1
|
Hamada R, Yonezawa A, Matsumoto K, Mitani T, Takagi T, Muto A, Igarashi K, Naito Y, Higashimura Y. BTB and CNC homology 1 deficiency disrupts intestinal IgA secretion through regulation of polymeric immunoglobulin receptor expression. Am J Physiol Gastrointest Liver Physiol 2024; 327:G414-G423. [PMID: 38981617 DOI: 10.1152/ajpgi.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Immunoglobulin A (IgA)-mediated mucosal immunity is important for the host because it contributes to reducing infection risk and to establishing host-microbe symbiosis. BTB and CNC homology 1 (Bach1) is a transcriptional repressor with physiological and pathophysiological functions that are of particular interest for their relation to gastrointestinal diseases. However, Bach1 effects on IgA-mediated mucosal immunity remain unknown. For this study using Bach1-deficient (Bach1-/-) mice, we investigated the function of Bach1 in IgA-mediated mucosal immunity. Intestinal mucosa, feces, and plasma IgA were examined using immunosorbent assay. After cell suspensions were prepared from Peyer's patches and colonic lamina propria, they were examined using flow cytometry. The expression level of polymeric immunoglobulin receptor (pIgR), which plays an important role in the transepithelial transport of IgA, was evaluated using Western blotting, quantitative real-time PCR, and immunohistochemistry. Although no changes in the proportions of IgA-producing cells were observed, the amounts of IgA in the intestinal mucosa were increased in Bach1-/- mice. Furthermore, plasma IgA was increased in Bach1-/- mice, but fecal IgA was decreased, indicating that Bach1-/- mice have abnormal secretion of IgA into the intestinal lumen. In fact, Bach1 deficiency reduced pIgR expression in colonic mucosa at both the protein and mRNA levels. In the human intestinal epithelial cell line LS174T, suppression of Bach1 reduced pIgR mRNA stability. In contrast, the overexpression of Bach1 increased pIgR mRNA stability. These results demonstrate that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen via suppression of pIgR expression.NEW & NOTEWORTHY The transcriptional repressor Bach1 has been implicated in diverse intestinal functions, but the effects of Bach1 on IgA-mediated mucosal immunity remain unclear. We demonstrate here that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen, although the proportions of IgA-producing cells were not altered. Furthermore, Bach1 regulates the expression of pIgR, which plays an important role in the transepithelial transport of IgA, at the posttranscriptional level.
Collapse
Affiliation(s)
- Riku Hamada
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Akari Yonezawa
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Kenji Matsumoto
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
2
|
Blackburn JB, Schaff JA, Gutor S, Du RH, Nichols D, Sherrill T, Gutierrez AJ, Xin MK, Wickersham N, Zhang Y, Holtzman MJ, Ware LB, Banovich NE, Kropski JA, Blackwell TS, Richmond BW. Secretory Cells Are the Primary Source of pIgR in Small Airways. Am J Respir Cell Mol Biol 2022; 67:334-345. [PMID: 35687143 PMCID: PMC9447142 DOI: 10.1165/rcmb.2021-0548oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Jacob A. Schaff
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Sergey Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Rui-Hong Du
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - David Nichols
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Taylor Sherrill
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Matthew K. Xin
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Nancy Wickersham
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Washington University–St. Louis, St. Louis, Missouri
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine, and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
3
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
4
|
Expression characteristics of polymeric immunoglobulin receptor in Bactrian camel (Camelus bactrianus) lungs. PLoS One 2022; 17:e0264815. [PMID: 35245335 PMCID: PMC8896721 DOI: 10.1371/journal.pone.0264815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR), the transmembrane transporter of polymeric immunoglobulin A and M, has multiple immune functions. To explore the characteristics of pIgR expression in Bactrian camel lungs, twelve healthy adult (2-7 years old) Bactrian camels were systematically studied. The results showed that pIgR was mainly expressed in the cytoplasm and membrane of ciliated cells, as well as in the cytoplasm and membrane of basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells in Bactrian camel lungs. Specially, as the bronchial branches extended, the pIgR expression level in ciliated cells significantly declined (p<0.05), and the corresponding bronchial luminal areas obviously decreased (p<0.05). However, pIgR was not expressed in goblet cells, endocrine cells, alveolar type 1 cells and mucous cells of bronchial glands. The results demonstrated that ciliated cells continuously distributed throughout the whole bronchial tree mucosa were the major expression sites of pIgR, and pIgR was also expressed in basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells, which would facilitate secretory immunoglobulin A (SIgA) transmembrane transport by pIgR and form an intact protective barrier. Moreover, the pIgR expression level in ciliated cells was positively correlated with the bronchial luminal areas; but negatively correlated with the cleanliness of airflow through the bronchial cross-sections, showing that the pIgR expression level in the bronchial epithelium was inhomogeneous. Our study provided a foundation for further exploring the regulatory functions of immunoglobulins (i.e., SIgA) after transport across the membrane by pIgR in Bactrian camel lungs.
