1
|
Kübelbeck T, Wichmann NO, Raj T, Raj C, Ohnmacht C, Hövelmeyer N, Kramer D, Heissmeyer V. Regulation and Function of the Atypical IκBs-Bcl-3, IκB NS, and IκBζ-in Lymphocytes and Autoimmunity. Eur J Immunol 2025; 55:e202451273. [PMID: 40359334 DOI: 10.1002/eji.202451273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Signaling pathways involving NF-κB transcription factors have essential roles in inflammation, immunity, cell proliferation, differentiation, and survival. Classical IκB proteins, such as IκBα and IκBβ, bind to NF-κB via ankyrin repeats to sequester NF-κB in the cytoplasm and thus suppress NF-κB activity. Unlike these constitutively expressed classical IκBs, the expression of the atypical IκBs Bcl-3, IκBNS, and IκBζ is induced in immune cells after recognition of antigens, pathogen-associated molecular patterns (PAMPs) or cytokines, upon which they localize to the nucleus and form complexes with transcription factors and regulators on the DNA. Atypical, nuclear IκBs have been proposed to modulate NF-κB activity in a context-dependent manner as they can either inhibit or increase gene expression of a subset of NF-κB target genes. This complexity may be related to the molecular function of atypical IκBs, which bind to different transcription factor complexes and form a bridge to different cofactors or epigenetic modifiers. Recent research has identified novel target genes of atypical IκBs that include chemokines, cytokines, and master regulators of lymphocyte differentiation, underscoring prominent roles in adaptive immune and autoimmune responses. Here, we summarize our current understanding of atypical IκBs in lymphocytes with a focus on their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Tanja Kübelbeck
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Nina Olivera Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Zentrum München, Munich, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Cynthia Raj
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Zentrum München, Munich, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
2
|
Immormino RM, Wang Y, Zhang Y, Kapita CM, Thomas KO, Carson AS, Kesselring J, Smeekens J, Kulis MD, Moran TP, Iweala OI. Deficiency of H3K27 histone demethylase UTX in T cells blunts allergic sensitization and anaphylaxis to peanut. Immunohorizons 2025; 9:vlaf008. [PMID: 40065718 PMCID: PMC11893976 DOI: 10.1093/immhor/vlaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Whether epigenetic factor UTX, a histone H3 lysine 27 (H3K27) demethylase, is critical for type 2 immunity, including allergic sensitization and antigen-driven anaphylaxis, is unclear. We used UTXfl/fl x Lck-Cre mice with UTX-deficient T cells (UTX-TCD) to determine whether T cell-specific UTX expression regulates antigen-specific IgE production after airway sensitization to peanut and anaphylaxis following intraperitoneal (i.p.) peanut challenge. UTX-TCD mice sensitized via the airway with peanut and lipopolysaccharide (LPS), a bacterial component and environmental adjuvant found in house dust, made 2-fold less peanut-IgE and 3.5-fold less peanut-IgG1 than comparably sensitized UTXfl/fl mice, despite higher total IgE and total IgG1 serum antibody levels pre-sensitization. Peanut-induced anaphylaxis was blunted in UTX-TCD mice, with maximum drop in core body temperature after i.p. peanut challenge two-fold lower than in UTXfl/fl mice. Compared to UTXfl/fl controls, UTX-TCD mice had reduced frequencies of CD4+ T-follicular helper (Tfh) cells and germinal center B cells, but higher frequencies of IL-4+ T-helper (Th)2, Tfh2, and IL-13+ Tfh13 cells in airway-draining mediastinal lymph nodes. UTX-TCD mice also skewed toward type 2 antibody and T-helper immune responses independent of allergic sensitization, with fewer IL-10-producing splenic Treg and T-follicular regulatory (Tfr) cells. Our results suggest that UTX expression in T cells impact the production of antigen-specific antibody responses required for allergic sensitization and antigen-specific allergic reactions, suggesting a role for H3K27 histone demethylase UTX in regulating type 2 immunity.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yinghui Wang
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yugen Zhang
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Camille M Kapita
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin O Thomas
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Audrey S Carson
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle Kesselring
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Johanna Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy P Moran
- Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Onyinye I Iweala
- Division of Allergy and Immunology, Department of Pediatrics, Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Rheumatology, Allergy, and Immunology and Thurston Arthritis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Miller SJ, Gonzalez NM, Smith ME, Croyle MJ, Yoder BK, Zimmerman KA. T cell-expressed Ift88 is required for proper thymocyte differentiation in mice. Physiol Rep 2024; 12:e70120. [PMID: 39562155 PMCID: PMC11576126 DOI: 10.14814/phy2.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Intraflagellar transport protein 88 (Ift88) is required for the formation of cilia in the thymus and non-ciliary dependent functions including T cell immune synapse formation. To test the role of Ift88 in T cell development, we performed flow cytometry analysis on thymus and spleen tissue isolated from mice lacking Ift88 in thymic epithelial cells (TECs) or T cells. Analyses indicated that TEC Ift88 deletion had no impact on thymic T cell development and minimal impact on splenic T cells. Analysis of T cells in CaggCreERT2+Ift88 tm1BkymTmG mice indicate that approximately half of DN1 thymocytes are Ift88 deficient 3 weeks post-tamoxifen induction; Ift88 loss did not impact T cell development at the DN2-DN4 stage or the CD4+/CD8+ double-positive (DP) thymocyte stage. However, survival of Ift88 deficient T cells was significantly reduced at the single-positive (SP) thymocyte stage, as was the number of CD4+ and CD8+ T cells in spleen and kidney. Despite preferential survival of Ift88-proficient cells, the total number of T cells the in spleen and kidney was minimally impacted by Ift88 loss. These data suggest Ift88 is required for differentiation of DP thymocytes into SP thymocytes and that Ift88 proficient T cells can compensate for deficient cells to fill the open niche.
Collapse
Affiliation(s)
- Sarah J. Miller
- Department of Internal Medicine, Division of Nephrology and HypertensionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Nancy M. Gonzalez
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Morgan E. Smith
- Department of Internal Medicine, Division of Nephrology and HypertensionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kurt A. Zimmerman
- Department of Internal Medicine, Division of Nephrology and HypertensionUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
4
|
Zhao F, Cui Z, Wang P, Zhao Z, Zhu K, Bai Y, Jin X, Wang L, Lu L. GRP75-dependent mitochondria-ER contacts ensure cell survival during early mouse thymocyte development. Dev Cell 2024; 59:2643-2658.e7. [PMID: 38981469 DOI: 10.1016/j.devcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.
