1
|
Mayer M, Cengiz-Dartenne SC, Thiem M, Hatzfeld P, Semeniuk A, Wang N, Strugnell RA, Förster I, Weighardt H. Dysregulation of Stress Erythropoiesis and Enhanced Susceptibility to Salmonella Typhimurium Infection in Aryl Hydrocarbon Receptor-Deficient Mice. J Infect Dis 2025; 231:318-328. [PMID: 38842164 DOI: 10.1093/infdis/jiae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND By acting as an environmental sensor, the ligand-induced transcription factor aryl hydrocarbon receptor (AhR) regulates acute innate and adaptive immune responses against pathogens. Here, we analyzed the function of AhR in a model for chronic systemic infection with attenuated Salmonella Typhimurium (STM). METHODS Wild type and AhR-deficient mice were infected with the attenuated STM strain TAS2010 and analyzed for bacterial burden, host defense functions, and inflammatory stress erythropoiesis. RESULTS AhR-deficient mice were highly susceptible to TAS2010 infection when compared with wild type mice, as demonstrated by reduced bacterial clearance and increased mortality. STM infection resulted in macrocytic anemia and enhanced splenomegaly with destruction of the splenic architecture in AhR-deficient mice. In addition, AhR-deficient mice displayed a major expansion of splenic immature red blood cells, indicative of infection-induced stress erythropoiesis. Elevated serum levels of erythropoietin and interleukin 6 upon infection, as well as increased numbers of splenic stress erythroid progenitors already in steady state, probably drive this effect and might cause the alterations in splenic immune cell compartments, thereby preventing an effective host defense against STM in AhR-deficient mice. CONCLUSIONS AhR-deficient mice fail to clear chronic TAS2010 infection due to enhanced stress erythropoiesis in the spleen and accompanying destruction of the splenic architecture.
Collapse
Affiliation(s)
- Michelle Mayer
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Sevgi C Cengiz-Dartenne
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Manja Thiem
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Australia
| | - Philip Hatzfeld
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Adrian Semeniuk
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Australia
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Germany
- Innate Immunity and Extrinsic Skin Aging, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
2
|
Sarrabayrouse G, Joulain C, Bessoles S, Chiron AS, Abina AM, Hacein-Bey-Abina S. Erythropoietin supplementation induces dysbiosis of the gut microbiota and impacts mucosal immunity in a non-diseased mouse model. Front Immunol 2025; 15:1465410. [PMID: 39916952 PMCID: PMC11798978 DOI: 10.3389/fimmu.2024.1465410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
A number of drug treatments are known to alter the dialogue between the gut microbiota and the immune system components in the digestive mucosa. Alterations in intestinal homeostasis are now well known to affect peripheral immune responses and favor the occurrence of a number of pathologies such as allergies and cancers. Erythropoietin's known pleiotropic effects might explain the adverse events sometimes observed in anemic patients treated by erythropoiesis-stimulating agents (ESA). However, the impact of this therapeutic cytokine on the homeostasis of the intestinal tract has not previously been investigated in detail. By studying a mouse model of erythropoietin (EPO) supplementation for 28 days, we observed EPO-induced dysbiosis of the fecal microbiota characterized by a greater bacterial load, lower bacterial diversity and taxonomic changes. With regard to the mucosal immune system, an analysis of leukocyte populations in the small intestine and colon treatment revealed low proportions of ileal CD4 lymphocyte subpopulations (Treg, Tr17 and Th17 cells), IgA-secreting plasma cells, and a major macrophage subpopulation, involved in the control of lymphocyte responses. Our results provide for the first time a descriptive analysis of intestinal EPO's regulatory properties and raise questions about the involvement of EPO-induced alterations in the microbiota and the gut immune effectors in the control of intestinal and peripheral immune responses.
Collapse
Affiliation(s)
- Guillaume Sarrabayrouse
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Corentin Joulain
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Stéphanie Bessoles
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Andrada S. Chiron
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Amine M. Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), UTCBS, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Yang C, Suda T. Microenvironmental dynamics in steady-state and stress erythropoiesis. BLOOD SCIENCE 2025; 7:e00219. [PMID: 39949502 PMCID: PMC11822345 DOI: 10.1097/bs9.0000000000000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Anemia is a condition marked by a shortage of red blood cells or hemoglobin, resulting in a diminished ability of the blood to carry oxygen. In response to anemia or hypoxia, the body activates a compensatory mechanism known as stress erythropoiesis. This crucial physiological process results in increased erythrocyte production, particularly in extramedullary sites such as the spleen and liver, to restore adequate oxygen levels. Unlike steady-state erythropoiesis, which primarily occurs in the bone marrow, stress erythropoiesis depends on distinct progenitor cells and signaling pathways within a specialized erythroid niche in adult spleen and liver. This niche provides essential support for the proliferation, differentiation, and maturation of erythroid progenitors during anemic stress. The dynamics within this niche under stress conditions involve complex interactions between progenitor and niche cells. These interactions are regulated by specific molecular signals that adapt to the body's physiological demands, ensuring an appropriate response to stress. This review explores the cellular and molecular mechanisms governing these processes, highlighting the extrinsic pathways and cellular interactions during stress erythropoiesis. In addition, it underscores the need for future research to translate findings from murine models into therapeutic strategies for treating anemia-related diseases.
Collapse
Affiliation(s)
- Chong Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Toshio Suda
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Johansson A, Khalilnezhad A, Takizawa H, Mizuno H, Suda T, Umemoto T. Mobilization dynamics of bone marrow hematopoietic stem cells during hematopoietic regeneration. Exp Hematol 2024; 138:104281. [PMID: 39009278 DOI: 10.1016/j.exphem.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Under stress hematopoiesis, previous studies have suggested the migration of hematopoietic stem cells (HSCs) from bone marrow (BM) to extramedullary sites such as the spleen. However, there is little direct evidence of HSC migration from the BM to the spleen. Here, we induced myeloablation via 5-fluorouracil (5-FU) and showed direct evidence of HSC migration from BM to spleen during hematopoietic regeneration via a photoconvertible fluorophore. Moreover, during steady state, HSCs preferentially migrated to BM rather than spleen, but during hematopoietic regeneration, HSCs preferred spleen as a migration site equivalently or greater. Furthermore, in the early phase, HSCs egressed from BM through the attenuated HSC retention. However, HSCs in the late phase gained significantly enhanced cell-autonomous motility, which was independent of chemotaxis. Collectively, HSC mobilization from BM, before the migration to the spleen, was dynamically changed from passive to active events during hematopoietic regeneration.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan; Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Ahad Khalilnezhad
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional imaging, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Toshio Suda
- Laboratory of Stem Cell Regulation, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan.
| |
Collapse
|
5
|
Chunchai T, Chinchapo T, Sripetchwandee J, Thonusin C, Chattipakorn N, Chattipakorn SC. Lipopolysaccharide exacerbates depressive-like behaviors in obese rats through complement C1q-mediated synaptic elimination by microglia. Acta Physiol (Oxf) 2024; 240:e14130. [PMID: 38462756 DOI: 10.1111/apha.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
AIM Prolonged high-fat diet (HFD) consumption has been shown to impair cognition and depression. The combined effects of HFD and lipopolysaccharide (LPS) administration on those outcomes have never been thoroughly investigated. This study investigated the effects of LPS, HFD consumption, and a combination of both conditions on microglial dysfunction, microglial morphological alterations, synaptic loss, cognitive dysfunction, and depressive-like behaviors. METHODS Sixty-four male Wistar rats were fed either a normal diet (ND) or HFD for 12 weeks, followed by single dose-subcutaneous injection of either vehicle or LPS. Then, cognitive function and depressive-like behaviors were assessed. Then, rats were euthanized, and the whole brain, hippocampus, and spleen were collected for further investigation, including western blot analysis, qRT-PCR, immunofluorescence staining, and brain metabolome determination. RESULTS HFD-fed rats developed obese characteristics. Both HFD-fed rats with vehicle and ND-fed rats with LPS increased cholesterol and serum LPS levels, which were exacerbated in HFD-fed rats with LPS. HFD consumption, but not LPS injection, caused oxidative stress, blood-brain barrier disruption, and decreased neurogenesis. Both HFD and LPS administration triggered an increase in inflammatory genes on microglia and astrocytes, increased c1q colocalization with microglia, and increased dendritic spine loss, which were exacerbated in the combined conditions. Both HFD and LPS altered neurotransmitters and disrupted brain metabolism. Interestingly, HFD consumption, but not LPS, induced cognitive decline, whereas both conditions individually induced depressive-like behaviors, which were exacerbated in the combined conditions. CONCLUSIONS Our findings suggest that LPS aggravates metabolic disturbances, neuroinflammation, microglial synaptic engulfment, and depressive-like behaviors in obese rats.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thirathada Chinchapo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Hanson AL, Mulè MP, Ruffieux H, Mescia F, Bergamaschi L, Pelly VS, Turner L, Kotagiri P, Göttgens B, Hess C, Gleadall N, Bradley JR, Nathan JA, Lyons PA, Drakesmith H, Smith KGC. Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19. Nat Immunol 2024; 25:471-482. [PMID: 38429458 PMCID: PMC10907301 DOI: 10.1038/s41590-024-01754-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.