Collapse
|
5
|
Lung immunoglobulin A immunity dysregulation in cystic fibrosis. EBioMedicine 2020; 60:102974. [PMID: 32927272 PMCID: PMC7495088 DOI: 10.1016/j.ebiom.2020.102974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In cystic fibrosis (CF), recurrent infections suggest impaired mucosal immunity but whether production of secretory immunoglobulin A (S-IgA) is impaired remains elusive. S-IgA is generated following polymeric immunoglobulin receptor (pIgR)-mediated transepithelial transport of dimeric (d-)IgA and represents a major defence through neutralisation of inhaled pathogens like Pseudomonas aeruginosa (Pa). METHODS Human lung tissue (n = 74), human sputum (n = 118), primary human bronchial epithelial cells (HBEC) (cultured in air-liquid interface) (n = 19) and mouse lung tissue and bronchoalveolar lavage were studied for pIgR expression, IgA secretion and regulation. FINDINGS Increased epithelial pIgR immunostaining was observed in CF lung explants, associated with more IgA-producing plasma cells, sputum and serum IgA, especially Pa-specific IgA. In contrast, pIgR and IgA transport were downregulated in F508del mice, CFTR-inhibited HBEC, and CF HBEC. Moreover, the unfolded protein response (UPR) due to F508del mutation, inhibited IgA transport in Calu-3 cells. Conversely, pIgR expression and IgA secretion were strongly upregulated following Pa lung infection in control and F508del mice, through an inflammatory host response involving interleukin-17. INTERPRETATION A complex regulation of IgA secretion occurs in the CF lung, UPR induced by CFTR mutation/dysfunction inhibiting d-IgA transcytosis, and Pa infection unexpectedly unleashing this secretory defence mechanism. FUNDING This work was supported by the Forton's grant of the King Baudouin's Foundation, Belgium, the Fondazione Ricerca Fibrosi Cistica, Italy, and the Fonds National de la Recherche Scientifique, Belgium.
