1
|
Picchietti S, Pianese V, Fausto AM, Scapigliati G. The Mediterranean sea bass Dicentrarchus labrax: A marine model species in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110288. [PMID: 40120781 DOI: 10.1016/j.fsi.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The Mediterranean sea bass, Dicentrarchus labrax, is a species of great interest due to the extensive knowledge accumulated about its immune system and the application of these findings in aquaculture health management. The available data indicate that sea bass has the morphological and immunological features typical of jawed vertebrates, with minor anatomical differences compared to evolutionarily older teleosts. Namely, all the master genes coding for Tc and Th T cells have been found to be expressed, together with related cytokine families, and Tc/Th activities can be investigated using in vitro models. The B lymphocytes produce IgM/IgT/IgD antibodies in response to antigenic/vaccine stimulation and maintain an IgM-B cell memory for antigens and vaccines. Mucosal and systemic immunity with associated leukocyte populations is present and functional, and it can be modulated by substances added to water or food. Studies on the ontogenesis of immune components defined precise points of lymphocyte development during larval life. Finally, the central nervous system of sea bass has been shown to contain resident lymphocytes, whose number can be modulated by pathogenic infection. Based on the available knowledge summarized in this review, it can be certainly assumed that the Dicentrarchus labrax is a valuable marine model species for studies in immunology and physiology of vertebrates.
Collapse
Affiliation(s)
- S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| |
Collapse
|
2
|
Hill TM, Dooley H. The unexpected role of nurse shark pancreas as a secondary lymphoid organ. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf091. [PMID: 40373270 DOI: 10.1093/jimmun/vkaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/04/2025] [Indexed: 05/17/2025]
Abstract
Secondary lymphoid organs (SLOs) provide a structured environment to facilitate interactions between low frequency antigen-specific B and T cells as well as cognate antigen displayed by antigen presenting cells (APCs), resulting in the initiation of effective adaptive immune responses. The spleen is the most evolutionary ancient SLO, emerging concurrently with adaptive immunity in an early jawed vertebrate ancestor. In mammals, the immunoprotective role of the spleen is complemented by that of other SLOs, notably a network of draining lymph nodes and gut-associated lymphoid tissue (GALT) to screen for infections throughout the host. However, lymph nodes are only present in endothermic vertebrates (ie, mammals and possibly some birds), so it is unclear how the majority of jawed vertebrate species maintain robust immune surveillance of their entire body to produce timely and efficacious antibody responses. While investigating adaptive immune responses in the nurse shark, a cartilaginous fish (Chondrichthyes) which last shared a common ancestor with other vertebrates ∼450 million yr ago, we discovered that the pancreas contains B cell follicles which are spatially distinct from the exocrine and endocrine pancreas. Furthermore, these "pancreatic B cell follicles" exhibit many of the hallmarks of B cell selection previously identified in the nurse shark spleen. Our results also demonstrate that antigen-specific antibodies are produced within the pancreas following immunization. Our study supports the designation of shark pancreas as a SLO and provides insight into how adaptive immune surveillance may function in the absence of lymph nodes.
Collapse
Affiliation(s)
- Thomas M Hill
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Helen Dooley
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Gargano C, Mauro M, Martino C, Queiroz V, Vizzini A, Luparello C, Badalamenti R, Bellistrì F, Cuttitta A, Kondo H, Longo F, Arizza V, Vazzana M. Shark immune system: A review about their immunoglobulin repertoire. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110187. [PMID: 39947340 DOI: 10.1016/j.fsi.2025.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
In the past few decades, the literature about the immune system of vertebrates has increased thanks to the research about new therapies and new biomolecules able to treat or eradicate many human autoimmune diseases. Researchers found that immunoglobulins (Igs) are the most versatile biomolecules able to recognize almost every existing epitope with their binding domains. Phylogenetically, the most recent vertebrates exhibit the greatest sequence diversification in their Igs to extend their ability to distinguish different antigens. Among cartilaginous fishes, the most ancient vertebrates on phylogenetic history, sharks possess four types of Igs with similar pathways to extend sequence diversity and binding domains variability. Their Ig new antigen receptor (IgNAR) represents one of the most versatile and small Ig type upon all other species. The shark species are fundamental sources of new therapeutic receptors lending a further step to treatments against several human diseases. The aim of this review is to analyze sharks Igs, focusing on IgNARs for each species.
Collapse
Affiliation(s)
- C Gargano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - M Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| | - C Martino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - V Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sala 300, Rua do Matão, Travessa 14, n° 101, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - A Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - C Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Bellistrì
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - A Cuttitta
- National Research Council (CNR-ISMed), Institute for Studies on the Mediterranean, Via Filippo Parlatore, 65, 90145, Palermo, Italy
| | - H Kondo
- Laboratory of Genome Science, Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - F Longo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - V Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
4
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 PMCID: PMC12010099 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhao X, Shao S, Hu L. The recent advancement of TCR-T cell therapies for cancer treatment. Acta Biochim Biophys Sin (Shanghai) 2024; 56:663-674. [PMID: 38557898 PMCID: PMC11187488 DOI: 10.3724/abbs.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Adoptive cell therapies involve infusing engineered immune cells into cancer patients to recognize and eliminate tumor cells. Adoptive cell therapy, as a form of living drug, has undergone explosive growth over the past decade. The recognition of tumor antigens by the T-cell receptor (TCR) is one of the natural mechanisms that the immune system used to eliminate tumor cells. TCR-T cell therapy, which involves introducing exogenous TCRs into patients' T cells, is a novel cell therapy strategy. TCR-T cell therapy can target the entire proteome of cancer cells. Engineering T cells with exogenous TCRs to help patients combat cancer has achieved success in clinical trials, particularly in treating solid tumors. In this review, we examine the progress of TCR-T cell therapy over the past five years. This includes the discovery of new tumor antigens, protein engineering techniques for TCR, reprogramming strategies for TCR-T cell therapy, clinical studies on TCR-T cell therapy, and the advancement of TCR-T cell therapy in China. We also propose several potential directions for the future development of TCR-T cell therapy.
Collapse
Affiliation(s)
- Xiang Zhao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Shuai Shao
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Lanxin Hu
- />Key Laboratory of Multi-Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
6
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
7
|
Zapata AG. The fish spleen. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109280. [PMID: 38086514 DOI: 10.1016/j.fsi.2023.109280] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
In the present study, we review the structure and function of fish spleen with special emphasis on its condition in Elasmobranchs, Teleosts and Lungfish. Apart from the amount of splenic lymphoid tissue, the histological organization of the organ ensures the existence of areas involved in antigen trapping, the ellipsoids, and exhibit numerous melano-macrophages which appear isolated or forming the so-called melano-macrophage centres. An extensive discussion on the functional significance of these centres conclude that they are mere accumulations of macrophages consequence of tissue homeostasis rather than primitive germinal centres, as proposed by some authors.