Collapse
Affiliation(s)
- Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew P Mulè
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Victoria S Pelly
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Berthold Göttgens
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nicholas Gleadall
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Botnar Research Centre for Child Health (BRCCH), University of Basel and ETH Zurich, Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Sivasankar C, Hewawaduge C, Muthuramalingam P, Lee JH. Tumor-targeted delivery of lnc antisense RNA against RCAS1 by live-attenuated tryptophan-auxotrophic Salmonella inhibited 4T1 breast tumors and metastasis in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102053. [PMID: 37941832 PMCID: PMC10628790 DOI: 10.1016/j.omtn.2023.102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Emerging chemo- and radiotherapy resistance exacerbated the cancer risk and necessitated novel treatment strategies. Although RNA therapeutics against pro-oncogenic genes are highly effective, tumor-specific delivery remains a barrier to the implementation of this valuable tool. In this study, we report a tryptophan-auxotrophic Salmonella typhimurium strain as an onco-therapeutic delivery system with tumor-targeting ability using 4T1 mice breast-cancer model. The receptor-binding cancer antigen expressed on SiSo cell (RCAS1) is a cancer-specific protein that induces the apoptosis of peripheral lymphocytes and confers tumor immune evasion. We designed a long non-coding antisense-RNA against RCAS1 (asRCAS1) and delivered by Salmonella using a non-antibiotic, auxotrophic-selective, eukaryotic expression plasmid, pJHL204. After in vivo tumor-to-tumor passaging, the JOL2888 (ΔtrpA, ΔtrpE, Δasd + asRCAS1) strain exhibited high sustainability in tumors, but did not last in healthy organs, thereby demonstrating tumor specificity and safety. RCAS1 inhibition in the tumor was confirmed by western blotting and qPCR. In mice, JOL2888 treatment reduced tumor-associated macrophages, improved the T cell population, elicited cell-mediated immunity, and suppressed cancer-promoting genes. Consequently, the JOL2888 treatment significantly decreased the tumor volume by 80%, decreased splenomegaly by 30%, and completely arrested lung metastasis. These findings highlight the intrinsic tumor-targeting ability of tryptophan-auxotrophic Salmonella for delivering onco-therapeutic macromolecules.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| |
Collapse
|
8
|
Pan C, Zhang Y, Yan J, Zhou Y, Wang S, Liu X, Zhang P, Yang H. Extreme environments and human health: From the immune microenvironments to immune cells. ENVIRONMENTAL RESEARCH 2023; 236:116800. [PMID: 37527745 DOI: 10.1016/j.envres.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure to extreme environments causes specific acute and chronic physiological responses in humans. The adaptation and the physiological processes under extreme environments predominantly affect multiple functional systems of the organism, in particular, the immune system. Dysfunction of the immune system affected by several extreme environments (including hyperbaric environment, hypoxia, blast shock, microgravity, hypergravity, radiation exposure, and magnetic environment) has been observed from clinical macroscopic symptoms to intracorporal immune microenvironments. Therefore, simulated extreme conditions are engineered for verifying the main influenced characteristics and factors in the immune microenvironments. This review summarizes the responses of immune microenvironments to these extreme environments during in vivo or in vitro exposure, and the approaches of engineering simulated extreme environments in recent decades. The related microenvironment engineering, signaling pathways, molecular mechanisms, clinical therapy, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Chengwei Pan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; School of Food Science and Engineering, Shaanxi University of Science & Technology, 710021, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
9
|
Chang J, Debreli Coskun M, Kim J. Inflammation alters iron distribution in bone and spleen in mice. Metallomics 2023; 15:mfad055. [PMID: 37738439 PMCID: PMC10563149 DOI: 10.1093/mtomcs/mfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Anemia of inflammation (or inflammation-associated anemia) decreases the quality of life in billions of patients suffering from various inflammatory diseases, such as infection, autoimmune diseases, and cancer, associated with a prolonged state of immune activation. While proper utilization of iron, a nutrient metal essential for erythropoiesis, is important for the prevention of anemia, the alteration of body iron homeostasis upon inflammation, which can contribute to the development of anemia, is not completely understood. Thus, we sought to examine temporal and spatial changes in the distribution of iron and iron-associated molecules during inflammation in mice. To induce inflammation, C57BL/6J mice were injected with turpentine oil weekly for 3 weeks, which resulted in anemia, decreased protein expression of ferroportin, a cellular iron exporter, in the spleen, duodenum, and liver, and increased iron stores in the duodenum and spleen. Tracer kinetic studies after oral administration of 59Fe revealed that more iron was found in the spleen and less in the femur bone in turpentine oil-injected mice compared to the saline-injected mice, indicating tissue-specific abnormalities in iron distribution during inflammation. However, there was no difference in the utilization of iron for red blood cell production after turpentine oil injection; instead, serum hemopexin level and lactate dehydrogenase activity were increased, suggesting increased red blood cell destruction upon inflammation. Our findings provide an improved understanding of temporal and spatial changes in the distribution and utilization of iron during inflammation.
Collapse
Affiliation(s)
- JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Melis Debreli Coskun
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA 01854, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA 01854, USA
| |
Collapse
|
10
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
11
|
Marcial-Juárez E, Pérez-Toledo M, Nayar S, Pipi E, Alshayea A, Persaud R, Jossi SE, Lamerton R, Barone F, Henderson IR, Cunningham AF. Salmonella infection induces the reorganization of follicular dendritic cell networks concomitant with the failure to generate germinal centers. iScience 2023; 26:106310. [PMID: 36950118 PMCID: PMC10025972 DOI: 10.1016/j.isci.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Germinal centers (GCs) are sites where plasma and memory B cells form to generate high-affinity, Ig class-switched antibodies. Specialized stromal cells called follicular dendritic cells (FDCs) are essential for GC formation. During systemic Salmonella Typhimurium (STm) infection GCs are absent, whereas extensive extrafollicular and switched antibody responses are maintained. The mechanisms that underpin the absence of GC formation are incompletely understood. Here, we demonstrate that STm induces a reversible disruption of niches within the splenic microenvironment, including the T and B cell compartments and the marginal zone. Alongside these effects after infection, mature FDC networks are strikingly absent, whereas immature FDC precursors, including marginal sinus pre-FDCs (MadCAM-1+) and perivascular pre-FDCs (PDGFRβ+) are enriched. As normal FDC networks re-establish, extensive GCs become detectable throughout the spleen. Therefore, the reorganization of FDC networks and the loss of GC responses are key, parallel features of systemic STm infections.
Collapse
Affiliation(s)
- Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Marisol Pérez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Areej Alshayea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Ruby Persaud
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Sian E. Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Rachel Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, UK and Sandwell and West Birmingham Trust, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
12
|
Giffin KA, Lovelock DF, Besheer J. Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behav Brain Res 2023; 438:114200. [PMID: 36334783 PMCID: PMC10123804 DOI: 10.1016/j.bbr.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
There are many unanswered questions about the interaction between the immune system and behavior change, including the contributions of individual differences. The present study modeled individual differences in the immune system by comparing inbred Lewis rats, which have dysregulated stress and immune systems, to their genetically diverse parent strain, Wistar rats. The objective was to examine the consequences of an immune challenge on behavior and neuroimmune signaling in both strains. Peripheral administration of the toll-like receptor 3 (TLR3) agonist and viral memetic polyinosinic-polycytidylic acid (poly(I:C)) induced behavior changes in both strains, reducing locomotor activity and increasing avoidance behavior (time on the dark side of the light-dark box). Furthermore, poly(I:C) induced hyperarousal and increased avoidance behavior more in female Lewis than female Wistar rats. Baseline strain differences were also observed: Lewis rats had higher avoidance behavior and lower startle response than Wistars. Lewis rats also had lower levels of peripheral inflammation, as measured by spleen weight. Finally, poly(I:C) increased expression of genes in the TLR3 pathway, cytokine genes, and CD11b, a gene associated with proinflammatory actions of microglia, in the prelimbic cortex and central amygdala, with greater expression of cytokine genes in male rats. Lewis rats had lower baseline expression of some neuroimmune genes, particularly CD11b. Overall, we found constitutive strain differences in immune profiles and baseline differences in behavior, yet poly(I:C) generally induced similar behavior changes in males while hyperarousal and avoidance behavior were heightened in female Lewis rats.