Collapse
Affiliation(s)
- Fan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zejin Cui
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhishan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kaixiang Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yadan Bai
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lie Wang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
5
|
Perez-Quintero LA, Abidin BM, Tremblay ML. Immunotherapeutic implications of negative regulation by protein tyrosine phosphatases in T cells: the emerging cases of PTP1B and TCPTP. Front Med (Lausanne) 2024; 11:1364778. [PMID: 38707187 PMCID: PMC11066278 DOI: 10.3389/fmed.2024.1364778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Luis Alberto Perez-Quintero
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Institute, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Xia M, Wang B, Sun W, Ji D, Zhou H, Huang X, Yu M, Su Z, Chen P, Qu K, Wang X. Lsd1 safeguards T-cell development via suppressing endogenous retroelements and interferon responses. Life Sci Alliance 2023; 6:e202302042. [PMID: 37429639 PMCID: PMC10345215 DOI: 10.26508/lsa.202302042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
The histone demethylase Lsd1 has been shown to play multiple essential roles in mammalian biology. However, its physiological functions in thymocyte development remain elusive. We observed that the specific deletion of Lsd1 in thymocytes caused significant thymic atrophy and reduced peripheral T cell populations with impaired proliferation capacity. Single-cell RNA sequencing combined with strand-specific total RNA-seq and ChIP-seq analysis revealed that ablation of Lsd1 led to the aberrant derepression of endogenous retroelements, which resulted in a viral mimicry state and activated the interferon pathway. Furthermore, the deletion of Lsd1 blocked the programmed sequential down-regulation of CD8 expression at the DP→CD4+CD8lo stage and induced an innate memory phenotype in both thymic and peripheral T cells. Single-cell TCR sequencing revealed the kinetics of TCR recombination in the mouse thymus. However, the preactivation state after Lsd1 deletion neither disturbed the timeline of TCR rearrangement nor reshaped the TCR repertoire of SP cells. Overall, our study provides new insight into the function of Lsd1 as an important maintainer of endogenous retroelement homeostasis in early T-cell development.
Collapse
Affiliation(s)
- Miaoran Xia
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Bingbing Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Hang Zhou
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Xuefeng Huang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Minghang Yu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Ziyang Su
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
- Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
MNT suppresses T cell apoptosis via BIM and is critical for T lymphomagenesis. Cell Death Differ 2023; 30:1018-1032. [PMID: 36755068 PMCID: PMC10070419 DOI: 10.1038/s41418-023-01119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The importance of c-MYC in regulating lymphopoiesis and promoting lymphomagenesis is well-established. Far less appreciated is the vital supporting role of MYC's relative MNT. Using Rag1Cre-mediated Mnt deletion in lymphoid progenitor cells, we show here that, during normal T cell development, MNT loss enhances apoptosis, at least in part by elevating expression of the pro-apoptotic BH3-only protein BIM. Moreover, using T lymphoma-prone VavP-MYC transgenic mice, we show that Mnt deletion reduces the pool of pre-malignant MYC-driven T lymphoid cells and abrogates thymic T lymphomagenesis. In addition, we establish that Mnt deletion prevents T lymphoma development in γ-irradiated mice, most likely by enhancing apoptosis of T lymphoid cells repopulating the depleted thymus. Taken together with our recent demonstration that MNT is vital for the survival of MYC-driven pre-malignant and malignant B lymphoid cells, these results suggest that MNT represents an important new drug target for both T and B lymphoid malignancies.
Collapse
|
8
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 PMCID: PMC11811980 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H. Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M. Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Gruber LC, Schneider B, Nothnagel C, Beer-Hammer S. Knockout of SLy1 decreases double-negative thymocyte proliferation and protects mice from p53-induced tumor formation. Eur J Immunol 2023; 53:e2250017. [PMID: 36401605 DOI: 10.1002/eji.202250017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The lymphocyte-specific adapter protein SLy1 has previously been identified as indispensable for thymocyte development and T-cell proliferation and, recently, as a cause of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in SLy1KO and SLy1d/d mice. As SLy1KO NK cells show increased levels of p53, we focused our research on the interdependency of SLy1 and p53 for thymocyte development. Using RT-PCR and immunoblot analysis, we observed increased levels of p53 as well as DNA damage response proteins in SLy1KO thymocytes. To test for rescue from SLy1-induced deficiencies in thymocyte development like reduced thymocyte numbers and reduced DN to DP progression, we generated a mouse model with T cell-specific p53-deficiency on an SLy1KO background and analyzed lymphocyte populations in these mice and respective controls. Astonishingly, SLy1KO -typical deficiencies were retained, showing that SLy1 is mechanistically independent of p53. Studies of apoptosis and proliferation in SLy1KO thymocytes revealed decreased proliferation in the DN3 subpopulation as a possible reason for the decreased thymocyte number. In mice with p53-deficient T cells, we observed tumor formation leading to reduced survival, preferentially in SLy1WT mice. Thus, we suggest that a SLy1-deficiency reduces proliferation, resulting in less hematologic tumors initiated by the p53-deficiency.
Collapse
Affiliation(s)
- Lena-Christin Gruber
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Christin Nothnagel
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
He Q, Lu Y, Tian W, Jiang R, Yu W, Liu Y, Sun M, Wang F, Zhang H, Wu N, Dong Z, Sun B. TOX deficiency facilitates the differentiation of IL-17A-producing γδ T cells to drive autoimmune hepatitis. Cell Mol Immunol 2022; 19:1102-1116. [PMID: 35986136 PMCID: PMC9508111 DOI: 10.1038/s41423-022-00912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The specification of the αβ/γδ lineage and the maturation of medullary thymic epithelial cells (mTECs) coordinate central tolerance to self-antigens. However, the mechanisms underlying this biological process remain poorly clarified. Here, we report that dual-stage loss of TOX in thymocytes hierarchically impaired mTEC maturation, promoted thymic IL-17A-producing γδ T-cell (Tγδ17) lineage commitment, and led to the development of fatal autoimmune hepatitis (AIH) via different mechanisms. Transfer of γδ T cells from TOX-deficient mice reproduced AIH. TOX interacted with and stabilized the TCF1 protein to maintain the balance of γδ T-cell development in thymic progenitors, and overexpression of TCF1 normalized αβ/γδ lineage specification and activation. In addition, TOX expression was downregulated in γδ T cells from AIH patients and was inversely correlated with the AIH diagnostic score. Our findings suggest multifaceted roles of TOX in autoimmune control involving mTEC and Tγδ17 development and provide a potential diagnostic marker for AIH.
