1
|
Zhou B, Zhang Y, Ni M, Bai Y, Shi Q, Zheng J, Cui Z. The involvement of VEGF and VEGFR in bacterial recognition and regulation of antimicrobial peptides in Eriocheir sinensis. Int J Biol Macromol 2024; 270:132242. [PMID: 38729487 DOI: 10.1016/j.ijbiomac.2024.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.
Collapse
Affiliation(s)
- Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Qiao Shi
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
2
|
Pei Q, He M, Tang P, Zhang X, Huang X, Zhang X, Yang J, Li Z, Li L, Chen D. Salvia miltiorrhiza polysaccharide promotes the health of crayfish (Procambarus clarkii) by promoting hemocyte phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109405. [PMID: 38278337 DOI: 10.1016/j.fsi.2024.109405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Plant polysaccharides as immunomodulators are considered one of the effective measures to reduce antibiotic therapy in aquaculture. The immunomodulatory function of Salvia miltiorrhiza polysaccharides (SMP) has been demonstrated and begun to be applied in vertebrates, but its potential effect on crustaceans is unclear. In this study, crayfish (Procambarus clarkii) was fed with 0 %, 0.3 %, 0.7 %, 1.1 %, and 1.5 % SMP for 4 weeks to investigate the effects of SMP on hemocytes phagocytosis, hepatopancreatic function, and intestinal barrier function. The results revealed that hemocyte phagocytic activity was increased in all SMP groups. During the process of hemocytes phagocytic recognition and formation of phagosomes and phagolysosomes, the mRNA expression levels of mas, hem, rab3, ctsb, and lamp-1 were up-regulated mainly in the 0.3 % SMP group. During the clearance phase of phagocytosis, respiratory burst activity, ROS level, T-SOD, CAT, GST, and LZM activities were mainly increased in the 1.5 % SMP group. Hepatopancreas AKP and GOT activity were no significant change in all SMP groups. ACP activity was significantly enhanced in the 1.1 % SMP group. The GPT activity of 0.3-0.7 % SMP group was significantly decreased. The 0.7 % SMP group had the highest intestinal fold height. The highest index values of OTUs, Ace, Chao, and Shannon were in the 0.3 % SMP group. The dietary addition of 0.3 % SMP led to a tendency of increased relative abundance of Firmicutes and Bacteroidota at the phylum level, while the relative abundance of Proteobacteria at the phylum level decreased. In conclusion, dietary SMP could promote crayfish health by enhancing phagocytosis, protecting hepatopancreas and enhancing intestinal barrier function. This study contributes to the theoretical foundation for exploring the potential application of plant polysaccharides in crustaceans.
Collapse
Affiliation(s)
- Qiaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxuan He
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China
| | - Jiangyong Yang
- Chengdu Belorkon Bio-Tech Co., Ltd., Chengdu, 611130, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, 611130, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Qiao X, Liu C, Wang W, Yang C, Li M, Yi Q, Kong N, Qiu L, Liu X, Wang L, Song L. A neural cell adhesion molecule from oyster Crassostrea gigas: Molecular identification and immune functional characterization. Int J Biol Macromol 2023; 247:125756. [PMID: 37429340 DOI: 10.1016/j.ijbiomac.2023.125756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are large cell-surface glycoproteins playing important roles in cell-cell and cell-extracellular matrix interactions in nervous system. Recent study identified a homologue of NCAM (CgNCAM) from the Pacific oyster Crassostrea gigas. Its ORF was of 2634 bp which encodes a protein (877 amino acids) consisting of five immunoglobulin domains and two fibronectin type III domains. CgNCAM transcripts were broadly distributed in oyster tissues especially in mantle, labial palp and haemolymph. CgNCAM showed up-regulated expression in haemocytes of oysters after Vibrio splendidus and Staphylococcus aureus stimulation. The recombinant CgNCAM protein (rCgNCAM) was able to bind manose, lipopolysaccharide and glucan, as well as different microbes including Gram-negative bacteria and fungi. rCgNCAM displayed bacterial agglutination and hemagglutination activity. CgNCAM improved the phagocytosis of haemocytes towards V. splendidus by regulating the expression of CgIntegrin, CgRho J and CgMAPKK. Moreover, CgNCAM was involved in the extracellular trap establishment of haemocytes after V. splendidus stimulation. The results collectively indicated that CgNCAM acted as a recognition receptor executing multiple immune functions to recognize and eliminate invading microorganisms in innate immunity of oysters.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
5
|
Dolar A, Drobne D, Narat M, Jemec Kokalj A. Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120233. [PMID: 36152721 DOI: 10.1016/j.envpol.2022.120233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Tire particles pose a potential threat to terrestrial organisms because they are deposited in large quantities in the soil by tire wear abrasion, and moreover their chemical complexity poses an additional risk. Microplastics can affect several physiological processes in organisms, including those related to immunity. Therefore, we investigated the expression profile of selected immune-related genes (MnSod, Manganese Superoxide dismutase; Cat, Catalase; CypG, Cyclophilin G; Nos, Nitric oxide synthase; Ppae2a, Prophenoloxidase-activating enzyme 2a; Dscam, Down syndrome cell adhesion molecule; Myd88, Myeloid-differentiation factor 88; Toll4, Toll-like receptor 4; Mas-like, Masquerade-like protein) in haemocytes and the digestive gland hepatopancreas of terrestrial crustacean Porcellio scaber after two different time exposures (4 and 14 days) to tire particles in soil. Our results reveal for the first time the response of P. scaber after microplastic exposure at the transcriptome level. We observed time- and tissue-dependent changes in the expression of the analysed genes, with more pronounced alterations in haemocytes after 14 days of exposure. Some minor changes were also observed in hepatopancreas after 4 days. Changes in the expression profile of the analysed genes are a direct indication of a modulated immune status of the test organism, which, however, does not represent an adverse effect on the test organism under the given conditions. Nevertheless, the question remains whether the observed change in immune status affects the immunocompetence of the test organism.
Collapse
Affiliation(s)
- Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Mojca Narat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Liu Y, Zhang A, Guo N, Hao Q, Li F. A pattern recognition receptor ficolin from Portunus trituberculatus (Ptficolin) regulating immune defense and hemolymph coagulation. Int J Biol Macromol 2022; 221:558-572. [PMID: 36089094 DOI: 10.1016/j.ijbiomac.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Ficolins, belonging to the fibrinogen-related protein superfamily, are important pattern recognition receptors in innate immunity. Here, a ficolin gene Ptficolin was characterized from the swimming crab Portunus trituberculatus. The completed cDNA sequence of Ptficolin encoded a signal peptide, a coiled-coil region and a fibrinogen-like domain but without the typical collagen region of vertebrate ficolins. Ptficolin showed higher expression in stomach and hepatopancreas, and presented a time-dependent response after pathogen challenge and injury stimulation. The recombinant Ptficolin (rPtficolin) could bind to various PAMPs and microorganisms, and agglutinate microorganisms and rabbit erythrocytes in a Ca2+-dependent manner, with strong binding ability to N-acetyl sugars. Meanwhile, rPtficolin promoted the hemocyte phagocytosis and clearance activity of Vibrio, while Ptficolin knockdown impaired the bacterial phagocytosis and clearance ability, suggesting the opsonin activity of Ptficolin. Knockdown of Ptficolin could downregulate the transcription of most complement-like genes and AMPs, but enhance the expression of most proPO system-related genes and key genes of Toll, IMD and JNK pathways. Moreover, knockdown of Ptficolin led to the increased hemolymph clotting time and the decreased expression of clotting-related genes. Our results indicate that Ptficolin could recognize and eliminate invading pathogens, and might be a prominent component in hemolymph coagulation of crab.
Collapse
Affiliation(s)
- Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ao Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Na Guo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Söderhäll I, Fasterius E, Ekblom C, Söderhäll K. Characterization of hemocytes and hematopoietic cells of a freshwater crayfish based on single-cell transcriptome analysis. iScience 2022; 25:104850. [PMID: 35996577 PMCID: PMC9391574 DOI: 10.1016/j.isci.2022.104850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Crustaceans constitute a species-rich and ecologically important animal group, and their circulating blood cells (hemocytes) are of critical importance in immunity as key players in pathogen recognition, phagocytosis, melanization, and antimicrobial defense. To gain a better understanding of the immune responses to different pathogens, it is crucial that we identify different hemocyte subpopulations with different functions and gain a better understanding of how these cells are formed. Here, we performed single-cell RNA sequencing of isolated hematopoietic tissue (HPT) cells and hemocytes from the crayfish Pacifastacus leniusculus to identify hitherto undescribed hemocyte types in the circulation and show that the circulating cells are more diversified than previously recognized. In addition, we discovered cell populations in the HPT with clear precursor characteristics as well as cells involved in iron homeostasis, representing a previously undiscovered cell type. These findings may improve our understanding of hematopoietic stem cell regulation in crustaceans and other animals. Single-cell RNA sequencing of hematopoietic cell types reveals new cell types One cell type contains iron homeostasis-associated transcripts Hemocytes and hematopoietic cells differ in their transcript profiles Prophenoloxidase is only expressed in hemocytes
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
- Corresponding author
| | - Erik Fasterius
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, SE171 65 Solna, Sweden
| | - Charlotta Ekblom
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| |
Collapse
|
9
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
10
|
Zupanič N, Počič J, Leonardi A, Šribar J, Kordiš D, Križaj I. Serine pseudoproteases in physiology and disease. FEBS J 2022; 290:2263-2278. [PMID: 35032346 DOI: 10.1111/febs.16355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
Abstract
Serine proteases (SPs) constitute a very important family of enzymes, both physiologically and pathologically. The effects produced by these proteins have been explained by their proteolytic activity. However, the discovery of pharmacologically active SP molecules that show no enzymatic activity, as the so-called pseudo SPs or SP homologs (SPHs), has exposed a profoundly neglected possibility of nonenzymatic functions of these SP molecules. In this review, the most thoroughly described SPHs are presented. The main physiological domains in which SPHs operate appear to be in reproduction, embryonic development, immune response, host defense, and hemostasis. Hitherto unexplained actions of SPs should therefore be considered also as the result of the ligand-like attributes of SPs. The gain of a novel function by an SPH is a consequence of specific amino acid replacements that have resulted in a novel interaction interface or a 'catalytic trap'. Unraveling the SP/SPH interactome will provide a description of previously unknown physiological functions of SPs/SPHs, aiding the creation of innovative medical approaches.