Collapse
Affiliation(s)
| | | | - Joyce Besheer
- Bowles Center for Alcohol Studies, USA; Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Li J, Liu L, Xing J, Chen D, Fang C, Mo F, Gong Y, Tan Z, Liang G, Xiao W, Tang S, Wei H, Zhao S, Xie H, Pan X, Yin X, Huang J. TLR7 modulates extramedullary splenic erythropoiesis in P. yoelii NSM-infected mice through the regulation of iron metabolism of macrophages with IFN-γ. Front Immunol 2023; 14:1123074. [PMID: 37180169 PMCID: PMC10174296 DOI: 10.3389/fimmu.2023.1123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Splenomegaly is a prominent clinical manifestation of malaria and the causes remain incompletely clear. Anemia is induced in malaria and extramedullary splenic erythropoiesis is compensation for the loss of erythrocytes. However, the regulation of extramedullary splenic erythropoiesis in malaria is unknown. An inflammatory response could facilitate extramedullary splenic erythropoiesis in the settings of infection and inflammation. Here, when mice were infected with rodent parasites, Plasmodium yoelii NSM, TLR7 expression in splenocytes was increased. To explore the roles of TLR7 in splenic erythropoiesis, we infected wild-type and TLR7 -/- C57BL/6 mice with P. yoelii NSM and found that the development of splenic erythroid progenitor cells was impeded in TLR7 -/- mice. Contrarily, the treatment of the TLR7 agonist, R848, promoted extramedullary splenic erythropoiesis in wild-type infected mice, which highlights the implication of TLR7 on splenic erythropoiesis. Then, we found that TLR7 promoted the production of IFN-γ that could enhance phagocytosis of infected erythrocytes by RAW264.7. After phagocytosis of infected erythrocytes, the iron metabolism of RAW264.7 was upregulated, evidenced by higher iron content and expression of Hmox1 and Slc40a1. Additionally, the neutralization of IFN-γ impeded the extramedullary splenic erythropoiesis modestly and reduced the iron accumulation in the spleen of infected mice. In conclusion, TLR7 promoted extramedullary splenic erythropoiesis in P. yoelii NSM-infected mice. TLR7 enhanced the production of IFN-γ, and IFN-γ promoted phagocytosis of infected erythrocytes and the iron metabolism of macrophages in vitro, which may be related to the regulation of extramedullary splenic erythropoiesis by TLR7.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Guikuan Liang
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Wei Xiao
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shan Zhao
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaomao Yin, ; Jun Huang,
| | - Xiaomao Yin
- Department of Laboratory Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaomao Yin, ; Jun Huang,
| | - Jun Huang
- Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Laboratory Medicine, Lecong Hospital, Foshan, China
- *Correspondence: Xingfei Pan, ; Xiaomao Yin, ; Jun Huang,
| |
Collapse
|
14
|
Al-Saafeen BH, Al-Sbiei A, Bashir G, Mohamed YA, Masad RJ, Fernandez-Cabezudo MJ, al-Ramadi BK. Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer. Front Immunol 2022; 13:1017780. [PMID: 36605208 PMCID: PMC9807881 DOI: 10.3389/fimmu.2022.1017780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The use of immune checkpoint inhibitors to treat cancer resulted in unprecedented and durable clinical benefits. However, the response rate among patients remains rather modest. Previous work from our laboratory demonstrated the efficacy of using attenuated bacteria as immunomodulatory anti-cancer agents. The current study investigated the potential of utilizing a low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-L1 blockade in a relatively immunogenic model of colon cancer. The response of MC38 tumors to treatment with αPD-L1 monoclonal antibody (mAb) was variable, with only 30% of the mice being responsive. Combined treatment with αPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in 100% of animals. Mechanistically, the enhanced response correlated with a decrease in the percentage of tumor-associated granulocytic cells, upregulation in MHC class II expression by intratumoral monocytes and an increase in tumor infiltration by effector T cells. Collectively, these alterations resulted in improved anti-tumor effector responses and increased apoptosis within the tumor. Thus, our study demonstrates that a novel combination treatment utilizing attenuated Salmonella and αPD-L1 mAb could improve the outcome of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Basel K. al-Ramadi,
| |
Collapse
|
15
|
Park S, Jung B, Kim E, Yoon H, Hahn TW. Evaluation of Salmonella Typhimurium Lacking fruR, ssrAB, or hfq as a Prophylactic Vaccine against Salmonella Lethal Infection. Vaccines (Basel) 2022; 10:vaccines10091413. [PMID: 36146494 PMCID: PMC9506222 DOI: 10.3390/vaccines10091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the primary causes of foodborne gastroenteritis; occasionally, it causes invasive infection in humans. Because of its broad host range, covering diverse livestock species, foods of animal origin pose a critical threat of NTS contamination. However, there is currently no licensed vaccine against NTS infection. FruR, also known as Cra (catabolite repressor/activator), was initially identified as the transcriptional repressor of the fructose (fru) operon, and then found to activate or repress the transcription of many different genes associated with carbon and energy metabolism. In view of its role as a global regulator, we constructed a live attenuated vaccine candidate, ΔfruR, and evaluated its prophylactic effect against NTS infection in mice. A Salmonella Typhimurium mutant strain lacking fruR was defective in survival inside macrophages and exhibited attenuated virulence in infected mice. Immunization with the ΔfruR mutant stimulated the production of antibodies, including the IgG, IgM, and IgG subclasses, and afforded a protection of 100% to mice against the challenge of lethal infection with a virulent Salmonella strain. The prophylactic effect obtained after ΔfruR immunization was also validated by the absence of signs of hepatosplenomegaly, as these mice had comparable liver and spleen weights in comparison with healthy mice. These results suggest that the ΔfruR mutant strain can be further exploited as a promising vaccine candidate against Salmonella lethal infection.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| |
Collapse
|
16
|
Wu Y, Wang Y, Hu A, Shu X, Huang W, Liu J, Wang B, Zhang R, Yue M, Yang C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut-brain axis in mice. Front Nutr 2022; 9:946096. [PMID: 35967771 PMCID: PMC9365972 DOI: 10.3389/fnut.2022.946096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1β and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut–brain axis.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yan Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Aixin Hu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xin Shu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenxia Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou, China
| | - Baikui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
17
|
Zhang L, Patel S, Soulakova JN, Caldwell CC, St Pierre Schneider B. Mild hypobaric hypoxia influences splenic proliferation during the later phase of stress erythropoiesis. Exp Biol Med (Maywood) 2021; 247:509-518. [PMID: 34904451 DOI: 10.1177/15353702211060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tissue trauma and hemorrhagic shock are common battlefield injuries that can induce hypoxia, inflammation, and/or anemia. Inflammation and hypoxia can initiate adaptive mechanisms, such as stress erythropoiesis in the spleen, to produce red blood cells and restore the oxygen supply. In a military context, mild hypobaric hypoxia-part of the environmental milieu during aeromedical evacuation or en route care-may influence adaptive mechanisms, such as stress erythropoiesis, and host defense. In the present study, healthy (control), muscle trauma, and polytrauma (muscle trauma and hemorrhagic shock) mice were exposed to normobaric normoxia or hypobaric hypoxia for ∼17.5 h to test the hypothesis that hypobaric hypoxia exposure influences splenic erythropoiesis and splenic inflammation after polytrauma. This hypothesis was partially supported. The polytrauma + hypobaric hypoxia group exhibited more splenic neutrophils, fewer total spleen cells, and fewer splenic proliferating cells than the polytrauma+normobaric normoxia group; however, no splenic erythroid cell differences were detected between the two polytrauma groups. We also compared splenic erythropoiesis and myeloid cell numbers among control, muscle trauma, and polytrauma groups. More reticulocytes at 1.7 days (40 h) post-trauma (dpt) and neutrophils at 4 dpt were produced in the muscle trauma mice than corresponding control mice. In contrast to muscle trauma, polytrauma led to a reduced red blood cell count and elevated serum erythropoietin levels at 1.7 dpt. There were more erythroid subsets and apoptotic reticulocytes in the polytrauma mice than muscle trauma mice at 4 and 8 dpt. At 14 dpt, the red blood cell count of the polytrauma + normobaric normoxia mice was 12% lower than that of the control + normobaric normoxia mice; however, no difference was observed between polytrauma + hypobaric hypoxia and control + hypobaric hypoxia mice. Our findings suggest muscle trauma alone induces stress erythropoiesis; in a polytrauma model, hypobaric hypoxia exposure may result in the dysregulation of splenic cells, requiring a treatment plan to ensure adequate immune functioning.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Nursing, University of Nevada, Las Vegas, NV 89154, USA
| | - Shailey Patel
- School of Nursing, University of Nevada, Las Vegas, NV 89154, USA
| | - Julia N Soulakova
- Department of Population Health Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Charles C Caldwell
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
18
|
Mende N, Laurenti E. Hematopoietic stem and progenitor cells outside the bone marrow: where, when, and why. Exp Hematol 2021; 104:9-16. [PMID: 34687807 DOI: 10.1016/j.exphem.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Bone marrow (BM) is the primary site of adult blood production, hosting the majority of all hematopoietic stem and progenitor cells (HSPCs). Rare HSPCs are also found outside of the BM at steady state. In times of large hematopoietic demand or BM failure, substantial production of mature blood cells from HSPCs can occur in a number of tissues, in a process termed extramedullary hematopoiesis (EMH). Over the past decades, our understanding of BM hematopoiesis has advanced drastically. In contrast there has been very little focus on the study of extramedullary HSPC pools and their contributions to blood production. Here we summarize what is currently known about extramedullary HSPCs and EMH in mice and humans. We describe the evidence of existing extramedullary HSPC pools at steady state, then discuss their role in the hematopoietic stress response. We highlight that although EMH in humans is much less pronounced and likely physiologically distinct to that in mice, it can be informative about premalignant and malignant changes. Finally, we reflect on the open questions in the field and on whether a better understanding of EMH, particularly in humans, may have relevant clinical implications for hematological and nonhematological disorders.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elisa Laurenti
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Kanemasa H, Ishimura M, Eguchi K, Tanaka T, Nanishi E, Shiraishi A, Goto M, Motomura Y, Ohga S. The immunoregulatory function of peripheral blood CD71 + erythroid cells in systemic-onset juvenile idiopathic arthritis. Sci Rep 2021; 11:14396. [PMID: 34257378 PMCID: PMC8277864 DOI: 10.1038/s41598-021-93831-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
CD71+ erythroid cells (CECs) are recognized to have an immunoregulatory function via direct cell-cell interaction and soluble mediators. Circulating CECs appear in newborns or patients with hemolytic and cardiopulmonary disorders. To assess the biological role of CECs in systemic inflammation, we studied the gene expression and function in systemic-onset juvenile idiopathic arthritis (SoJIA). Peripheral blood mononuclear cells of SoJIA patients expressed upregulated erythropoiesis-related genes. It represented the largest expansion of CECs during active phase SoJIA among other inflammatory diseases. Despite the opposing roles of erythropoietin and hepcidin in erythropoiesis, both serum levels were in concert with the amounts of SoJIA-driven CECs. Circulating CECs counts in inflammatory diseases were positively correlated with the levels of C-reactive protein, IL-6, IL-18, or soluble TNF receptors. Co-culture with active SoJIA-driven CECs suppressed secretions of IL-1β, IL-6, and IL-8 from healthy donor monocytes. The top upregulated gene in SoJIA-driven CECs was ARG2 compared with CECs from cord blood controls, although cytokine production from monocytes was suppressed by co-culture, even with an arginase inhibitor. CECs are driven to the periphery during the acute phase of SoJIA at higher levels than other inflammatory diseases. Circulating CECs may control excessive inflammation via the immunoregulatory pathways, partly involving arginase-2.