Collapse
Affiliation(s)
- Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Takizawa F, Hashimoto K, Miyazawa R, Ohta Y, Veríssimo A, Flajnik MF, Parra D, Tokunaga K, Suetake H, Sunyer JO, Dijkstra JM. CD4 and LAG-3 from sharks to humans: related molecules with motifs for opposing functions. Front Immunol 2023; 14:1267743. [PMID: 38187381 PMCID: PMC10768021 DOI: 10.3389/fimmu.2023.1267743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.
Collapse
Affiliation(s)
- Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Keiichiro Hashimoto
- Emeritus Professor, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryuichiro Miyazawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | | | | | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
9
|
Liang C, Sun L, Zhu Y, Zhao A, Liu H, He K. Macroevolution of avian T cell receptor C segments using genomic data. Immunogenetics 2023; 75:531-541. [PMID: 37804321 DOI: 10.1007/s00251-023-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
All jawed vertebrates have four T cell receptor (TCR) chains expressed by thymus-derived lymphocytes that play a significant role in animal immune defense. However, avian TCR studies have been limited to a few species, although their co-functional major histocompatibility complexes (MHCs) have been studied for decades, showing various copy numbers and polymorphisms. Here, using public genome data, we characterized the copy numbers, the phylogenic relationship and selection of T cell receptor complex (TCR-C) segments, and the genomic organization of TCR loci across birds. Various numbers of C segments were found in the TCRα/TCRδ, TCRβ, and TCRγ loci, and phylogenetic analysis reflected both ancient gene duplication events (two Cβ segments and Cδ segments divergent into CδI and CδII) and contemporary evolution (lineage-specific and species-specific characteristics). Most passerines lack CδII segments and a second TRD locus, except Meliphagidae and Maluridae. A relatively stable structure was verified in four TCR loci of birds, except for the arrangement of V segment groups. In this study, we explored the phylogenetic relationships of TCR-C segments across avians for the first time. We inferred gene duplication and loss events during the evolution process. The finding of diverse TCR germline repertoires provides a better understanding of the immune systems of birds.
Collapse
Affiliation(s)
- Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Lin Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Morrissey KA, Stammnitz MR, Murchison E, Miller RD. Comparative genomics of the T cell receptor μ locus in marsupials and monotremes. Immunogenetics 2023; 75:507-515. [PMID: 37747540 PMCID: PMC7615758 DOI: 10.1007/s00251-023-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
T cells are a primary component of the vertebrate adaptive immune system. There are three mammalian T cell lineages based on their T cell receptors (TCR). The αβ T cells and γδ T cells are ancient and found broadly in vertebrates. The more recently discovered γμ T cells are uniquely mammalian and only found in marsupials and monotremes. In this study, we compare the TCRμ locus (TRM) across the genomes of two marsupials, the gray short-tailed opossum and Tasmanian devil, and one monotreme, the platypus. These analyses revealed lineage-specific duplications, common to all non-eutherian mammals described. There is conserved synteny in the TRM loci of both marsupials but not in the monotreme. Our results are consistent with an ancestral cluster organization which was present in the last common mammalian ancestor which underwent lineage-specific duplications and divergence among the non-eutherian mammals.
Collapse
Affiliation(s)
- K A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - M R Stammnitz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - E Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
12
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
13
|
Jia Z, Feng J, Dooley H, Zou J, Wang J. The first crystal structure of CD8αα from a cartilaginous fish. Front Immunol 2023; 14:1156219. [PMID: 37122697 PMCID: PMC10140343 DOI: 10.3389/fimmu.2023.1156219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Cartilaginous fishes are the most evolutionary-distant vertebrates from mammals and possess an immunoglobulin (Ig)- and T cell-mediated adaptive immunity. CD8 is the hallmark receptor of cytotoxic T cells and is required for the formation of T cell receptor-major histocompatibility complex (TCR-MHC) class I complexes. Methods RACE PCR was used to obtain gene sequences. Direct dilution was applied for the refolding of denatured recombinant CD8 protein. Hanging-drop vapor diffusion method was performed for protein crystallization. Results In this study, CD8α and CD8β orthologues (termed ScCD8α and ScCD8β) were identified in small-spotted catshark (Scyliorhinus canicula). Both ScCD8α and ScCD8β possess an extracellular immunoglobulin superfamily (IgSF) V domain as in previously identified CD8 proteins. The genes encoding CD8α and CD8β are tandemly linked in the genomes of all jawed vertebrates studied, suggesting that they were duplicated from a common ancestral gene before the divergence of cartilaginous fishes and other vertebrates. We determined the crystal structure of the ScCD8α ectodomain homodimer at a resolution of 1.35 Å and show that it exhibits the typical topological structure of CD8α from endotherms. As in mammals, the homodimer formation of ScCD8αα relies upon interactions within a hydrophobic core although this differs in position and amino acid composition. Importantly, ScCD8αα shares the canonical cavity required for interaction with peptide-loaded MHC I in mammals. Furthermore, it was found that ScCD8α can co-immunoprecipitate with ScCD8β, indicating that it can form both homodimeric and heterodimeric complexes. Conclusion Our results expand the current knowledge of vertebrate CD8 dimerization and the interaction between CD8α with p/MHC I from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Marine and Environmental Technology, Baltimore, MD, United States
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Junya Wang,
| |
Collapse
|
14
|
Garcia B, Dong F, Casadei E, Rességuier J, Ma J, Cain KD, Castrillo PA, Xu Z, Salinas I. A Novel Organized Nasopharynx-Associated Lymphoid Tissue in Teleosts That Expresses Molecular Markers Characteristic of Mammalian Germinal Centers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2215-2226. [PMID: 36426979 DOI: 10.4049/jimmunol.2200396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Nasal immunity is an ancient and conserved arm of the mucosal immune system in vertebrates. In teleost fish, we previously reported the presence of a nasopharynx-associated lymphoid tissue (NALT) characterized by scattered immune cells located in the trout olfactory lamellae. This diffuse NALT mounts innate and adaptive immune responses to nasal infection or vaccination. In mammals, lymphoid structures such as adenoids and tonsils support affinity maturation of the adaptive immune response in the nasopharyngeal cavity. These structures, known as organized NALT (O-NALT), have not been identified in teleost fish to date, but their evolutionary forerunners exist in sarcopterygian fish. In this study, we report that the rainbow trout nasal cavity is lined with a lymphoepithelium that extends from the most dorsal opening of the nares to the ventral nasal cavity. Within the nasal lymphoepithelium we found lymphocyte aggregates called O-NALT in this study that are composed of ∼ 56% CD4+, 24% IgM+, 16% CD8α+, and 4% IgT+ lymphocytes and that have high constitutive aicda mRNA expression. Intranasal (i.n.) vaccination with live attenuated infectious hematopoietic necrosis virus triggers expansions of B and T cells and aicda expression in response to primary i.n. vaccination. IgM+ B cells undergo proliferation and apoptosis within O-NALT upon prime but not boost i.n. vaccination. Our results suggest that novel mucosal microenvironments such as O-NALT may be involved in the affinity maturation of the adaptive immune response in early vertebrates.
