1
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Dong Y, Wang T, Wu H. Tertiary lymphoid structures in autoimmune diseases. Front Immunol 2024; 14:1322035. [PMID: 38259436 PMCID: PMC10800951 DOI: 10.3389/fimmu.2023.1322035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid-like aggregations in non-lymphoid tissues. Tissues with chronic and persistent inflammation infiltration may drive and form ectopic germinal center-like structures, which are very common in autoimmune diseases, chronic infections, and tumor microenvironments. However, the mechanisms governing the formation of TLSs are still being explored. At present, it is not clear whether the formation of TLSs is associated with local uncontrolled immune inflammatory responses. While TLSs suggest a good prognosis in tumors, the opposite is true in autoimmune diseases. This review article will discuss the current views on initiating and maintaining TLSs and the potential therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zheng M, Yao C, Ren G, Mao K, Chung H, Chen X, Hu G, Wang L, Luan X, Fang D, Li D, Zhong C, Lu X, Cannon N, Zhang M, Bhandoola A, Zhao K, O'Shea JJ, Zhu J. Transcription factor TCF-1 regulates the functions, but not the development, of lymphoid tissue inducer subsets in different tissues. Cell Rep 2023; 42:112924. [PMID: 37540600 PMCID: PMC10504686 DOI: 10.1016/j.celrep.2023.112924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Chen Yao
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Immunology & Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; College of Animal Science and Technology, Northwest A&F University, Shannxi 712100, China
| | - Kairui Mao
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hyunwoo Chung
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi Chen
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Lei Wang
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA
| | - Xuemei Luan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Difeng Fang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Clinical Laboratory, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chao Zhong
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoxiao Lu
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikki Cannon
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506, USA
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Vallecillo-García P, Orgeur M, Comai G, Poehle-Kronawitter S, Fischer C, Gloger M, Dumas CE, Giesecke-Thiel C, Sauer S, Tajbakhsh S, Höpken UE, Stricker S. A local subset of mesenchymal cells expressing the transcription factor Osr1 orchestrates lymph node initiation. Immunity 2023; 56:1204-1219.e8. [PMID: 37160119 DOI: 10.1016/j.immuni.2023.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.
Collapse
Affiliation(s)
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Glenda Comai
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | | | - Cornelius Fischer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Marleen Gloger
- Max Delbrück Center for Molecular Medicine, Department of Translational Tumor Immunology, 13125 Berlin, Germany; Uppsala University, Immunology Genetics and Pathology, 75237 Uppsala, Sweden
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009 Marseille, France
| | | | - Sascha Sauer
- Core Facility Genomics, Berlin Institute of Health at Charité, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115, Berlin, Germany
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development Unit, CNRS UMR 3738, Paris, France
| | - Uta E Höpken
- Max Delbrück Center for Molecular Medicine, Department of Microenvironmental Regulation in Autoimmunity and Cancer, 13125 Berlin, Germany
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
6
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
7
|
Li Y, Ge J, Zhao X, Xu M, Gou M, Xie B, Huang J, Sun Q, Sun L, Bai X, Tan S, Wang X, Dong C. Cell autonomous expression of BCL6 is required to maintain lineage identity of mouse CCR6+ ILC3s. J Exp Med 2023; 220:213808. [PMID: 36651876 PMCID: PMC9856750 DOI: 10.1084/jem.20220440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Innate lymphoid cells (ILC) are similar to T helper (Th) cells in expression of cytokines and transcription factors. For example, RORγt is the lineage-specific transcription factor for both ILC3 and Th17 cells. However, the ILC counterpart for BCL6-expressing T follicular helper (Tfh) cells has not been defined. Here, we report that in the ILC compartment, BCL6 is selectively co-expressed with not only CXCR5 but also RORγt and CCR6 in ILC3 from multiple tissues. BCL6-deficient ILC3 produces enhanced levels of IL-17A and IL-22. More importantly, phenotypic and single-cell ATAC-seq analysis show that absence of BCL6 in mature ILC3 increases the numbers of ILC1 and transitional cells co-expressing ILC3 and ILC1 marker genes. A lineage-tracing experiment further reveals BCL6+ ILC3 to ILC1 trans-differentiation under steady state. Finally, microbiota promote BCL6 expression in colonic CCR6+ ILC3 and thus reinforce their stability. Collectively, our data have demonstrated that CCR6+ ILC3 have both Th17 and Tfh programs and that BCL6 expression in these cells functions to maintain their lineage identity.
Collapse
Affiliation(s)
- Yuling Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Miao Xu
- Broad institute of MIT and Harvard, Cambridge, MA, USA
| | - Mengting Gou
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Bowen Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Sangnee Tan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China,Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Correspondence to Chen Dong:
| |
Collapse
|
8
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
9
|
Sparano C, Solís-Sayago D, Vijaykumar A, Rickenbach C, Vermeer M, Ingelfinger F, Litscher G, Fonseca A, Mussak C, Mayoux M, Friedrich C, Nombela-Arrieta C, Gasteiger G, Becher B, Tugues S. Embryonic and neonatal waves generate distinct populations of hepatic ILC1s. Sci Immunol 2022; 7:eabo6641. [PMID: 36054340 DOI: 10.1126/sciimmunol.abo6641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group 1 innate lymphoid cells (ILCs) comprising circulating natural killer (cNK) cells and tissue-resident ILC1s are critical for host defense against pathogens and tumors. Despite a growing understanding of their role in homeostasis and disease, the ontogeny of group 1 ILCs remains largely unknown. Here, we used fate mapping and single-cell transcriptomics to comprehensively investigate the origin and turnover of murine group 1 ILCs. Whereas cNK cells are continuously replaced throughout life, we uncovered tissue-dependent development and turnover of ILC1s. A first wave of ILC1s emerges during embryogenesis in the liver and transiently colonizes fetal tissues. After birth, a second wave quickly replaces ILC1s in most tissues apart from the liver, where they layer with embryonic ILC1s, persist until adulthood, and undergo a specific developmental program. Whereas embryonically derived ILC1s give rise to a cytotoxic subset, the neonatal wave establishes the full spectrum of ILC1s. Our findings uncover key ontogenic features of murine group 1 ILCs and their association with cellular identities and functions.