Collapse
Affiliation(s)
- Hikaru Kanemasa
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masataka Ishimura
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Katsuhide Eguchi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamami Tanaka
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Etsuro Nanishi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Shiraishi
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Motohiro Goto
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Departments of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
20
|
Grzywa TM, Nowis D, Golab J. The role of CD71 + erythroid cells in the regulation of the immune response. Pharmacol Ther 2021; 228:107927. [PMID: 34171326 DOI: 10.1016/j.pharmthera.2021.107927] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Complex regulation of the immune response is necessary to support effective defense of an organism against hostile invaders and to maintain tolerance to harmless microorganisms and autoantigens. Recent studies revealed previously unappreciated roles of CD71+ erythroid cells (CECs) in regulation of the immune response. CECs physiologically reside in the bone marrow where erythropoiesis takes place. Under stress conditions, CECs are enriched in some organs outside of the bone marrow as a result of extramedullary erythropoiesis. However, the role of CECs goes well beyond the production of erythrocytes. In neonates, increased numbers of CECs contribute to their vulnerability to infectious diseases. On the other side, neonatal CECs suppress activation of immune cells in response to abrupt colonization with commensal microorganisms after delivery. CECs are also enriched in the peripheral blood of pregnant women as well as in the placenta and are responsible for the regulation of feto-maternal tolerance. In patients with cancer, anemia leads to increased frequency of CECs in the peripheral blood contributing to diminished antiviral and antibacterial immunity, as well as to accelerated cancer progression. Moreover, recent studies revealed the role of CECs in HIV and SARS-CoV-2 infections. CECs use a full arsenal of mechanisms to regulate immune response. These cells suppress proinflammatory responses of myeloid cells and T-cell proliferation by the depletion of ʟ-arginine by arginase. Moreover, CECs produce reactive oxygen species to decrease T-cell proliferation. CECs also secrete cytokines, including transforming growth factor β (TGF-β), which promotes T-cell differentiation into regulatory T-cells. Here, we comprehensively describe the role of CECs in orchestrating immune response and indicate some therapeutic approaches that might be used to regulate their effector functions in the treatment of human conditions.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Doctoral School, Medical University of Warsaw, Zwirki and Wigury 61 Street, 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland.
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Street, 02-097 Warsaw, Poland; Centre of Preclinical Research, Medical University of Warsaw, Banacha 1b Street, 02-097 Warsaw, Poland.
| |
Collapse
|
21
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
22
|
Moringa isothiocyanate-1 regulates Nrf2 and NF-κB pathway in response to LPS-driven sepsis and inflammation. PLoS One 2021; 16:e0248691. [PMID: 33793581 PMCID: PMC8016325 DOI: 10.1371/journal.pone.0248691] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
This study aims to document the dual mode of pharmacological action of moringa isothiocyanate-1 (MIC-1) derived from seeds of Moringa oleifera Lam. Oral administration of chemically stable MIC-1 (80 mg/kg) significantly reduced the expression of inflammatory markers (Tnf-α, Ifn-α, IL-1β, IL-6) in the liver, kidney, spleen, and colon and decreased spleen weight in the lipopolysaccharide (LPS)-induced sepsis / acute inflammation model in mice. Transcriptomic analysis of the effect of MIC-1 on the liver and in the LPS-induced RAW264.7 murine macrophage showed that MIC-1 decreases inflammation via inflammation, immunity, and oxidative stress pathways. These results are supported by the immunocytochemical observations that MIC-1 increased the nuclear accumulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor and decreased the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the LPS-induced macrophages. Transcriptional activation of antioxidant genes by MIC-1 translated into a reduction of reactive oxygen species (ROS) in the cytoplasm, decrease of mitochondrial superoxide content, and restoration of the mitochondrial membrane potential in the LPS-induced macrophages. Our data indicate that MIC-1 affects inflammation and oxidative stress, two key processes involved in the etiology of many chronic diseases. These effects involve upstream regulation of two key transcriptional factors regulating responses to these processes at a gene expression level.
Collapse
|
23
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
24
|
Failure of CD4 T Cell-Deficient Hosts To Control Chronic Nontyphoidal Salmonella Infection Leads to Exacerbated Inflammation, Chronic Anemia, and Altered Myelopoiesis. Infect Immun 2020; 89:IAI.00417-20. [PMID: 33046510 DOI: 10.1128/iai.00417-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Immunocompromised patients are more susceptible to recurrent nontyphoidal Salmonella (NTS) bacteremia. A key manifestation of HIV infection is the loss of CD4 T cells, which are crucial for immunity to Salmonella infection. We characterized the consequences of CD4 T cell depletion in mice where virulent Salmonella establish chronic infection, similar to chronic NTS disease in humans. Salmonella-infected, CD4-depleted 129X1/SvJ mice remained chronically colonized for at least 5 weeks, displaying increased splenomegaly and more severe splenitis than infected mice with CD4 T cells. Mature erythrocytes, immature erythroid cells, and phagocytes accounted for the largest increase in splenic cellularity. Anemia, which is associated with increased mortality in Salmonella-infected humans, was exacerbated by CD4 depletion in infected mice and was accompanied by increased splenic sequestration of erythrocytes and fewer erythropoietic elements in the bone marrow, despite significantly elevated levels of circulating erythropoietin. Splenic sequestration of red blood cells, the appearance of circulating poikilocytes, and elevated proinflammatory cytokines suggest inflammation-induced damage to erythrocytes contributes to anemia and splenic retention of damaged cells in infected animals. Depleting CD4 T cells led to increased myeloid cells in peripheral blood, spleen, and bone marrow, as well as expansion of CD8 T cells, which has been observed in CD4-depleted humans. This work describes a mouse model of Salmonella infection that recapitulates several aspects of human disease and will allow us to investigate the interplay of innate and adaptive immune functions with chronic inflammation, anemia, and susceptibility to Salmonella infection.