Collapse
Affiliation(s)
- Nina Zupanič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Počič
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
- Biotechnical Faculty University of Ljubljana Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Dušan Kordiš
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia
| |
Collapse
|
11
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
12
|
Zhang X, Pan L, Tong R, Li Y, Si L, Chen Y, Li D. The exploration of neuroendocrine regulation of crustacean hyperglycemic hormone (CHH) on innate immunity of Litopenaeus vannamei under ammonia-N stress. Mol Immunol 2021; 139:50-64. [PMID: 34454185 DOI: 10.1016/j.molimm.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
To unveil the neuroendocrine-immune (NEI) mechanism of crustaceans under high ambient ammonia-N, crustacean hyperglycemic hormone (CHH) in L. vannamei was knocked down under 20 mg/L ammonia-N exposure. The results showed that the expression of CHH in the eyestalks decreased significantly when CHH was silenced. After CHH was knocked down, the levels of CHH, ACh, DA, NE, and 5-HT in the haemolymph decreased significantly. Correspondingly, the expressions of GC, ACh7R, DM1, DA1R, and 5-HT7R in haemocytes down-regulated significantly, while DA4R and α2AR up-regulated significantly. Besides, the expression of Toll3 reduced significantly. And significantly changes occurred in the levels of G protein effectors (AC and PLC), second messengers (cAMP, cGMP, CaM, and DAG), protein kinases (PKA, PKC and PKG), and nuclear transcription factors (CREB, Dorsal, Relish and NKRF). Furthermore, immune defense proteins (BGBP and PPO3, Crustin A, ALF, LYC, TNFα, and IL-16), phagocytosis-related proteins (Cubilin, Integrin, Peroxinectin, Mas-like protein, and Dynamin-1) and exocytosis-related proteins (SNAP-25, VAMP-2 and Syntaxin) changed significantly. Eventually, a significant decrease in the levels of THC, haemocytes phagocytosis rate, plasma PO, antibacterial and bacteriolytic activities was detected. Therefore, these results indicate that under ammonia-N stress, the combination of CHH and GC mainly affects exocytosis of shrimp through the cGMP-PKG-CREB pathway. Simultaneously, CHH stimulates the release of biogenic amines, and then activate G protein effectors after binding to their specific receptors, to regulate exocytosis mainly via the cAMP-PKA-CREB pathway and influence phagocytosis primarily by the cAMP-PKA-NF-κB pathway. CHH can enhance ACh, and then activate G protein effectors after binding to the receptors, and finally regulate exocytosis mainly through the cAMP-PKA-CREB pathway and regulate phagocytosis by the cAMP-PKA-NF-κB pathway. CHH can also promote Toll3-NF-κB pathway, thereby affecting the expressions of immune defense factors. This study contributes to a further understanding of the NEI mechanism of crustacean in response to environmental stress.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yuanjing Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
13
|
Shang-Guan XY, Cai YJ, Xu HZ, Cheng X, Zhang RF, Liu HX. A C-type lectin with a single CRD from Onychostoma macrolepis mediates immune recognition against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2021; 115:160-170. [PMID: 34147614 DOI: 10.1016/j.fsi.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
C-type lectins (CTL) are a large group of pattern-recognition proteins and to play important roles in glycoprotein metabolism, multicellular integration, and immunity. Based on their overall domain structure, they can be classified as different groups that possess different physiological functions. A typical C-type lectin (named as OmLec1) was identified from the fish, Onychostoma macrolepis, an important cultured fish in China. Open reading frame of OmLec1 contains a 570 bp, encoding a protein of 189 amino acids that includes a signal peptide and a single carbohydrate-recognition domain. The phylogenetic analysis showed that OmLec1 could be grouped with C-type lectin from other fish. OmLec1 was expressed in all the tissues in our study, and the expression level was highest in liver. And its relative expression levels were significantly upregulated following infection with Aeromonas hydrophila. The recombinant OmLec1 protein (rOmLec1) could agglutinate some Gram-negative bacteria and Gram-positive bacteria in vitro in the presence of Ca2+, showing a typical Ca2+-dependent carbohydrate-binding protein. Furthermore, rOmLec1 purified from E. coli BL21 (DE3), strongly bound to LPS and PGN, as well as all tested bacteria in a Ca2+-dependent manner. These results indicate that OmLec1 plays a central role in the innate immune response and as a pattern recognition receptor that recognizes diverse pathogens among O. macrolepis.
Collapse
Affiliation(s)
- Xin-Yan Shang-Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China
| | - Ying-Jie Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China
| | - Hong-Zhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China
| | - Xu Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China
| | - Rui-Fang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China
| | - Hai-Xia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shan'xi, 712100, China.
| |
Collapse
|
14
|
Wang L, Zhang J, Zhao X, Pei C, Li L, Kong X. Molecular characterization and biological effect of a C-type lectin receptor in Qihe crucian carp, Carassius auratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104081. [PMID: 33785431 DOI: 10.1016/j.dci.2021.104081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
C-type lectin receptors, as the important members of pattern-recognition receptors, play the crucial roles in the innate immune system, which discriminate self and non-self by recognizing and binding the carbohydrates on the surface of microorganism. In this study, we identified a C-type lectin receptor gene in Qihe crucian carp Carassius auratus (named as CaCLR). The full-length cDNA of CaCLR was composed of 1130 bp, with a 226 bp 5'-untranslated region (UTR), a 792 bp ORF encoding a 263aa protein, and a 112 bp 3'-UTR with a polyadenylation signal sequence AATAAA and a poly (A) tail. The predicted amino acid sequence of CaCLR is a single transmembrane receptor with a typical carbohydrate recognition domain (CRD) at its C-terminus. With regard to the mRNA transcript of CaCLR, it was ubiquitously detected in the tested tissues, among which it was the most abundant in head kidney. The temporal expressions of CaCLR were obviously up-regulated in liver, spleen, kidney, and head kidney after Aeromonas hydrophila and poly I: C challenge, respectively, and the patterns of expression changes were in a time-depended manner. The recombinant CaCLR (rCaCLR) purified from Escherichia coli BL21 (DE3), exhibited strong binding ability with lipopolysaccharide (LPS), peptidoglycan (PGN), β-Glucan, and Mannan, as well as five microorganisms including fungus (Saccharomyces cerevisiae), Gram-negative bacteria (A. hydrophila, E. coli and Vibrio anguillarum), and Gram-positive bacteria (Micrococcus lysodeikticus). In the presence of rCaCLR, the eliminating capacity against A. hydrophila could be enhanced in C. auratus. Taken together, CaCLR is involved in the antibacterial defense in C. auratus.
Collapse
Affiliation(s)
- Li Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China; College of Animal Science and Technology, Henan Institute of Science and Technology, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
15
|
Ekblom C, Söderhäll K, Söderhäll I. Early Changes in Crayfish Hemocyte Proteins after Injection with a β-1,3-glucan, Compared to Saline Injected and Naive Animals. Int J Mol Sci 2021; 22:6464. [PMID: 34208769 PMCID: PMC8234337 DOI: 10.3390/ijms22126464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Early changes in hemocyte proteins in freshwater crayfish Pacifastacus leniusculus, in response to an injection with the fungal pattern recognition protein β-1,3-glucan (laminarin) were investigated, as well as changes after saline (vehicle) injection and in naïve animals. Injection of saline resulted in rapid recruitment of granular hemocytes from surrounding tissues, whereas laminarin injection on the other hand induced an initial dramatic drop of hemocytes. At six hours after injection, the hemocyte populations therefore were of different composition. The results show that mature granular hemocytes increase in number after saline injection as indicated by the high abundance of proteins present in granular cell vesicles, such as a vitelline membrane outer layer protein 1 homolog, mannose-binding lectin, masquerade, crustin 1 and serine protease homolog 1. After injection with the β-1,3-glucan, only three proteins were enhanced in expression, in comparison with saline-injected animals and uninjected controls. All of them may be associated with immune responses, such as a new and previously undescribed Kazal proteinase inhibitor. One interesting observation was that the clotting protein was increased dramatically in most of the animals injected with laminarin. The number of significantly affected proteins was very few after a laminarin injection when compared to uninjected and saline-injected crayfish. This finding may demonstrate some problematic issues with gene and protein expression studies from other crustaceans receiving injections with pathogens or pattern recognition proteins. If no uninjected controls are included and no information about hemocyte count (total or differential) is given, expressions data for proteins or mRNAs are very difficult to properly interpret.