Collapse
Affiliation(s)
- Benjamin Garcia
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Fen Dong
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Elisa Casadei
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| | - Julien Rességuier
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jie Ma
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; and
| | - Pedro A Castrillo
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM.,Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, China
| | - Irene Salinas
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
15
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
16
|
Chen W, Huang J, Wang W, Wang Y, Chen H, Wang Q, Zhang Y, Liu Q, Yang D. Multi-tissue scRNA-seq reveals immune cell landscape of turbot ( Scophthalmus maximus). FUNDAMENTAL RESEARCH 2022; 2:550-561. [PMID: 38933994 PMCID: PMC11197760 DOI: 10.1016/j.fmre.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
In vertebrates, bony fishes possess not only innate immune cells but also T and B cells that are equivalent to those in mammals. However, the precise sub-cluster of immune cells in teleost fish remains largely unknown. Herein, we developed a dynamic bacterial infection model in turbot (Scophthalmus maximus) and created a fish immune cell landscape (FICL) for a primary lymphoid organ (head kidney), a secondary lymphoid organ (spleen), and barrier tissues (gills and posterior intestine). Moreover, through comprehensive characterization of the expression profiles of 16 clusters, including dendritic cells-like (DCs-like), macrophages (MΦs), neutrophils, NK cells, as well as 12 sub-clusters of T and B cells, we found that CD8+ CTLs, CD4-CD8- T, Th17 and ILC3-2 like cells possess a bifunctional role associated with cytotoxicity and immunoregulation during bacterial infection. To our knowledge, these results could provide a useful resource for a better understanding of immune cells in teleost fish and could act as a comprehensive knowledge base for assessing the evolutionary mechanism of adaptive immunity in vertebrates.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
17
|
Morrissey KA, Sampson JM, Rivera M, Bu L, Hansen VL, Gemmell NJ, Gardner MG, Bertozzi T, Miller RD. Comparison of Reptilian Genomes Reveals Deletions Associated with the Natural Loss of γδ T Cells in Squamates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1960-1967. [PMID: 35346964 DOI: 10.4049/jimmunol.2101158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
Abstract
T lymphocytes or T cells are key components of the vertebrate response to pathogens and cancer. There are two T cell classes based on their TCRs, αβ T cells and γδ T cells, and each plays a critical role in immune responses. The squamate reptiles may be unique among the vertebrate lineages by lacking an entire class of T cells, the γδ T cells. In this study, we investigated the basis of the loss of the γδ T cells in squamates. The genome and transcriptome of a sleepy lizard, the skink Tiliqua rugosa, were compared with those of tuatara, Sphenodon punctatus, the last living member of the Rhynchocephalian reptiles. We demonstrate that the lack of TCRγ and TCRδ transcripts in the skink are due to large deletions in the T. rugosa genome. We also show that tuataras are on a growing list of species, including sharks, frogs, birds, alligators, and platypus, that can use an atypical TCRδ that appears to be a chimera of a TCR chain with an Ab-like Ag-binding domain. Tuatara represents the nearest living relative to squamates that retain γδ T cells. The loss of γδTCR in the skink is due to genomic deletions that appear to be conserved in other squamates. The genes encoding the αβTCR chains in the skink do not appear to have increased in complexity to compensate for the loss of γδ T cells.
Collapse
Affiliation(s)
- Kimberly A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Jordan M Sampson
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Megan Rivera
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Victoria L Hansen
- Department of Orthopedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia; and
| | - Terry Bertozzi
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia; and .,The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM;
| |
Collapse
|
18
|
Zhang T, Li Q, Li X, Kang L, Jiang Y, Sun Y. Characterization of the chicken T cell receptor γ repertoire by high-throughput sequencing. BMC Genomics 2021; 22:683. [PMID: 34548028 PMCID: PMC8456604 DOI: 10.1186/s12864-021-07975-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As one of "γδ-high" species, chicken is an excellent model for the study of γδ T cells in non-mammalian animals. However, a comprehensive characterization of the TCRγδ repertoire is still missing in chicken. The objective of this study was to characterize the expressed TCRγ repertoire in chicken thymus using high-throughput sequencing. METHODS In this study, we first obtained the detailed genomic organization of the TCRγ locus of chicken based on the latest assembly of the red jungle fowl genome sequences (GRCg6a) and then characterized the TCRγ repertoire in the thymus of four chickens by using 5' Rapid Amplification of cDNA Ends (5' RACE) along with high-throughput sequencing (HTS). RESULTS The chicken TCRγ locus contains a single Cγ gene, three functional Jγ segments and 44 Vγ segments that could be classified into six subgroups, each containing six, nineteen, nine, four, three and three members. Dot-plot analysis of the chicken TCRγ locus against itself showed that almost all the entire zone containing Vγ segments had arisen through tandem duplication events, and the main homology unit, containing 9 or 10 Vγ gene segments, has tandemly duplicated for four times. For the analysis of chicken TCRγ repertoire, more than 100,000 unique Vγ-region nucleotide sequences were obtained from the thymus of each chicken. After alignment to the germline Vγ and Jγ segments identified above, we found that the four chickens had similar repertoire profile of TCRγ. In brief, four Vγ segments (including Vγ3.7, Vγ2.13, Vγ1.6 and Vγ1.3) and six Vγ-Jγ pairs (including Vγ3.7-Jγ3, Vγ2.13-Jγ1, Vγ2.13-Jγ3, Vγ1.6-Jγ3, Vγ3.7-Jγ1 and Vγ1.6-Jγ1) were preferentially utilized by all four individuals, and vast majority of the unique CDR3γ sequences encoded 4 to 22 amino acids with mean 12.90 amino acids, which exhibits a wider length distribution and/or a longer mean length than CDR3γ of human, mice and other animal species. CONCLUSIONS In this study, we present the first in-depth characterization of the TCRγ repertoire in chicken thymus. We believe that these data will facilitate the studies of adaptive immunology in birds.