Collapse
Affiliation(s)
- Qifeng He
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongjun Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Bai L, Hao X, Keith J, Feng Y. DNA Methylation in Regulatory T Cell Differentiation and Function: Challenges and Opportunities. Biomolecules 2022; 12:1282. [PMID: 36139121 PMCID: PMC9496199 DOI: 10.3390/biom12091282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
As a bona fide epigenetic marker, DNA methylation has been linked to the differentiation and function of regulatory T (Treg) cells, a subset of CD4 T cells that play an essential role in maintaining immune homeostasis and suppressing autoimmunity and antitumor immune response. DNA methylation undergoes dynamic regulation involving maintenance of preexisting patterns, passive and active demethylation, and de novo methylation. Scattered evidence suggests that these processes control different stages of Treg cell lifespan ranging from lineage induction to cell fate maintenance, suppression of effector T cells and innate immune cells, and transdifferentiation. Despite significant progress, it remains to be fully explored how differential DNA methylation regulates Treg cell fate and immunological function. Here, we review recent progress and discuss the questions and challenges for further understanding the immunological roles and mechanisms of dynamic DNA methylation in controlling Treg cell differentiation and function. We also explore the opportunities that these processes offer to manipulate Treg cell suppressive function for therapeutic purposes by targeting DNA methylation.
Collapse
Affiliation(s)
| | | | | | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl MS 351, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Synaptotagmin 2 is ectopically overexpressed in excitatory presynapses of a widely used CaMKΙΙα-Cre mouse line. iScience 2022; 25:104692. [PMID: 35856033 PMCID: PMC9287804 DOI: 10.1016/j.isci.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The CaMKΙΙα-Cre mouse lines, possibly the most used Cre lines in neuroscience, have resulted in over 800 articles to date. Here, we demonstrate that the second most widely used CaMKΙΙα-Cre line, Tg(Camk2a-cre)2Gsc (or CamiCre), shows ectopic overexpression of synaptotagmin 2, the most efficient Ca2+ sensor for fast synchronous neurotransmitter release, in excitatory presynapses of Cre+ brains. Moreover, the upregulation of immediate-early genes and genes incorporated in bacterial artificial chromosome (BAC) transgenes, such as L-proline transporter Slc6a7, was found in Cre+ hippocampus. The copy number and integration site of the transgene are suggested to have caused the aberrant gene expression in Cre+ brains. Most importantly, CamiCre+ mice showed functional phenotypes, such as hyperactivity and enhanced associative learning, suggesting that neural activities are affected. These unexpected results suggest difficulties in interpreting results from studies using the CamiCre line and raise a warning of potential pitfalls in using Cre driver lines in general. CamiCre+ mice show the ectopic overexpression of SYT2 in excitatory presynapses CamiCre+ mice show the ectopic overexpression of SLC6A7 in hippocampal mossy fibers CamiCre+ mice show hyperactivity and enhanced associative learning Multiple copies of bacterial artificial chromosome (BAC) transgenes are integrated into the Syt2 locus
Collapse
|
13
|
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m 6A demethylase ALKBH5 regulates the development of γδ T cells. Proc Natl Acad Sci U S A 2022; 119:e2203318119. [PMID: 35939687 PMCID: PMC9388086 DOI: 10.1073/pnas.2203318119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.
Collapse
Affiliation(s)
- Chenbo Ding
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Hao Xu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhibin Yu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Manolis Roulis
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rihao Qu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- dProgram of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
- eDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Jing Zhou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Joonseok Oh
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
| | - Jason Crawford
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
- hDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Yimeng Gao
- iSection of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- jYale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520
- kYale RNA Center, Yale University School of Medicine, New Haven, CT 06520
| | - Ruaidhrí Jackson
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Esen Sefik
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Simiao Li
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zheng Wei
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mathias Skadow
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhinan Yin
- lZhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai 519000, Guangdong, China
- mBiomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xinshou Ouyang
- nSection of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Lei Wang
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Weiguo Hu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| | - Richard A. Flavell
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- oHHMI, Yale University School of Medicine, New Haven, CT 06520
- 2To whom correspondence may be addressed. , , or
| | - Hua-Bing Li
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
14
|
Daniel CJ, Pelz C, Wang X, Munks MW, Ko A, Murugan D, Byers SA, Juarez E, Taylor KL, Fan G, Coussens LM, Link JM, Sears RC. T-cell Dysfunction upon Expression of MYC with Altered Phosphorylation at Threonine 58 and Serine 62. Mol Cancer Res 2022; 20:1151-1165. [PMID: 35380701 PMCID: PMC9262837 DOI: 10.1158/1541-7786.mcr-21-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
As a transcription factor that promotes cell growth, proliferation, and apoptosis, c-MYC (MYC) expression in the cell is tightly controlled. Disruption of oncogenic signaling pathways in human cancers can increase MYC protein stability, due to altered phosphorylation ratios at two highly conserved sites, Threonine 58 (T58) and Serine 62 (S62). The T58 to Alanine mutant (T58A) of MYC mimics the stabilized, S62 phosphorylated, and highly oncogenic form of MYC. The S62A mutant is also stabilized, lacks phosphorylation at both Serine 62 and Threonine 58, and has been shown to be nontransforming in vitro. However, several regulatory proteins are reported to associate with MYC lacking phosphorylation at S62 and T58, and the role this form of MYC plays in MYC transcriptional output and in vivo oncogenic function is understudied. We generated conditional c-Myc knock-in mice in which the expression of wild-type MYC (MYCWT), the T58A mutant (MYCT58A), or the S62A mutant (MYCS62A) with or without expression of endogenous Myc is controlled by the T-cell-specific Lck-Cre recombinase. MYCT58A expressing mice developed clonal T-cell lymphomas with 100% penetrance and conditional knock-out of endogenous Myc accelerated this lymphomagenesis. In contrast, MYCS62A mice developed clonal T-cell lymphomas at a much lower penetrance, and the loss of endogenous MYC reduced the penetrance while increasing the appearance of a non-transgene driven B-cell lymphoma with splenomegaly. Together, our study highlights the importance of regulated phosphorylation of MYC at T58 and S62 for T-cell transformation. IMPLICATIONS Dysregulation of phosphorylation at conserved T58 and S62 residues of MYC differentially affects T-cell development and lymphomagenesis.