Collapse
Affiliation(s)
- Charlotta Ekblom
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Irene Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| |
Collapse
|
16
|
Liu Y, Su Y, Zhang A, Cui Z. A C-Type Lectin Highly Expressed in Portunus trituberculatus Intestine Functions in AMP Regulation and Prophenoloxidase Activation. Antibiotics (Basel) 2021; 10:antibiotics10050541. [PMID: 34066980 PMCID: PMC8151143 DOI: 10.3390/antibiotics10050541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
A C-type lectin (PtCLec2) from Portunus trituberculatus was identified for characterization of its role in defense and innate immunity. PtCLec2 contains a single carbohydrate-recognition domain (CRD) with a conserved QPD motif, which was predicted to have galactose specificity. The mRNA expression of PtCLec2 was predominantly detected in intestine and increased rapidly and significantly upon pathogen challenge. The recombinant PtCLec2 (rPtCLec2) could bind various microorganisms and PAMPs with weak binding ability to yeast and PGN. It agglutinated the tested Gram-negative bacteria (Vibrio alginolyticus and Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), and rabbit erythrocytes in the presence of exogenous Ca2+, and these agglutination activities were suppressed by LPS, d-galactose, and d-mannose. Further, rPtCLec2 enhanced phagocytosis and clearance of V. alginolyticus, and displayed inhibitory activities against the tested bacteria. Knockdown of PtCLec2 decreased the transcription of two phagocytosis genes (PtArp and PtMyosin), three prophenoloxidase (proPO) system-related genes (PtPPAF, PtcSP1, and PtproPO), six antimicrobial peptides (AMPs) (PtALF4-7, PtCrustin1, and PtCrustin3), and PtRelish but upregulated the expression levels of PtJNK, PtPelle, and PtTLR. These results collectively indicate that PtCLec2 might perform its immune recognition function via binding and agglutination, and mediate pathogen elimination via regulating hemocyte phagocytosis, AMP synthesis, and proPO activation.
Collapse
Affiliation(s)
- Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-8289-8637
| | - Yue Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
17
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W. A trypsin-like serine protease domain of masquerade gene in crayfish Procambarus clarkii could activate prophenoloxidase and inhibit bacterial growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103980. [PMID: 33340591 DOI: 10.1016/j.dci.2020.103980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Masquerade (Mas) is a secreted trypsin-like serine protease (SPs) and involved in immune response in some arthropods. However, according to previous studies, Mas presents different functional activities. In the present study, the functional mechanisms of Mas in crayfish Procambarus clarkii immune defense were studied. A fragment cDNA sequence of PcMas was identified and characterized. From the structural analysis, it contains a trypsin-like serine protease domain. The highest expression level of PcMas was detected in hepatopancreas. The infection of A. hydrophila could induce the expression of PcMas, while the WSSV infection did not cause changes in the expression of PcMas. Through the prokaryotic expression system, the PcMas protein was expressed in E. coli. It was verified that PcMas can bind to bacteria in vitro and inhibit the growth of the bacteria. By dsRNA interference with the expression of PcMas, the decrease expression of PcMas led to a decrease in the activity of phenoloxidase in hemolymph and an increase of mortality caused by A. hydrophila infection. The injection of recombinant protein can enhance the activity of phenoloxidase and reduce mortality caused by A. hydrophila infections. Therefore, the present study confirmed that PcMas could improve the body's immune response to eliminate bacterial pathogens by binding with bacteria and activating the prophenoloxidase system. The results will enrich the molecular mechanisms of crustaceans immune defense.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
18
|
Jia Z, Jiang S, Wang M, Wang X, Liu Y, Lv Z, Song X, Li Y, Wang L, Song L. Identification of a Novel Pattern Recognition Receptor DM9 Domain Containing Protein 4 as a Marker for Pro-Hemocyte of Pacific Oyster Crassostrea gigas. Front Immunol 2021; 11:603270. [PMID: 33643289 PMCID: PMC7907646 DOI: 10.3389/fimmu.2020.603270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
DM9 refers to an uncharacterized protein domain that is originally discovered in Drosophila melanogaster. Two proteins with DM9 repeats have been recently identified from Pacific oyster Crassostrea gigas as mannose-specific binding pattern-recognition receptors (PRRs). In the present study, a novel member of DM9 domain containing protein (designated as CgDM9CP-4) was identified from C. gigas. CgDM9CP-4, about 16 kDa with only two tandem DM9 domains, was highly enriched in hemocytes and gill. The transcripts level of CgDM9CP-4 in circulating hemocytes were decreased after LPS, PGN and Vibrio splendidus stimulations. The recombinant protein of CgDM9CP-4 (rCgDM9CP-4) displayed a broad binding spectrum towards various pathogen-associated molecular patterns (PAMPs) (LPS, PGN, β-glucan and Mannose) and microorganisms (Staphylococcus aureus, Micrococcus luteus, V. splendidus, V. anguillarum, Escherichia coli, Pichia pastoris and Yarrowia lipolytica). CgDM9CP-4 was mostly expressed in gill and some of the hemocytes. Flow cytometry analysis demonstrated that the CgDM9CP-4-positive hemocytes accounted for 7.3% of the total hemocytes, and they were small in size and less in granularity. CgDM9CP-4 was highly expressed in non-phagocytes (~82% of total hemocytes). The reactive oxygen species (ROS) and the expression levels of cytokines in CgDM9CP-4-positive hemocytes were much lower than that in CgDM9CP-4-negative hemocytes. The mRNA expression level of CgDM9CP-4 in hemocytes was decreased after RNAi of hematopoietic-related factors (CgGATA, CgRunt, CgSCL, and CgNotch). In addition, CgDM9CP-4-positive cells were found to be much more abundant in hemocytes from gill than that from hemolymph, with most of them located in the gill filament. All these results suggested that CgDM9CP-4 was a novel member of PRR that expressed in undifferentiated pro-hemocytes to mediate immune recognition of pathogens.
Collapse
Affiliation(s)
- Zhihao Jia
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| |
Collapse
|
19
|
Xu X, Liao K, Shi P, Xu J, Ran Z, Zhou C, Zhang L, Cao J, Yan X. Involvement of a novel Ca 2+-independent C-type lectin from Sinonovacula constricta in food recognition and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:374-382. [PMID: 32492464 DOI: 10.1016/j.fsi.2020.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Bivalve lectins perform a crucial function in recognition of foreign particles, such as microalgae and pathogenic bacteria. In this study, a novel C-type lectin form Sinonovacula constricta (ScCL) was characterized. The full-length cDNA of ScCL was 1645 bp, encoding a predicted polypeptide of 273 amino acids with one typical carbohydrate-recognition domain. ScCL has the highest similarity and closest phylogenetic relationship with the C-type lectin from Solen grandis. Real-time PCR analysis showed that ScCL was expressed in all tested tissues, with the highest expression in the foot and the lowest expression in hemocytes. Agglutination activity of ScCL was Ca2+-independent. ScCL showed the strongest agglutination on Chlorella vulgaris, the modest agglutination on Platymonas subcordiformis, Nannochloropsis sp., and Thalassiosira pseudonana, the weakest agglutination on Chaetoceros sp., and no agglutination on Isochrysis zhanjiangensis. Meanwhile, agglutination tests and western blot analysis revealed that the recombinant ScCL protein could agglutinate Staphylococcus aureus and Vibrio harveyi, but could not agglutinate Vibrio anguillarum, Bacillus cereus, or Vibrio parahaemolyticus. Furthermore, ScCL had a high binding activity with LPS and mannose, a low binding activity with LTA, and no binding activity with PGN. The expression of ScCL in the gill of S. constricta fed with C. vulgaris and T. pseudonana was significantly increased at 1 and/or 3 h. After injection with S. aureus, the expression of ScCL in the gill was significantly increased at 3, 6, and 24 h. These results indicated that ScCL was involved in food particle recognition and immunity of S. constricta.
Collapse
Affiliation(s)
- Xiaorong Xu
- School of Marine Sciences, Ningbo University, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, China.
| | - Peng Shi
- School of Marine Sciences, Ningbo University, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, China.
| | - Zhaoshou Ran
- School of Marine Sciences, Ningbo University, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Lin Zhang
- School of Marine Sciences, Ningbo University, China
| | - Jiayi Cao
- School of Marine Sciences, Ningbo University, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, China
| |
Collapse
|
20
|
Wang L, Zhang J, Zhao X, Pei C, Li L, Kong X. Molecular characterization and biological function of a tandem-repeat galectin-9 in Qihe crucian carp Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:366-376. [PMID: 32442500 DOI: 10.1016/j.fsi.2020.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Galectin-9, as one of the important PRRs in host, could initiate the immune defense responses through recognizing and binding PAMPs on the surface of invading microorganisms. In this study, a new galectin-9 cDNA was identified and characterized in Qihe crucian carp Carassius auratus (named as CaGal-9). The complete cDNA sequence of CaGal-9 was 1318 bp, with an open reading frame (ORF) of 963 bp encoding 320 amino acids. The predicted CaGal-9 protein contained two non-identical carbohydrate recognition domains (CRDs), which possessed the representative motifs H-NPR and WG-EER to bind with β-galactoside. Based on the RT-qPCR detection, CaGal-9 was ubiquitously expressed at mRNA level in various tested tissues, and predominately expressed in spleen. Upon Aeromonas hydrophila and poly I: C challenge, the expressions of CaGal-9 were remarkably up-regulated in liver, spleen, kidney and head kidney in a time-depended manner. The recombinant CaGal-9 (rCaGal-9), purified from Escherichia coli BL21 (DE3), exhibited strong binding ability with lipopolysaccharide (LPS), peptidoglycan (PGN) and β-Glucan, as well as the examined microorganisms including fungus, Gram-negative bacteria, and Gram-positive bacteria. With regard to the agglutinating activity of rCaGal-9, it could agglutinate erythrocytes of rabbit and crucian carp, and the examined microorganisms. Taken together, in this study, it was suggested that CaGal-9 could play an important role in immune defense against pathogenic microorganisms in C. auratus, which functions as an important PRR to recognize PAMPs and agglutinate pathogenic microorganisms.