Collapse
|
25
|
Rinchai D, Altman MC, Konza O, Hässler S, Martina F, Toufiq M, Garand M, Kabeer BSA, Palucka K, Mejias A, Ramilo O, Bedognetti D, Mariotti‐Ferrandiz E, Klatzmann D, Chaussabel D. Definition of erythroid cell-positive blood transcriptome phenotypes associated with severe respiratory syncytial virus infection. Clin Transl Med 2020; 10:e244. [PMID: 33377660 PMCID: PMC7733317 DOI: 10.1002/ctm2.244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
Biomarkers to assess the risk of developing severe respiratory syncytial virus (RSV) infection are needed. We conducted a meta-analysis of 490 unique profiles from six public RSV blood transcriptome datasets. A repertoire of 382 well-characterized transcriptional modules was used to define dominant host responses to RSV infection. The consolidated RSV cohort was stratified according to four traits: "interferon response" (IFN), "neutrophil-driven inflammation" (Infl), "cell cycle" (CC), and "erythrocytes" (Ery). We identified eight prevalent blood transcriptome phenotypes, of which three Ery+ phenotypes comprised higher proportions of patients requiring intensive care. This finding confirms on a larger scale data from one of our earlier reports describing an association between an erythrocyte signature and RSV disease severity. Further contextual interpretation made it possible to associate this signature with immunosuppressive states (late stage cancer, pharmacological immunosuppression), and with a population of fetal glycophorin A+ erythroid precursors. Furthermore, we posit that this erythrocyte cell signature may be linked to a population of immunosuppressive erythroid cells previously described in the literature, and that overabundance of this cell population in RSV patients may underlie progression to severe disease. These findings outline potential priority areas for biomarker development and investigations into the immune biology of RSV infection. The approach that we developed and employed here should also permit to delineate prevalent blood transcriptome phenotypes in other settings.
Collapse
Affiliation(s)
| | - Matthew C. Altman
- Benaroya Research InstituteSeattleWashington
- University of WashingtonSeattleWashington
| | - Oceane Konza
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Signe Hässler
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | - Federica Martina
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
| | | | | | | | | | - Asuncion Mejias
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Octavio Ramilo
- Division of Infectious DiseasesNationwide Children's HospitalColumbusOhio
| | - Davide Bedognetti
- Sidra MedicineDohaQatar
- Department of Internal Medicine and Medical SpecialtiesUniversity of GenoaGenoaItaly
| | | | - David Klatzmann
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (i2B)AP‐HP, Hôpital Pitié‐SalpêtrièreParisFrance
- Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéINSERMParisFrance
| | | |
Collapse
|
26
|
Sano Y, Yoshida T, Choo MK, Jiménez-Andrade Y, Hill KR, Georgopoulos K, Park JM. Multiorgan Signaling Mobilizes Tumor-Associated Erythroid Cells Expressing Immune Checkpoint Molecules. Mol Cancer Res 2020; 19:507-515. [PMID: 33234577 DOI: 10.1158/1541-7786.mcr-20-0746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Hematopoietic-derived cells are integral components of the tumor microenvironment and serve as critical mediators of tumor-host interactions. Host cells derived from myeloid and lymphoid lineages perform well-established functions linked to cancer development, progression, and response to therapy. It is unclear whether host erythroid cells also contribute to shaping the path that cancer can take, but emerging evidence points to this possibility. Here, we show that tumor-promoting environmental stress and tumor-induced hemodynamic changes trigger renal erythropoietin production and erythropoietin-dependent expansion of splenic erythroid cell populations in mice. These erythroid cells display molecular features indicative of an immature erythroid phenotype, such as the expression of both CD71 and TER119 and the retention of intact nuclei, and express genes encoding immune checkpoint molecules. Nucleated erythroid cells with similar properties are present in mouse and human tumor tissues. Antibody-mediated erythropoietin blockade reduces tumor-responsive erythroid cell induction and tumor growth. These findings reveal the potential of tumor-induced erythropoietin and erythroid cells as targets for cancer treatment. IMPLICATIONS: : Our study identifies erythropoietin and erythroid cells as novel players in tumor-host interactions and highlights the involvement of multiorgan signaling events in their induction in response to environmental stress and tumor growth.
Collapse
Affiliation(s)
- Yasuyo Sano
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Kathryn R Hill
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
27
|
Jing W, Guo X, Qin F, Li Y, Wang G, Bi Y, Jin X, Han L, Dong X, Zhao Y. G-CSF shifts erythropoiesis from bone marrow into spleen in the setting of systemic inflammation. Life Sci Alliance 2020; 4:4/1/e202000737. [PMID: 33234677 PMCID: PMC7723243 DOI: 10.26508/lsa.202000737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
The anemia of inflammation is related in part to abnormal erythropoiesis in bone marrow. G-CSF regulates granulopoiesis and is increased during systemic inflammation. Here, we have showed that high levels of G-CSF are associated with repression of bone marrow erythropoiesis and expansion of splenic erythropoiesis in Escherichia coli-infected mice and lipopolysaccharide-treated mice. Under lipopolysaccharide-induced systemic inflammatory conditions in mice, G-CSF neutralization with antibody alleviated the blockage of bone marrow erythropoiesis, prevented the enhancement of splenic erythropoiesis, ameliorated splenomegaly, and reduced the brittleness of spleen. We further demonstrated that after lipopolysaccharide treatment, TLR4-knockout mice display low levels of G-CSF, healthy bone marrow erythropoiesis, almost no stress erythropoiesis in the spleen, and normal size and toughness of spleen. In addition, we found HIF-mediated erythropoietin production is essential for splenic erythropoiesis in the setting of G-CSF-induced suppression of bone marrow erythropoiesis. Our findings identify G-CSF as a critical mediator of inflammation-associated erythropoiesis dysfunction in bone marrow and offer insight into the mechanism of G-CSF-induced splenic erythropoiesis. We provide experimentally significant dimension to the biology of G-CSF.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xing Guo
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Qin
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ganyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxuan Bi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xing Jin
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lihui Han
- Department of Immunology, Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyuan Dong
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China .,Department of Immunology, Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
28
|
Bisht K, Tay J, Wellburn RN, McGirr C, Fleming W, Nowlan B, Barbier V, Winkler IG, Levesque JP. Bacterial Lipopolysaccharides Suppress Erythroblastic Islands and Erythropoiesis in the Bone Marrow in an Extrinsic and G- CSF-, IL-1-, and TNF-Independent Manner. Front Immunol 2020; 11:583550. [PMID: 33123170 PMCID: PMC7573160 DOI: 10.3389/fimmu.2020.583550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Anemia of inflammation (AI) is the second most prevalent anemia after iron deficiency anemia and results in persistent low blood erythrocytes and hemoglobin, fatigue, weakness, and early death. Anemia of inflammation is common in people with chronic inflammation, chronic infections, or sepsis. Although several studies have reported the effect of inflammation on stress erythropoiesis and iron homeostasis, the mechanisms by which inflammation suppresses erythropoiesis in the bone marrow (BM), where differentiation and maturation of erythroid cells from hematopoietic stem cells (HSCs) occurs, have not been extensively studied. Here we show that in a mouse model of acute sepsis, bacterial lipopolysaccharides (LPS) suppress medullary erythroblastic islands (EBIs) and erythropoiesis in a TLR-4- and MyD88-dependent manner with concomitant mobilization of HSCs. LPS suppressive effect on erythropoiesis is indirect as erythroid progenitors and erythroblasts do not express TLR-4 whereas EBI macrophages do. Using cytokine receptor gene knock-out mice LPS-induced mobilization of HSCs is G-CSF-dependent whereas LPS-induced suppression of medullary erythropoiesis does not require G- CSF-, IL- 1-, or TNF-mediated signaling. Therefore suppression of medullary erythropoiesis and mobilization of HSCs in response to LPS are mechanistically distinct. Our findings also suggest that EBI macrophages in the BM may sense innate immune stimuli in response to acute inflammation or infections to rapidly convert to a pro-inflammatory function at the expense of their erythropoietic function.
Collapse
Affiliation(s)
- Kavita Bisht
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Joshua Tay
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Rebecca N Wellburn
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Crystal McGirr
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Valerie Barbier
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
29
|
Paulson RF, Hariharan S, Little JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol 2020; 89:43-54.e2. [PMID: 32750404 DOI: 10.1016/j.exphem.2020.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Steady-state erythropoiesis generates new erythrocytes at a constant rate, and it has enormous productive capacity. This production is balanced by the removal of senescent erythrocytes by macrophages in the spleen and liver. Erythroid homeostasis is highly regulated to maintain sufficient erythrocytes for efficient oxygen delivery to the tissues, while avoiding viscosity problems associated with overproduction. However, there are times when this constant production of erythrocytes is inhibited or is inadequate; at these times, erythroid output is increased to compensate for the loss of production. In some cases, increased steady-state erythropoiesis can offset the loss of erythrocytes but, in response to inflammation caused by infection or tissue damage, steady-state erythropoiesis is inhibited. To maintain homeostasis under these conditions, an alternative stress erythropoiesis pathway is activated. Emerging data suggest that the bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis pathway is integrated into the inflammatory response and generates a bolus of new erythrocytes that maintain homeostasis until steady-state erythropoiesis can resume. In this perspective, we define the mechanisms that generate new erythrocytes when steady-state erythropoiesis is impaired and discuss experimental models to study human stress erythropoiesis.
