1
|
Gao J, Ding M, Xiyang Y, Qin S, Shukla D, Xu J, Miyagi M, Fujioka H, Liang J, Wang X. Aggregatin is a mitochondrial regulator of MAVS activation to drive innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:238-252. [PMID: 40073244 PMCID: PMC11878994 DOI: 10.1093/jimmun/vkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 03/14/2025]
Abstract
Mitochondrial antiviral-signaling protein (MAVS) is a key adapter protein required for inducing type I interferons (IFN-Is) and other antiviral effector molecules. The formation of MAVS aggregates on mitochondria is essential for its activation; however, the regulatory mitochondrial factor that mediates the aggregation process is unknown. Our recent work has identified the protein Aggregatin as a critical seeding factor for β-amyloid peptide aggregation. Here we show that Aggregatin serves as a cross-seed for MAVS aggregates on mitochondria to orchestrate innate immune signaling. Aggregatin is primarily localized to mitochondria in the cytosol and has the ability to induce MAVS aggregation and MAVS-dependent IFN-I responses alone in both HEK293 cells and human leukemia monocytic THP-1 cells. Mitochondrial Aggregatin level increases upon viral infection. Also, Aggregatin knockout suppresses viral infection-induced MAVS aggregation and IFN-I signal cascade activation. Nemo-like kinase is further identified as a kinase phosphorylating Aggregatin at Ser59 to regulate its stability and cross-seeding activity. Collectively, our finding reveals an important physiological function of Aggregatin in innate immunity by cross-seeding MAVS aggregation.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Yanbin Xiyang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Siyue Qin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Devanshi Shukla
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Jiawei Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, United States
| | - Jingjing Liang
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Nargis T, Muralidharan C, Enriquez JR, Wang JE, Kaylan KB, Chakraborty A, Pratuangtham S, Figatner K, Nelson JB, May SC, Nadler JL, Boxer MB, Maloney DJ, Tersey SA, Mirmira RG. 12-Lipoxygenase inhibition delays onset of autoimmune diabetes in human gene replacement mice. JCI Insight 2024; 9:e185299. [PMID: 39531315 PMCID: PMC11665553 DOI: 10.1172/jci.insight.185299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing β cells and involves an interplay between β cells and cells of the innate and adaptive immune systems. We investigated the therapeutic potential of targeting 12-lipoxygenase (12-LOX), an enzyme implicated in inflammatory pathways in β cells and macrophages, using a mouse model in which the endogenous mouse Alox15 gene is replaced by the human ALOX12 gene. Our finding demonstrated that VLX-1005, a potent 12-LOX inhibitor, effectively delayed the onset of autoimmune diabetes in human gene replacement non-obese diabetic mice. By spatial proteomics analysis, VLX-1005 treatment resulted in marked reductions in infiltrating T and B cells and macrophages, with accompanying increases in immune checkpoint molecule PD-L1, suggesting a shift toward an immunosuppressive microenvironment. RNA sequencing analysis of isolated islets and polarized proinflammatory macrophages revealed significant alteration of cytokine-responsive pathways and a reduction in IFN response after VLX-1005 treatment. Our studies demonstrated that the ALOX12 human replacement gene mouse provides a platform for the preclinical evaluation of LOX inhibitors and supports VLX-1005 as an inhibitor of human 12-LOX that engages the enzymatic target and alters the inflammatory phenotypes of islets and macrophages to promote the delay of autoimmune diabetes.
Collapse
Affiliation(s)
- Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Kerim B. Kaylan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Sarida Pratuangtham
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Kayla Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jerry L. Nadler
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
4
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Deshpande A, Brants J, Wasylyk C, van Hooij O, Verhaegh GW, Maas P, Schalken JA, Wasylyk B. TTLL12 has a potential oncogenic activity, suppression of ligation of nitrotyrosine to the C-terminus of detyrosinated α-tubulin, that can be overcome by molecules identified by screening a compound library. PLoS One 2024; 19:e0296960. [PMID: 38394155 PMCID: PMC10889654 DOI: 10.1371/journal.pone.0296960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 μM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.