Collapse
Affiliation(s)
- Colin Sparano
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Darío Solís-Sayago
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anjali Vijaykumar
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gioana Litscher
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Mussak
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Maud Mayoux
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Burkhard Becher
- Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Jowett GM, Read E, Roberts LB, Coman D, Vilà González M, Zabinski T, Niazi U, Reis R, Trieu TJ, Danovi D, Gentleman E, Vallier L, Curtis MA, Lord GM, Neves JF. Organoids capture tissue-specific innate lymphoid cell development in mice and humans. Cell Rep 2022; 40:111281. [PMID: 36044863 PMCID: PMC9638027 DOI: 10.1016/j.celrep.2022.111281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Geraldine M Jowett
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; Wellcome Trust Cell Therapies and Regenerative Medicine Ph.D. Programme, London SE1 9RT, UK
| | - Emily Read
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Luke B Roberts
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Diana Coman
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Marta Vilà González
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomasz Zabinski
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Umar Niazi
- Guy's and St. Thomas' National Health Service Foundation Trust and King's College London National Institute for Health and Care Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London SE1 9RT, UK
| | - Rita Reis
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Tung-Jui Trieu
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael A Curtis
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Graham M Lord
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Joana F Neves
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK.
| |
Collapse
|
11
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
Zarate MA, Wesolowski SR, Nguyen LM, De Dios RK, Wilkening RB, Rozance PJ, Wright CJ. In utero inflammatory challenge induces an early activation of the hepatic innate immune response in late gestation fetal sheep. Innate Immun 2020; 26:549-564. [PMID: 32538259 PMCID: PMC7556190 DOI: 10.1177/1753425920928388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chorioamnionitis is associated with inflammatory end-organ damage in the fetus. Tissues in direct contact with amniotic fluid drive a pro-inflammatory response and contribute to this injury. However, due to a lack of direct contact with the amniotic fluid, the liver contribution to this response has not been fully characterized. Given its role as an immunologic organ, we hypothesized that the fetal liver would demonstrate an early innate immune response to an in utero inflammatory challenge. Fetal sheep (131 ± 1 d gestation) demonstrated metabolic acidosis and high cortisol and norepinephrine values within 5 h of exposure to intra-amniotic LPS. Likewise, expression of pro-inflammatory cytokines increased significantly at 1 and 5 h of exposure. This was associated with NF-κB activation, by inhibitory protein IκBα degradation, and nuclear translocation of NF-κB subunits (p65/p50). Corroborating these findings, LPS exposure significantly increased pro-inflammatory innate immune gene expression in fetal sheep hepatic macrophages in vitro. Thus, an in utero inflammatory challenge induces an early hepatic innate immune response with systemic metabolic and stress responses. Within the fetal liver, hepatic macrophages respond robustly to LPS exposure. Our results demonstrate that the fetal hepatic innate immune response must be considered when developing therapeutic approaches to attenuate end-organ injury associated with in utero inflammation.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Randall B Wilkening
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Zarate MA, Nguyen LM, De Dios RK, Zheng L, Wright CJ. Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice. Front Immunol 2020; 11:1892. [PMID: 32973783 PMCID: PMC7472845 DOI: 10.3389/fimmu.2020.01892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Leanna M Nguyen
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
14
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
15
|
Lee JY, Hong SH. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int J Stem Cells 2020; 13:1-12. [PMID: 31887851 PMCID: PMC7119209 DOI: 10.15283/ijsc19127] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are regarded as one of essential cell sources for treating regenerative diseases. Among many stem cells, the feasibility of using adult-derived hematopoietic stem cells in therapeutic approaches is very diverse, and is unarguably regarded as an important cell source in stem cell biology. So far, many investigators are exploring HSCs and modified HSCs for use in clinical and basic science. In the present review, we briefly summarized HSCs and their application in pathophysiologic conditions, including non-hematopoietic tissue regeneration as well as blood disorders. HSCs and HSCs-derived progenitors are promising cell sources in regenerative medicine and their contributions can be properly applied to treat pathophysiologic conditions. Among many adult stem cells, HSCs are a powerful tool to treat patients with diseases such as hematologic malignancies and liver disease. Since HSCs can be differentiated into diverse progenitors including endothelial progenitors, they may be useful for constructing strategies for effective therapy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
16
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Netravali IA, Cariappa A, Yates K, Haining WN, Bertocchi A, Allard-Chamard H, Rosenberg I, Pillai S. 9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology 2019; 29:861-875. [PMID: 31411667 DOI: 10.1093/glycob/cwz062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
The origins of plasmacytoid dendritic cells (pDCs) have long been controversial and progenitors exclusively committed to this lineage have not been described. We show here that the fate of hematopoietic progenitors is determined in part by their surface levels of 9-O-acetyl sialic acid. Pro-pDCs were identified as lineage negative 9-O-acetyl sialic acid low progenitors that lack myeloid and lymphoid potential but differentiate into pre-pDCs. The latter cells are also lineage negative, 9-O-acetyl sialic acid low cells but are exclusively committed to the pDC lineage. Levels of 9-O-acetyl sialic acid provide a distinct way to define progenitors and thus facilitate the study of hematopoietic differentiation.
Collapse
Affiliation(s)
- Ilka A Netravali
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathleen Yates
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Bertocchi
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.,Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l', Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada, J1K 2R1
| | - Ian Rosenberg
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
19
|
Leung GA, Cool T, Valencia CH, Worthington A, Beaudin AE, Forsberg EC. The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development. Development 2019; 146:146/14/dev176180. [PMID: 31332039 DOI: 10.1242/dev.176180] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
The discovery of a fetal origin for tissue-resident macrophages (trMacs) has inspired an intense search for the mechanisms underlying their development. Here, we performed in vivo lineage tracing of cells with an expression history of IL7Rα, a marker exclusively associated with the lymphoid lineage in adult hematopoiesis. Surprisingly, we found that Il7r-Cre labeled fetal-derived, adult trMacs. Labeling was almost complete in some tissues and partial in others. The putative progenitors of trMacs, yolk sac (YS) erythromyeloid progenitors, did not express IL7R, and YS hematopoiesis was unperturbed in IL7R-deficient mice. In contrast, tracking of IL7Rα message levels, surface expression, and Il7r-Cre-mediated labeling across fetal development revealed dynamic regulation of Il7r mRNA expression and rapid upregulation of IL7Rα surface protein upon transition from monocyte to macrophage within fetal tissues. Fetal monocyte differentiation in vitro produced IL7R+ macrophages, supporting a direct progenitor-progeny relationship. Additionally, blockade of IL7R function during late gestation specifically impaired the establishment of fetal-derived trMacs in vivo These data provide evidence for a distinct function of IL7Rα in fetal myelopoiesis and identify IL7R as a novel regulator of trMac development.