Collapse
Affiliation(s)
- Tongtong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Qian Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Xiaoqing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China.
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Shandong Province, 271018, Taian City, People's Republic of China.
| |
Collapse
|
19
|
Aghaallaei N, Dick AM, Tsingos E, Inoue D, Hasel E, Thumberger T, Toyoda A, Leptin M, Wittbrodt J, Bajoghli B. αβ/γδ T cell lineage outcome is regulated by intrathymic cell localization and environmental signals. SCIENCE ADVANCES 2021; 7:7/29/eabg3613. [PMID: 34261656 PMCID: PMC8279519 DOI: 10.1126/sciadv.abg3613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 05/07/2023]
Abstract
αβ and γδ T cells are two distinct sublineages that develop in the vertebrate thymus. Thus far, their differentiation from a common progenitor is mostly understood to be regulated by intrinsic mechanisms. However, the proportion of αβ/γδ T cells varies in different vertebrate taxa. How this process is regulated in species that tend to produce a high frequency of γδ T cells is unstudied. Using an in vivo teleost model, the medaka, we report that progenitors first enter a thymic niche where their development into γδ T cells is favored. Translocation from this niche, mediated by chemokine receptor Ccr9b, is a prerequisite for their differentiation into αβ T cells. On the other hand, the thymic niche also generates opposing gradients of the cytokine interleukin-7 and chemokine Ccl25a, and, together, they influence the lineage outcome. We propose a previously unknown mechanism that determines the proportion of αβ/γδ lineages within species.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Advaita M Dick
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Erika Tsingos
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Eva Hasel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Maria Leptin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
20
|
Kinlein A, Janes ME, Kincer J, Almeida T, Matz H, Sui J, Criscitiello MF, Flajnik MF, Ohta Y. Analysis of shark NCR3 family genes reveals primordial features of vertebrate NKp30. Immunogenetics 2021; 73:333-348. [PMID: 33742259 DOI: 10.1007/s00251-021-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa. The unique exception is NKp30, an activating NKR in mammals that binds to the self-ligand B7H6. The NKp30-encoding gene, NCR3, has been found in most vertebrates including sharks, the oldest vertebrates with human-type adaptive immunity. NCR3 has a special, non-rearranging VJ-type immunoglobulin superfamily (IgSF) domain that predates the emergence of the rearranging antigen receptors. Herein we show that NCR3 loci are linked to the shark major histocompatibility complex (MHC), proving NCR3's primordial association with the MHC. We identified eight subtypes of differentially expressed highly divergent shark NCR3 family genes. Using in situ hybridization, we detected one subtype, NS344823, to be expressed by predominantly single cells outside of splenic B cell zones. The expression by non-B cells was also confirmed by PCR in peripheral blood lymphocytes. Surprisingly, high expression of NS344823 was detected in the thymic cortex, demonstrating NS344823 expression in developing T cells. Finally, we show for the first time that shark T cells are found as single cells or in small clusters in the splenic red pulp, also unassociated with the large B cell follicles we previously identified.
Collapse
Affiliation(s)
- Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jacob Kincer
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Tereza Almeida
- Centro de Investigacão Em Biodiversidade E Recursos Genéticos, CIBIO-InBIO, Campus Agrário de Vairão, Universidade Do Porto, Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jianxin Sui
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Ott JA, Ohta Y, Flajnik MF, Criscitiello MF. Lost structural and functional inter-relationships between Ig and TCR loci in mammals revealed in sharks. Immunogenetics 2021; 73:17-33. [PMID: 33449123 PMCID: PMC7909615 DOI: 10.1007/s00251-020-01183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools. As the oldest-emerging vertebrates sharing the same adaptive B and T cell receptor systems as humans, extant cartilaginous fishes allow a potential view of the ancestral immune system. In this review, we discuss breakthroughs we have made in studies of nurse shark (Ginglymostoma cirratum) T cell receptors demonstrating substantial integration of loci and diversification mechanisms in primordial B and T cell repertoires. We survey these findings in this shark model where they were first described, while noting corroborating examples in other vertebrate groups. We also consider other examples where the gnathostome common ancestry of the B and T cell receptor systems have allowed dovetailing of genomic elements and AID-based diversification approaches for the TCR. The cartilaginous fish seem to have retained this T/B cell plasticity to a greater extent than more derived vertebrate groups, but representatives in all vertebrate taxa except bony fish and placental mammals show such plasticity.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Barraza F, Montero R, Wong-Benito V, Valenzuela H, Godoy-Guzmán C, Guzmán F, Köllner B, Wang T, Secombes CJ, Maisey K, Imarai M. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. BIOLOGY 2020; 10:biology10010008. [PMID: 33375568 PMCID: PMC7824517 DOI: 10.3390/biology10010008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The thymus is the immune organ producing T lymphocytes that are essential to create immunity after encountering pathogens or vaccination. This review summarizes the thymus localization and histological studies, cell composition, and function in teleost fishes. We also describe how seasonal changes, photoperiod, water temperature fluctuations, and hormones can affect thymus development in fish species. Overall, the information helps identify future studies needed to understand thymus function in fish species and the immune system’s evolutionary origins. Since fish are exposed to pathogens, especially under aquaculture conditions, knowledge about the fish thymus and T lymphocyte can also help improve fish farming protocols, considering intrinsic and environmental conditions that can contribute to achieving the best vaccine responsiveness for disease resistance. Abstract The thymus in vertebrates plays a critical role in producing functionally competent T-lymphocytes. Phylogenetically, the thymus emerges early during evolution in jawed cartilaginous fish, and it is usually a bilateral organ placed subcutaneously at the dorsal commissure of the operculum. In this review, we summarize the current understanding of the thymus localization, histology studies, cell composition, and function in teleost fishes. Furthermore, we consider environmental factors that affect thymus development, such as seasonal changes, photoperiod, water temperature fluctuations and hormones. Further analysis of the thymus cell distribution and function will help us understand how key stages for developing functional T cells occur in fish, and how thymus dynamics can be modulated by external factors like photoperiod. Overall, the information presented here helps identify the knowledge gaps and future steps needed for a better understanding of the immunobiology of fish thymus.