Collapse
Affiliation(s)
- Li Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China; College of Animal Science and Technology, Henan Institute of Science and Technology, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
21
|
Su Y, Liu Y, Gao F, Cui Z. A novel C-type lectin with a YPD motif from Portunus trituberculatus (PtCLec1) mediating pathogen recognition and opsonization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103609. [PMID: 31923433 DOI: 10.1016/j.dci.2020.103609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
C-type lectins are a superfamily of Ca2+-dependent carbohydrate-recognition proteins that function as pattern recognition receptors (PRRs) in innate immune system. In this study, a new C-type lectin was identified from the swimming crab Portunus trituberculatus (PtCLec1). The full-length cDNA of PtCLec1 was 873 bp encoding 176 amino acids. The predicted PtCLec1 protein contained a signal peptide and a single carbohydrate-recognition domain with a special YPD motif. The PtCLec1 transcripts were mainly detected in hepatopancreas and its relative expression levels were significantly up-regulated after the challenges of Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtCLec1 (rPtCLec1) could bind all the tested pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN) and glucan (GLU), and microorganisms, including V. alginolyticus, V. parahaemolyticus, Pseudomonas aeruginosa, Staphylococcus aureus, M. luteus and P. pastoris. It also exhibited strong activity to agglutinate bacteria and yeast in a Ca2+-dependent manner, and such agglutinating activity could be inhibited by d-galactose and LPS. Moreover, rPtCLec1 revealed antimicrobial activity against the tested Gram-negative (V. alginolyticus, V. parahaemolyticus and P. aeruginosa) and Gram-positive bacteria (S. aureus and M. luteus), and promoted the clearance of V. alginolyticus in vivo and hemocyte phagocytosis in vitro. Knockdown of PtCLec1 could down-regulate the expression of phagocytosis-related genes, but enhance the expression levels of prophenoloxidase (proPO) system-related genes, mannose-binding lectin (MBL), antimicrobial peptides (AMPs), MyD88 and Relish. All these results indicate that PtCLec1 might act as a PRR in immune recognition and an opsonin in pathogen elimination.
Collapse
Affiliation(s)
- Yue Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
22
|
Zhang C, Xue Z, Yu Z, Wang H, Liu Y, Li H, Wang L, Li C, Song L. A tandem-repeat galectin-1 from Apostichopus japonicus with broad PAMP recognition pattern and antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:167-175. [PMID: 32044463 DOI: 10.1016/j.fsi.2020.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Galectins belong to the family of carbohydrate-binding proteins and play major roles in the immune and inflammatory responses of both vertebrates and invertebrates. In the present study, one novel galectin-1 protein named AjGal-1 was identified from Apostichopus japonicas with an open reading frame of 1179 bp encoding a polypeptide of 392 amino acids. The deduced amino acids sequence of AjGal-1 contained three carbohydrate recognition domains (CRDs) which shared 34-37% identity with that of other galectin proteins from echinodermata, fishes, and birds. In the phylogenetic tree, AjGal-1 was closely clustered with galectins from Mesocentrotus nudus and Paracentrotus lividus. The mRNA transcripts of AjGal-1 were ubiquitously expressed in all the detected tissues, including gut, longitudinal muscle, gonad, coelomocytes, respiratory tree, tentacle and body wall, with the highest expression level in coelomocytes. After Vibrio splendidus stimulation, the mRNA expression levels of AjGal-1 in coelomocytes were significantly increased at 6 and 12 h (P < 0.01) compared with that in control group, and went back to normal level at 72 h. The recombinant protein of AjGal-1 (rAjGal-1) could bind various PAMPs including d-galactose, lipopolysaccharide (LPS), peptidoglycan (PGN) and mannose (Man), and exhibited the highest affinity to d-galactose. Meanwhile, rAjGal-1 could also bind and agglutinate different kinds of microorganisms, including gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Micrococus leteus), and fungi (Pichia pastoris). rAjGal-1 also exhibited anti-microbial activity against V. splendidus and E. coli. All these results suggested that AjGal-1 could function as an important PRR with broad spectrum of microbial recognition and anti-microbial activity against the invading pathogen in A. japonicas.
Collapse
Affiliation(s)
- Chi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
23
|
Liu H, Song C, Ning J, Liu Y, Cui Z. Identification, functional characterization and the potential role of variable lymphocyte receptor EsVLRA from Eriocheir sinensis in response to secondary challenge after Vibrio parahaemolyticus vaccine. FISH & SHELLFISH IMMUNOLOGY 2020; 98:201-209. [PMID: 31923564 DOI: 10.1016/j.fsi.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Variable lymphocyte receptors (VLRs) play an important role via their antigen-special reorganization in jawless vertebrates (agnathans) adaptive immune response. In the present study, the open reading frame (ORF) of Eriocheir sinensis VLRA (designated as EsVLRA) was identified. EsVLRA comprised a 799-amino-acid polypeptide with one LRR_NT domain, thirteen LRR domains and one LRR_CT domain, which showed a high domain consistency of the VLR genes in lamprey (Petromyzon marinus). The transcript of EsVLRA was detected in all examined tissues with the highest level detected in hepatopancreas. Notably, the expression of EsVLRA in hepatopancreas, gonads, gill and intestine of male crabs was significantly higher than that in females. The recombinant EsVLRA exhibited strong bacteria-binding activity rather than antibacterial activity, suggesting its crucial role in immune recognition. Furthermore, 6 h earlier response and a significantly higher peak of EsVLRA mRNA expression was observed after challenge with live Vibrio parahaemolyticus (240.6-fold, P < 0.01, crabs receive secondary challenge after V. parahaemolyticus vaccine to the carbs only receive twice PBS injection, N = 6), compared with those only received first injection with formalin-inactivated V. parahaemolyticus (39.7-fold, P < 0.01, challenge 6 h to vaccination 12 h). The findings of this study together demonstrated that EsVLRA plays an important role in the immune system of E. sinensis, serving as a pattern recognition receptor and involving in the immune priming.
Collapse
Affiliation(s)
- Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengwen Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Junhao Ning
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
24
|
Tong R, Wei C, Pan L, Zhang X. Effects of dopamine on immune signaling pathway factors, phagocytosis and exocytosis in hemocytes of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103473. [PMID: 31437524 DOI: 10.1016/j.dci.2019.103473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Dopamine (DA) is an important neuroendocrine factor, which can act as neurotransmitter and neurohormone. In this study, we explored the immune defense mechanism in Litopenaeus vannamei with injection of dopamine at 10-7 and 10-6 mol shrimp-1, respectively. The genes expressions of dopamine receptor (DAR), G proteins (Gs, Gi, Gq), phagocytosis and exocytosis-related proteins, as well as intracellular signaling pathway factors, and immune defense parameters were measured. Results showed that mRNA expression levels of dopamine receptor D4 (D4), Gi, nuclear transcription factors and exocytosis-related proteins decreased significantly and reached the minimum at 3 h, while the genes expressions of Gs, Gq and phagocytosis-related proteins reached the highest and lowest levels at 3 h and 6 h, respectively. The second messenger synthetases increased significantly in treatment groups within 3 h. Simultaneously, the second messengers and protein kinases shared a similar trend, which were significantly elevated and reached the peak value at 3 h. Ultimately lead to the total hemocyte count (THC), proPO activity and phagocytic activity decreased significantly, reaching minimum values at 3 h, 3 h and 6 h, respectively. While PO activity showed obvious peak changes, which maximum value reached at 3 h. These results suggested that DA receptor could couple with G protein after DA injection and might regulate immunity through cAMP-PKA, DAG-PKC or CaM pathway.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
25
|
Preetham E, Rubeena AS, Vaseeharan B, Chaurasia MK, Arockiaraj J, Olsen RE. Anti-biofilm properties and immunological response of an immune molecule lectin isolated from shrimp Metapenaeus monoceros. FISH & SHELLFISH IMMUNOLOGY 2019; 94:896-906. [PMID: 31533083 DOI: 10.1016/j.fsi.2019.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The study is carried out to understand the antimicrobial and immunological response of a potential immune molecule lectin, MmLec isolated from haemolymph of Speckled shrimp, Metapenaeus monoceros. MmLec was purified using mannose coupled Sepharose CL-4B affinity chromatography, which was further subjected on SDS-PAGE to ascertain the distribution of their molecular weight. Sugar binding specificity assay was conducted at various pH and temperatures to investigate the binding affinity of MmLec towards the specific carbohydrate molecule. Functional analysis of immune molecule MmLec included haemagglutination assays performed using human erythrocytes and yeast agglutination activity against Saccharomyces cerevisiae which, were analyzed using light microscopy. In order to study the antimicrobial activity, two Gram-negative (Vibrio parahaemolyticus and Aeromonas hydrophila) and two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria were treated with purified MmLec. Moreover, these bacterial species were also treated at different concentration of the MmLec to speculate the antibiofilm properties of MmLec which was analyzed under Light Microscopy and Confocal Laser Scanning Microscopy. In addition, other functional characterization of MmLec showed the uniqueness of MmLec in agglutination of human erythrocyte as well as the cells of yeast Saccharomyces cerevisiae. Also, the phenoloxidase activity and encapsulation assay was evaluated. MTT assay displayed that MmLec are potent in anticancer activity. The study will help to understand the immunological interference and antimicrobial nature of MmLec which would be supportive in establishing a potential therapeutic tool and to develop better and novel disease control strategies in shrimp and farmed aquaculture industries as well as in health management.