Collapse
Affiliation(s)
- Colin J. Daniel
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Carl Pelz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Michael W. Munks
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Aaron Ko
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Dhaarini Murugan
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sarah A. Byers
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Eleonora Juarez
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Karyn L. Taylor
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Guang Fan
- Department of Pathology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jason M. Link
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
15
|
Yao X, Wu Y, Xiao T, Zhao C, Gao F, Liu S, Tao Z, Jiang Y, Chen S, Ye J, Chen H, Long Q, Wang H, Zhou X, Shao Q, Qi L, Xia S. T-cell-specific Sel1L deletion exacerbates EAE by promoting Th1/Th17-cell differentiation. Mol Immunol 2022; 149:13-26. [PMID: 35696849 DOI: 10.1016/j.molimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are demyelinating neuroinflammatory diseases identified by the accumulation and aggregation of misfolded proteins in the brain. The Sel1L-Hrd1 complex comprising endoplasmic reticulum associated degradation (ERAD) is an ER-protein quality control system (ERQC) in the cell. Unfortunately, the contribution of ERAD to the development of these diseases has not been well explored. In this study, we used mice with a conditional deletion (KO) of Sel1L in T cells to dissect the role of ERAD on T cells and its contribution to the development of EAE. The results showed that Sel1L KO mice developed more severe EAE than the control wild type (WT) mice. Although, no obvious effects on peripheral T cells in steady state, more CD44-CD25+ double-negative stage 3 (DN3) cells were detected in the thymus. Moreover, Sel1L deficiency promoted the differentiation of Th1 and Th17 cells and upregulated the proliferation and apoptosis of CD4 T cells in vitro. Regarding the mechanism analyzed by RNA sequencing, 437 downregulated genes and 271 upregulated genes were detected in Sel1L deletion CD4 T cells, which covered the activation, proliferation, differentiation and apoptosis of these T cells. Thus, this study declared that the dysfunction of Sel1L in ERAD in T cells exacerbated the severity of EAE and indicated the important role of ERQC in maintaining immune homeostasis in the central nervous system.
Collapse
Affiliation(s)
- Xue Yao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Nuclear Medicine, Linyi Center Hospital, Linyi, Shangdong 276400, China
| | - Yi Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Clinic Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Tengfei Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Clinical Laboratory, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Chuanxiang Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, China
| | - Fengwei Gao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuo Liu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; The Center for Translational Medicine, Taizhou People's Hospital, Jiangsu Province 225300, China
| | - Hua Chen
- Department of Colorectal Surgery, Affifiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoming Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, China
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
16
|
Tsiomita S, Liveri EM, Vardaka P, Vogiatzi A, Skiadaresis A, Saridis G, Tsigkas I, Michaelidis TM, Mavrothalassitis G, Thyphronitis G. ETS2 repressor factor (ERF) is involved in T lymphocyte maturation acting as regulator of thymocyte lineage commitment. J Leukoc Biol 2022; 112:641-657. [PMID: 35258130 DOI: 10.1002/jlb.1a0720-439r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRβ+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.
Collapse
Affiliation(s)
- Spyridoula Tsiomita
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Effrosyni Maria Liveri
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Vardaka
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Angeliki Vogiatzi
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Argyris Skiadaresis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - George Saridis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - George Mavrothalassitis
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
18
|
Andrews LP, Vignali KM, Szymczak-Workman AL, Burton AR, Brunazzi EA, Ngiow SF, Harusato A, Sharpe AH, Wherry EJ, Taniuchi I, Workman CJ, Vignali DAA. A Cre-driven allele-conditioning line to interrogate CD4 + conventional T cells. Immunity 2021; 54:2209-2217.e6. [PMID: 34551314 DOI: 10.1016/j.immuni.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shin Foong Ngiow
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akihito Harusato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
19
|
Chen Y, Xu J, Wu X, Yao H, Yan Z, Guo T, Wang W, Wang P, Li Y, Yang X, Li H, Bian H, Chen ZN. CD147 regulates antitumor CD8 + T-cell responses to facilitate tumor-immune escape. Cell Mol Immunol 2021; 18:1995-2009. [PMID: 33177695 PMCID: PMC8322173 DOI: 10.1038/s41423-020-00570-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
Negative regulation of antitumor T-cell-immune responses facilitates tumor-immune escape. Here, we show that deletion of CD147, a type I transmembrane molecule, in T cells, strongly limits in vivo tumor growth of mouse melanoma and lung cancer in a CD8+ T-cell-dependent manner. In mouse tumor models, CD147 expression was upregulated on CD8+ tumor-infiltrating lymphocytes (TILs), and CD147 was coexpressed with two immune-checkpoint molecules, Tim-3 and PD-1. Mining publicly available gene-profiling data for CD8+ TILs in tumor biopsies from metastatic melanoma patients showed a higher level of CD147 expression in exhausted CD8+ TILs than in other subsets of CD8+ TILs, along with expression of PD-1 and TIM-3. Additionally, CD147 deletion increased the abundance of TILs, cytotoxic effector function of CD8+ T cells, and frequency of PD-1+ CD8+ TILs, and partly reversed the dysfunctional status of PD-1+Tim-3+CD8+ TILs. The cytotoxic transcription factors Runx3 and T-bet mediation enhanced antitumor responses by CD147-/- CD8+ T cells. Moreover, CD147 deletion in T cells increased the frequency of TRM-like cells and the expression of the T-cell chemokines CXCL9 and CXCL10 in the tumor microenvironment. Analysis of tumor tissue samples from patients with non-small-cell lung cancer showed negative correlations between CD147 expression on CD8+ TILs and the abundance of CD8+ TILs, histological grade of the tumor tissue samples, and survival of patients with advanced tumors. Altogether, we found a novel function of CD147 as a negative regulator of antitumor responses mediated by CD8+ TILs and identified CD147 as a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yatong Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Jing Xu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
- Medical Research Center, Southern University of Science and Technology Hospital, 518055, Shenzhen, China.
| | - Xiaodong Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
- Center of Anesthesiology & Operation, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hui Yao
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
- Department of Radiation Oncology, First Peoples' Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 213000, Changzhou, China
| | - Zhou Yan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Ting Guo
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Wenjing Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Peixiao Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
- Department of Gastroenterology, Henan Children's Hospital, 450018, Zhengzhou, China
| | - Yu Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Xiangmin Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
20
|
Corrado M, Samardžić D, Giacomello M, Rana N, Pearce EL, Scorrano L. Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death Differ 2021; 28:2194-2206. [PMID: 33649469 PMCID: PMC8257785 DOI: 10.1038/s41418-021-00747-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor β (Tcrβ) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.