Collapse
|
6
|
Li Q, Lu Z, Jin M, Fei X, Quan K, Liu Y, Ma L, Chu M, Wang H, Wei C. Verification and Analysis of Sheep Tail Type-Associated PDGF-D Gene Polymorphisms. Animals (Basel) 2020; 10:ani10010089. [PMID: 31935823 PMCID: PMC7022463 DOI: 10.3390/ani10010089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary PDGF-D can be considered a candidate gene for selection for sheep tail type. This study investigated genetic variation of the PDGF-D gene in sheep with different tail types verified at a cellular level and revealed the molecular mechanism of PDGF-D in sheep tail fat deposition. We detected a total of two SNPs among 533 sheep. g.4122606 C > G site was significantly correlated with tail length, and g.3852134 C > T site was significantly correlated with tail width. In addition, overexpression of PDGF-D in sheep preadipocytes can promote adipogenic differentiation. The PDGF-D gene may participate in sheep tail fat deposition and could be used for molecular marker-assisted selection of sheep tail type. Abstract The aim of this study was to examine the correlation between the platelet-derived growth factor-D (PDGF-D) gene and sheep tail type character and explore the potential underlying mechanism. A total of 533 sheep were included in this study. Polymorphic sites were examined by Pool-seq, and individual genotype identification and correlation analysis between tail type data were conducted using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) method. JASPART website was used to predict transcription factor binding sites in the promoter region with and without PDGF-D gene mutation. The effect of PDGF-D on adipogenic differentiation of sheep preadipocytes was investigated. Two single nucleotide polymorphism sites were identified: g.4122606 C > G site was significantly correlated with tail length, and g.3852134 C > T site was significantly correlated with tail width. g.3852134 C > T was located in the promoter region. Six transcription factor binding sites were eliminated after promoter mutation, and three new transcription factor binding sites appeared. Expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoproteinlipase (LPL) were significantly up-regulated upon PDGF-D overexpression. Oil red O staining showed increased small and large oil drops in the PDGF-D overexpression group. Together these results indicate the PDGF-D gene is an important gene controlling sheep tail shape and regulating sheep tail fat deposition to a certain degree.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yongbin Liu
- Inner Mongolia Academy of Animal Husbandry Science, Hohhot 010031, China
| | - Lin Ma
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
| | - Huihua Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
- Correspondence: (H.W.); (C.W.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.L.); (M.J.); (X.F.); (L.M.); (M.C.)
- Correspondence: (H.W.); (C.W.)
| |
Collapse
|
7
|
Kaetzel CS, Mestecky J, Johansen FE. Two Cells, One Antibody: The Discovery of the Cellular Origins and Transport of Secretory IgA. THE JOURNAL OF IMMUNOLOGY 2018; 198:1765-1767. [PMID: 28223403 DOI: 10.4049/jimmunol.1700025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536;
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294; and
| | | |
Collapse
|
8
|
López MC. Chronic alcohol consumption regulates the expression of poly immunoglobulin receptor (pIgR) and secretory IgA in the gut. Toxicol Appl Pharmacol 2017; 333:84-91. [PMID: 28843478 DOI: 10.1016/j.taap.2017.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The effect of ethanol (EtOH) on the gut immune system was analyzed using an experimental model previously described, where EtOH was provided ad libitum in the drinking water in a 20% w/v concentration for up to 12weeks. Dendritic cells, T cells and macrophages were analyzed in Peyer's patches and the small intestines using flow cytometry. Cytokine and immunoglobulin levels were analyzed in sera, feces, and homogenates from small and large intestines and lungs. Decreases in the proportion of T cells and alterations in dendritic cells and macrophages were observed after EtOH treatment. Levels of immunoglobulin A (IgA) increased in tissue homogenates but decreased in small intestine fecal contents. Meanwhile poly-immunoglobulin receptor (pIgR) levels decreased in tissue homogenates and fecal contents. Levels of cytokines associated with the regulation of pIgR expression decreased for IL-10 and TGF-β, and increased for IFN-γ and IL-17 in the small intestine. The data indicate that chronic EtOH consumption disrupts the homeostasis of the mucosal immune system by altering the phenotype and functionality of multiple immune cell types, leading to a diminished secretion of SIgA, due to pIgR expression decreased.