Collapse
Affiliation(s)
- Amit Deshpande
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Jan Brants
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Christine Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Maas
- Specs, Bleiswijkseweg, Zoetermeer, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bohdan Wasylyk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
6
|
Sposito F, Pennington SH, David CAW, Duggan J, Northey S, Biagini GA, Liptrott NJ, Charras A, McNamara PS, Hedrich CM. Age-differential CD13 and interferon expression in airway epithelia affect SARS-CoV-2 infection - Effects of vitamin D. Mucosal Immunol 2023; 16:776-787. [PMID: 37574128 DOI: 10.1016/j.mucimm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Young age and high vitamin D plasma levels have been associated with lower SARS-CoV-2 infection risk and favourable disease outcomes. This study investigated mechanisms associated with differential responses to SARS-CoV-2 across age groups and effects of vitamin D. Nasal epithelia were collected from healthy children and adults and cultured for four weeks at the air-liquid interface with and without vitamin D. Gene expression and DNA methylation were investigated. Surface protein expression was confirmed by immunofluorescence while vitamin D receptor recruitment to the DNA was analysed through chromatin immunoprecipitation. HEp-2 cells were used for protein co-immunoprecipitation and luciferase reporter assays. Compared to children, airway epithelia from adults show higher viral RNA recovery following infection. This was associated with higher ANPEP/CD13, reduced type I interferon expression, and differential DNA methylation. In cells from adults, exposure to vitamin D reduced TTLL-12 expression, a negative regulator of the interferon response. This was mediated by vitamin D receptor recruitment to TTLL12, where it instructs DNA methylation through DNA methyltransferase 1. This study links age-dependent differential expression of CD13 and type I interferon to variable infection of upper airway epithelia. Furthermore, it provides molecular evidence for vitamin D reducing viral replication by inhibiting TTLL-12.
Collapse
Affiliation(s)
- Francesca Sposito
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jack Duggan
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sarah Northey
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Paul S McNamara
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
7
|
Patra R, Dey AK, Mukherjee S. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma. PLoS One 2023; 18:e0289064. [PMID: 37535606 PMCID: PMC10399749 DOI: 10.1371/journal.pone.0289064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.
Collapse
Affiliation(s)
- Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Amit Kumar Dey
- Biomedical Research Centre, Translational Geroproteomics Unit, National Institute on Aging, National Institute of Health (NIH), Baltimore, MD, United States of America
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
8
|
Iaffaldano BJ, Marino MP, Reiser J. CRISPR library screening to develop HEK293-derived cell lines with improved lentiviral vector titers. Front Genome Ed 2023; 5:1218328. [PMID: 37520398 PMCID: PMC10373892 DOI: 10.3389/fgeed.2023.1218328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Lentiviral (LV) vectors have emerged as powerful tools for treating genetic and acquired human diseases. As clinical studies and commercial demands have progressed, there has been a growing need for large amounts of purified LV vectors. To help meet this demand, we developed CRISPR library screening methods to identify genetic perturbations in human embryonic kidney 293 (HEK293) cells and their derivatives that may increase LV vector titers. Briefly, LV vector-based Human CRISPR Activation and Knockout libraries (Calabrese and Brunello) were used to modify HEK293 and HEK293T cells. These cell populations were then expanded, and integrated LV vector genomes were rescued by transfection. LV vectors were harvested, and the process of sequential transduction and rescue-transfection was iterated. Through this workflow, guide RNAs (gRNAs) that target genes that may suppress or enhance LV vector production were enriched and identified with Next-Generation Sequencing (NGS). Though more work is needed to test genes identified in this screen, we expect that perturbations of genes we identified here, such as TTLL12, which is an inhibitor of antiviral innate immunity may be introduced and multiplexed to yield cell lines with improved LV vector productivity.
Collapse
|
9
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Jiang L, Zhang W, Zhai DD, Wan G, Xia S, Meng J, Shi P, Chen N. Transcriptome profiling and bioinformatic analysis of the effect of ganoderic acid T prevents Sendai virus infection. Gene 2023; 862:147252. [PMID: 36740203 DOI: 10.1016/j.gene.2023.147252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Ganoderic acid T (GA-T) is an important triterpene of Ganoderma lucidum, which is utilized to treat viral infections. Sendai virus (SeV) is widely studied to determine the molecular biological characteristics of RNA viruses and employed to elucidate the mechanisms governing the innate immune response. However, the comprehensive mechanism governing the antiviral effects of GA-T against SeV infection remains unknown. In this study, SeV-infected host cells were treated with 16.3 μM GA-T, subsequently RNA-seq analysis was performed to screen the differentially expressed genes (DEGs). The RNA-seq data showed that GA-T treatment upregulated 934 DEGs and downregulated 1283 DEGs against viral infection, in particularly, IFNGR1, IL1A, and IL1R1 were upregulated, and mTOR, SMAD3, IFNL2 and IFNL3 were decreased. GO and KEGG analysis illustrated that DEGs were clustered in mTOR and IL-17 signalling pathways. Protein-protein interaction network analysis indicated the high degree of nodes, such as CXCL8, CSF2, CXCL1 and MYD88. Our results indicated that GA-T exerted its antiviral pharmacological effects through inhibition of the mTOR signalling pathway and adjustment of innate immunity system and the inflammatory response involving the IL-17 signalling pathway. Our results may help to elucidate the potential functions and underlying mechanisms governing the antiviral effects of GA-T.