Collapse
Affiliation(s)
- Mauro Corrado
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Dijana Samardžić
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| | - Marta Giacomello
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| | - Nisha Rana
- grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
21
|
Jairaman A, Othy S, Dynes JL, Yeromin AV, Zavala A, Greenberg ML, Nourse JL, Holt JR, Cahalan SM, Marangoni F, Parker I, Pathak MM, Cahalan MD. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4 + T cell responses. SCIENCE ADVANCES 2021; 7:7/28/eabg5859. [PMID: 34233878 PMCID: PMC8262815 DOI: 10.1126/sciadv.abg5859] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor-β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Angel Zavala
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Milton L Greenberg
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Jamison L Nourse
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Jesse R Holt
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Stuart M Cahalan
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
- Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA 92121, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Center for Complex Systems Biology, University of California, Irvine, CA 92697, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA.
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Gao Y, Liu R, He C, Basile J, Vesterlund M, Wahren-Herlenius M, Espinoza A, Hokka-Zakrisson C, Zadjali F, Yoshimura A, Karlsson M, Carow B, Rottenberg ME. SOCS3 Expression by Thymic Stromal Cells Is Required for Normal T Cell Development. Front Immunol 2021; 12:642173. [PMID: 33815395 PMCID: PMC8012910 DOI: 10.3389/fimmu.2021.642173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/flActin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21−/− mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.
Collapse
Affiliation(s)
- Yu Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Basile
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Vesterlund
- SciLife Lab, Department of Oncology-Patohology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Fahad Zadjali
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikael Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Lehmann J, Thiele S, Baschant U, Rachner TD, Niehrs C, Hofbauer LC, Rauner M. Mice lacking DKK1 in T cells exhibit high bone mass and are protected from estrogen-deficiency-induced bone loss. iScience 2021; 24:102224. [PMID: 33748710 PMCID: PMC7961106 DOI: 10.1016/j.isci.2021.102224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
The Wnt inhibitor Dickkopf-1 (DKK1) is a negative regulator of bone formation and bone mass and is dysregulated in various bone diseases. How DKK1 contributes to postmenopausal osteoporosis, however, remains poorly understood. Here, we show that mice lacking DKK1 in T cells are protected from ovariectomy-induced bone loss. Ovariectomy activated CD4+ and CD8+ T cells and increased their production of DKK1. Co-culture of activated T cells with osteoblasts inhibited Wnt signaling in osteoblasts, leading to impaired differentiation. Importantly, DKK1 expression in T cells also controlled physiological bone remodeling. T-cell-deficient Dkk1 knock-out mice had a higher bone mass with an increased bone formation rate and decreased numbers of osteoclasts compared with controls, a phenotype that was rescued by adoptive transfer of wild-type T cells. Thus, these findings highlight that T cells control bone remodeling in health and disease via their expression of DKK1.
Collapse
Affiliation(s)
- Juliane Lehmann
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Preston SP, Doerflinger M, Scott HW, Allison CC, Horton M, Cooney J, Pellegrini M. The role of MKK4 in T-cell development and immunity to viral infections. Immunol Cell Biol 2020; 99:428-435. [PMID: 33175451 PMCID: PMC8247422 DOI: 10.1111/imcb.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Hamish W Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Miles Horton
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun 2020; 11:2779. [PMID: 32487999 PMCID: PMC7265453 DOI: 10.1038/s41467-020-16471-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/03/2020] [Indexed: 11/09/2022] Open
Abstract
T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation. T cell receptors (TCR) are internalized when activated by their ligands. Here the authors show that the internalized TCRs are localized to endosomes expressing IRAP and Syntaxin 6 to maintain intracellular signalling capacity, whose importance is shown by the absence of efficient polyclonal anti-tumour response in mice with T-specific conditional deletion of IRAP.
Collapse
|
26
|
Abstract
γδ T cells are a subset of T cells with attributes of both the innate and adaptive arms of the immune system. These cells have long been an enigmatic and poorly understood component of the immune system and many have viewed them as having limited importance in host defense. This perspective persisted for some time both because of critical gaps in knowledge regarding how the development of γδ T cells is regulated and because of the lack of effective and sophisticated approaches through which the function of γδ T cells can be manipulated. Here, we discuss the recent advances in both of these areas, which have brought the importance of γδ T cells in both productive and pathologic immune function more sharply into focus.
Collapse
Affiliation(s)
- Alejandra V. Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| |
Collapse
|
27
|
Lee JW, Bae E, Kwon SH, Yu MY, Cha RH, Lee H, Kim DK, Lee JP, Ye SK, Yoo JY, Park DJ, Kim YS, Yang SH. Transcriptional modulation of the T helper 17/interleukin 17 axis ameliorates renal ischemia-reperfusion injury. Nephrol Dial Transplant 2020; 34:1481-1498. [PMID: 30544214 DOI: 10.1093/ndt/gfy370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor critical for T-cell function. Although inhibition of the Janus kinase 2 (JAK2)/STAT3 pathway has been reported to be protective against ischemia-reperfusion injury (IRI), the role of T cell-associated STAT3 in the pathogenesis of renal IRI has not been specifically defined. METHODS We induced renal IRI in both mice with T cell-specific STAT3 knockout (Lck-Cre;STAT3flox/flox) and wild-type controls (C57BL/6) and assessed renal damage and inflammation at 48 h after IRI. Human proximal tubular epithelial cells grown under hypoxia were treated with a JAK2 inhibitor, caffeic acid 3,4-dihydroxy-phenylethyl ester, to determine the effect of JAK2/STAT3 inhibition on renal epithelia. Independently, we disrupted Cln 3-requiring 9 (Ctr9) to inhibit T helper 17 (Th17) activation via RNA interference and determined if Ctr9 inhibition aggravates renal injury through upregulated Th17 activation. RESULTS The Lck-Cre;STAT3flox/flox mice exhibited significantly reduced kidney damage compared with controls. This protective effect was associated with reduced intrarenal Th17 infiltration and proinflammatory cytokines. Human proximal tubular epithelial cells under hypoxia exhibited significant upregulation of interleukin 17 receptors, and pharmacologic inhibition of JAK2 significantly ameliorated this change. RNA interference with Ctr9 in splenocytes enhanced differentiation into Th17 cells. In vivo knockdown of Ctr9 in mice with renal IRI further aggravated Th17-associated inflammation and kidney injury. CONCLUSIONS STAT3 in T cells contributes to renal IRI through Th17 activation. Inhibition of Ctr9 further enhances Th17 activation and aggravates kidney injury, further supporting the role of Th17 cells in renal IRI.