Collapse
Affiliation(s)
- María C López
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
9
|
Do KH, Park SH, Kim J, Yu M, Moon Y. Ribosome Inactivation Leads to Attenuation of Intestinal Polymeric Ig Receptor Expression via Differential Regulation of Human Antigen R. THE JOURNAL OF IMMUNOLOGY 2016; 197:847-58. [DOI: 10.4049/jimmunol.1502047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
|
10
|
Cookson VJ, Waite SL, Heath PR, Hurd PJ, Gandhi SV, Chapman NR. Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells. Mol Hum Reprod 2015; 21:865-83. [DOI: 10.1093/molehr/gav051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022] Open
|
11
|
ZHANG HONGXIA, MAO XING, SUN YU, HU RUIMIN, LUO WEILI, ZHAO ZHONGHUA, CHEN QI, ZHANG ZHIGANG. NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Mol Med Rep 2015; 12:2893-901. [DOI: 10.3892/mmr.2015.3780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
12
|
|
13
|
Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. Mucosal Immunol 2014; 7:818-28. [PMID: 24220295 PMCID: PMC4019725 DOI: 10.1038/mi.2013.98] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/14/2013] [Indexed: 02/04/2023]
Abstract
There is significant interest in the use of primary intestinal epithelial cells in monolayer culture to model intestinal biology. However, it has proven to be challenging to create functional, differentiated monolayers using current culture methods, likely due to the difficulty in expanding these cells. Here, we adapted our recently developed method for the culture of intestinal epithelial spheroids to establish primary epithelial cell monolayers from the colon of multiple genetic mouse strains. These monolayers contained differentiated epithelial cells that displayed robust transepithelial electrical resistance. We then functionally tested them by examining immunoglobulin A (IgA) transcytosis across Transwells. IgA transcytosis required induction of polymeric Ig receptor (pIgR) expression, which could be stimulated by a combination of lipopolysaccharide and inhibition of γ-secretase. In agreement with previous studies using immortalized cell lines, we found that tumor necrosis factor-α, interleukin (IL)-1β, IL-17, and heat-killed microbes also stimulated pIgR expression and IgA transcytosis. We used wild-type and knockout cells to establish that among these cytokines, IL-17 was the most potent inducer of pIgR expression/IgA transcytosis. Interferon-γ, however, did not induce pIgR expression, and instead led to cell death. This new method will allow the use of primary cells for studies of intestinal physiology.
Collapse
|
14
|
Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol Lett 2014; 162:10-21. [PMID: 24877874 DOI: 10.1016/j.imlet.2014.05.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/06/2014] [Accepted: 05/17/2014] [Indexed: 01/01/2023]
Abstract
Secretory IgA (SIgA) antibodies in the intestinal tract form the first line of antigen-specific immune defense, preventing access of pathogens as well as commensal microbes to the body proper. SIgA is transported into external secretions by the polymeric immunoglobulin receptor (pIgR). Evidence is reported here that the gut microbiota regulates production of SIgA and pIgR, which act together to regulate the composition and activity of the microbiota. SIgA in the intestinal mucus layer helps to maintain spatial segregation between the microbiota and the epithelial surface without compromising the metabolic activity of the microbes. Products shed by members of the microbial community promote production of SIgA and pIgR by activating pattern recognition receptors on host epithelial and immune cells. Maternal SIgA in breast milk provides protection to newborn mammals until the developing intestinal immune system begins to produce its own SIgA. Disruption of the SIgA-pIgR-microbial triad can increase the risk of infectious, allergic and inflammatory diseases of the intestine.
Collapse
|
15
|
Takiguchi H, Endo S, Omagari D, Okabayashi K, Watanabe T, Asano M, Komiyama K. Reduced production of polymeric immunoglobulin receptor in murine dextran sodium sulfate-induced colitis. J Oral Sci 2012; 54:23-32. [PMID: 22466883 DOI: 10.2334/josnusd.54.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Polymeric immunoglobulin receptor (pIgR) plays an intrinsic role in protecting the intestinal tract from invading pathogens. In the present study, we observed a decrease in pIgR in colon lysate from mice with dextran sodium sulfate (DSS) colitis. A decrease in pIgR was detected in both mRNA and protein levels. Histologic examinations revealed marked destruction of intestinal epithelial cells (IECs), and only a small number of regenerating IECs expressed pIgR. These results suggest that the decrease in pIgR was due to the destruction of IECs. Because activation of toll-like receptor 3 slows the progression of DSS colitis, we injected polyriboinosinic: polyribocytidylic acid (poly I:C) intraperitoneally and observed the correlation between pIgR level and severity of DSS colitis. Poly I:C markedly decreased progression of DSS colitis, and pIgR levels significantly recovered. Furthermore, we found that expressions of IFN-γ and TNF-α were higher in DSS colitis. These results indicate that the decrease in pIgR was not compensated for by increased expression of these cytokines. In sum, our findings show that pIgR levels vary according to the severity of DSS colitis and that these changes might be useful as a biomarker of the severity of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hatakazu Takiguchi
- Division of Oral Health Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Bruno MEC, Frantz AL, Rogier EW, Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol 2011; 4:468-78. [PMID: 21451502 PMCID: PMC3125104 DOI: 10.1038/mi.2011.8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses.