Collapse
Affiliation(s)
- Elumalai Preetham
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India; School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India.
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630 004, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rolf Erik Olsen
- Norwegian University of Science and Technology, Department of Biology, 7491, Trondheim, Norway
| |
Collapse
|
26
|
Xu L, Pan L, Zhang X, Wei C. Effects of crustacean hyperglycemic hormone (CHH) on regulation of hemocyte intracellular signaling pathways and phagocytosis in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 93:559-566. [PMID: 31330256 DOI: 10.1016/j.fsi.2019.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Shrimps like other arthropods rely on innate immune system, and may have some form of adaptive immunity in defending against pathogens. Phagocytosis is one of the oldest cellular processes, serving as a development process, a feeding mechanism and especially as a key defense reaction in innate immunity of all multicellular organisms. It is confirmed that crustacean hyperglycemic hormone (CHH) is one of the most important neuropeptides produced by Neuro-endocrine Immune (NEI) regulatory network, which undertakes important roles in various biological processes, especially in immune function and stress response. In this study, the recombinant Litopenaeus vannamei CHH (rLvCHH) was obtained from a bacterial expression system and the intracellular signaling pathways involved in the mechanism of phagocytosis after rLvCHH injection was investigated. The results showed that the contents of adenylyl cyclase (AC), phospholipase C (PLC) and calmodulin (CaM) in hemocytes were increased significantly after rLvCHH injection. Furthermore, the mRNA expression levels of NF-kB family members (relish and dorsal) and phagocytosis-related proteins in hemocytes were basically overexpressed after rLvCHH stimulation, while the expression level of NF-kB repressing factor (NKRF) gene was down-regulated significantly. Eventually, the total hemocyte count and phagocytic activity of hemocyte were dramatically enhanced within 3 h. Collectively, these results indicate that shrimps L. vannamei could carry out a simple but 'smart' NEI regulation through the action of neuroendocrine factors, which could couple with their receptors and trigger the downstream signaling pathways during the phagocytic responses of hemocytes.
Collapse
Affiliation(s)
- Lijun Xu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xin Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Cun Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
27
|
Zhang M, Liu Y, Song C, Ning J, Cui Z. Characterization and functional analysis of a novel mannose-binding lectin from the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:448-457. [PMID: 30974220 DOI: 10.1016/j.fsi.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin (MBL) is a pattern recognition receptor (PRR) that plays an important role in the innate immune response. In this study, a novel mannose-binding lectin was cloned from the swimmimg crab Portunus trituberculatus (designated as PtMBL). The complete cDNA of PtMBL gene was 1208 bp in length with an open reading frame (ORF) of 732 bp that encoded 244 amino acid proteins. PtMBL shared lower amino acid similarity with other MBLs, yet it contained the conserved carbohydrate-recognition domain (CRD) with QPD motif and was clearly member of the collectin family. PtMBL transcripts were mainly detected in eyestalk and gill with sexually dimorphic expression. The temporal expression of PtMBL in hemocytes showed different activation times after challenged with Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtMBL protein revealed antimicrobial activity against the tested Gram-negative and Gram-positive bacteria. It could also bind and agglutinate (Ca2+-dependent) both bacteria and yeast. Furthermore, the agglutinating activity could be inhibited by both d-galactose and d-mannose, suggesting the broader pathogen-associated molecular patterns (PAMPs) recognition spectrum of PtMBL. These results together indicate that PtMBL could serve as not only a PRR in immune recognition but also a potential antibacterial protein in the innate immune response of crab.
Collapse
Affiliation(s)
- Mengjie Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chengwen Song
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
28
|
Liu H, Liu Y, Song C, Ning J, Cui Z. Functional characterization of two clip-domain serine proteases in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:98-107. [PMID: 30851452 DOI: 10.1016/j.fsi.2018.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Clip domain serine proteases (cSPs), a family of multifunctional proteins, play a crucial role in innate immune system. Here, we report the functional characterization of two clip domain serine proteases (PtcSP1 and PtcSP3) from the swimming crab Portunus trituberculatus. The recombinant N-terminal clip domains and the C-terminal SP-like domains of PtcSP1 and PtcSP3 were expressed in Escherichia coli system, and assayed for various biological functions: protease activity, antimicrobial activity, bacterial clearance and microbial-binding activity. The recombinant SP-like domains of PtcSP1 and PtcSP3 exhibited trypsin-like protease activity, while their recombinant clip domains showed strong antibacterial activity and could bind to bacteria and yeast, suggesting the potential roles of PtcSP1 and PtcSP3 in immune defense and pattern recognition. Unlike PtcSP3, PtcSP1 revealed the opsonic activity as shown by a higher bacterial clearance rate of Vibrio alginolyticus coated with the combination of the recombinant clip domain and SP-like domain of PtcSP1 as compared with V. alginolyticus only. Knockdown of PtcSP1 or PtcSP3 by RNA interference resulted in a significant decrease of total phenoloxidase (PO) activity in crab, suggesting that PtcSP1 and PtcSP3 are involved in the proPO system. In addition, suppression of PtcSP1 or PtcSP3 changed the expression of PtALFs and complement-like components. All these findings suggest that PtcSP1 and PtcSP3 are multifunctional immune molecules and perform different protective functions in crab defense.
Collapse
Affiliation(s)
- Hourong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chengwen Song
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
29
|
Zhu JJ, Ye ZZ, Li CS, Kausar S, Abbas MN, Xiang GH, Qian XY, Dai LS. Identification and molecular characterization of a novel anti-lipopolysaccharide factor (ALF) from red swamp crayfish, Procambarus clarkii. Int J Biol Macromol 2019; 132:43-50. [PMID: 30928368 DOI: 10.1016/j.ijbiomac.2019.03.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
Abstract
Anti-lipopolysaccharide factors are a group of small proteins with broad spectrum antiviral property and antibacterial activity. Herein, we obtained the genomic sequence of the Procambarus clarkii anti-lipopolysaccharide factor (PcALF) gene by using polymerase chain reaction to investigate its expression pattern in various tissues and in the immune tissues (Hepatopancreas) following exposure to pathogens. The deduced protein of PcALF was conserved; it displayed the signal peptides and putative lipo-polysaccharide binding domain, particularly the two conserved cysteine amino acid residues at both ends of the domain. The recombinant protein of PcALF was successfully expressed in Escherichia coli and rabbit anti-PcALF polyclonal antibodies were prepared. The qRT-PCR analysis showed unequal distribution of PcALF transcript in the examined tissues, however the transcript level was greatest in hepatopancreas. The challenge with peptidoglycan (PGN), lipo-polysaccharide (LPS) and Poly I:C significantly enhanced expression level of PcALF in hepatopancreas when compared with the PBS control. RNA interference of PcALF affected the mRNA expression levels of immune-related genes. Taken together, our data suggested that PcALF is an inducible protein and could play a key biological role in the innate immune defense of P. clarkii.
Collapse
Affiliation(s)
- Juan-Juan Zhu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zhi-Ze Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chang-Sheng Li
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Saima Kausar
- Department of Zoology and Fisheries, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem Abbas
- Department of Zoology and Fisheries, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Guang-Heng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xing-Yi Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
30
|
Zeng Y. Cloning and Analysis of the Multiple Transcriptomes of Serine Protease Homologs in Crayfish (Procambarus clarkii). Immunol Invest 2019; 48:682-690. [DOI: 10.1080/08820139.2018.1509870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yong Zeng
- College of Life Sciences, Yantai University, Yantai, Shandong, PR China
| |
Collapse
|
31
|
Ning J, Liu Y, Gao F, Liu H, Cui Z. Characterization and functional analysis of a novel gC1qR in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:970-978. [PMID: 30395995 DOI: 10.1016/j.fsi.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The receptor for the globular head of complement component C1q, gC1qR, is a multifunctional and multiligand binding protein with a crucial role in host defense. In the present study, a full-length cDNA sequence of a gC1qR homolog (PtgC1qR) in Portunus trituberculatus was identified. PtgC1qR was a 268-amino-acid polypeptide with a conserved MAM33 domain and a mitochondrial targeting sequence in the first 56 amino acids. The transcripts of PtgC1qR were detected in all examined tissues with the highest level detected in the hepatopancreas. Compared with other early embryonic stages, PtgC1qR was highly expressed in the fertilized eggs and embryos at the cleavage stage, which suggest PtgC1qR may be a maternal gene. The transcripts of PtgC1qR in hemocytes exhibited time-dependent response expression pattern after challenged with bacteria (Vibrio alginolyticus, Micrococcus luteus) and fungi (Pichia pastoris). Moreover, the recombinant PtgC1qR (rPtgC1qR) exhibited strong antibacterial activity and microbial-binding activity, suggesting its crucial role in immune defense and recognition. Further phenoloxidase (PO) assay showed that rPtgC1qR could suppress the crab PO activity in vitro in a dose-dependent manner, and it could result in nearly 100% inhibition of PO activity under the concentration of 11.65 μM. Knockdown of PtgC1qR could significantly enhance the expression of serine protease related genes (PtSP1-3 and PtSPH), proPO-associated genes (PtproPO and PtPPAF) and C3-like genes (Ptα2M1 and PtTEP). However, the phagocytosis related genes (PtMyosin, PtRab5 and PtArp) and Ptα2M2 were significantly down-regulated in the PtgC1qR silenced crabs. These findings together demonstrate that PtgC1qR might function in crab immune response via its antibacterial activity, immune recognition or regulating the proPO system, complement pathway and phagocytosis.