Collapse
Affiliation(s)
- Gabriel A Leung
- Quantitative and Systems Biology Program, University of California-Merced, Merced, CA 95343, USA
| | - Taylor Cool
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA.,Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Clint H Valencia
- Molecular and Cell Biology Department, School of Natural Sciences, University of California-Merced, Merced, CA 95343, USA
| | - Atesh Worthington
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anna E Beaudin
- Molecular and Cell Biology Department, School of Natural Sciences, University of California-Merced, Merced, CA 95343, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA .,Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Wallrapp A, Riesenfeld SJ, Burkett PR, Kuchroo VK. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. Immunol Rev 2019; 286:53-73. [PMID: 30294962 DOI: 10.1111/imr.12702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immunity against pathogens is tightly regulated to ensure appropriate inflammatory responses that clear infection and prevent excessive tissue damage. Recent research has shown that type 2 innate lymphoid cells (ILC2s) contribute to steady-state tissue integrity and exert tissue-specific functions. However, upon exposure to inflammatory stimuli, they also initiate and amplify type 2 inflammation by inducing mucus production, eosinophilia, and Th2 differentiation. In this review, we discuss the regulation of ILC2 activation by transcription factors and metabolic pathways, as well as by extrinsic signals such as cytokines, lipid mediators, hormones, and neuropeptides. We also review recent discoveries about ILC2 plasticity and heterogeneity in different tissues, as revealed partly through single-cell RNA sequencing of transcriptional responses to various stimuli. Understanding the tissue-specific pathways that regulate ILC2 diversity and function is a critical step in the development of potential therapies for allergic diseases.
Collapse
Affiliation(s)
- Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts
| |
Collapse
|
21
|
Schropp V, Rohde J, Rovituso DM, Jabari S, Bharti R, Kuerten S. Contribution of LTi and T H17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:111. [PMID: 31138214 PMCID: PMC6540524 DOI: 10.1186/s12974-019-1500-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/06/2019] [Indexed: 01/26/2023] Open
Abstract
Background In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model. Methods We performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3−CD5−CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35–55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing. Results While we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3−CD5−CD4−RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35–55-induced EAE. Conclusion The absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice.
Collapse
Affiliation(s)
- Verena Schropp
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jörn Rohde
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Damiano M Rovituso
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Samir Jabari
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University Hospitals of Würzburg, Würzburg, Germany
| | - Stefanie Kuerten
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
22
|
Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol 2018; 9:2396. [PMID: 30416502 PMCID: PMC6212529 DOI: 10.3389/fimmu.2018.02396] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Pregnancy success is orchestrated by the complex balance between the maternal and fetal immune systems. Herein, we summarize the potential role of innate lymphoid cells (ILCs) in the maternal and fetal compartments. We reviewed published literature describing different ILC subsets [ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells] in the uterus, decidua, fetal tissues [liver, secondary lymphoid organs (SLO), intestine, and lung] and amniotic cavity. ILC1s, ILC2s, and ILC3s are present in the murine uterus prior to and during pregnancy but have only been detected in the non-pregnant endometrium in humans. Specifically, ILC2s reside in the murine uterus from mid-pregnancy to term, ILC1s increase throughout gestation, and ILC3s remain constant. Yet, LTi cells have only been detected in the non-pregnant murine uterus. In the human decidua, ILC1s, ILC3s, and LTi-like cells are more abundant during early gestation, whereas ILC2s increase at the end of pregnancy. Decidual ILC1s were also detected during mid-gestation in mice. Interestingly, functional decidual ILC2s and ILC3s increased in women who underwent spontaneous preterm labor, indicating the involvement of such cells in this pregnancy complication. Fetal ILCs exist in the liver, SLO, intestine, lung, and amniotic cavity. The fetal liver is thought to be the source of ILC progenitors since the differentiation of these cells from hematopoietic stem cells occurs at this site, and mature ILC subsets can be found in this compartment as well. The interaction between LTi cells and specialized stromal cells is important during the formation of SLO. Mature ILCs are found at the mucosal surfaces of the lung and intestine, from where they can extravasate into the amniotic cavity. Amniotic fluid ILCs express high levels of RORγt, CD161, and CD103, hallmarks of ILC3s. Such cells are more abundant in the second trimester than later in gestation. Although amniotic fluid ILC3s produce IL-17A and TNFα, indicating their functionality, their numbers in patients with intra-amniotic infection/inflammation remain unchanged compared to those without this pregnancy complication. Collectively, these findings suggest that maternal (uterine and decidual) ILCs play central roles in both the initiation and maintenance of pregnancy, and fetal ILCs participate in the development of immunity.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
23
|
Bovay E, Sabine A, Prat-Luri B, Kim S, Son K, Willrodt AH, Olsson C, Halin C, Kiefer F, Betsholtz C, Jeon NL, Luther SA, Petrova TV. Multiple roles of lymphatic vessels in peripheral lymph node development. J Exp Med 2018; 215:2760-2777. [PMID: 30355615 PMCID: PMC6219737 DOI: 10.1084/jem.20180217] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
This work shows how blood and lymphatic vessels contribute to lymph node organogenesis. Both vessel types transport lymphoid tissue inducer cells, while lymphatics also generate interstitial flow, important for mechanical stromal activation and further lymph node expansion. The mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using high-resolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage. This process is independent of lymphatic vasculature, but lymphatic vessels are indispensable for the transport of LTi cells that egress from blood capillaries elsewhere and serve as an essential LN expansion reservoir. At later stages, lymphatic collecting vessels ensure efficient LTi cell transport and formation of the LN capsule and subcapsular sinus. Perinodal lymphatics also promote local interstitial flow, which cooperates with lymphotoxin-β signaling to amplify stromal CXCL13 production and thereby promote LTi cell retention. Our data unify previous models of LN development by showing that lymphatics intervene at multiple points to assist LN expansion and identify a new role for mechanical forces in LN development.