Collapse
Affiliation(s)
- Liying Jiang
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Dan-Dan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Guoqing Wan
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Shengli Xia
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Jihong Meng
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Nianhong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, and Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518020, PR China.
| |
Collapse
|
11
|
Wan G, Fan Z, Zhai DD, Jiang L, Xia S, Gu X, Lu C, Shi P, Zeng X, Meng J, Chen N. Transcriptomic Profiling of Ganoderic Acid Me-Mediated Prevention of
Sendai Virus Infection. Curr Bioinform 2022; 17:586-598. [DOI: 10.2174/1574893617666220426134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Objectives:
Ganoderic acid Me [GA-Me], a major bioactive triterpene extracted from Ganoderma lucidum, is often used to treat immune system diseases caused by viral infections. Although triterpenes have been widely employed in traditional medicine, the comprehensive mechanisms by which GA-Me acts against viral infections have not been reported. Sendai virus [SeV]-infected host cells have been widely employed as an RNA viral model to elucidate the mechanisms of viral infection.
Methods:
In this study, SeV- and mock-infected [Control] cells were treated with or without 54.3 μM GA-Me. RNA-Seq was performed to identify differentially expressed mRNAs, followed by qRT-PCR validation for selected genes. GO and KEGG analyses were applied to investigate potential mechanisms and critical pathways associated with these genes.
Results:
GA-Me altered the levels of certain genes’ mRNA, these genes revealed are associated pathways related to immune processes, including antigen processing and presentation in SeV-infected cells. Multiple signaling pathways, such as the mTOR pathway, chemokine signaling pathway, and the p53 pathways, correlate significantly with GA-Me activity against the SeV infection process. qRT-PCR results were consistent with the trend of RNA-Seq findings. Moreover, PPI network analysis identified 20 crucial target proteins, including MTOR, CDKN2A, MDM2, RPL4, RPS6, CREBBP, UBC, UBB, and NEDD8. GA-Me significantly changed transcriptome-wide mRNA profiles of RNA polymerase II/III, protein posttranslational and immune signaling pathways.
Conclusion:
These results should be further assessed to determine the innate immune response against SeV infection, which might help in elucidating the functions of these genes affected by GA-Me treatment in virus-infected cells, including cells infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences,
Shanghai, 201318, PR China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| | - Dan-Dan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou
450001, Henan Province, PR China
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Shengli Xia
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen
People’s Hospital, 2nd Clinical Medical College of Jinan University, and Guangdong Provincial Key Laboratory of
Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518061, Guangdong Province, PR
China
| | - Jihong Meng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing 210009,
Jiangsu Province, PR China
| | - Nianhong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| |
Collapse
|
12
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
13
|
Hu QX, Wang HY, Jiang L, Wang CY, Ju LG, Zhu Y, Zhong B, Wu M, Wang Z, Li LY. Histone demethylase LSD1 promotes RIG-I poly-ubiquitination and anti-viral gene expression. PLoS Pathog 2021; 17:e1009918. [PMID: 34529741 PMCID: PMC8445485 DOI: 10.1371/journal.ppat.1009918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination. RIG-I signaling pathway is critical for human cells to defend from RNA virus infection, such as SARS-CoV-2, influenza virus, and Vesicular Stomatitis Virus (VSV). LSD1 is a histone demethylase regulating transcription. The current study reveals a novel function of LSD1 in regulating the activation of RIG-I signaling pathway. LSD1 interacts with RIG-I and promotes RIG-I poly-ubiquitination independent of its demethylase activity. LSD1 facilitates the interaction between RIG-I and its ubiquitin E3 ligase TRIM25, which is crucial for recruitment of downstream proteins. The mice with LSD1 deficiency are susceptible to virus infection and have lower survival rate. Taken together, our findings demonstrate a novel molecular mechanism for regulating the anti-viral RIG-I signaling pathway.