Collapse
Affiliation(s)
- Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hourong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxia Cui
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
32
|
Cerenius L, Söderhäll K. Crayfish immunity - Recent findings. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:94-98. [PMID: 28502650 DOI: 10.1016/j.dci.2017.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Freshwater crayfish is an important commodity as well as a successful model for studies on crustacean immunity. Due to the ease with which they are kept and the available methods for hemocyte separation and culture they have proven to be very useful. Here, recent progress regarding pattern recognition, immune effector production and antiviral mechanisms are discussed. Several cases of functional resemblance between vertebrate complement and the crayfish immune reactions are highlighted.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
33
|
Nakhleh J, Christophides GK, Osta MA. The serine protease homolog CLIPA14 modulates the intensity of the immune response in the mosquito Anopheles gambiae. J Biol Chem 2017; 292:18217-18226. [PMID: 28928218 PMCID: PMC5672044 DOI: 10.1074/jbc.m117.797787] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Clip domain serine protease homologs (SPHs) are positive and negative regulators of Anopheles gambiae immune responses mediated by the complement-like protein TEP1 against Plasmodium malaria parasites and other microbial infections. We have previously reported that the SPH CLIPA2 is a negative regulator of the TEP1-mediated response by showing that CLIPA2 knockdown (kd) enhances mosquito resistance to infections with fungi, bacteria, and Plasmodium parasites. Here, we identify another SPH, CLIPA14, as a novel regulator of mosquito immunity. We found that CLIPA14 is a hemolymph protein that is rapidly cleaved following a systemic infection. CLIPA14 kd mosquitoes elicited a potent melanization response against Plasmodium berghei ookinetes and exhibited significantly increased resistance to Plasmodium infections as well as to systemic and oral bacterial infections. The activity of the enzyme phenoloxidase, which initiates melanin biosynthesis, dramatically increased in the hemolymph of CLIPA14 kd mosquitoes in response to systemic bacterial infections. Ookinete melanization and hemolymph phenoloxidase activity were further increased after cosilencing CLIPA14 and CLIPA2, suggesting that these two SPHs act in concert to control the melanization response. Interestingly, CLIPA14 RNAi phenotypes and its infection-induced cleavage were abolished in a TEP1 loss-of-function background. Our results suggest that a complex network of SPHs functions downstream of TEP1 to regulate the melanization reaction.
Collapse
Affiliation(s)
- Johnny Nakhleh
- From the Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon and
| | | | - Mike A Osta
- From the Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon and
| |
Collapse
|
34
|
Cao J, Wu L, Jin M, Li T, Hui K, Ren Q. Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 67:27-39. [PMID: 28554835 DOI: 10.1016/j.fsi.2017.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Macrobrachium rosenbergii is a crustacean with economic importance, and adult prawns are generally thought to be tolerant to white spot syndrome virus (WSSV) infection. Although certain genes are known to respond to WSSV infection and lymphoid tissue is an important immune organ, the response of lymphoid organ to WSSV infection is unclear. Next-generation sequencing was employed in this study to determine the transcriptome differences between WSSV infection and mock lymphoid organs. A total of 44,606,694 and 40,384,856 clean reads were generated and assembled into 73,658 and 72,374 unigenes from the control sample and the WSSV infection sample, respectively. Based on homology searches, KEGG, GO, and COG analysis, 21,323 unigenes were annotated. Among them, 4951 differential expression genes were identified and categorized into 244 metabolic pathways. Coagulation cascades, and pattern recognition receptor signaling pathways were used as examples to discuss the response of host to WSSV infection. We also identified 12,308 simple sequence repeats, which can be further used as functional markers. Results contribute to a better understanding of the immune response of prawn lymphoid organ to WSSV and provide information for identifying novel genes in the absence of the prawn genome.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, People's Republic of China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, People's Republic of China.
| |
Collapse
|
35
|
Wang L, Zhang J, Kong X, Zhao X, Pei C, Li L. A C-type lectin, Nattectin-like protein (CaNTC) in Qihe crucian carp Carassius auratus: Binding ability with LPS, PGN and various bacteria, and agglutinating activity against bacteria. FISH & SHELLFISH IMMUNOLOGY 2017; 67:382-392. [PMID: 28602683 DOI: 10.1016/j.fsi.2017.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/25/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
C-type lectins (CTLs), as the members of pattern-recognition receptors (PRRs), play the significant roles in innate immunity through binding with pathogen-associated molecular patterns (PAMPs) on the surface of microbe. In the present study, a novel CTL, Nattectin-like protein (named as CaNTC), was investigated in Qihe crucian carp Carassius auratus. The full-length cDNA of CaNTC was composed of 776 bp, with a 152 bp 5'-untranslated region (UTR), a 492 bp ORF encoding a 163-aa protein, and a 132 bp 3'-UTR with a polyadenylation signal sequence AATAAA and a poly(A) tail. The deduced amino acid sequence of CaNTC contained a signal peptide, a single carbohydrate recognition domain (CRD) which had four conserved disulfide-bonded cysteine residues (Cys57-Cys150, Cys126-Cys142), and an EPN/WND motif required for carbohydrate-binding specificity. With regard to the mRNA transcript of CaNTC, it was predominately expressed in liver. The temporal expressions of CaNTC were obviously up-regulated in liver, spleen and head-kidney after challenged by Aeromonas hydrophila and poly I: C, respectively, and the change pattern was in the time-depended manner. The recombinant CaNTC (rCaNTC) purified from Escherichia coli BL21 (DE3), exhibited strong binding ability with LPS and PGN, as well as all tested bacteria in a Ca2+-independent manner. With regard to the agglutinating activity of rCaNTC, rCaNTC was able to agglutinate rabbit erythrocytes and three kinds of bacteria (Gram-negative bacteria, Escherichia coli and A. hydrophila, and Gram-positive bacteria Staphylococcus aureus) in a Ca2+-dependent manner. These findings collectively demonstrated that CaNTC, as a PRR, could be involved in the innate immunity and play an important role in immune defense of C. auratus.
Collapse
Affiliation(s)
- Li Wang
- College of Life Science, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; College of Fisheries, Henan Normal University, Henan province, PR China.
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Henan province, PR China
| |
Collapse
|
36
|
Liu H, Liu Y, Song C, Cui Z. A chymotrypsin-like serine protease from Portunus trituberculatus involved in pathogen recognition and AMP synthesis but not required for prophenoloxidase activation. FISH & SHELLFISH IMMUNOLOGY 2017; 66:307-316. [PMID: 28522421 DOI: 10.1016/j.fsi.2017.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Clip domain serine proteases (clip-SPs) play critical roles in various immune responses in arthropods, such as hemolymph coagulation, antimicrobial peptide (AMP) synthesis, cell adhesion and melanization. In the present study, we report the molecular and functional characterization of a clip domain serine protease (PtcSP2) from the swimming crab Portunus trituberculatus. The N-terminal clip domain and the C-terminal SP-like domain of PtcSP2 were expressed in Escherichia coli system, and assayed for their activities. Sequence similarity and phylogenetic analysis revealed that PtcSP2 may belong to the chymotrypsin family, which was confirmed by protease activity assay of the recombinant SP-like domain. The clip domain of PtcSP2 exhibited strong antibacterial activity and microbial-binding activity, suggesting the potential role in immune defense and recognition. Knockdown of PtcSP2 by RNA interference could significantly reduce PtcSP2 transcript levels, but neither decrease the total phenoloxidase (PO) activity in crab nor significantly alter the expression levels of serine protease inhibitors PtPLC and PtSerpin. These results indicate that PtcSP2 is not involved in the proPO system. However, suppression of PtcSP2 led to a significant change in the expression of AMP genes PtALFs and PtCrustin but not PtALF5. All these findings suggest that PtcSP2 is a multifunctional chymotrypsin-like serine protease and may participate in crab innate immunity by its antibacterial activity, immune recognition or regulation of AMP expression.