Collapse
Affiliation(s)
- Robert F Paulson
- Center for Molecular Immunology and Infectious Disease and the Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA; Intercollege Graduate Program in Genetics, Penn State University, University Park, PA.
| | - Sneha Hariharan
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA
| | - Jane A Little
- Department of Medicine, University of North Carolina Comprehensive Sickle Cell Disease Program, Chapel Hill, NC
| |
Collapse
|
30
|
Einwächter H, Heiseke A, Schlitzer A, Gasteiger G, Adler H, Voehringer D, Manz MG, Ruzsics Z, Dölken L, Koszinowski UH, Sparwasser T, Reindl W, Jordan S. The Innate Immune Response to Infection Induces Erythropoietin-Dependent Replenishment of the Dendritic Cell Compartment. Front Immunol 2020; 11:1627. [PMID: 32849551 PMCID: PMC7411349 DOI: 10.3389/fimmu.2020.01627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DC) play a key role in the adaptive immune response due to their ability to present antigens and stimulate naïve T cells. Many bacteria and viruses can efficiently target DC, resulting in impairment of their immunostimulatory function or elimination. Hence, the DC compartment requires replenishment following infection to ensure continued operational readiness of the adaptive immune system. Here, we investigated the molecular and cellular mechanisms of inflammation-induced DC generation. We found that infection with viral and bacterial pathogens as well as Toll-like receptor 9 (TLR9) ligation with CpG-oligodeoxynucleotide (CpG-ODN) expanded an erythropoietin (EPO)-dependent TER119+CD11a+ cell population in the spleen that had the capacity to differentiate into TER119+CD11chigh and TER119-CD11chigh cells both in vitro and in vivo. TER119+CD11chigh cells contributed to the conventional DC pool in the spleen and specifically increased in lymph nodes draining the site of local inflammation. Our results reveal a so far undescribed inflammatory EPO-dependent pathway of DC differentiation and establish a mechanistic link between innate immune recognition of potential immunosuppressive pathogens and the maintenance of the DC pool during and after infection.
Collapse
Affiliation(s)
- Henrik Einwächter
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Heiseke
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Georg Gasteiger
- Institute of Systems Immunology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany.,German Center of Lung Research (DZL), Giessen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Nürnberg, Erlangen, Germany
| | - Markus G Manz
- Division of Hematology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ulrich H Koszinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medicine Mainz, Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Wolfgang Reindl
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Stefan Jordan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| |
Collapse
|
31
|
Brito MAM, Baro B, Raiol TC, Ayllon-Hermida A, Safe IP, Deroost K, Figueiredo EFG, Costa AG, Armengol MDP, Sumoy L, Almeida ACG, Hounkpe BW, De Paula EV, Fernandez-Becerra C, Monteiro WM, Del Portillo HA, Lacerda MVG. Morphological and Transcriptional Changes in Human Bone Marrow During Natural Plasmodium vivax Malaria Infections. J Infect Dis 2020; 225:1274-1283. [PMID: 32556188 PMCID: PMC8974851 DOI: 10.1093/infdis/jiaa177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background The presence of Plasmodium vivax malaria parasites in the human bone marrow (BM) is still controversial. However, recent data from a clinical case and experimental infections in splenectomized nonhuman primates unequivocally demonstrated the presence of parasites in this tissue. Methods In the current study, we analyzed BM aspirates of 7 patients during the acute attack and 42 days after drug treatment. RNA extracted from CD71+ cell suspensions was used for sequencing and transcriptomic analysis. Results We demonstrated the presence of parasites in all patients during acute infections. To provide further insights, we purified CD71+ BM cells and demonstrated dyserythropoiesis and inefficient erythropoiesis in all patients. In addition, RNA sequencing from 3 patients showed that genes related to erythroid maturation were down-regulated during acute infections, whereas immune response genes were up-regulated. Conclusions This study thus shows that during P. vivax infections, parasites are always present in the BM and that such infections induced dyserythropoiesis and ineffective erythropoiesis. Moreover, infections induce transcriptional changes associated with such altered erythropoietic response, thus highlighting the importance of this hidden niche during natural infections.
Collapse
Affiliation(s)
- Marcelo A M Brito
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Bàrbara Baro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Tainá C Raiol
- Fiocruz Brasilia, Oswaldo Cruz Foundation, Brasilia, Brazil
| | | | - Izabella P Safe
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Katrien Deroost
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Erick F G Figueiredo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Allyson G Costa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Maria Del P Armengol
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lauro Sumoy
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Anne C G Almeida
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Erich V De Paula
- University of Campinas, Campinas, São Paulo, Brazil.,Hematology and Hemotherapy Foundation from Amazonas State, Manaus, Amazonas, Brazil
| | - Cármen Fernandez-Becerra
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| |
Collapse
|
32
|
Gomes AC, Saraiva M, Gomes MS. The bone marrow hematopoietic niche and its adaptation to infection. Semin Cell Dev Biol 2020; 112:37-48. [PMID: 32553581 DOI: 10.1016/j.semcdb.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
33
|
Shim YA, Campbell T, Weliwitigoda A, Dosanjh M, Johnson P. Regulation of CD71 +TER119 + erythroid progenitor cells by CD45. Exp Hematol 2020; 86:53-66.e1. [PMID: 32450207 DOI: 10.1016/j.exphem.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022]
Abstract
Red blood cells are generated daily to replenish dying cells and maintain erythrocyte homeostasis. Erythropoiesis is driven by erythropoietin and supported by specialized red pulp macrophages that facilitate enucleation. Here we show that the leukocyte-specific tyrosine phosphatase CD45 is downregulated in late erythroid development, yet it regulates the CD71+TER119+ progenitor pool, which includes the Pro E, Ery A, and Ery B populations. The CD71+TER119+ progenitors are a major splenic population in neonates required for extramedullary erythropoiesis, to meet the high demand for red blood cells during growth. This population decreases as the mice mature, but this was not the case in CD45-deficient mice, which maintained a high level of these progenitors in the spleen into adulthood. Despite these increased erythroid progenitors, CD45-deficient mice had normal numbers of mature red blood cells. This was attributed to the increased proliferation of the Pro E and Ery A populations and the increased apoptosis of the CD71+TER119+ population, as well as an increased turnover of circulating red blood cells. The expansion of the CD71+TER119+ population in the absence of CD45 was attributed to increased numbers of red pulp macrophages producing erythropoietin in the spleen. Thus, CD45 regulates extramedullary erythropoiesis in the spleen.
Collapse
Affiliation(s)
- Yaein A Shim
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Campbell
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Asanga Weliwitigoda
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Stress Erythropoiesis is a Key Inflammatory Response. Cells 2020; 9:cells9030634. [PMID: 32155728 PMCID: PMC7140438 DOI: 10.3390/cells9030634] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Bone marrow medullary erythropoiesis is primarily homeostatic. It produces new erythrocytes at a constant rate, which is balanced by the turnover of senescent erythrocytes by macrophages in the spleen. Despite the enormous capacity of the bone marrow to produce erythrocytes, there are times when it is unable to keep pace with erythroid demand. At these times stress erythropoiesis predominates. Stress erythropoiesis generates a large bolus of new erythrocytes to maintain homeostasis until steady state erythropoiesis can resume. In this review, we outline the mechanistic differences between stress erythropoiesis and steady state erythropoiesis and show that their responses to inflammation are complementary. We propose a new hypothesis that stress erythropoiesis is induced by inflammation and plays a key role in maintaining erythroid homeostasis during inflammatory responses.
Collapse
|
35
|
Gu X, Ma Z, Fang J, Cai D, Zuo Z, Liang S, Cui H, Deng J, Ma X, Ren Z, Geng Y, Zhang M, Ye G, Xie Y, Gou L, Hu Y. Obesity Enhances Antioxidant Capacity and Reduces Cytokine Levels of the Spleen in Mice to Resist Splenic Injury Challenged by Escherichia coli. J Immunol Res 2020; 2020:5948256. [PMID: 32104715 PMCID: PMC7036121 DOI: 10.1155/2020/5948256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Obese mice exhibited more lymphocytes in the bronchoalveolar lavage fluid and milder lung injury after Escherichia coli (E. coli) infection. However, it remained unclear whether the spleen contributed to the effect of obese mice with infection. The study was purposed to reveal the histopathological changes of the spleen caused by oxidative stress and inflammation in diet-induced obesity (DIO) mice challenged by Escherichia coli. After infection, the spleen tissues were obtained in normal and DIO mice at 0 h (uninfected), 12 h, 24 h, and 72 h postinfection. Results revealed that DIO mice have higher contents of resistin, TNF-α, IL-6, and IL-1β in the spleen than normal mice and lower concentrations of GSH-Px, SOD, and CAT and higher MDA than normal mice. After an intranasal drip of E. coli, the activities of GSH-Px, SOD, and CAT in the DIO mice were elevated and the content of MDA declined. The activities of SOD and CAT in the normal mice declined, and the content of MDA was elevated. Moreover, the contents of TNF-α, IL-6, and IL-1β in the spleen declined in DIO mice at 24 and 72 h, although the contents of leptin, resistin, TNF-α, IL-6, and IL-1β were elevated at 12 h. The contents of resistin, TNF-α, IL-6, and IL-1β were elevated in normal mice at 12 and 24 h. Those results indicated that obesity elevated splenic oxidation and inflammatory levels, but it enhanced antioxidant capacity and reduced cytokine levels of the spleen in mice to resist splenic injury after an intranasal drip of E. coli.