Collapse
Affiliation(s)
- Esther Bovay
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Amélie Sabine
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Borja Prat-Luri
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Sudong Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyungmin Son
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Cecilia Olsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland .,Ludwig Institute for Cancer Research, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Division of Experimental Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
24
|
Gomez-Lopez N, Romero R, Xu Y, Miller D, Leng Y, Panaitescu B, Silva P, Faro J, Alhousseini A, Gill N, Hassan SS, Hsu CD. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol 2018; 79:e12827. [PMID: 29500850 DOI: 10.1111/aji.12827] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The immune cellular composition of amniotic fluid is poorly understood. Herein, we determined: 1) the immunophenotype of amniotic fluid immune cells during the second and third trimester in the absence of intra-amniotic infection/inflammation; 2) whether amniotic fluid T cells and ILCs display different phenotypical characteristics to that of peripheral cells; and 3) whether the amniotic fluid immune cells are altered in women with intra-amniotic infection/inflammation. METHOD OF STUDY Amniotic fluid samples (n = 57) were collected from 15 to 40 weeks of gestation in women without intra-amniotic infection/inflammation. Samples from women with intra-amniotic infection/inflammation were also included (n = 9). Peripheral blood mononuclear cells from healthy adults were used as controls (n = 3). Immunophenotyping was performed using flow cytometry. RESULTS In the absence of intra-amniotic infection/inflammation, the amniotic fluid contained several immune cell populations between 15 and 40 weeks. Among these immune cells: (i) T cells and ILCs were greater than B cells and natural killer (NK) cells between 15 and 30 weeks; (ii) T cells were most abundant between 15 and 30 weeks; (iii) ILCs were most abundant between 15 and 20 weeks; (iv) B cells were scarce between 15 and 20 weeks; yet, they increased and were constant after 20 weeks; (v) NK cells were greater between 15 and 30 weeks than at term; (vi) ILCs expressed high levels of RORγt, CD161, and CD103 (ie, group 3 ILCs); (vii) T cells expressed high levels of RORγt; (viii) neutrophils increased as gestation progressed; and (ix) monocytes/macrophages emerged after 20 weeks and remained constant until term. All of the amniotic fluid immune cells, except ILCs, were increased in the presence of intra-amniotic infection/inflammation. CONCLUSION The amniotic fluid harbors a diverse immune cellular composition during normal and complicated pregnancies.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pablo Silva
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jonathan Faro
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Navleen Gill
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Zhong C, Zheng M, Zhu J. Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine Growth Factor Rev 2018; 42:5-12. [PMID: 29454785 DOI: 10.1016/j.cytogfr.2018.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
Innate lymphoid cells (ILCs) that are capable of producing effector cytokines reminiscent of CD4+ T helper (Th) cells during infections and tissue inflammations have drawn much attention in the immunology field in recent years. Within the ILCs, the lymphoid tissue inducer (LTi) cells that play a critical role in lymphoid organogenesis were identified long before the establishment of the ILC concept. LTi cells, developed and functioning mainly at the fetal stage, and LTi-like cells, presumably generated during the adulthood, are regarded as a subset of type 3 ILCs (ILC3s) because they express the ILC3 lineage-defining transcription factor RORγt, and like other ILC3s, can produce an ILC3 signature cytokine IL-22 and initiate protective immune responses against extracellular bacteria. However, LTi/LTi-like cells have a unique gene expression pattern, and they develop from a progenitor that is distinct from the progenitor of all other ILCs and the progenitor of conventional natural killer (cNK) cells. There are also several other unique features of LTi/LTi-like cells comparing to non-LTi ILC3s. In addition to their classical function in lymphoid organogenesis, LTi/LTi-like cells also have specialized functions in association with the adaptive immune system, which include their effects on T and B cell development, activation and function. In this review, we summarize these specific features of LTi/LTi-like cells and propose that these cells should be considered as a separated innate lymphoid lineage in parallel with other non-LTi ILCs and cNK cells.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Kristiansen TA, Vanhee S, Yuan J. The influence of developmental timing on B cell diversity. Curr Opin Immunol 2017; 51:7-13. [PMID: 29272734 DOI: 10.1016/j.coi.2017.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
Abstract
The adult adaptive immune system is comprised of a wide spectrum of lymphocyte subsets with distinct antigen receptor repertoire profiles, effector functions, turnover times and anatomical locations, acting in concert to provide optimal host protection and self-regulation. While some lymphocyte populations are replenished by bone marrow hematopoietic stem cells (HSCs) through adulthood, others emerge during a limited window of time during fetal and postnatal life and sustain through self-replenishment. Despite fundamental implications in immune regeneration, early life immunity and leukemogenesis, the impact of developmental timing on lymphocyte output remains an under explored frontier in immunology. In this review, we spotlight recent insights into the developmental changes in B cell output in mice and explore how several age specific cellular and molecular factors may shape the formation of a diverse adaptive immune system.
Collapse
Affiliation(s)
- Trine A Kristiansen
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stijn Vanhee
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease? Front Immunol 2017; 8:1830. [PMID: 29312327 PMCID: PMC5742143 DOI: 10.3389/fimmu.2017.01830] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
Secondary lymphoid organs are integral to initiation and execution of adaptive immune responses. These organs provide a setting for interactions between antigen-specific lymphocytes and antigen-presenting cells recruited from local infected or inflamed tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed process during embryogenesis. However, organogenesis of secondary lymphoid tissues can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed tissues afflicted by various pathological conditions, including cancer, autoimmunity, infection, or allograft rejection. Studies are beginning to shed light on the function of such structures in different disease settings, raising important questions regarding their contribution to progression or resolution of disease. Data show an association between the tumor-associated TLSs and a favorable prognosis in various types of human cancer, attracting the speculation that TLSs support effective local antitumor immune responses. However, definitive evidence for the role for TLSs in fostering immune responses in vivo are lacking, with current data remaining largely correlative by nature. In fact, some more recent studies have even demonstrated an immunosuppressive, tumor-promoting role for cancer-associated TLSs. In this review, we will discuss what is known about the development of cancer-associated TLSs and the current understanding of their potential role in the antitumor immune response.