Collapse
Affiliation(s)
- Jae Wook Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Nephrology Clinic, National Cancer Center, Goyang, South Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Sun-Ho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Mi-Yeon Yu
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Ran-Hui Cha
- Internal Medicine, National Medical Center, Seoul, South Korea
| | - Hajeong Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ki Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Pyo Lee
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joo-Yeon Yoo
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Dong Jun Park
- Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|
29
|
T cell receptor and cytokine signal integration in CD8+ T cells is mediated by the protein Themis. Nat Immunol 2020; 21:186-198. [DOI: 10.1038/s41590-019-0570-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
|
30
|
Ding YQ, Luo H, Qi JG. MHCII-restricted T helper cells: an emerging trigger for chronic tactile allodynia after nerve injuries. J Neuroinflammation 2020; 17:3. [PMID: 31900220 PMCID: PMC6942353 DOI: 10.1186/s12974-019-1684-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Nerve injury-induced chronic pain has been an urgent problem for both public health and clinical practice. While transition to chronic pain is not an inevitable consequence of nerve injuries, the susceptibility/resilience factors and mechanisms for chronic neuropathic pain after nerve injuries still remain unknown. Current preclinical and clinical studies, with certain notable limitations, have shown that major histocompatibility complex class II–restricted T helper (Th) cells is an important trigger for nerve injury-induced chronic tactile allodynia, one of the most prevalent and intractable clinical symptoms of neuropathic pain. Moreover, the precise pathogenic neuroimmune interfaces for Th cells remain controversial, not to mention the detailed pathogenic mechanisms. In this review, depending on the biology of Th cells in a neuroimmunological perspective, we summarize what is currently known about Th cells as a trigger for chronic tactile allodynia after nerve injuries, with a focus on identifying what inconsistencies are evident. Then, we discuss how an interdisciplinary perspective would improve the understanding of Th cells as a trigger for chronic tactile allodynia after nerve injuries. Finally, we hope that the expected new findings in the near future would translate into new therapeutic strategies via targeting Th cells in the context of precision medicine to either prevent or reverse chronic neuropathic tactile allodynia.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Intraflagellar transport 20: New target for the treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118641. [PMID: 31893523 DOI: 10.1016/j.bbamcr.2019.118641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Cilia are ubiquitous in mammalian cells. The formation and assembly of cilia depend on the normal functioning of the ciliary transport system. In recent years, various proteins involved in the intracellular transport of the cilium have attracted attention, as many diseases are caused by disorders in cilia formation. Intraflagellar transport 20 (IFT20) is a subunit of IFT complex B, which contains approximately 20 protein particles. Studies have shown that defects in IFT20 are associated with numerous system -related diseases, such as those of the urinary system, cardiovascular system, skeletal system, nervous system, immune system, reproductive system, and respiratory system. This review summarizes current research on IFT20.We describe studies related to the role of IFT20 in cilia formation and discuss new targets for treating diseases associated with ciliary dysplasia.
Collapse
|
32
|
Arata Y, Watanabe A, Motosugi R, Murakami R, Goto T, Hori S, Hirayama S, Hamazaki J, Murata S. Defective induction of the proteasome associated with T-cell receptor signaling underlies T-cell senescence. Genes Cells 2019; 24:801-813. [PMID: 31621149 DOI: 10.1111/gtc.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
The proteasome degradation machinery is essential for a variety of cellular processes including senescence and T-cell immunity. Decreased proteasome activity is associated with the aging process; however, the regulation of the proteasome in CD4+ T cells in relation to aging is unclear. Here, we show that defects in the induction of the proteasome in CD4+ T cells upon T-cell receptor (TCR) stimulation underlie T-cell senescence. Proteasome dysfunction promotes senescence-associated phenotypes, including defective proliferation, cytokine production and increased levels of PD-1+ CD44High CD4+ T cells. Proteasome induction by TCR signaling via MEK-, IKK- and calcineurin-dependent pathways is attenuated with age and decreased in PD-1+ CD44High CD4+ T cells, the proportion of which increases with age. Our results indicate that defective induction of the proteasome is a hallmark of CD4+ T-cell senescence.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Watanabe
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Goto
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Fiala GJ, Schaffer AM, Merches K, Morath A, Swann J, Herr LA, Hils M, Esser C, Minguet S, Schamel WWA. Proximal Lck Promoter–Driven Cre Function Is Limited in Neonatal and Ineffective in Adult γδ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2019; 203:569-579. [DOI: 10.4049/jimmunol.1701521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
|
34
|
Protein phosphatase 2A has an essential role in promoting thymocyte survival during selection. Proc Natl Acad Sci U S A 2019; 116:12422-12427. [PMID: 31152132 DOI: 10.1073/pnas.1821116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of thymocytes to mature T cells in the thymus is tightly controlled by cellular selection, in which only a small fraction of thymocytes equipped with proper quality of TCRs progress to maturation. It is pivotal to protect the survival of the few T cells, which pass the selection. However, the signaling events, which safeguard the cell survival in thymus, are not totally understood. In this study, protein Ser/Thr phosphorylation in thymocytes undergoing positive selection is profiled by mass spectrometry. The results revealed large numbers of dephosphorylation changes upon T cell receptor (TCR) activation during positive selection. Subsequent substrate analysis pinpointed protein phosphatase 2A (PP2A) as the enzyme responsible for the dephosphorylation changes in developing thymocytes. PP2A catalytic subunit α (Ppp2ca) deletion in the T cell lineage in Ppp2ca flox/flox-Lck-Cre mice (PP2A cKO) displayed dysregulated dephosphorylation of apoptosis-related proteins in double-positive (DP) cells and caused substantially decreased numbers of DP CD4+ CD8+ cells. Increased levels of apoptosis in PP2A cKO DP cells were found to underlie aberrant thymocyte development. Finally, the defective thymocyte development in PP2A cKO mice could be rescued by either Bcl2 transgene expression or by p53 knockout. In summary, our work reveals an essential role of PP2A in promoting thymocyte development through the regulation of cell survival.