Collapse
Affiliation(s)
- Felipe Barraza
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Ruth Montero
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Valentina Wong-Benito
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Héctor Valenzuela
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Carlos Godoy-Guzmán
- Center for Biomedical and Applied Research (CIBAP), School of Medicine, Faculty of Medical Sciences, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Kevin Maisey
- Laboratory of Comparative Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Mónica Imarai
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
- Correspondence:
| |
Collapse
|
23
|
Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. FISH & SHELLFISH IMMUNOLOGY 2020; 107:435-443. [PMID: 33161090 DOI: 10.1016/j.fsi.2020.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 05/05/2023]
Abstract
Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory. Some lymphoid tissues of sharks, including the thymus and spleen, resemble those of mammals in both appearance and function. The cartilaginous skeleton of sharks has no bone marrow, which is also absent in bony fish despite calcified bone, but cartilaginous fish have other Leydig's and epigonal organs that function to provide hematopoiesis analogous to mammalian bone marrow. Conserved across all vertebrate phylogeny in some form is gut-associated lymphoid tissues, or GALT, which is seen from agnathans to mammals. Though it takes many forms, from typhlosole in lamprey to Peyer's patches in mammals, the GALT serves as a site of antigen concentration and exposure to lymphocytes in the digestive tract. Though more complex lymphoid organs are not present in agnathans, they have several primitive tissues, such as the thymoid and supraneural body, that appear to serve their variable lymphocyte receptor-based adaptive immune system. There are several similarities between the adaptive immune structures in cartilaginous and bony fish, such as the thymus and spleen, but there are mechanisms employed in bony fish that in some instances bridge their adaptive immune systems to that of tetrapods. This review summarizes what we know of lymphoid tissues in cartilaginous fishes and uses these data to compare primary and secondary tissues in jawless, cartilaginous, and bony fishes to contextualize the early natural history of vertebrate mucosal immune tissues.
Collapse
Affiliation(s)
- Christian D Mitchell
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, 77807, USA.
| |
Collapse
|
24
|
Ott JA, Harrison J, Flajnik MF, Criscitiello MF. Nurse shark T-cell receptors employ somatic hypermutation preferentially to alter alpha/delta variable segments associated with alpha constant region. Eur J Immunol 2020; 50:1307-1320. [PMID: 32346855 DOI: 10.1002/eji.201948495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
In addition to canonical TCR and BCR, cartilaginous fish assemble noncanonical TCR that employ various B-cell components. For example, shark T cells associate alpha (TCR-α) or delta (TCR-δ) constant (C) regions with Ig heavy chain (H) variable (V) segments or TCR-associated Ig-like V (TAILV) segments to form chimeric IgV-TCR, and combine TCRδC with both Ig-like and TCR-like V segments to form the doubly rearranging NAR-TCR. Activation-induced (cytidine) deaminase-catalyzed somatic hypermutation (SHM), typically used for B-cell affinity maturation, also is used by TCR-α during selection in the shark thymus presumably to salvage failing receptors. Here, we found that the use of SHM by nurse shark TCR varies depending on the particular V segment or C region used. First, SHM significantly alters alpha/delta V (TCRαδV) segments using TCR αC but not δC. Second, mutation to IgHV segments associated with TCR δC was reduced compared to mutation to TCR αδV associated with TCR αC. Mutation was present but limited in V segments of all other TCR chains including NAR-TCR. Unexpectedly, we found preferential rearrangement of the noncanonical IgHV-TCRδC over canonical TCR αδV-TCRδC receptors. The differential use of SHM may reveal how activation-induced (cytidine) deaminase targets V regions.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jenna Harrison
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Almeida T, Esteves PJ, Flajnik MF, Ohta Y, Veríssimo A. An Ancient, MHC-Linked, Nonclassical Class I Lineage in Cartilaginous Fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:892-902. [PMID: 31932500 PMCID: PMC7002201 DOI: 10.4049/jimmunol.1901025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Cartilaginous fishes, or chondrichthyans, are the oldest jawed vertebrates that have an adaptive immune system based on the MHC and Ig superfamily-based AgR. In this basal group of jawed vertebrates, we identified a third nonclassical MHC class I lineage (UDA), which is present in all species analyzed within the two major cartilaginous subclasses, Holocephali (chimaeras) and Elasmobranchii (sharks, skates, and rays). The deduced amino acid sequences of UDA have eight out of nine typically invariant residues that bind to the N and C termini of bound peptide found in most vertebrae classical class I (UAA); additionally, the other predicted 28 peptide-binding residues are perfectly conserved in all elasmobranch UDA sequences. UDA is distinct from UAA in its differential tissue distribution and its lower expression levels and is mono- or oligomorphic unlike the highly polymorphic UAA UDA has a low copy number in elasmobranchs but is multicopy in the holocephalan spotted ratfish (Hydrolagus colliei). Using a nurse shark (Ginglymostoma cirratum) family, we found that UDA is MHC linked but separable by recombination from the tightly linked cluster of UAA, TAP, and LMP genes, the so-called class I region found in most nonmammalian vertebrates. UDA has predicted structural features that are similar to certain nonclassical class I genes in other vertebrates, and, unlike polymorpic classical class I, we anticipate that it may bind to a conserved set of specialized peptides.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 21201; and
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Porto, Portugal
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062
| |
Collapse
|
26
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and plasma of nurse shark (Ginglymostoma cirratum) - Novel insights into shark immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 92:249-255. [PMID: 31200072 DOI: 10.1016/j.fsi.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Extracellular vesicles are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins and extracellular vesicles (EVs) are described for the first time in shark plasma. We report a poly-dispersed population of shark plasma EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In plasma, 6 deiminated proteins, including complement and immunoglobulin, were identified, whereof 3 proteins were found to be exported in plasma-derived EVs. A PAD homologue was identified in shark plasma by Western blotting and detected an expected 70 kDa size. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in nurse shark plasma. This is the first report of deiminated proteins in plasma and EVs, highlighting a hitherto unrecognized post-translational modification in key immune proteins of innate and adaptive immunity in shark.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
28
|
Deiss TC, Breaux B, Ott JA, Daniel RA, Chen PL, Castro CD, Ohta Y, Flajnik MF, Criscitiello MF. Ancient Use of Ig Variable Domains Contributes Significantly to the TCRδ Repertoire. THE JOURNAL OF IMMUNOLOGY 2019; 203:1265-1275. [PMID: 31341077 DOI: 10.4049/jimmunol.1900369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023]
Abstract
The loci encoding B and T cell Ag receptors are generally distinct in commonly studied mammals, with each receptor's gene segments limited to intralocus, cis chromosomal rearrangements. The nurse shark (Ginglymostoma cirratum) represents the oldest vertebrate class, the cartilaginous fish, with adaptive immunity provided via Ig and TCR lineages, and is one species among a growing number of taxa employing Ig-TCRδ rearrangements that blend these distinct lineages. Analysis of the nurse shark Ig-TCRδ repertoire found that these rearrangements possess CDR3 characteristics highly similar to canonical TCRδ rearrangements. Furthermore, the Ig-TCRδ rearrangements are expressed with TCRγ, canonically found in the TCRδ heterodimer. We also quantified BCR and TCR transcripts in the thymus for BCR (IgHV-IgHC), chimeric (IgHV-TCRδC), and canonical (TCRδV-TCRδC) transcripts, finding equivalent expression levels in both thymus and spleen. We also characterized the nurse shark TCRαδ locus with a targeted bacterial artifical chromosome sequencing approach and found that the TCRδ locus houses a complex of V segments from multiple lineages. An IgH-like V segment, nestled within the nurse shark TCRδ translocus, grouped with IgHV-like rearrangements we found expressed with TCRδ (but not IgH) rearrangements in our phylogenetic analysis. This distinct lineage of TCRδ-associated IgH-like V segments was termed "TAILVs." Our data illustrate a dynamic TCRδ repertoire employing TCRδVs, NARTCRVs, bona fide trans-rearrangements from shark IgH clusters, and a novel lineage in the TCRδ-associated Ig-like V segments.
