Shao
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jie Pan
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Yewen Xie
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Jun Ding
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Xiao Sun
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Lei Xia
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Dawei Zhu
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Shizhong Wang
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| | - Chunjian Qi
- Medical Research Center, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, P. R. China
| |
Collapse
|
32
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
33
|
Coronel MM, Linderman SW, Martin KE, Hunckler MD, Medina JD, Barber G, Riley K, Yolcu ES, Shirwan H, García AJ. Delayed graft rejection in autoimmune islet transplantation via biomaterial immunotherapy. Am J Transplant 2023; 23:1709-1722. [PMID: 37543091 PMCID: PMC10837311 DOI: 10.1016/j.ajt.2023.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The induction of operational immune tolerance is a major goal in beta-cell replacement strategies for the treatment of type 1 diabetes. Our group previously reported long-term efficacy via biomaterial-mediated programmed death ligand 1 (PD-L1) immunotherapy in islet allografts in nonautoimmune models. In this study, we evaluated autoimmune recurrence and allograft rejection during islet transplantation in spontaneous nonobese diabetic (NOD) mice. Graft survival and metabolic function were significantly prolonged over 60 days in recipients of syngeneic islets receiving the biomaterial-delivered immunotherapy, but not in control animals. The biomaterial-mediated PD-L1 immunotherapy resulted in delayed allograft rejection in diabetic NOD mice compared with controls. Discrimination between responders and nonresponders was attributed to the enriched presence of CD206+ program death 1+ macrophages and exhausted signatures in the cytotoxic T cell compartment in the local graft microenvironment. Notably, draining lymph nodes had similar remodeling in innate and adaptive immune cell populations. This work establishes that our biomaterial platform for PD-L1 delivery can modulate immune responses to transplanted islets in diabetic NOD mice and, thus, can provide a platform for the development of immunologic strategies to curb the allo- and autoimmune processes in beta-cell transplant recipients.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen W Linderman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Juan D Medina
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham Barber
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kayle Riley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
34
|
Huan T, Guan B, Li H, Tu X, Zhang C, Tang B. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccin Immunother 2023; 19:2256904. [PMID: 37772505 PMCID: PMC10543353 DOI: 10.1080/21645515.2023.2256904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Monoclonal antibody-based targeted therapies have greatly improved treatment options for patients by binding to the innate immune system. However, the long-term efficacy of such antibodies is limited by mechanisms of drug resistance. Over the last 50 years, with advances in protein engineering technology, more and more bispecific antibody (bsAb) platforms have been engineered to meet diverse clinical needs. Bispecific NK cell engagers (BiKEs) or tri-specific NK cell engagers (TriKEs) allow for direct targeting of immune cells to tumors, and therefore resistance and serious adverse effects are greatly reduced. Many preclinical and clinical trials are currently underway, depicting the promise of antibody-based natural killer cell engager therapeutics. In this review, we compile worldwide efforts to explore the involvement of NK cells in bispecific antibodies. With a particular emphasis on lessons learned, we focus on preclinical and clinical studies in malignancies and discuss the reasons for the limited success of NK-cell engagers against solid tumors, offering plausible new ideas for curing some advanced cancers shortly.
Collapse
Affiliation(s)
- Tian Huan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bugao Guan
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Hongbo Li
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Xiu Tu
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Chi Zhang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of General Surgery, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- Department of Central Laboratory, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
35
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
36
|
Okła K. Myeloid-Derived Suppressor Cells (MDSCs) in Ovarian Cancer-Looking Back and Forward. Cells 2023; 12:1912. [PMID: 37508575 PMCID: PMC10377883 DOI: 10.3390/cells12141912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a significant role in the immune system and have been extensively studied in cancer. MDSCs are a heterogeneous population of myeloid cells that accumulate in the tumor microenvironment. Consequently, the high abundance of these cells often leads to immunosuppression, tumor growth, treatment failure, and poor prognosis. Ovarian cancer ranks fifth in cancer deaths among women, accounting for more deaths than any other cancer of the female genital tract. Currently, there is a lack of effective clinical strategies for the treatment of ovarian cancer. Although several studies underline the negative role of human MDSCs in ovarian cancer, this topic is still understudied. The works on MDSCs are summarized here, along with an explanation of why focusing on these cells would be a promising approach for treating ovarian cancer patients.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
38
|
Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 2023; 133:e170762. [PMID: 37395271 DOI: 10.1172/jci170762] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.