Collapse
Affiliation(s)
- Xuchu Gu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Zhiyu Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Shuang Liang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu Sichuan Province 611130, China
| |
Collapse
|
36
|
Li N, Pang B, Liu G, Zhao X, Xu X, Jiang C, Yang B, Liu Y, Shi J. Lactobacillus rhamnosus from human breast milk shows therapeutic function against foodborne infection by multi-drug resistant Escherichia coli in mice. Food Funct 2020; 11:435-447. [DOI: 10.1039/c9fo01698h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactobacillus rhamnosus shows higher therapeutic efficacy than antibiotic to treat drug-resistant E. coli infection in aspects of fast reducing coliform counts, increasing Lactobacillus amounts, and diminishing inflammation.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Baowei Yang
- College of Food Science and Engineering
- Yangling
- China
| | - Yanlin Liu
- College of Enology
- Northwest A&F University
- Yangling
- China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
37
|
Bennett LF, Liao C, Quickel MD, Yeoh BS, Vijay-Kumar M, Hankey-Giblin P, Prabhu KS, Paulson RF. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal 2019; 12:12/598/eaap7336. [PMID: 31506384 DOI: 10.1126/scisignal.aap7336] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation alters bone marrow hematopoiesis to favor the production of innate immune effector cells at the expense of lymphoid cells and erythrocytes. Furthermore, proinflammatory cytokines inhibit steady-state erythropoiesis, which leads to the development of anemia in diseases with chronic inflammation. Acute anemia or hypoxic stress induces stress erythropoiesis, which generates a wave of new erythrocytes to maintain erythroid homeostasis until steady-state erythropoiesis can resume. Although hypoxia-dependent signaling is a key component of stress erythropoiesis, we found that inflammation also induced stress erythropoiesis in the absence of hypoxia. Using a mouse model of sterile inflammation, we demonstrated that signaling through Toll-like receptors (TLRs) paradoxically increased the phagocytosis of erythrocytes (erythrophagocytosis) by macrophages in the spleen, which enabled expression of the heme-responsive gene encoding the transcription factor SPI-C. Increased amounts of SPI-C coupled with TLR signaling promoted the expression of Gdf15 and Bmp4, both of which encode ligands that initiate the expansion of stress erythroid progenitors (SEPs) in the spleen. Furthermore, despite their inhibition of steady-state erythropoiesis in the bone marrow, the proinflammatory cytokines TNF-α and IL-1β promoted the expansion and differentiation of SEPs in the spleen. These data suggest that inflammatory signals induce stress erythropoiesis to maintain erythroid homeostasis when inflammation inhibits steady-state erythropoiesis.
Collapse
Affiliation(s)
- Laura F Bennett
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA.,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Clinical and Translational Science Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Beng San Yeoh
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA.,Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA
| | - Pamela Hankey-Giblin
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA.,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| | - Robert F Paulson
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA. .,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
38
|
Li Y, Yue H, Yang S, Yuan D, Li L, Zhao J, Zhao L. Splenomegaly induced by anemia impairs T cell movement in the spleen partially via EPO. Mol Immunol 2019; 112:399-405. [PMID: 31299495 DOI: 10.1016/j.molimm.2019.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
The spleen is an important secondary lymph organ. Splenomegaly induced by anemia could affect the function of spleen in immune responses. We observe that anemia induced in mice with reduced peripheral T cell trafficking to the spleen T cell zones as well as CCL21 and CCL19 expression. In accordance with previous research, we found that the production of EPO in the mice kidney was sharply increased post anemia. In addition, mice were injected with different doses of EPO. Our results show that with the increased dosage of EPO, the chemokine expression in the spleen is lowered with a decrease in peripheral T cell homing to the spleen T cell zones. At last, our results show that the anemia mice model administrated with anti-EPO antibody had a higher expression of spleen CCL19 and CCL21 and an increased count of periphery T cells trafficking to spleen T cell zones at day 3 post induction. These data indicate that anemia could disturb T cell movement in the spleen, which might further affect T cell immune response, with partial involvement of EPO.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Honggang Yue
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Shouyan Yang
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Dandi Yuan
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Luxia Li
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Lintao Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| |
Collapse
|
39
|
Al-Quraishy S, Dkhil MA, Al-Shaebi EM, Abdel-Baki AAS, Araúzo-Bravo MJ, Delic D, Wunderlich F. Gene expression of the liver of vaccination-protected mice in response to early patent infections of Plasmodium chabaudi blood-stage malaria. Malar J 2018; 17:215. [PMID: 29843710 PMCID: PMC5975554 DOI: 10.1186/s12936-018-2366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the liver for survival of blood-stage malaria is only poorly understood. In experimental blood-stage malaria with Plasmodium chabaudi, protective vaccination induces healing and, thus, survival of otherwise lethal infections. This model is appropriate to study the role of the liver in vaccination-induced survival of blood-stage malaria. METHODS Female Balb/c mice were vaccinated with a non-infectious vaccine consisting of plasma membranes isolated in the form of erythrocyte ghosts from P. chabaudi-infected erythrocytes at week 3 and week 1 before infection with P. chabaudi blood-stage malaria. Gene expression microarrays and quantitative real-time PCR were used to investigate the response of the liver, in terms of expression of mRNA and long intergenic non-coding (linc)RNA, to vaccination-induced healing infections and lethal P. chabaudi malaria at early patency on day 4 post infection, when parasitized erythrocytes begin to appear in peripheral blood. RESULTS In vaccination-induced healing infections, 23 genes were identified to be induced in the liver by > tenfold at p < 0.01. More than one-third were genes known to be involved in erythropoiesis, such as Kel, Rhag, Ahsp, Ermap, Slc4a1, Cldn13 Gata1, and Gfi1b. Another group of > tenfold expressed genes include genes involved in natural cytotoxicity, such as those encoding killer cell lectin-like receptors Klrb1a, Klrc3, Klrd1, the natural cytotoxicity-triggering receptor 1 Ncr1, as well as the granzyme B encoding Gzmb. Additionally, a series of genes involved in the control of cell cycle and mitosis were identified: Ccnb1, Cdc25c, Ckap2l were expressed > tenfold only in vaccination-protected mice, and the expression of 22 genes was at least 100% higher in vaccination-protected mice than in non-vaccinated mice. Furthermore, distinct lincRNA species were changed by > threefold in livers of vaccination-protected mice, whereas lethal malaria induced different lincRNAs. CONCLUSION The present data suggest that protective vaccination accelerates the malaria-induced occurrence of extramedullary erythropoiesis, generation of liver-resident cytotoxic cells, and regeneration from malaria-induced injury in the liver at early patency, which may be critical for final survival of otherwise lethal blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - E M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Abdel-Azeem S Abdel-Baki
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Denis Delic
- Boehringer-Ingelheim Pharma, Biberach, Germany
| | - Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
40
|
Guerra PR, Herrero-Fresno A, Pors SE, Ahmed S, Wang D, Thøfner I, Antenucci F, Olsen JE. The membrane transporter PotE is required for virulence in avian pathogenic Escherichia coli (APEC). Vet Microbiol 2018. [PMID: 29519523 DOI: 10.1016/j.vetmic.2018.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last few years, polyamines have been described as key-signal of virulence in pathogenic bacteria. In the current study, we investigated whether the knockout of genes related to polyamine biosynthesis and putrescine transport affected the virulence of an avian pathogenic E. coli (APEC) strain. One-week-old White Leghorn chickens were infected intratracheally with mutants in polyamine biosynthesis (ΔspeB/C and ΔspeD/E) and transport genes (ΔpotE) of a well-characterized APEC strain of ST117 (O83: H4). All polyamine mutants and the wild-type strain were able to infect chicken; however, we observed significantly fewer lesions in the lungs of the chickens infected with the polyamine mutants in comparison with chicken infected with the wild-type. Results derived from histology of infected lungs detected significantly fewer lesions in the lung of birds infected within particular the putrescine transport mutant (ΔpotE). A decrease in colonization levels was observed in the liver and spleen of birds infected with the putrescine biosynthesis mutant ΔspeB/C, and likewise, a decrease of the colonization levels of all organs from birds infected with the ΔpotE was detected. Together, our data demonstrate that the deletion of polyamine genes, and in particular the PotE membrane protein, attenuates the virulence of APEC during infection of chickens.