Collapse
Affiliation(s)
- Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoxia Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
37
|
Yang C, Wang L, Jia Z, Yi Q, Xu Q, Wang W, Gong C, Liu C, Song L. Two short peptidoglycan recognition proteins from Crassostrea gigas with similar structure exhibited different PAMP binding activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:9-18. [PMID: 28042081 DOI: 10.1016/j.dci.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in specifically recognizing bacterial peptidoglycan (PGN) and eliminating the invading bacteria. In the present study, the full length cDNA of two PGRP genes, CgPGRPS2 and CgPGRPS4, were cloned from oyster Crassostrea gigas. Their amino acid sequences both contained one signal peptide, one typical PGRP/amidase domain with conserved catalytic residues responsible for amidase activity (55H, 90Y, 164H, 172C in CgPGRPS2, and 98H, 133Y, 207H, 215C in CgPGRPS4), and specific PGN recognition (84R, 85W, 104R, 109V in CgPGRPS2, and 127G, 128W, 147R, 152V in CgPGRPS4), and they shared 55.9% sequence similarity. The mRNA transcripts of CgPGRPS2 and CgPGRPS4 were constitutively expressed in all the examined tissues, including haemocytes, hepatopancreas, mantle, gonad, heart, adductor muscle and gill, with the highest expression level in adductor muscle and hepatopancreas, respectively. Both CgPGRPS2 and CgPGRPS4 proteins were mainly localized in the cytoplasma. The recombinant protein of CgPGRPS2 (rCgPGRPS2) could bind lipopolysaccharide (LPS), PGN and mannan (Man), as well as various microorganisms including Gram-negative bacteria Escherichia coli, Vibrio anguillarum, Gram-positive bacteria Staphylococcus aureus and fungi Yarrowia lipolytica. The recombinant protein of CgPGRPS4 (rCgPGRPS4) exhibited higher binding affinity to PGN, lower binding affinity to LPS, while no binding activity to Man and Y. lipolytica. The results indicated that CgPGRPS2 and CgPGRPS4 could function as pattern recognition receptors (PRR) in the innate immune response of oyster, and they exhibited a certain degree of functional differentiation in recognition of Man.
Collapse
Affiliation(s)
- Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
38
|
Jayanthi S, Ishwarya R, Anjugam M, Iswarya A, Karthikeyan S, Vaseeharan B. Purification, characterization and functional analysis of the immune molecule lectin from the haemolymph of blue swimmer crab Portunus pelagicus and their antibiofilm properties. FISH & SHELLFISH IMMUNOLOGY 2017; 62:227-237. [PMID: 28110033 DOI: 10.1016/j.fsi.2017.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
The present study reveals purification and characterization of immune molecule lectin from the haemolymph of blue swimmer crab Portunus pelagicus (Pp-Lec). The Pp-Lec was purified by affinity chromatography with mannose coupled sepharose CL-4B column and it exhibits single band with a molecular weight of 155 kDa in SDS-PAGE. The surface morphology of purified Pp-Lec displays the homogeneous nature of protein. A distinct peak with a retention time of 3.3 min was appeared in high performance liquid chromatography (HPLC) and X-ray diffraction (XRD) analysis expresses a single peak at 31.5° which shows the purity and crystalline nature of the protein respectively. Functional analysis of purified Pp-Lec exhibits encapsulation activity against sepharose beads and yeast agglutination activity against Saccharomyces cerevisiae. Moreover, the purified Pp-Lec has the ability to agglutinates with the human erythrocytes among tested and which was observed by light microscopy. In addition, purified Pp-Lec showed the broad spectrum of antibacterial activity against Gram-positive Bacillus pumulis, Bacillus thuringiensis, Enterococcus faecalis and Gram negative Citrobacter amalonaticus, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Proteus vulgaris, Citrobacter murliniae, Citrobacter freundii, Morganella morganii. Antibiofilm potential of purified Pp-Lec against selective Gram-negative bacteria showed the disruption of biofilm architecture at the concentration of 50 μg ml-1.
Collapse
Affiliation(s)
- Sangily Jayanthi
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Ramachandran Ishwarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Mahalingam Anjugam
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | | | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
39
|
Huang M, Wang L, Zhang H, Yang C, Liu R, Xu J, Jia Z, Song L. The sequence variation and functional differentiation of CRDs in a scallop multiple CRDs containing lectin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:333-339. [PMID: 27592049 DOI: 10.1016/j.dci.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A C-type lectin of multiple CRDs (CfLec-4) from Chlamys farreri was selected to investigate the sequence variation and functional differentiation of its CRDs. Its four CRDs with EPD/LSD, EPN/FAD, EPN/LND and EPN/YND key motifs were recombined separately. The recombinant proteins of CRD1 and CRD2 (designated as rCRD1 and rCRD2) could bind LPS and mannan, while the recombinant proteins of CRD3 and CRD4 (designated as rCRD3 and rCRD4) could bind LPS, PGN, mannan and glucan. Moreover, rCRD3 displayed broad microbe binding spectrum towards Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus, Gram-negative bacteria Escherichia coli and Vibrio anguillarum, as well as fungi Pichia pastoris and Yarrowia lipolytica. These results indicated CRD3 contributed more to CfLec-4's nonself-recognition ability. Furthermore, CRD1, CRD3 and CRD4 functioned as opsonin participating in the clearance against invaders in scallops. The sequence variation in Ca2+ binding site 2 among CRDs was suspected to be associated with such functional differentiation.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Qingdao 266071, China
| | | |
Collapse
|
40
|
Jia Z, Zhang H, Jiang S, Wang M, Wang L, Song L. Comparative study of two single CRD C-type lectins, CgCLec-4 and CgCLec-5, from pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 59:220-232. [PMID: 27765697 DOI: 10.1016/j.fsi.2016.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, are involved in nonself-recognition and pathogen elimination, and play crucial roles in the innate immunity. In the present study, two single CRD C-type lectins, CgCLec-4 and CgCLec-5, were identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgCLec-4 and CgCLec-5 encoded polypeptides of 152 and 150 amino acids, respectively. Both CgCLec-4 and CgCLec-5 contained one CRD with six conserved cysteines to form three disulfide bridges. The motif in Ca2+-binding site 2 of CgCLec-4 was QPE, while it was QYE, a non-a typical motif in CgCLec-5. CgCLec-4 was a secreted lectin with a signal peptide which was highly expressed in hepatopancreas, mantle and hemocytes. CgCLec-5 was an intracellular lectin which was mostly expressed in hemocytes. The lipopolysaccharide stimulation could induce the expressions of CgCLec-4 and CgCLec-5. The recombinant proteins of CgCLec-4 and CgCLec-5 (rCgCLec-4 and rCgCLec-5) could bind to various PAMPs including LPS, PGN, GLU and mannan, while the binding affinity of rCgCLec-5 was stronger than that of rCgCLec-4. Meanwhile, rCgCLec-4 and rCgCLec-5 could bind to different kinds of microorganisms, including Staphylococcus aureus, Escherichia coli and Vibro anguillarum and Yarrowia lipolytica, and the microbial agglutinating ability of rCgCLec-4 was stronger than that of CgCLec-5. Moreover, rCgCLec-4 exhibited anti-microbial activity against bacteria and fungi, but anti-microbial activity of CgCLec-5 was not obvious. All these results suggested that CgCLec-4 and CgCLec-5 could function as an important PRR involved in immune defense against invading pathogen in oyster, and the diversity and complexity of motifs in Ca2+ binding site 2 in CRDs determined their comprehensive recognition spectrum and multiple immune functions.
Collapse
Affiliation(s)
- Zhihao Jia
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Shuai Jiang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Mengqiang Wang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
41
|
Liu C, Zhang T, Wang L, Wang M, Wang W, Jia Z, Jiang S, Song L. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:163-170. [PMID: 27268574 DOI: 10.1016/j.dci.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
42
|
Fang ZY, Li D, Li XJ, Zhang X, Zhu YT, Li WW, Wang Q. A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities. FISH & SHELLFISH IMMUNOLOGY 2016; 50:175-190. [PMID: 26826423 DOI: 10.1016/j.fsi.2016.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
C-type lectins (CTLs) exist widely in crustaceans. To date, thirteen CTLs have been reported in crustaceans, and play significant roles in pathogen recognition, encapsulation of hemocytes and antimicrobial activity in the innate immune response. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, a novel CTL, designated as EsLecB, with a 470 bp open reading frame encodes a polypeptide of 156 amino acids, including a signal peptide of 19 amino acid residues and one carbohydrate-recognition domain of 131 aa residues, was cloned from the crustacean Eriocheir sinensis. By qRT-PCR analysis, EsLecB was detected in all tested tissues, and showed highest expression in hemocytes, hepatopancreas and heart. The expression of EsLecB was up-regulated following injections of PAMPs or bacteria. The recombinant protein (rEsLecB) expressed in Escherichia coli had a calcium-independent but carbohydrate-dependent microbial-binding and microbial-agglutinating, microorganism growth inhibitory and hem-encapsulation activities. Moreover, the rEsLecB could stimulate the activation of prophenoloxidase in vitro. These results indicated that EsLecB, as an antibacterial pattern recognition receptor is involved in innate immunity, and may act as an upstream detector of the prophenoloxidase activating system, which can detect pathogen invasion in E. sinensis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anti-Bacterial Agents/metabolism
- Arthropod Proteins/chemistry
- Arthropod Proteins/genetics
- Arthropod Proteins/metabolism
- Bacteria/chemistry
- Base Sequence
- Brachyura/genetics
- Brachyura/immunology
- Brachyura/metabolism
- Catechol Oxidase/metabolism
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Enzyme Precursors/metabolism
- Gene Expression
- Immunity, Innate
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Organ Specificity
- Pathogen-Associated Molecular Pattern Molecules/pharmacology
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- Zi-Yan Fang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
43
|
Liu C, Wang M, Jiang S, Wang L, Chen H, Liu Z, Qiu L, Song L. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:211-220. [PMID: 26434620 DOI: 10.1016/j.dci.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
44
|
Sivakamavalli J, Selvaraj C, Singh SK, Vaseeharan B. In vitro and in silico studies on cell adhesion protein peroxinectin from Fenneropenaeus indicus and screening of heme blockers against activity. J Mol Recognit 2015; 29:186-98. [PMID: 26686319 DOI: 10.1002/jmr.2516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/22/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
In invertebrates, the prophenoloxidase (proPO) pathway is involved in the phenol-like antioxidant production against invading pathogens. Overproduction of melanin and phenolic substances leads to the disruption of hemocytes (own host cells); therefore, there is a prerequisite to regulate the antioxidant production, which is performed by the proteases and proPO-associated cell adhesion protein peroxinectin (PX). PX is a macromolecular structure consisting of protein involved in the proPO pathway, which is a potential target in the regulatory mechanism in crustaceans. In the proPO cascade, pattern recognition proteins initiate the proPO cascade by the consequent reaction, and PX is involved in the key step in the regulatory mechanism of phenoloxidase enzyme synthesis. In the present study, Indian white shrimp Fenneropenaeus indicus PX (Fein-PX) gene sequence was used. Upregulation of Fein-PX was determined using immunostimulants β-glucan (agonists) and examined its expression by quantitative RT-PCR. To find the downregulation or negative regulation of Fein-PX, inhibitors were screened, and its 3D model provides molecular insights into the rationale inhibitor design for developing an effective molecule against Fein-PX.