Collapse
Affiliation(s)
- Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Rebecca A Daniel
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Caitlin D Castro
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD 21201; and
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; .,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843
| |
Collapse
|
29
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
30
|
Luo Y, Yu W, Yu Y, Dong S, Yin Y, Huang Z, Wan X, Zhang L, Yu Y, Ai T, Wang Q, Xu Z. Molecular characterization and expression analysis of T cell receptor (TCR) γ and δ genes in dojo loach (Misgurnus anguillicaudatus) in response to bacterial, parasitic and fungal challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 86:641-652. [PMID: 30485793 DOI: 10.1016/j.fsi.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
In mammalian, T-cell receptors (TCRs) play a key role in recognizing the presented antigen from external to protect organisms against environmental pathogens. To understand the potential roles of TCRγ and TCRδ in dojo loach (Misgurnus anguillicaudatus), Ma-TCRγ and Ma-TCRδ cDNAs were cloned and their gene expression profiles were investigated after bacterial, parasitic and fungal challenge. The open reading frame (ORF) of Ma-TCRγ and Ma-TCRδ cDNAs contained 948 and 867 bp, encoding 316 and 288 amino acid residues, respectively. Structurally, Ma-TCRγ and Ma-TCRδ were consisted of a signal peptide, a variable region, a constant region (IgC), a connecting peptide (CPS), a transmembrane region (TM) and a cytoplasmic domain (CYT), which were similar to those of other vertebrates. Multiple sequence alignment and phylogenetic analysis showed Ma-TCRγ and Ma-TCRδ were closely related to fish of Cyprinidae family. Ma-TCRγ and Ma-TCRδ were widely expressed in all tested organs/tissues, as the highest expressions of Ma-TCRγ and Ma-TCRδ were detected in kidney and gill, respectively. In addition, three infection models of dojo loach with bacteria (F. columnare G4), parasite (Ichthyophthirius multifiliis) and fungus (Saprolegnia sp.) were constructed. The morphological changes of gills and skin after challenged with F. columnare G4 and Ichthyophthirius multifiliis were investigated. Compared to F. columnare G4 infection, mRNA expression of both TCRγ and TCRδ showed higher sensitivity in classical immune organs (kidney and spleen) and mucosal tissues (skin and gill) after challenge with Ichthyophthirius multifiliis and Saprolegnia sp. Our results first indicated that TCRγ and TCRδ of dojo loach might function differently in response to challenge with different pathogens.
Collapse
Affiliation(s)
- Yanzhi Luo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Wei Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Yaxing Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Xinyu Wan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Liqiang Zhang
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Yunzhen Yu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Taoshan Ai
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
31
|
Breaux B, Hunter ME, Cruz-Schneider MP, Sena L, Bonde RK, Criscitiello MF. The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:71-85. [PMID: 29649552 DOI: 10.1016/j.dci.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostris and human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies.
Collapse
Affiliation(s)
- Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Margaret E Hunter
- Sirenia Project, Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | | | - Leonardo Sena
- Laboratory of Medical and Human Genetics, Federal University of Pará, Belém, Pará, Brazil.
| | - Robert K Bonde
- Sirenia Project, Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
32
|
Abstract
In jawed vertebrates from sharks to mammals, the thymus is the primary (or central) lymphoid tissue where T cells develop and mature. The particular stromal cell types, cytokine environment, and tissue organization in the thymus are essential for V(D)J recombination, positive selection for major histocompatibility complex recognition, and negative selection against self-peptide recognition of most αβ T cells. The thymectomy operation on Xenopus tadpole larva described here creates a T-cell-deficient model suitable for many immunology studies.
Collapse
|
33
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
34
|
Ott JA, Castro CD, Deiss TC, Ohta Y, Flajnik MF, Criscitiello MF. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus. eLife 2018; 7:28477. [PMID: 29664399 PMCID: PMC5931798 DOI: 10.7554/elife.28477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Texas, United States
| |
Collapse
|
35
|
Neely HR, Guo J, Flowers EM, Criscitiello MF, Flajnik MF. "Double-duty" conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells. Eur J Immunol 2018; 48:430-440. [PMID: 29235109 DOI: 10.1002/eji.201747260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/20/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Two populations of dendritic cells (DCs) are found in mammals, one derived from hematopoietic precursors (conventional/cDC), and another derived from mesenchymal precursors, the follicular DC (FDC); the latter is specialized for antigen presentation to B cells, and has only been definitively demonstrated in mammals. Both cDC and FDC are necessary for induction of germinal centers (GC) and GC-dependent class switch recombination (CSR) and somatic hypermutation (SHM). We demonstrate that in Xenopus, an amphibian in which immunoglobulin CSR and SHM occur without GC formation, a single type of DC has properties of both cDC and FDC, including high expression of MHC class II for the former and display of native antigen at the cell surface for the latter. Our data confirm that the advent of FDC functionality preceded emergence of bona fide FDC, which was in turn crucial for the development of GC formation and efficient affinity maturation in mammals.