Collapse
Affiliation(s)
- Priscila Regina Guerra
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Susanne Elisabeth Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Shahana Ahmed
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dan Wang
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ida Thøfner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Fabio Antenucci
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
41
|
Willemetz A, Beatty S, Richer E, Rubio A, Auriac A, Milkereit RJ, Thibaudeau O, Vaulont S, Malo D, Canonne-Hergaux F. Iron- and Hepcidin-Independent Downregulation of the Iron Exporter Ferroportin in Macrophages during Salmonella Infection. Front Immunol 2017; 8:498. [PMID: 28507548 PMCID: PMC5410627 DOI: 10.3389/fimmu.2017.00498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Retention of iron in tissue macrophages via upregulation of hepcidin (HAMP) and downregulation of the iron exporter ferroportin (FPN) is thought to participate in the establishment of anemia of inflammation after infection. However, an upregulation of FPN has been proposed to limit macrophages iron access to intracellular pathogens. Therefore, we studied the iron homeostasis and in particular the regulation of FPN after infection with Salmonella enterica serovar Typhimurium in mice presenting tissue macrophages with high iron (AcB61), basal iron (A/J and wild-type mice), or low iron (Hamp knock out, Hamp-/-) levels. The presence of iron in AcB61 macrophages due to extravascular hemolysis and strong erythrophagocytosis activity favored the proliferation of Salmonella in the spleen and liver with a concomitant decrease of FPN protein expression. Despite systemic iron overload, no or slight increase in Salmonella burden was observed in Hamp-/- mice compared to controls. Importantly, FPN expression at both mRNA and protein levels was strongly decreased during Salmonella infection in Hamp-/- mice. The repression of Fpn mRNA was also observed in Salmonella-infected cultured macrophages. In addition, the downregulation of FPN was associated with decreased iron stores in both the liver and spleen in infected mice. Our findings show that during Salmonella infection, FPN is repressed through an iron and hepcidin-independent mechanism. Such regulation likely provides the cellular iron indispensable for the growth of Salmonella inside the macrophages.
Collapse
Affiliation(s)
- Alexandra Willemetz
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France
| | - Sean Beatty
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Etienne Richer
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Aude Rubio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Anne Auriac
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Ruth J Milkereit
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - Olivier Thibaudeau
- Anatomie-Cytologie Pathologiques, CHU Bichat-Claude Bernard, Paris, France
| | | | - Danielle Malo
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, Montréal, QC, Canada
| | - François Canonne-Hergaux
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique - UPR 2301, Gif-sur-Yvette, France.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
42
|
Low-dose erythropoietin treatment is not associated with clinical benefits in severely anaemic Jehovah's Witnesses: a plea for a change. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 16:53-62. [PMID: 27893353 DOI: 10.2450/2016.0085-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/19/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Jehovah's Witnesses who refuse blood transfusion have high mortality. Erythropoietin (EPO) has been used as an alternative to blood transfusion. The optimal dosing of EPO in anaemic Jehovah's Witnesses is unknown. The aim of our study was to evaluate the clinical benefits of treatment with a low dose (<600 IU/kg/week) of epoietin beta (EPO-β). MATERIALS AND METHODS This was an observational study, retrospectively considering a 10-year period during which 3,529 adult Jehovah's Witnesses with a total of 10,786 hospital admissions were identified from databases of four major public hospitals in New Zealand. Patients with severe symptomatic anaemia (haemoglobin <80 g/L) who were unable to tolerate physical activity were included in the study. Patients treated without EPO were assigned to the conventional therapy group and those treated with EPO to the EPO treatment group. RESULTS Ninety-one Jehovah's Witnesses met the eligibility criteria. Propensity score matching yielded a total of 57 patients. Patients treated with conventional therapy and those treated with EPO had similar durations of severe anaemia (average difference 6.25 days, 95% confidence interval [CI]: -3.77-16.27 days; p=0.221). The mortality rate among Jehovah's Witnesses treated with conventional therapy was 4.68 per year (95% CI: 2.23-9.82), while that in those treated with EPO was 2.77 per year (95% CI: 0.89-8.60). Treatment with EPO was associated with a mortality ratio of 0.59 (95% CI: 0.1-2.6; p=0.236). Both groups of patients had similar in-hospital survival (p=0.703). DISCUSSION Treatment with low-dose EPO-β was not associated with either shorter duration of severe anaemia or a reduction in mortality.
Collapse
|
43
|
Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infect Immun 2016; 84:2833-41. [PMID: 27456828 PMCID: PMC5038055 DOI: 10.1128/iai.00337-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Salmonella infection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact of Salmonella infection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent of Salmonella pathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice following Salmonella infection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect of Salmonella infection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.
Collapse
|
44
|
Frey H, Moreth K, Hsieh LTH, Zeng-Brouwers J, Rathkolb B, Fuchs H, Gailus-Durner V, Iozzo RV, de Angelis MH, Schaefer L. A novel biological function of soluble biglycan: Induction of erythropoietin production and polycythemia. Glycoconj J 2016; 34:393-404. [DOI: 10.1007/s10719-016-9722-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022]
|
45
|
Hitchcock JR, Cook CN, Bobat S, Ross EA, Flores-Langarica A, Lowe KL, Khan M, Dominguez-Medina CC, Lax S, Carvalho-Gaspar M, Hubscher S, Rainger GE, Cobbold M, Buckley CD, Mitchell TJ, Mitchell A, Jones ND, Van Rooijen N, Kirchhofer D, Henderson IR, Adams DH, Watson SP, Cunningham AF. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015; 125:4429-46. [PMID: 26571395 DOI: 10.1172/jci79070] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2015] [Indexed: 01/13/2023] Open
Abstract
Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin-like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI-mediated (GPVI-mediated) platelet activation. After infection, IFN-γ release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-γ, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding.
Collapse
|
46
|
Rosche KL, Aljasham AT, Kipfer JN, Piatkowski BT, Konjufca V. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen. PLoS One 2015; 10:e0130092. [PMID: 26068006 PMCID: PMC4466801 DOI: 10.1371/journal.pone.0130092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 05/15/2015] [Indexed: 10/30/2022] Open
Abstract
Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.
Collapse
Affiliation(s)
- Kristin L Rosche
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Alanoud T Aljasham
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - James N Kipfer
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Bryan T Piatkowski
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Vjollca Konjufca
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
47
|
Increased ferroportin-1 expression and rapid splenic iron loss occur with anemia caused by Salmonella enterica Serovar Typhimurium infection in mice. Infect Immun 2015; 83:2290-9. [PMID: 25824831 DOI: 10.1128/iai.02863-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-γ) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-α]) and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.
Collapse
|
48
|
Chiu SC, Liu HH, Chen CL, Chen PR, Liu MC, Lin SZ, Chang KT. Extramedullary hematopoiesis (EMH) in laboratory animals: offering an insight into stem cell research. Cell Transplant 2015; 24:349-66. [PMID: 25646951 DOI: 10.3727/096368915x686850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) is a pathological process secondary to underlying bone marrow (BM) insufficiency in adults. It is characterized by the emergence of multipotent hematopoietic progenitors scattered around the affected tissue, most likely in the spleen, liver, and lymph node, etc. EMH in patients frequently receives less medical attention and is neglected unless a compressive or obstructive hematopoietic mass appears to endanger the patient's life. However, on a biological basis, EMH reflects the alteration of relationships among hematopoietic stem and progenitor cells (HSPCs) and their original and new microenvironments. The ability of hematopoietic stem cells (HSCs) to mobilize from the bone marrow and to accommodate and function in extramedullary tissues is rather complicated and far from our current understanding. Fortunately, many reports from the studies of drugs and genetics using animals have incidentally found EMH to be involved. Thereby, the molecular basis of EMH could further be elucidated from those animals after cross-comparison. A deeper understanding of the extramedullary hematopoietic niche could help expand stem cells in vitro and establish a better treatment in patients for stem cell transplantation.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Salmonella are a common source of food- or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of host immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T- and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection, but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens.
Collapse
Affiliation(s)
- Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
50
|
Ross EA, Flores-Langarica A, Bobat S, Coughlan RE, Marshall JL, Hitchcock JR, Cook CN, Carvalho-Gaspar MM, Mitchell AM, Clarke M, Garcia P, Cobbold M, Mitchell TJ, Henderson IR, Jones ND, Anderson G, Buckley CD, Cunningham AF. Resolving Salmonella infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function. Eur J Immunol 2014; 44:2318-30. [PMID: 24825601 PMCID: PMC4209805 DOI: 10.1002/eji.201344350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4(+) T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼ 30-fold increase in Sca-1(hi) progenitors and a corresponding loss of Sca-1(lo/int) subsets. Most strikingly, the capacity of donor Sca-1(hi) cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1(hi) c-kit(int) cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging.
Collapse
Affiliation(s)
- Ewan A Ross
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adriana Flores-Langarica
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Saeeda Bobat
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ruth E Coughlan
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jennifer L Marshall
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Jessica R Hitchcock
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Charlotte N Cook
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Manuela M Carvalho-Gaspar
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Andrea M Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mary Clarke
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Paloma Garcia
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Mark Cobbold
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Tim J Mitchell
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Ian R Henderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Nick D Jones
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Christopher D Buckley
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, Institute for Microbiology and Infection, School of Immunity and Infection, Institute for Biomedical Research, Medical School, University of BirminghamEdgbaston, Birmingham, UK
| |
Collapse
|