Collapse
|
35
|
Abdel Aziz N, Nono JK, Mpotje T, Brombacher F. The Foxp3+ regulatory T-cell population requires IL-4Rα signaling to control inflammation during helminth infections. PLoS Biol 2018; 16:e2005850. [PMID: 30379806 PMCID: PMC6231676 DOI: 10.1371/journal.pbio.2005850] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/12/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
Forkhead box P3 (Foxp3+) regulatory T (Treg)-cell function is controlled by environmental cues of which cytokine-mediated signaling is a dominant component. In vivo, interleukin-4 (IL-4)-mediated signaling via IL-4 receptor alpha (IL-4Rα) mediates Treg cell transdifferentiation into ex-Foxp3 T helper 2 (Th2) or T helper 17 (Th17) cells. However, IL-4-mediated signaling also reinforces the Foxp3 Treg compartment in vitro. We generated Foxp3-specific IL-4Rα-deficient mice and demonstrated differential efficiency of IL-4Rα deletion in male (approximately 90%) and female (approximately 40%) animals, because of cyclic recombinase (Cre)-mediated X-linked foxp3 inactivation. Irrespective of the degree of IL-4Rα deletion within the Foxp3+ Treg cell population, mice showed exacerbation of immune effector responses with aggravated tissue pathology in tissue-dwelling helminth infections (Schistosoma mansoni or Nippostrongylus brasiliensis). Mechanistically, IL-4Rα deletion in males and females led to a reduced expression of Foxp3 and subsequently an impaired accumulation of Foxp3+ Treg cells to inflamed tissues. In-depth cellular typing by flow cytometry revealed that the impairment of IL-4Rα-mediated signaling during helminth infections decreased the ability of central Treg cells to convert into effector Treg (eTreg) cells and caused a significant down-regulation of markers associated with Treg cell migration (C-X-C motif chemokine receptor 3 [CXCR3]) and accumulation in inflamed tissues (GATA binding protein 3 [GATA3]) as well as survival (B cell lymphoma 2 [Bcl-2]). These findings unprecedentedly, to our knowledge, uncover a role for IL-4Rα signaling in the positive regulation of Foxp3+ Treg cell function in vivo. Complementing our past knowledge on a widely reported role for IL-4Rα signaling in the negative regulation and transdifferentiation of Foxp3+ Treg cells in vivo, our present findings reveal the host requirement for an intact, but not reduced or potentiated, IL-4Rα-mediated signaling on Foxp3+ Treg cells to optimally control inflammation during helminth infections. Host soluble mediators such as cytokines play a key role in the regulation of the immune response. Forkhead box P3 (Foxp3+) regulatory T (Treg) cells, which are involved in maintaining self-tolerance and immune system homeostasis, are influenced by cytokines, including interleukin-4 (IL-4). However, opposing reports have emerged on the effect of this cytokine on Treg cells. Some evidence suggests IL-4 inhibits Treg cells, whereas other studies indicate a supportive role for this cytokine in Treg cell biology and function. To unambiguously address this question, we generated mice with IL-4 receptor specifically removed from the Treg cell population. Our newly generated mice did not show any sign of spontaneous inflammation during homeostasis, but when challenged with an experimental infection by parasitic worms, deletion of the IL-4 receptor from the Treg cell population led to increased inflammation and aggravated tissue pathology. Several defects such as poor activation, reduced promigratory marker expression, and reduced survival were apparent in Treg cells with impaired IL-4 responsiveness. Our evidence presents a strong case for a supportive role of IL-4 via IL-4 receptor in the biology and optimal regulatory function of Treg cells during worm infections.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Justin Komguep Nono
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- * E-mail: (FB); (JKN)
| | - Thabo Mpotje
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (FB); (JKN)
| |
Collapse
|
36
|
Zhao FL, Ahn JJ, Chen ELY, Yi TJ, Stickle NH, Spaner D, Zúñiga-Pflücker JC, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Supports the Metabolic Requirements of Cell Growth in TCRβ-Selected Thymocytes and Peripheral CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2664-2682. [PMID: 30257885 DOI: 10.4049/jimmunol.1800374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
During T cell development, progenitor thymocytes undergo a large proliferative burst immediately following successful TCRβ rearrangement, and defects in genes that regulate this proliferation have a profound effect on thymus cellularity and output. Although the signaling pathways that initiate cell cycling and nutrient uptake after TCRβ selection are understood, less is known about the transcriptional programs that regulate the metabolic machinery to promote biomass accumulation during this process. In this article, we report that mice with whole body deficiency in the nuclear receptor peroxisome proliferator-activated receptor-δ (PPARδmut) exhibit a reduction in spleen and thymus cellularity, with a decrease in thymocyte cell number starting at the double-negative 4 stage of thymocyte development. Although in vivo DNA synthesis was normal in PPARδmut thymocytes, studies in the OP9-delta-like 4 in vitro system of differentiation revealed that PPARδmut double-negative 3 cells underwent fewer cell divisions. Naive CD4+ T cells from PPARδmut mice also exhibited reduced proliferation upon TCR and CD28 stimulation in vitro. Growth defects in PPAR-δ-deficient thymocytes and peripheral CD4+ T cells correlated with decreases in extracellular acidification rate, mitochondrial reserve, and expression of a host of genes involved in glycolysis, oxidative phosphorylation, and lipogenesis. By contrast, mice with T cell-restricted deficiency of Ppard starting at the double-positive stage of thymocyte development, although exhibiting defective CD4+ T cell growth, possessed a normal T cell compartment, pointing to developmental defects as a cause of peripheral T cell lymphopenia in PPARδmut mice. These findings implicate PPAR-δ as a regulator of the metabolic program during thymocyte and T cell growth.