Collapse
Affiliation(s)
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Gareth Wyn Jones
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Berthault C, Ramond C, Burlen-Defranoux O, Soubigou G, Chea S, Golub R, Pereira P, Vieira P, Cumano A. Asynchronous lineage priming determines commitment to T cell and B cell lineages in fetal liver. Nat Immunol 2017; 18:1139-1149. [PMID: 28825702 DOI: 10.1038/ni.3820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Abstract
The molecular events that initiate lymphoid-lineage specification remain unidentified because the stages of differentiation during which lineage commitment occurs are difficult to characterize. We isolated fetal liver progenitor cells undergoing restriction of their differentiation potential toward the T cell-innate lymphoid cell lineage or the B cell lineage. Transcripts that defined the molecular signatures of these two subsets were sequentially upregulated in lympho-myeloid precursor cells and in common lymphoid progenitor cells, respectively, and this preceded lineage restriction; this indicates that T cell-versus-B cell commitment is not a binary fate 'decision'. The T cell-bias and B cell-bias transcriptional programs were frequently co-expressed in common lymphoid progenitor cells and were segregated in subsets biased toward T cell differentiation or B cell differentiation, after interleukin 7 (IL-7) signaling that controlled the number of progenitor cells engaging in T cell differentiation versus B cell differentiation.
Collapse
Affiliation(s)
- Claire Berthault
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Cyrille Ramond
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Odile Burlen-Defranoux
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Guillaume Soubigou
- Département Génomes et Génétique, Plate-forme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Sylvestre Chea
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Rachel Golub
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Pablo Pereira
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Paulo Vieira
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Pasteur Institute, Paris, France. Immunology department.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|
29
|
Solanki A, Lau CI, Saldaña JI, Ross S, Crompton T. The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh. J Exp Med 2017; 214:2041-2058. [PMID: 28533268 PMCID: PMC5502423 DOI: 10.1084/jem.20160852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Solanki et al. show that stromal activity of the transcription factor Gli3 is required for B cell development in the fetal liver. Gli3 functions to repress Shh expression, and Shh signals to developing B cells to regulate their development at multiple developmental stages. Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])–deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR–signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively.
Collapse
Affiliation(s)
- Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - José Ignacio Saldaña
- Great Ormond Street Institute of Child Health, University College London, London, England, UK.,School of Health, Sport, and Bioscience, University of East London, London, England, UK
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| |
Collapse
|
30
|
Alden K, Timmis J, Andrews PS, Veiga-Fernandes H, Coles M. Extending and Applying Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological Pathways in Computational Models. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:431-442. [PMID: 26887007 DOI: 10.1109/tcbb.2016.2527654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Through integrating real time imaging, computational modelling, and statistical analysis approaches, previous work has suggested that the induction of and response to cell adhesion factors is the key initiating pathway in early lymphoid tissue development, in contrast to the previously accepted view that the process is triggered by chemokine mediated cell recruitment. These model derived hypotheses were developed using spartan, an open-source sensitivity analysis toolkit designed to establish and understand the relationship between a computational model and the biological system that model captures. Here, we extend the functionality available in spartan to permit the production of statistical analyses that contrast the behavior exhibited by a computational model at various simulated time-points, enabling a temporal analysis that could suggest whether the influence of biological mechanisms changes over time. We exemplify this extended functionality by using the computational model of lymphoid tissue development as a time-lapse tool. By generating results at twelve- hour intervals, we show how the extensions to spartan have been used to suggest that lymphoid tissue development could be biphasic, and predict the time-point when a switch in the influence of biological mechanisms might occur.
Collapse
|
31
|
Gronke K, Kofoed-Nielsen M, Diefenbach A. Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria. Methods Mol Biol 2017; 1559:255-265. [PMID: 28063049 DOI: 10.1007/978-1-4939-6786-5_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.
Collapse
Affiliation(s)
- Konrad Gronke
- Research Centre for Immunology and Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Max Planck Institute for Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Michael Kofoed-Nielsen
- Research Centre for Immunology and Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.,Max Planck Institute for Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Andreas Diefenbach
- Research Centre for Immunology and Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany. .,Institute of Microbiology, Charité - University Medical Centre Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
| |
Collapse
|
32
|
Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7Rα Expression. PLoS One 2016; 11:e0165676. [PMID: 27792746 PMCID: PMC5085042 DOI: 10.1371/journal.pone.0165676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022] Open
Abstract
B-1 cells represent a sub-fraction of B lymphocytes that participate in T cell-independent antibody production and contribute to innate immunity. While the production of B-1 cells is favored during the fetal waves of lymphopoiesis, it has been unclear when and how that differentiation option is specified. To clarify this, lymphoid and hematopoietic progenitors of fetal liver (FL) and adult bone marrow (ABM) were examined for the B cell differentiation potential. Mouse common lymphoid progenitors (CLPs) and more primitive KSL fraction of FL and ABM were transferred to SCID mice and donor-derived B cell subsets were analyzed 4 weeks later. CLPs were also cultured on ST2 stromal cells for 6 days prior to transplantation. While Lin- IL-7Rα+ CLPs from ABM differentiated to B-1, B-2 and marginal zone B (MZB) cells, equivalent cells from d15 FL differentiated mostly to B-1a cells. We found that fetal CLPs had less ability to colonize the bone marrow than adult CLPs. However, the fetal/adult difference was already present when progenitors were cultured in an identical condition before transplantation. More primitive KSL fraction of FL could generate the same broad spectrum of B cells typical of adults, including splenic MZB cells. In conclusion, we argue that FL and ABM-CLPs are intrinsically different regarding B-1/B-2 fates and the difference is acquired just before or coincident with the acquisition of IL-7Rα expression.
Collapse
|
33
|
Gillard GO, Saenz SA, Huss DJ, Fontenot JD. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. J Neuroimmunol 2016; 294:41-5. [PMID: 27138097 DOI: 10.1016/j.jneuroim.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
Innate lymphoid cells (ILCs) play an important role in immunity, inflammation, and tissue remodeling and their dysregulation is implicated in autoimmune and inflammatory disorders. We analyzed the impact of daclizumab, a humanized monoclonal anti-CD25 antibody, on circulating natural killer (NK) cells and ILCs in a cohort of multiple sclerosis patients. An increase in CD56(bright) NK cells and CD56(hi)CD16(intermediate) transitional NK cells was observed. No significant change in total ILCs or major ILC subpopulations was observed. These results refine our understanding of the impact of daclizumab on innate lymphoid cell populations.