Collapse
Affiliation(s)
- M E C Bruno
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA,()
| | - A L Frantz
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - E W Rogier
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - F-E Johansen
- Institute of Pathology and Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - C S Kaetzel
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Jonker MA, Hermsen JL, Gomez FE, Sano Y, Kudsk KA. Injury induces localized airway increases in pro-inflammatory cytokines in humans and mice. Surg Infect (Larchmt) 2010; 12:49-56. [PMID: 21166596 DOI: 10.1089/sur.2010.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Secretory immunoglobulin A (sIgA) increases in the airways of humans and mice after injury to protect against infection. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 are linked molecularly to sIgA production and secretion and are required for sIgA increases in the airway after injury in a mouse model. We investigated the injury effect on airway and serum concentrations to determine the source of the cytokines involved in the airway IgA response. METHODS In the first experiment, TNF-α, IL-1β, and IL-6 concentrations in bronchoalveolar lavage (BAL) fluid and serum obtained from 11 ventilated trauma patients within 30 h of admission were compared with those in eight elective surgical patients. In the second experiment, male ICR mice received no injury (n = 7) or injury with sham celiotomy and neck incisions (n = 8) with sacrifice of all animals at 8 h for BAL fluid and serum cytokine measurements by enzyme-linked immunosorbent assay. RESULTS Injured patients had significantly higher BAL fluid and serum TNF-α, IL-1β, and IL-6 concentrations, with greater increases in the BAL fluid than in the serum. Injured mice had significantly increased BAL fluid concentrations of TNF-α, IL-1β, and IL-6 without significant changes in serum TNF-α or IL-1β. Serum IL-6 increased significantly. CONCLUSIONS Injury significantly increases human and mouse airway TNF-α, IL-1β, and IL-6. Increases are greater in the airway than in serum, implying a local rather than a systemic stress response to injury.
Collapse
Affiliation(s)
- Mark A Jonker
- Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
18
|
Jonker MA, Hermsen JL, Sano Y, Heneghan AF, Lan J, Kudsk KA. Small intestine mucosal immune system response to injury and the impact of parenteral nutrition. Surgery 2010; 151:278-86. [PMID: 21145571 DOI: 10.1016/j.surg.2010.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 10/19/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Both humans and mice increase airway immunoglobulin A (IgA) after injury. This protective response is associated with TNF-α, IL-1β, and IL-6 airway increases and in mice is dependent upon these cytokines as well as enteral feeding. Parenteral nutrition (PN) with decreased enteral stimulation (DES) alters gut barrier function, decreases intestinal IgA, and decreases the principal IgA transport protein pIgR. We investigated the small intestine (SI) IgA response to injury and the role of TNF-α, IL-1β, IL-6, and PN/DES. METHODS Expt 1: Murine kinetics of SI washing fluid (SIWF) IgA; SI, SIWF and serum TNF-α, IL-1β, and IL-6, was determined by ELISA from 0 to 8 hours after a limited surgical stress injury (laparotomy and neck incisions). Expt 2: Mice received chow or PN/DES before injury and SIWF IgA and SI pIgR levels were determined at 0 and 8 hours. Expt 3: Mice received PBS, TNF-α antibody, or IL-1β antibody 30 minutes before injury to measure effects on the SIWF IgA response. Expt 4: Mice received injury or exogenous TNF-α, IL-1β, and IL-6 to measure effects on the SIWF IgA response. RESULTS Expt 1: SIWF IgA levels increased significantly by 2 hours after injury without associated increases in TNF-α or IL-1β whereas IL-6 was only increased at 1 hour after injury. Expt 2: PN/DES significantly reduced baseline SIWF IgA and SI pIgR and eliminated their increase after injury seen in Chow mice. Expt 3: TNF-α and IL-1β blockade did not affect the SIWF IgA increase after injury. Expt 4: Exogenous TNF-α, IL-1β, and IL-6 increased SIWF IgA similarly to injury. CONCLUSION The SI mucosal immune responds to injury or exogenous TNF-α, IL-1β, and IL-6 with an increase in lumen IgA, although it does not rely on local SI increases in TNF-α or IL-1β as it does in the lung. Similar to the lung, the IgA response is eliminated with PN/DES.