Collapse
Affiliation(s)
- Feyza Gul Ozbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
39
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Berckmans Y, Hoffert Y, Vankerckhoven A, Dreesen E, Coosemans A. Drug Repurposing for Targeting Myeloid-Derived Suppressor-Cell-Generated Immunosuppression in Ovarian Cancer: A Literature Review of Potential Candidates. Pharmaceutics 2023; 15:1792. [PMID: 37513979 PMCID: PMC10385967 DOI: 10.3390/pharmaceutics15071792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The lethality of patients with ovarian cancer (OC) remains high. Current treatment strategies often do not lead to the desired outcome due to the development of therapy resistance, resulting in high relapse rates. Additionally, clinical trials testing immunotherapy against OC have failed to reach significant results to date. The OC tumor microenvironment and specifically myeloid-derived suppressor cells (MDSC) are known to generate immunosuppression and inhibit the anti-tumor immune response following immunotherapy treatment. Our review aims to characterize potential candidate treatments to target MDSC in OC through drug-repurposing. A literature search identified repurposable compounds with evidence of their suppressing the effect of MDSC. A total of seventeen compounds were withheld, of which four were considered the most promising. Lurbinectedin, metformin, celecoxib, and 5-azacytidine have reported preclinical effects on MDSC and clinical evidence in OC. They have all been approved for a different indication, characterizing them as the most promising candidates for repurposing to treat patients with OC.
Collapse
Affiliation(s)
- Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Yannick Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Pankowska KA, Będkowska GE, Chociej-Stypułkowska J, Rusak M, Dąbrowska M, Osada J. Crosstalk of Immune Cells and Platelets in an Ovarian Cancer Microenvironment and Their Prognostic Significance. Int J Mol Sci 2023; 24:ijms24119279. [PMID: 37298230 DOI: 10.3390/ijms24119279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological cancers, largely due to the fast development of metastasis and drug resistance. The immune system is a critical component of the OC tumor microenvironment (TME) and immune cells such as T cells, NK cells, and dendritic cells (DC) play a key role in anti-tumor immunity. However, OC tumor cells are well known for evading immune surveillance by modulating the immune response through various mechanisms. Recruiting immune-suppressive cells such as regulatory T cells (Treg cells), macrophages, or myeloid-derived suppressor cells (MDSC) inhibit the anti-tumor immune response and promote the development and progression of OC. Platelets are also involved in immune evasion by interaction with tumor cells or through the secretion of a variety of growth factors and cytokines to promote tumor growth and angiogenesis. In this review, we discuss the role and contribution of immune cells and platelets in TME. Furthermore, we discuss their potential prognostic significance to help in the early detection of OC and to predict disease outcome.
Collapse
Affiliation(s)
- Katarzyna Aneta Pankowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Grażyna Ewa Będkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Chociej-Stypułkowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Małgorzata Rusak
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Milena Dąbrowska
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| | - Joanna Osada
- Department of Haematological Diagnostics, Medical University of Bialystok, Waszyngtona 15A Street, 15-269 Bialystok, Poland
| |
Collapse
|
42
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
43
|
Rühle J, Ginzel M, Dietz S, Schwarz J, Lajqi T, Beer-Hammer S, Poets CF, Gille C, Köstlin-Gille N. Depletion of Ly6G-Expressing Neutrophilic Cells Leads to Altered Peripheral T-Cell Homeostasis and Thymic Development in Neonatal Mice. Int J Mol Sci 2023; 24:7763. [PMID: 37175470 PMCID: PMC10178674 DOI: 10.3390/ijms24097763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Newborns and especially preterm infants are much more susceptible to infections than adults. Due to immature adaptive immunity, especially innate immune cells play an important role in a newborn's infection defense. Neonatal neutrophils exhibit profound differences in their functionality compared to neutrophils of adults. In particular, neonates possess a relevant population of suppressive neutrophils, which not only inhibit but also specifically modulate the function of T-cells. In this study, we investigated whether neonatal neutrophils are already involved in T-cell development in the thymus. For this purpose, we used a newly developed model of antibody-mediated immune cell depletion in which we administered a depleting antibody to pregnant and then lactating dams. Using this method, we were able to sufficiently deplete Ly6G-positive neutrophils in offspring. We demonstrated that the depletion of neutrophils in newborn mice resulted in altered peripheral T-cell homeostasis with a decreased CD4+/CD8+ T-cell ratio and decreased expression of CD62L. Neutrophil depletion even affected T-cell development in the thymus, with increased double positive thymocytes and a decreased CD4+/CD8+ single positive thymocyte ratio. Altogether, we demonstrated a previously unknown mechanism mediating neutrophils' immunomodulatory effects in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, A-5020 Salzburg, Austria;
| | - Stefanie Dietz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Julian Schwarz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic and ICePhA, University of Tübingen, D-72074 Tübingen, Germany;
| | - Christian F. Poets
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| |
Collapse
|
44
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
45
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
46
|
Mui CW, Chan WN, Chen B, Cheung AHK, Yu J, Lo KW, Ke H, Kang W, To KF. Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: From molecular mechanisms to precision medicine. Int J Cancer 2023; 152:558-571. [PMID: 35983734 DOI: 10.1002/ijc.34249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/β-catenin, receptor tyrosine kinase cascade, Notch and TGF-β to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.