Collapse
Affiliation(s)
| | - Steven A Saenz
- Celgene Avilomics Research, 200 Cambridge Park Dr., Cambridge, MA 02140, United States
| | - David J Huss
- Juno Therapeutics, 307 Westlake Ave N, Suite 300; Seattle, WA 98109, United States
| | - Jason D Fontenot
- Juno Therapeutics, 307 Westlake Ave N, Suite 300; Seattle, WA 98109, United States
| |
Collapse
|
34
|
Jensen CT, Strid T, Sigvardsson M. Exploring the multifaceted nature of the common lymphoid progenitor compartment. Curr Opin Immunol 2016; 39:121-6. [PMID: 26871596 DOI: 10.1016/j.coi.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/03/2023]
Abstract
While the common lymphoid progenitor compartment was originally thought to be a rather homogenous cell population, it has become increasingly clear that this compartment is highly heterogeneous both with regard to phenotypic and functional features. The exploration of this cellular complexity has generated novel molecular insights into regulatory events in lymphoid lineage restriction and provided support for the idea that multiple lineage restriction events occur at this developmental stage. Furthermore, the identification of multiple lineage-restricted progenitors with mixed lineage potential challenges a strictly hierarchical model for lymphoid development. Instead we propose a model based on competence windows during which cell fates are established through the action of lineage determining factors.
Collapse
Affiliation(s)
| | - Tobias Strid
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| |
Collapse
|
35
|
Baerenwaldt A, von Burg N, Kreuzaler M, Sitte S, Horvath E, Peter A, Voehringer D, Rolink AG, Finke D. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:2561-71. [PMID: 26851220 DOI: 10.4049/jimmunol.1501380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.
Collapse
Affiliation(s)
- Anne Baerenwaldt
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Nicole von Burg
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Matthias Kreuzaler
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland; and
| | - Selina Sitte
- Department of Infection Biology, University Clinic of Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Edit Horvath
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Annick Peter
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - David Voehringer
- Department of Infection Biology, University Clinic of Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland; and
| | - Daniela Finke
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland;
| |
Collapse
|
36
|
Chea S, Schmutz S, Berthault C, Perchet T, Petit M, Burlen-Defranoux O, Goldrath A, Rodewald HR, Cumano A, Golub R. Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling. Cell Rep 2016; 14:1500-1516. [PMID: 26832410 DOI: 10.1016/j.celrep.2016.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/01/2015] [Accepted: 01/02/2016] [Indexed: 11/27/2022] Open
Abstract
T and innate lymphoid cells (ILCs) share some aspects of their developmental programs. However, although Notch signaling is strictly required for T cell development, it is dispensable for fetal ILC development. Constitutive activation of Notch signaling, at the common lymphoid progenitor stage, drives T cell development and abrogates ILC development by preventing Id2 expression. By combining single-cell transcriptomics and clonal culture strategies, we characterize two heterogeneous α4β7-expressing lymphoid progenitor compartments. αLP1 (Flt3(+)) still retains T cell potential and comprises the global ILC progenitor, while αLP2 (Flt3(-)) consists of ILC precursors that are primed toward the different ILC lineages. Only a subset of αLP2 precursors is sensitive to Notch signaling required for their proliferation. Our study identifies, in a refined manner, the diversity of transitional stages of ILC development, their transcriptional signatures, and their differential dependence on Notch signaling.
Collapse
|
37
|
Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Front Cell Dev Biol 2016; 3:85. [PMID: 26793707 PMCID: PMC4710696 DOI: 10.3389/fcell.2015.00085] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines that has been extensively studied since its discovery in 2000. This review article aims to describe the cellular sources and signaling pathways of this cytokine as well as the functions of IL-22 in the intestine. In addition, this article describes the roles of IL-22 in the pathogenesis of several gastrointestinal diseases, including inhibition of inflammation and barrier defense against pathogens within the intestine. Since many of the functions of IL-22 in the intestine are incompletely understood, this review is meant to assess our current understanding of the roles of IL-22 and provide new opportunities for inquiry to improve human intestinal health and disease.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Derek A Pociask
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zerina Hodzic
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Misty Good
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Division of Newborn Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
38
|
van de Pavert SA, Vivier E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. Int Immunol 2015; 28:35-42. [PMID: 26374472 DOI: 10.1093/intimm/dxv052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) represent a heterogeneous population of cells that share the nuclear hormone receptor RORγt (retinoic acid receptor-related orphan receptor γt) as a master regulator for differentiation and function. ILC3 can be divided into two major subsets based on the cell surface expression of the natural cytotoxicity receptor (NCR), NKp46. A subset of NCR(-) ILC3 includes the previously known lymphoid-tissue inducer cells that are essential for the embryonic formation of peripheral lymph nodes and Peyer's patches. After birth, the NCR(-) and NCR(+) ILC3 contribute to the maintenance of health but also to inflammation in mucosal tissues. This review will describe the differentiation pathways of ILC3, their involvement in the development of the adaptive immune system and their role in the establishment and maintenance of gut immunity.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm U1104, CNRS UMR7280, 13288 Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm U1104, CNRS UMR7280, 13288 Marseille, France Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, 13385 Marseille, France
| |
Collapse
|
39
|
Nagatake T, Fukuyama S, Sato S, Okura H, Tachibana M, Taniuchi I, Ito K, Shimojou M, Matsumoto N, Suzuki H, Kunisawa J, Kiyono H. Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS One 2015; 10:e0127460. [PMID: 26001080 PMCID: PMC4441428 DOI: 10.1371/journal.pone.0127460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is a group of secondary and organized lymphoid tissue that develops at different mucosal surfaces. Peyer's patches (PPs), nasopharynx-associated lymphoid tissue (NALT), and tear duct-associated lymphoid tissue (TALT) are representative MALT in the small intestine, nasal cavity, and lacrimal sac, respectively. A recent study has shown that transcriptional regulators of core binding factor (Cbf) β2 and promotor-1-transcribed Runt-related transcription factor 1 (P1-Runx1) are required for the differentiation of CD3-CD4+CD45+ lymphoid tissue inducer (LTi) cells, which initiate and trigger the developmental program of PPs, but the involvement of this pathway in NALT and TALT development remains to be elucidated. Here we report that Cbfβ2 plays an essential role in NALT and TALT development by regulating LTi cell trafficking to the NALT and TALT anlagens. Cbfβ2 was expressed in LTi cells in all three types of MALT examined. Indeed, similar to the previous finding for PPs, we found that Cbfβ2-/- mice lacked NALT and TALT lymphoid structures. However, in contrast to PPs, NALT and TALT developed normally in the absence of P1-Runx1 or other Runx family members such as Runx2 and Runx3. LTi cells for NALT and TALT differentiated normally but did not accumulate in the respective lymphoid tissue anlagens in Cbfβ2-/- mice. These findings demonstrate that Cbfβ2 is a central regulator of the MALT developmental program, but the dependency of Runx proteins on the lymphoid tissue development would differ among PPs, NALT, and TALT.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Satoshi Fukuyama
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Hideaki Okura
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Masashi Tachibana
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852–8588, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University School of Medicine, Kobe, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
- * E-mail:
| |
Collapse
|
40
|
Alden K, Andrews PS, Polack FAC, Veiga-Fernandes H, Coles MC, Timmis J. Using argument notation to engineer biological simulations with increased confidence. J R Soc Interface 2015; 12:20141059. [PMID: 25589574 PMCID: PMC4345473 DOI: 10.1098/rsif.2014.1059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions.