Collapse
Affiliation(s)
- Harold R Neely
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Guo
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Emily M Flowers
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA
| | | | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
36
|
Pettinello R, Redmond AK, Secombes CJ, Macqueen DJ, Dooley H. Evolutionary history of the T cell receptor complex as revealed by small-spotted catshark (Scyliorhinus canicula). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:125-135. [PMID: 28433528 DOI: 10.1016/j.dci.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
In every jawed vertebrate species studied so far, the T cell receptor (TCR) complex is composed of two different TCR chains (α/β or γ/δ) and a number of CD3 subunits responsible for transmitting signals into the T cell. In this study, we characterised all of the TCR and CD3 genes of small-spotted catshark (Scyliorhinus canicula) and analysed their expression in a broad range of tissues. While the TCR complex is highly conserved across jawed vertebrates, we identified a number of differences in catshark, most notably the presence of two copies of both TCRβ and CD3γδ, and the absence of a functionally-important proline rich region from CD3ε. We also demonstrate that TCRβ has duplicated independently multiple times in jawed vertebrate evolution, bringing additional diversity to the TCR complex. This study reveals new insights about the evolutionary history of the TCR complex and raises new avenues for future exploration.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore MD21202, USA
| |
Collapse
|
37
|
Iacoangeli A, Lui A, Haines A, Ohta Y, Flajnik M, Hsu E. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms. THE JOURNAL OF IMMUNOLOGY 2017; 199:1875-1885. [PMID: 28760881 DOI: 10.4049/jimmunol.1700762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM+ cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ+ splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ+ cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Tisch Multiple Sclerosis Research Center of New York, New York, NY 10019
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ashley Haines
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
38
|
Hsu E. Assembly and Expression of Shark Ig Genes. THE JOURNAL OF IMMUNOLOGY 2017; 196:3517-23. [PMID: 27183649 DOI: 10.4049/jimmunol.1600164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203
| |
Collapse
|
39
|
A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 2017; 7:41426. [PMID: 28134319 PMCID: PMC5278385 DOI: 10.1038/srep41426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens. By contrast, the duck TCRβ locus is organized in an unusual pattern, (Vβ)n-Dβ-(Jβ)2-Cβ1-(Jβ)4-Cβ2, which differs from the tandem-aligned clusters in mammals or the translocon organization in some teleosts. Excluding the first exon encoding the immunoglobulin domain, the subsequent exons of the two Cβ show significant diversity in nucleotide sequence and exon structure. Based on the nucleotide sequence identity, 49 Vα, 30 Vδ, 13 Vβ and 15 Vγ unique gene segments are classified into 3 Vα, 5 Vδ, 4 Vβ and 6 Vγ subgroups, respectively. Phylogenetic analyses revealed that most duck V subgroups, excluding Vβ1, Vγ5 and Vγ6, have closely related orthologues in chicken. The coding joints of all cDNA clones demonstrate conserved mechanisms that are used to increase junctional diversity. Collectively, these data provide insight into the evolution of TCRs in vertebrates and improve our understanding of the avian immune system.
Collapse
|
40
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
41
|
A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 2016; 113:E6649-E6658. [PMID: 27791034 DOI: 10.1073/pnas.1611445113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.
Collapse
|
42
|
Takizawa F, Magadan S, Parra D, Xu Z, Korytář T, Boudinot P, Sunyer JO. Novel Teleost CD4-Bearing Cell Populations Provide Insights into the Evolutionary Origins and Primordial Roles of CD4+ Lymphocytes and CD4+ Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:4522-35. [PMID: 27183628 DOI: 10.4049/jimmunol.1600222] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
Abstract
Tetrapods contain a single CD4 coreceptor with four Ig domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four Ig domains, whereas CD4-2 contains only two. Because CD4-2 is reminiscent of the prototypic two-domain CD4 coreceptor, we hypothesized that by characterizing the cell types bearing CD4-1 and CD4-2, we would shed light into the evolution and primordial roles of CD4-bearing cells. Using newly established mAbs against CD4-1 and CD4-2, we identified two bona-fide CD4(+) T cell populations: a predominant lymphocyte population coexpressing surface CD4-1 and CD4-2 (CD4 double-positive [DP]), and a minor subset expressing only CD4-2 (CD4-2 single-positive [SP]). Although both subsets produced equivalent levels of Th1, Th17, and regulatory T cell cytokines upon bacterial infection, CD4-2 SP lymphocytes were less proliferative and displayed a more restricted TCRβ repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4(+) T cell subset, the roles of which reflect those of primeval CD4(+) T cells. Importantly, we also describe the first CD4(+) monocyte/macrophage population in a nonmammalian species. Of all myeloid subsets, we found the CD4(+) population to be the most phagocytic, whereas CD4(+) lymphocytes lacked this capacity. This study fills in an important gap in the knowledge of teleost CD4-bearing leukocytes, thus revealing critical insights into the evolutionary origins and primordial roles of CD4(+) lymphocytes and CD4(+) monocytes/macrophages.
Collapse
Affiliation(s)
- Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Susana Magadan
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - David Parra
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; and
| | - Zhen Xu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
43
|
Genomic organization of the zebrafish (Danio rerio) T cell receptor alpha/delta locus and analysis of expressed products. Immunogenetics 2016; 68:365-79. [PMID: 26809968 DOI: 10.1007/s00251-016-0904-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022]
Abstract
In testing the hypothesis that all jawed vertebrate classes employ immunoglobulin heavy chain V (IgHV) gene segments in their T cell receptor (TCR)δ encoding loci, we found that some basic characterization was required of zebrafish TCRδ. We began by annotating and characterizing the TCRα/δ locus of Danio rerio based on the most recent genome assembly, GRCz10. We identified a total of 141 theoretically functional V segments which we grouped into 41 families based upon 70 % nucleotide identity. This number represents the second greatest count of apparently functional V genes thus far described in an antigen receptor locus with the exception of cattle TCRα/δ. Cloning, relative quantitative PCR, and deep sequencing results corroborate that zebrafish do express TCRδ, but these data suggest only at extremely low levels and in limited diversity in the spleens of the adult fish. While we found no evidence for IgH-TCRδ rearrangements in this fish, by determining the locus organization we were able to suggest how the evolution of the teleost α/δ locus could have lost IgHVs that exist in sharks and frogs. We also found evidence of surprisingly low TCRδ expression and repertoire diversity in this species.