Collapse
Affiliation(s)
- Chun Wai Mui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
47
|
The Receptor for Advanced Glycation Endproducts (RAGE) and Its Ligands S100A8/A9 and High Mobility Group Box Protein 1 (HMGB1) Are Key Regulators of Myeloid-Derived Suppressor Cells. Cancers (Basel) 2023; 15:cancers15041026. [PMID: 36831371 PMCID: PMC9954573 DOI: 10.3390/cancers15041026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapies including checkpoint blockade immunotherapy (CBI) and chimeric antigen receptor T cells (CAR-T) have revolutionized cancer treatment for patients with certain cancers. However, these treatments are not effective for all cancers, and even for those cancers that do respond, not all patients benefit. Most cancer patients have elevated levels of myeloid-derived suppressor cells (MDSCs) that are potent inhibitors of antitumor immunity, and clinical and animal studies have demonstrated that neutralization of MDSCs may restore immune reactivity and enhance CBI and CAR-T immunotherapies. MDSCs are homeostatically regulated in that elimination of mature circulating and intratumoral MDSCs results in increased production of MDSCs from bone marrow progenitor cells. Therefore, targeting MDSC development may provide therapeutic benefit. The pro-inflammatory molecules S100A8/A9 and high mobility group box protein 1 (HMGB1) and their receptor RAGE are strongly associated with the initiation and progression of most cancers. This article summarizes the literature demonstrating that these molecules are integrally involved in the early development, accumulation, and suppressive activity of MDSCs, and postulates that S100A8/A9 and HMGB1 serve as early biomarkers of disease and in conjunction with RAGE are potential targets for reducing MDSC levels and enhancing CBI and CAR-T immunotherapies.
Collapse
|
48
|
Liu Y, Han Y, Zhang Y, Lv T, Peng X, Huang J. LncRNAs has been identified as regulators of Myeloid-derived suppressor cells in lung cancer. Front Immunol 2023; 14:1067520. [PMID: 36817434 PMCID: PMC9932034 DOI: 10.3389/fimmu.2023.1067520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lung tumours are widespread pathological conditions that attract much attention due to their high incidence of death. The immune system contributes to the progression of these diseases, especially non-small cell lung cancer, resulting in the fast evolution of immune-targeted therapy. Myeloid-derived suppressor cells (MDSCs) have been suggested to promote the progression of cancer in the lungs by suppressing the immune response through various mechanisms. Herein, we summarized the clinical studies on lung cancer related to MDSCs. However, it is noteworthy to mention the discovery of long non-coding RNAs (lncRNAs) that had different phenotypes and could regulate MDSCs in lung cancer. Therefore, by reviewing the different phenotypes of lncRNAs and their regulation on MDSCs, we summarized the lncRNAs' impact on the progression of lung tumours. Data highlight LncRNAs as anti-cancer agents. Hence, we aim to discuss their possibilities to inhibit tumour growth and trigger the development of immunosuppressive factors such as MDSCs in lung cancer through the regulation of lncRNAs. The ultimate purpose is to propose novel and efficient therapy methods for curing patients with lung tumours.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Zhang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
49
|
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, Yang X, Shang Y, Xu J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev 2023; 69:90-103. [PMID: 35927154 DOI: 10.1016/j.cytogfr.2022.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
50
|
Friedmann-Morvinski D, Hambardzumyan D. Monocyte-neutrophil entanglement in glioblastoma. J Clin Invest 2023; 133:163451. [PMID: 36594465 PMCID: PMC9797336 DOI: 10.1172/jci163451] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma (GBM) is the most belligerent and frequent brain tumor in adults. Research over the past two decades has provided increased knowledge of the genomic and molecular landscape of GBM and highlighted the presence of a high degree of inter- and intratumor heterogeneity within the neoplastic compartment. It is now appreciated that GBMs are composed of multiple distinct and impressionable neoplastic and non-neoplastic cell types that form the unique brain tumor microenvironment (TME). Non-neoplastic cells in the TME form reciprocal interactions with neoplastic cells to promote tumor growth and invasion, and together they influence the tumor response to standard-of-care therapies as well as emerging immunotherapies. One of the most prevalent non-neoplastic cell types in the GBM TME are myeloid cells, the most abundant of which are of hematopoietic origin, including monocytes/monocyte-derived macrophages. Less abundant, although still a notable presence, are neutrophils of hematopoietic origin and intrinsic brain-resident microglia. In this Review we focus on neutrophils and monocytes that infiltrate tumors from the blood circulation, their heterogeneity, and their interactions with neoplastic cells and other non-neoplastic cells in the TME. We conclude with an overview of challenges in targeting these cells and discuss avenues for therapeutic exploitation to improve the dismal outcomes of patients with GBM.
Collapse
Affiliation(s)
- Dinorah Friedmann-Morvinski
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, Tisch Cancer Institute, and,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|