Collapse
Affiliation(s)
- Kieran Alden
- York Computational Immunology Laboratory, University of York, York, UK Centre for Immunology and Infection, University of York, York, UK Department of Electronics, University of York, York, UK
| | - Paul S Andrews
- York Computational Immunology Laboratory, University of York, York, UK Department of Computer Science, University of York, York, UK York Centre for Complex Systems Analysis, University of York, York, UK
| | - Fiona A C Polack
- York Computational Immunology Laboratory, University of York, York, UK Department of Computer Science, University of York, York, UK York Centre for Complex Systems Analysis, University of York, York, UK
| | | | - Mark C Coles
- York Computational Immunology Laboratory, University of York, York, UK Centre for Immunology and Infection, University of York, York, UK SimOmics Ltd, The Catalyst, Baird Lane, Heslington, York, UK
| | - Jon Timmis
- York Computational Immunology Laboratory, University of York, York, UK Department of Electronics, University of York, York, UK SimOmics Ltd, The Catalyst, Baird Lane, Heslington, York, UK
| |
Collapse
|
41
|
Klose CSN, Diefenbach A. Transcription factors controlling innate lymphoid cell fate decisions. Curr Top Microbiol Immunol 2015; 381:215-55. [PMID: 25038936 DOI: 10.1007/82_2014_381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mucosal epithelium is in direct contact with symbiotic and pathogenic microorganisms. Therefore, the mucosal surface is the principal portal of entry for invading pathogens and immune cells accumulated in the intestine to prevent infections. In addition to these conventional immune system functions, it has become clear that immune cells during steady-state continuously integrate microbial and nutrient-derived signals from the environment to support organ homeostasis. A major role in both processes is played by a recently discovered group of lymphocytes referred to as innate lymphoid cells (ILCs) Innate lymphoid cells (ILCs) that are specifically enriched at mucosal surfaces but are rather rare in secondary lymphoid organs. In analogy to the dichotomy between CD8 and CD4 T cells, we propose to classify ILCs into interleukin-7 receptor α-negative cytotoxic ILCs and IL-7Rα(+) helper-like ILCs. Dysregulated immune responses triggered by the various ILC subsets have been linked to inflammatory diseases such as inflammatory bowel disease, atopic dermatitis and airway hyperresponsiveness. Here, we will review recent progress in determining the transcriptional and developmental programs that control ILC fate decisions.
Collapse
Affiliation(s)
- Christoph S N Klose
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | | |
Collapse
|
42
|
Alden K, Andrews PS, Veiga-Fernandes H, Timmis J, Coles M. Utilising a simulation platform to understand the effect of domain model assumptions. NATURAL COMPUTING 2015; 14:99-107. [PMID: 25722664 PMCID: PMC4333240 DOI: 10.1007/s11047-014-9428-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Computational and mathematical modelling approaches are increasingly being adopted in attempts to further our understanding of complex biological systems. This approach can be subjected to strong criticism as substantial aspects of the biological system being captured are not currently known, meaning assumptions need to be made that could have a critical impact on simulation response. We have utilised the CoSMoS process in the development of an agent-based simulation of the formation of Peyer's patches (PP), gut-associated lymphoid organs that have a key role in the initiation of adaptive immune responses to infection. Although the use of genetic tools, imaging technologies and ex vivo culture systems has provided significant insight into the cellular components and associated pathways involved in PP development, interesting questions remain that cannot be addressed using these approaches, and as such well justified assumptions have been introduced into our model to counter this. Here we focus not on the development of the model itself, but instead demonstrate how the resultant simulation can be used to assess how these assumptions impact the simulation response. For example, we consider the impact of our assumption that the migration rate of lymphoid tissue cells into the gut remains constant throughout PP development. We demonstrate that an analysis of the assumptions made in the construction of the domain model may either increase confidence in the model as a representation of the biological system it captures, or may suggest areas where further biological experimentation is required.
Collapse
Affiliation(s)
- Kieran Alden
- York Computational Immunology Lab, University of York, York, UK
- Centre for Immunology and Infection, University of York and Hull York Medical School, York, UK
| | - Paul S. Andrews
- York Computational Immunology Lab, University of York, York, UK
- Department of Computer Science, University of York, York, UK
| | | | - Jon Timmis
- York Computational Immunology Lab, University of York, York, UK
- Department of Electronics, University of York, York, UK
| | - Mark Coles
- York Computational Immunology Lab, University of York, York, UK
- Centre for Immunology and Infection, University of York and Hull York Medical School, York, UK
| |
Collapse
|
43
|
Karamitros D, Patmanidi AL, Kotantaki P, Potocnik AJ, Bähr-Ivacevic T, Benes V, Lygerou Z, Kioussis D, Taraviras S. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development 2015; 142:70-81. [PMID: 25516969 DOI: 10.1242/dev.109454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandra L Patmanidi
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Panoraia Kotantaki
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandre J Potocnik
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Tomi Bähr-Ivacevic
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Dimitris Kioussis
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| |
Collapse
|
44
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
45
|
Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Exp Cell Res 2015; 331:387-98. [PMID: 25576384 DOI: 10.1016/j.yexcr.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
Abstract
Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.