Collapse
|
44
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
de los Rios M, Criscitiello MF, Smider VV. Structural and genetic diversity in antibody repertoires from diverse species. Curr Opin Struct Biol 2015; 33:27-41. [PMID: 26188469 DOI: 10.1016/j.sbi.2015.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
The antibody repertoire is the fundamental unit that enables development of antigen specific adaptive immune responses against pathogens. Different species have developed diverse genetic and structural strategies to create their respective antibody repertoires. Here we review the shark, chicken, camel, and cow repertoires as unique examples of structural and genetic diversity. Given the enormous importance of antibodies in medicine and biological research, the novel properties of these antibody repertoires may enable discovery or engineering of antibodies from these non-human species against difficult or important epitopes.
Collapse
Affiliation(s)
- Miguel de los Rios
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Vaughn V Smider
- Fabrus Inc., A Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
46
|
Das S, Li J, Hirano M, Sutoh Y, Herrin BR, Cooper MD. Evolution of two prototypic T cell lineages. Cell Immunol 2015; 296:87-94. [PMID: 25958271 DOI: 10.1016/j.cellimm.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA(+) and VLRC(+) lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity.
Collapse
Affiliation(s)
- Sabyasachi Das
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Jianxu Li
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Masayuki Hirano
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Yoichi Sutoh
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Brantley R Herrin
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Max D Cooper
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States.
| |
Collapse
|
47
|
Neely HR, Flajnik MF. CXCL13 responsiveness but not CXCR5 expression by late transitional B cells initiates splenic white pulp formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2616-23. [PMID: 25662995 PMCID: PMC4355030 DOI: 10.4049/jimmunol.1401905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Secondary lymphoid organs (SLO) provide the structural framework for coconcentration of Ag and Ag-specific lymphocytes required for an efficient adaptive immune system. The spleen is the primordial SLO, and evolved concurrently with Ig/TCR:pMHC-based adaptive immunity. The earliest cellular/histological event in the ontogeny of the spleen's lymphoid architecture, the white pulp (WP), is the accumulation of B cells around splenic vasculature, an evolutionarily conserved feature since the spleen's emergence in early jawed vertebrates such as sharks. In mammals, B cells are indispensable for both formation and maintenance of SLO microarchitecture; their expression of lymphotoxin α1β2 (LTα1β2) is required for the LTα1β2:CXCL13 positive feedback loop without which SLO cannot properly form. Despite the spleen's central role in the evolution of adaptive immunity, neither the initiating event nor the B cell subset necessary for WP formation has been identified. We therefore sought to identify both in mouse. We detected CXCL13 protein in late embryonic splenic vasculature, and its expression was TNF-α and RAG-2 independent. A substantial influx of CXCR5(+) transitional B cells into the spleen occurred 18 h before birth. However, these late embryonic B cells were unresponsive to CXCL13 (although responsive to CXCL12) and phenotypically indistinguishable from blood-derived B cells. Only after birth did B cells acquire CXCL13 responsiveness, accumulate around splenic vasculature, and establish the uniquely splenic B cell compartment, enriched for CXCL13-responsive late transitional cells. Thus, CXCL13 is the initiating component of the CXCL13:LTα1β2 positive feedback loop required for WP ontogeny, and CXCL13-responsive late transitional B cells are the initiating subset.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Chemokine CXCL13/genetics
- Chemokine CXCL13/immunology
- Chemokine CXCL13/metabolism
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Feedback, Physiological
- Female
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- In Situ Hybridization
- Lymphotoxin alpha1, beta2 Heterotrimer/immunology
- Lymphotoxin alpha1, beta2 Heterotrimer/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Pregnancy
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- Receptors, CXCR5/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spleen/blood supply
- Spleen/embryology
- Spleen/immunology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Harold R Neely
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
48
|
Hansen VL, Miller RD. The Evolution and Structure of Atypical T Cell Receptors. Results Probl Cell Differ 2015; 57:265-78. [PMID: 26537385 DOI: 10.1007/978-3-319-20819-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The T cell receptor structure and genetic organization have been thought to have been stable in vertebrate evolution relative to the immunoglobulins. For the most part, this has been true and the content and organization of T cell receptor genes has been fairly conserved over the past 400 million years of gnathostome evolution. Analyses of TCRδ chains in a broad range of vertebrate lineages over the past decade have revealed a remarkable and previously unrealized degree of plasticity. This plasticity can generally be described in two forms. The first is broad use of antibody heavy chain variable genes in place of the conventional Vδ. The second form containing an unusual three extracellular domain structures has evolved independently in both cartilaginous fishes and mammals. Two well-studied vertebrate lineages, the eutherian mammals such as mice and humans and teleost fishes, lack any of these alternative TCR forms, contributing to why they went undiscovered for so long after the initial description of the conventional TCR chains three decades ago. This chapter describes the state of knowledge of these unusual TCR forms, both their structure and genetics, and current ideas on their function.
Collapse
Affiliation(s)
- Victoria L Hansen
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
49
|
Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
50
|
Genomic donor cassette sharing during VLRA and VLRC assembly in jawless vertebrates. Proc Natl Acad Sci U S A 2014; 111:14828-33. [PMID: 25228758 DOI: 10.1073/pnas.1415580111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lampreys possess two T-like lymphocyte lineages that express either variable lymphocyte receptor (VLR) A or VLRC antigen receptors. VLRA(+) and VLRC(+) lymphocytes share many similarities with the two principal T-cell lineages of jawed vertebrates expressing the αβ and γδ T-cell receptors (TCRs). During the assembly of VLR genes, several types of genomic cassettes are inserted, in step-wise fashion, into incomplete germ-line genes to generate the mature forms of antigen receptor genes. Unexpectedly, the structurally variable components of VLRA and VLRC receptors often possess partially identical sequences; this phenomenon of module sharing between these two VLR isotypes occurs in both lampreys and hagfishes. By contrast, VLRA and VLRC molecules typically do not share their building blocks with the structurally analogous VLRB receptors that are expressed by B-like lymphocytes. Our studies reveal that VLRA and VLRC germ-line genes are situated in close proximity to each other in the lamprey genome and indicate the interspersed arrangement of isotype-specific and shared genomic donor cassettes; these features may facilitate the shared cassette use. The genomic structure of the VLRA/VLRC locus in lampreys is reminiscent of the interspersed nature of the TCRA/TCRD locus in jawed vertebrates that also allows the sharing of some variable gene segments during the recombinatorial assembly of TCR genes.
Collapse
|