Collapse
Affiliation(s)
- Qi-Xin Hu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Hui-Yi Wang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Lu Jiang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Lin-Gao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Zhu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Zhong
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Immunology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
- * E-mail: (MW); (ZW); (L-YL)
| | - Zhen Wang
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
- * E-mail: (MW); (ZW); (L-YL)
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
- * E-mail: (MW); (ZW); (L-YL)
| |
Collapse
|
14
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
16
|
Ding J, Zhou H, Luo L, Xiao L, Yang K, Yang L, Zheng Y, Xu K, He C, Han C, Luo H, Qin C, Akinyemi FT, Gu C, Zhou Z, Huang Q, Meng H. Heritable Gut Microbiome Associated with Salmonella enterica Serovar Pullorum Infection in Chickens. mSystems 2021; 6:e01192-20. [PMID: 33402350 PMCID: PMC7786134 DOI: 10.1128/msystems.01192-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Pullorum disease is one of the most common diarrhea-related diseases caused by Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S Pullorum); it negatively affects the poultry industry. However, limited studies have explored the association between the gut microbiota and S Pullorum infection in chickens. In the present study, we performed a microbiome comparison and a microbiome genome-wide association study (mGWAS) to investigate the association among the host genetics, the gut microbiota, and pullorum disease in chickens. We found that S Pullorum infection in chickens could alter the abundance of 39 bacterial genera (P < 0.05). The altered structure and composition of the gut microbiota were also detected in the offspring. mGWAS results revealed host genetic variants to be prominently associated with gut microbial diversity and individual microbes. The pathogens Pelomonas and Brevundimonas, which had a high abundance in positive parent chickens and their offspring, were significantly associated with several genetic mutations in immunity-related genes, such as TGIF1, TTLL12, and CCR7 This finding explained why Pelomonas and Brevundimonas were heritable in S Pullorum-infected chickens. The heritable gut microbes and identified genetic variants could provide references for the selection of resistant chickens and the elimination of pullorum disease.IMPORTANCE The present study investigated the association among the host genome, the gut microbiome, and S Pullorum infection in chickens. The results suggested that the gut microbial structure is altered in S Pullorum-infected chickens. The diversity and abundance of the gut microbiota remarkably differed between the offspring coming from S Pullorum-positive and S Pullorum-negative chickens. Heritable gut microbiota were detected in the offspring. Moreover, host genetic variants were associated with microbial diversity and individual gut microbes. The pathogens Pelomonas and Brevundimonas, which exhibited a high heritability in S Pullorum-positive parents and their offspring, were associated with several genetic mutations in immunity-related genes.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lingxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lu Xiao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kaixuan Yang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fisayo T Akinyemi
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Caiju Gu
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Zhenxiang Zhou
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Qizhong Huang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets 2019; 23:437-446. [DOI: 10.1080/14728222.2019.1601702] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chunyuan Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| |
Collapse
|
19
|
Arimoto KI, Miyauchi S, Stoner SA, Fan JB, Zhang DE. Negative regulation of type I IFN signaling. J Leukoc Biol 2018; 103:1099-1116. [PMID: 29357192 DOI: 10.1002/jlb.2mir0817-342r] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Type I IFNs (α, β, and others) are a family of cytokines that are produced in physiological conditions as well as in response to the activation of pattern recognition receptors. They are critically important in controlling the host innate and adaptive immune response to viral and some bacterial infections, cancer, and other inflammatory stimuli. However, dysregulation of type I IFN production or response can contribute to immune pathologies termed "interferonopathies", pointing to the importance of balanced activating signals with tightly regulated mechanisms of tuning this signaling. Here, we summarize the recent advances of how type I IFN production and response are controlled at multiple levels of the type I IFN signaling cascade.
Collapse
Affiliation(s)
- Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayuri Miyauchi
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Samuel A Stoner
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jun-Bao Fan
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
van der Ven AT, Kobbe B, Kohl S, Shril S, Pogoda HM, Imhof T, Ityel H, Vivante A, Chen J, Hwang DY, Connaughton DM, Mann N, Widmeier E, Taglienti M, Schmidt JM, Nakayama M, Senguttuvan P, Kumar S, Tasic V, Kehinde EO, Mane SM, Lifton RP, Soliman N, Lu W, Bauer SB, Hammerschmidt M, Wagener R, Hildebrandt F. A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux. PLoS One 2018; 13:e0191224. [PMID: 29351342 PMCID: PMC5774751 DOI: 10.1371/journal.pone.0191224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.
Collapse
Affiliation(s)
- Amelie T. van der Ven
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Birgit Kobbe
- Center for Biochemistry, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Cologne Children’s Hospital, Cologne, Germany
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hans-Martin Pogoda
- Institute of Zoology-Developmental Biology, Biocenter Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Hadas Ityel
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asaf Vivante
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jing Chen
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Daw-Yang Hwang
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Nephrology, Department of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Dervla M. Connaughton
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nina Mann
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eugen Widmeier
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mary Taglienti
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Johanna Magdalena Schmidt
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Makiko Nakayama
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Prabha Senguttuvan
- Department of Pediatric Nephrology, Dr. Mehta’s Multispeciality Hospital, Chennai, India
| | - Selvin Kumar
- Department of Pediatric Nephrology, Institute of Child Health and Hospital for Children, the Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India
| | - Velibor Tasic
- Medical Faculty Skopje, University Children’s Hospital, Skopje, Macedonia
| | - Elijah O. Kehinde
- Division of Urology, Department of Surgery, Nazarbayev University, Astana, Kazakhstan
| | - Shrikant M. Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Neveen Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, Cairo, Egypt
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Stuart B. Bauer
- Department of Urology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthias Hammerschmidt
- Institute of Zoology-Developmental Biology, Biocenter Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- * E-mail: (RW); (FH)
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (RW); (FH)
| |
Collapse
|