Collapse
Affiliation(s)
- Jeyachandran Sivakamavalli
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, , Tamil Nadu, India
| | - Chandrabose Selvaraj
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, , Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, , Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 004, , Tamil Nadu, India
| |
Collapse
|
45
|
Sun W, Li Z, Wang S, Wan W, Wang S, Wen X, Zheng H, Zhang Y, Li S. Identification of a novel clip domain serine proteinase (Sp-cSP) and its roles in innate immune system of mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2015; 47:15-27. [PMID: 26272638 DOI: 10.1016/j.fsi.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Clip domain serine proteinases and their homologs are involved in the innate immunity of invertebrates. To identify the frontline defense molecules against pathogenic infection, we isolated a novel clip domain serine proteinase (Sp-cSP) from the hemocytes of mud crab Scylla paramamosain. The full-length 1362 bp Sp-cSP contains a 1155 bp open reading frame (ORF) encoding 384 amino acids. Multiple alignment analysis showed that the putative amino acid sequence of Sp-cSP has about 52% and 51% identity with Pt-cSP2 (AFA42360) and Pt-cSP3 (AFA42361) from Portunus trituberculatus, respectively, while the similarity with other cSP sequences was lower than 30%. However, all cSP sequences possess a conserved clip domain at the N-terminal and a Tryp-SPc domain at the C-terminal. The genomic organization of Sp-cSP consists of nine exons and eight introns, with some introns containing one or more tandem repeats. RT-PCR results indicated that Sp-cSP transcripts were predominantly expressed in the subcuticular epidermis, muscle and mid-intestine, but barely detectable in the brain and heart. Further, Sp-cSP transcripts were significantly up-regulated after challenge with lipopolysaccharides (LPS), Vibrio parahaemolyticus, polyinosinic polycytidylic acid (PolyI:C) or white spot syndrome virus (WSSV). Moreover, in vitro, the recombinant Sp-cSP revealed a strong antimicrobial activity against a Gram-positive (Staphylococcus aureus) and four Gram-negative (V. parahaemolyticus, Vibrio alginolyticus, Escherichia coli, Aeromonas hydrophila) bacteria in a dose-dependent manner. Taken together, the acute-phase response to immune challenges and the antimicrobial activity assay indicate that Sp-cSP is a potent immune protector and plays an important role in host defense against pathogen invasion in S. paramamosain.
Collapse
Affiliation(s)
- Wanwei Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Zhongzhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shasha Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Weisong Wan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|
46
|
Soonthornchai W, Chaiyapechara S, Jarayabhand P, Söderhäll K, Jiravanichpaisal P. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon. PLoS One 2015; 10:e0135783. [PMID: 26285030 PMCID: PMC4540450 DOI: 10.1371/journal.pone.0135783] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/27/2015] [Indexed: 12/16/2022] Open
Abstract
Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids.
Collapse
Affiliation(s)
- Wipasiri Soonthornchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sage Chaiyapechara
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Padermsak Jarayabhand
- Interdisciplinary Graduate Program on Maritime Administration, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klongluang, Pathumthani, 12120, Thailand; Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden; Fish Vet Group Asia Limited, 99/386, Chaengwattana Rd., Toongsonghong, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
47
|
Li H, Zhang H, Jiang S, Wang W, Xin L, Wang H, Wang L, Song L. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. FISH & SHELLFISH IMMUNOLOGY 2015; 44:566-575. [PMID: 25800112 DOI: 10.1016/j.fsi.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
48
|
CfLec-3 from scallop: an entrance to non-self recognition mechanism of invertebrate C-type lectin. Sci Rep 2015; 5:10068. [PMID: 25975813 PMCID: PMC4432315 DOI: 10.1038/srep10068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/11/2015] [Indexed: 01/25/2023] Open
Abstract
A C-type lectin (CfLec-3) from Chlamys farreri with three carbohydrate-recognition domains (CRDs) was selected to dissect the possible mechanisms of PAMP binding and functional differentiation of invertebrate lectins. CfLec-3 distributed broadly, and its mRNA expression in hemocytes increased significantly after stimulations with LPS, PGN or β-glucan, but not poly(I:C). The recombinant CfLec-3 (rCfLec-3) could bind PAMPs and several microbes. rCfLec-3 mediated hemocytes phagocytosis against Escherichia coli and encapsulation towards agarose beads. Obvious functional differentiation occurred among the three CRDs, as CRD1 exhibited higher activity to bind PAMPs, while CRD2/3 were expert in promoting hemocyte mediated opsonisation. The tertiary structural differences were suspected to be associated with such functional differentiation. PAMP binding abilities of CfLec-3 were determined by Ca(2+)-binding site 2 motif. When Pro in this motif of each CRD was mutated into Ser, their PAMP binding abilities were deprived absolutely. rCRD2 acquired mannan binding capability when its EPD was replaced by EPN, but lost when EPN in rCRD3 was changed into EPD. The Pro in Ca(2+)-binding site 2 was indispensable for PAMPs binding, while Asn was determinant for specific binding to mannan. It shed new insight into PAMPs binding mechanism of invertebrate C-type lectins and their functional differentiation.
Collapse
|
49
|
Qiao G, Xu DH, Wang Z, Jang IK, Qi Z, Zhang M, Kim SK. Comparison of immune response of Pacific white shrimp, Litopenaeus vannamei, after multiple and single infections with WSSV and Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2015; 44:257-264. [PMID: 25700782 DOI: 10.1016/j.fsi.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Our previous study demonstrated that Pacific white shrimp (Litopenaeus vannamei) infected by multiple pathogens showed higher mortality and death occurred more quickly than those infected by a single pathogen (Jang et al., 2014). For better understanding the defense mechanism against white spot syndrome virus (WSSV) and Vibrio anguillarum, immune responses of shrimp were evaluated in this study. The mRNA expression levels of five immune-related genes were analyzed by quantitative reverse real-time PCR, which included proPO-activating enzyme 1 (PPAE1), PPAE2, proPO activating factor (PPAF), masquerade-like serine proteinase (Mas) and ras-related nuclear gene (Ran). Results demonstrated that the transcription was suppressed more intensively in the multiple infection group than those in single infection groups. The transcriptional suppression was directly related to the higher mortality. The hypoimmunity could benefit pathogen invasion, replication and release of toxin in vivo. Results in this study will help to understand immune defense mechanism after shrimp were infected by multiple pathogens in aquaculture.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832, USA
| | - Zishen Wang
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - In-Kwon Jang
- West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, Republic of Korea
| | - Zhitao Qi
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Mingming Zhang
- Department of Ocean Technology, College of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Su-Kyoung Kim
- West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, Republic of Korea.
| |
Collapse
|
50
|
Jearaphunt M, Amparyup P, Sangsuriya P, Charoensapsri W, Senapin S, Tassanakajon A. Shrimp serine proteinase homologues PmMasSPH-1 and -2 play a role in the activation of the prophenoloxidase system. PLoS One 2015; 10:e0121073. [PMID: 25803442 PMCID: PMC4372372 DOI: 10.1371/journal.pone.0121073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/29/2015] [Indexed: 12/30/2022] Open
Abstract
Melanization mediated by the prophenoloxidase (proPO) activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs) have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi. In the present study, we identify a novel SPH, known as PmMasSPH2, composed of an N-terminal clip domain and a C-terminal SP-like domain that share high similarity to those of other insect and crustacean SPHs. We demonstrate that gene silencing of PmMasSPH1 and PmMasSPH2 significantly reduces PO activity, resulting in a high number of V. harveyi in the hemolymph. Interestingly, knockdown of PmMasSPH1 suppressed not only its gene transcript but also other immune-related genes in the proPO system (e.g., PmPPAE2) and antimicrobial peptides (e.g., PenmonPEN3, PenmonPEN5, crustinPm1 and Crus-likePm). The PmMasSPH1 and PmMasSPH2 also show binding activity to peptidoglycan (PGN) of Gram-positive bacteria. Using a yeast two-hybrid analysis and co-immunoprecipitation, we demonstrate that PmMasSPH1 specifically interacted with the final proteinase of the proPO cascade, PmPPAE2. Furthermore, the presence of both PmMasSPH1 and PmPPAE2 enhances PGN-induced PO activity in vitro. Taken together, these results suggest the importance of PmMasSPHs in the activation of the shrimp proPO system.
Collapse
Affiliation(s)
- Miti Jearaphunt
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pathumthani, Thailand
| | - Pakkakul Sangsuriya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pathumthani, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pathumthani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong 1, Klong Luang, Pathumthani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|