Collapse
|
46
|
Effector Cells of the Mucosal Immune System. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Development of Gut-Associated Lymphoid Tissues. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Montaldo E, Teixeira-Alves LG, Glatzer T, Durek P, Stervbo U, Hamann W, Babic M, Paclik D, Stölzel K, Gröne J, Lozza L, Juelke K, Matzmohr N, Loiacono F, Petronelli F, Huntington ND, Moretta L, Mingari MC, Romagnani C. Human RORγt(+)CD34(+) cells are lineage-specified progenitors of group 3 RORγt(+) innate lymphoid cells. Immunity 2014; 41:988-1000. [PMID: 25500367 DOI: 10.1016/j.immuni.2014.11.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are defined by the expression of the transcription factor RORγt, which is selectively required for their development. The lineage-specified progenitors of ILC3s and their site of development after birth remain undefined. Here we identified a population of human CD34(+) hematopoietic progenitor cells (HPCs) that express RORγt and share a distinct transcriptional signature with ILC3s. RORγt(+)CD34(+) HPCs were located in tonsils and intestinal lamina propria (LP) and selectively differentiated toward ILC3s. In contrast, RORγt(-)CD34(+) HPCs could differentiate to become either ILC3s or natural killer (NK) cells, with differentiation toward ILC3 lineage determined by stem cell factor (SCF) and aryl hydrocarbon receptor (AhR) signaling. Thus, we demonstrate that in humans RORγt(+)CD34(+) cells are lineage-specified progenitors of IL-22(+) ILC3s and propose that tonsils and intestinal LP, which are enriched both in committed precursors and mature ILC3s, might represent preferential sites of ILC3 lineage differentiation.
Collapse
Affiliation(s)
- Elisa Montaldo
- Department of Experimental Medicine, University of Genova, Via LB Alberti 2, 16132 Genova, Italy; UOC Immunologia, IRCCS-AOU-San Martino-IST, L.go R. Benzi 10, 16132 Genova, Italy
| | - Luiz Gustavo Teixeira-Alves
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Timor Glatzer
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Pawel Durek
- Cell Biology, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrik Stervbo
- Cell Biology, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Wiebke Hamann
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Marina Babic
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany; Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20a, 51000 Rijeka, Croatia
| | - Daniela Paclik
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Stölzel
- HNO-Klinik-Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörn Gröne
- Klinik für Allgemein-, Gefäß- und Thoraxchirurgie Charité-Universitätsmedizin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Juelke
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany; Immune System, Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadine Matzmohr
- Immune Regeneration and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | - Nicholas David Huntington
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Lorenzo Moretta
- Giannina Gaslini Institute, Via G. Gaslini 5, 16147 Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genova, Via LB Alberti 2, 16132 Genova, Italy; UOC Immunologia, IRCCS-AOU-San Martino-IST, L.go R. Benzi 10, 16132 Genova, Italy
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma Forschungszentrum (DRFZ) Berlin, Leibniz-Gemeinschaft, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
49
|
Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, Locatelli F, Mingari MC. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 2014; 164:253-64. [PMID: 25323661 DOI: 10.1159/000365632] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are important effectors playing a relevant role in innate immunity, primarily in tumor surveillance and in defenses against viruses. Human NK cells recognize HLA class I molecules through surface receptors (KIR and NKG2A) that inhibit NK cell function and kill target cells that have lost (or underexpress) HLA class I molecules as it occurs in tumors or virus-infected cells. NK cell activation is mediated by an array of activating receptors and co-receptors that recognize ligands expressed primarily on tumors or virus-infected cells. In vivo anti-tumor NK cell activity may be suppressed by tumor or tumor-associated cells. Alloreactive NK cells (i.e. those that are not inhibited by the HLA class I alleles of the patient) derived from HSC of haploidentical donors play a major role in the cure of high-risk leukemia, by killing leukemia blasts and patient's DC, thus preventing tumor relapses and graft-versus-host disease. The expression of the HLA-C2-specific activating KIR2DS1 may also contribute to NK alloreactivity in patients expressing C2 alleles. A clear correlation has been proven between the size of the alloreactive NK cell population and the clinical outcome. Recently, haplo-HSCT has been further improved with the direct infusion, together with HSC, of donor-derived, mature alloreactive NK cells and TCRγδ(+) T cells - both contributing to a prompt anti-leukemia effect together with an efficient defense against pathogens during the 6- to 8-week interval required for the generation of alloreactive NK cells from HSC.
Collapse
Affiliation(s)
- Lorenzo Moretta
- Istituto Giannina Gaslini, Università di Genova, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Singh AK, Eken A, Fry M, Bettelli E, Oukka M. DOCK8 regulates protective immunity by controlling the function and survival of RORγt+ ILCs. Nat Commun 2014; 5:4603. [PMID: 25091235 PMCID: PMC4135384 DOI: 10.1038/ncomms5603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
Retinoic acid receptor-related orphan receptor-γt-positive (RORγt(+)) innate lymphoid cells (ILCs) produce interleukin (IL)-22 and IL-17, which are critical for protective immunity against enteric pathogens. The molecular mechanism underlying the development and survival of RORγt(+) ILCs is not thoroughly understood. Here, we show that Dedicator of cytokinesis 8 (DOCK8), a scaffolding protein involved in cytoskeletal rearrangement and cell migration, is essential for the protective immunity against Citrobacter rodentium. A comparative RNA sequencing-based analysis reveals an impaired induction of antimicrobial peptides in the colon of DOCK8-deficient mice, which correlates with high susceptibility to infection and a very low number of IL-22-producing RORγt(+) ILCs in their GI tract. Furthermore, DOCK8-deficient RORγt(+) ILCs are less responsive to IL-7 mediated signalling, more prone to apoptosis and produce less IL-22 due to a defect in IL-23-mediated STAT3 phosphorylation. Our studies reveal an unsuspected role of DOCK8 for the function, generation and survival of RORγt(+) ILCs.
Collapse
Affiliation(s)
- Akhilesh K. Singh
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
| | - Ahmet Eken
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
| | - Mallory Fry
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
| | - Estelle Bettelli
- Benaroya Research Institute, Immunology Program, Seattle, WA 98101, USA
| | - Mohamed Oukka
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA 98101, USA
- University of Washington, Department of Immunology, Seattle, WA 98105, USA
| |
Collapse
|