Collapse
Affiliation(s)
- Fei Linda Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeeyoon Jennifer Ahn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | | | - David Spaner
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,Women's College Health Research Institute, Toronto, Ontario M5G 1N8, Canada
| |
Collapse
|
37
|
Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development. Blood 2018; 132:1279-1292. [PMID: 30076146 DOI: 10.1182/blood-2018-02-835850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Notch1 signaling must elevate to high levels in order to drive the proliferation of CD4-CD8- double-negative (DN) thymocytes and progression to the CD4+CD8+ double-positive (DP) stage through β-selection. During this critical phase of pre-T-cell development, which is also known as the DN-DP transition, it is unclear whether the Notch1 transcriptional complex strengthens its signal output as a discrete unit or through cofactors. We previously showed that the protein inhibitor of activated STAT-like coactivator Zmiz1 is a context-dependent cofactor of Notch1 in T-cell leukemia. We also showed that withdrawal of Zmiz1 generated an early T-lineage progenitor (ETP) defect. Here, we show that this early defect seems inconsistent with loss-of-Notch1 function. In contrast, at the later pre-T-cell stage, withdrawal of Zmiz1 impaired the DN-DP transition by inhibiting proliferation, like withdrawal of Notch. In pre-T cells, but not ETPs, Zmiz1 cooperatively regulated Notch1 target genes Hes1, Lef1, and Myc. Enforced expression of either activated Notch1 or Myc partially rescued the Zmiz1-deficient DN-DP defect. We identified residues in the tetratricopeptide repeat (TPR) domain of Zmiz1 that bind Notch1. Mutating only a single residue impaired the Zmiz1-Notch1 interaction, Myc induction, the DN-DP transition, and leukemic proliferation. Similar effects were seen using a dominant-negative TPR protein. Our studies identify stage-specific roles of Zmiz1. Zmiz1 is a context-specific cofactor for Notch1 during Notch/Myc-dependent thymocyte proliferation, whether normal or malignant. Finally, we highlight a vulnerability in leukemic cells that originated from a developmentally important Zmiz1-Notch1 interaction that is hijacked during transformation from normal pre-T cells.
Collapse
|
38
|
The RNA binding protein Ars2 supports hematopoiesis at multiple levels. Exp Hematol 2018; 64:45-58.e9. [PMID: 29775646 DOI: 10.1016/j.exphem.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Recent biochemical characterization of arsenic resistance protein 2 (Ars2) has established it as central in determining the fate of nascent ribonucleic acid (RNA) polymerase II (RNAPII) transcripts. Through interactions with the nuclear 5'-7-methylguanosine cap-binding complex, Ars2 promotes cotranscriptional processing coupled with nuclear export or degradation of several classes of RNAPII transcripts, allowing for gene expression programs that facilitate rapid and sustained proliferation of immortalized cells in culture. However, rapidly dividing cells in culture do not represent the physiological condition of the vast majority of cells in an adult mammal. To examine functions of Ars2 in a physiological setting, we generated inducible Ars2 knockout mice and found that deletion of Ars2 from adult mice resulted in defective hematopoiesis in bone marrow and thymus. Importantly, only some of this defect could be explained by the requirement of Ars2 for rapid proliferation, which we found to be cell-type specific in vivo. Rather, Ars2 was required for survival of developing thymocytes and for limiting differentiation of bone marrow resident long-term hematopoietic stem cells. As a result, Ars2 knockout led to rapid thymic involution and loss of the ability of mice to regenerate peripheral blood after myeloablation. These in vivo data demonstrate that Ars2 expression is important at several steps of hematopoiesis, likely because Ars2 acts on gene expression programs underlying essential cell fate decisions such as the decision to die,proliferate, or differentiate.
Collapse
|
39
|
PKM2-dependent metabolic reprogramming in CD4 + T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl) 2018; 96:585-600. [PMID: 29732501 DOI: 10.1007/s00109-018-1645-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE-/- mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4+ T cells. Mechanistically, Hcy-activated CD4+ T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4+ T cell IFN-γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4+ T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE-/-) mice adoptively transferred with PKM2-deficient CD4+ T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4+ T cell activation to accelerate early atherosclerosis in ApoE-/- mice. KEY MESSAGES Metabolic reprogramming is crucial for Hcy-induced CD4+ T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4+ T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE-/- mice in vivo.
Collapse
|
40
|
Revisiting the role of IRF3 in inflammation and immunity by conditional and specifically targeted gene ablation in mice. Proc Natl Acad Sci U S A 2018; 115:5253-5258. [PMID: 29712834 DOI: 10.1073/pnas.1803936115] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3's broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3 Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4-IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.
Collapse
|
41
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|
42
|
Defining the molecular basis of oncogenic cooperation between TAL1 expression and Pten deletion in T-ALL using a novel pro-T-cell model system. Leukemia 2017; 32:941-951. [PMID: 29151585 PMCID: PMC5886055 DOI: 10.1038/leu.2017.328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is caused by the accumulation of multiple mutations combined with the ectopic expression of transcription factors in developing T cells. However, the molecular basis underlying cooperation between transcription factor expression and additional oncogenic mutations in driving T-ALL has been difficult to assess due to limited robust T-cell model systems. Here we utilize a new ex vivo pro-T-cell model to study oncogenic cooperation. Using a systems biological approach we first dissect the pro-T-cell signaling network driven by interleukin-7, stem cell factor and Notch1 and identify key downstream Akt, Stat, E2f and Myc genetic signaling networks. Next, this pro-T-cell system was used to demonstrate that ectopic expression of the TAL1 transcription factor and Pten deletion are bona-fide cooperating events resulting in an increased stem cell signature, upregulation of a specific E2f signaling network and metabolic reprogramming with higher influx of glucose carbons into the tricarboxylic acid cycle. This ex vivo pro-T-cell system thereby provides a powerful new model system to investigate how normal T-cell signaling networks are perturbed and/or hijacked by different oncogenic events found in T-ALL.
Collapse
|
43
|
Mercadante ER, Lorenz UM. T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:129-137. [PMID: 28550200 DOI: 10.4049/jimmunol.1602171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
The balance between activation of T cells and their suppression by regulatory T cells (Tregs) is dysregulated in autoimmune diseases and cancer. Autoimmune diseases feature T cells that are resistant to suppression by Tregs, whereas in cancer, T cells are unable to mount antitumor responses due to the Treg-enriched suppressive microenvironment. In this study, we observed that loss of the tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, renders naive CD4+ and CD8+ T cells resistant to Treg-mediated suppression in a T cell-intrinsic manner. At the intracellular level, SHP-1 controlled the extent of Akt activation, which has been linked to the induction of T cell resistance to Treg suppression. Finally, under conditions of homeostatic expansion, SHP-1-deficient CD4+ T cells resisted Treg suppression in vivo. Collectively, these data establish SHP-1 as a critical player in setting the threshold downstream of TCR signaling and identify a novel function of SHP-1 as a regulator of T cell susceptibility to Treg-mediated suppression in vitro and in vivo. Thus, SHP-1 could represent a potential novel immunotherapeutic target to modulate susceptibility of T cells to Treg suppression.
Collapse
Affiliation(s)
- Emily R Mercadante
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Ulrike M Lorenz
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|