Collapse
Affiliation(s)
- Mark A Jonker
- Surgical Service and Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
19
|
Lammers A, Wieland WH, Kruijt L, Jansma A, Straetemans T, Schots A, den Hartog G, Parmentier HK. Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1254-1262. [PMID: 20621117 DOI: 10.1016/j.dci.2010.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/29/2023]
Abstract
The intestinal mucosa is of major importance for immune development. To further study the ontogeny of avian mucosal immunity, mRNA levels of IgM, IgY and IgA, the polymeric immunoglobulin receptor (pIgR) and a number of cytokines were determined at different ages in jejunum and ileum of non-immunized healthy juvenile layer chickens. Immunoglobulin genes were successively expressed in jejunum and ileum. IgM expression was maximal in week 1, IgY expression peaked in week 5, and IgA expression was most dominant after week 7 post hatch. PIgR gene expression was relatively low in the first 2 weeks post hatch, but increased thereafter. Generally, increased expression levels of IL-1, IL-10, IL-12p40, iNOS and interferon-γ mRNA levels were found between days 14-42 as compared to days 3 and 49-70 post hatch (p<0.05). Correlation was found between IgA and IL-10, TGF-β and IFN-γ expression levels on days 21, 28 and 35. Cytokine mRNA expression levels decreased to basal levels between 49 and 70 days post hatch, whereas IgA reached its maximum levels in this period. Based on the current results, we hypothesize that chicken sIgA, as mammalian sIgA, may contribute to the maintenance of intestinal homeostasis.
Collapse
MESH Headings
- Animals
- Chickens
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression
- Genes, Immunoglobulin
- Ileum/immunology
- Ileum/metabolism
- Immunity, Mucosal/genetics
- Immunoglobulin A/genetics
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin M/genetics
- Immunoglobulins/biosynthesis
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Interferons/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Intestinal Mucosa/immunology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Jejunum/immunology
- Jejunum/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Polymeric Immunoglobulin/genetics
- Receptors, Polymeric Immunoglobulin/immunology
- Receptors, Polymeric Immunoglobulin/metabolism
Collapse
Affiliation(s)
- Aart Lammers
- Adaptation Physiology Group, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Proinflammatory cytokine surge after injury stimulates an airway immunoglobulin a increase. ACTA ACUST UNITED AC 2010; 69:843-8. [PMID: 20173656 DOI: 10.1097/ta.0b013e3181c45284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND : Injury stimulates an innate airway IgA response in severely injured patients, which also occurs in mice. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β stimulate the production of polymeric immunoglobulin receptor, the protein required to transport immunoglobulin A (IgA) to mucosal surfaces. Blockade of TNF-α and IL-1β eliminates the airway IgA response to injury. IL-6 stimulates differentiation of B cells into IgA-secreting plasma cells at mucosal sites. We investigated the local and systemic kinetics of TNF-α, IL-1β, and IL-6 after injury in mice. We also hypothesized that injection of exogenous TNF-α, IL-1β, and IL-6 would replicate the airway IgA response to injury. METHODS : Experiment 1: male Institute of Cancer Research mice were randomized to uninjured controls (n = 8) or to surgical stress with laparotomy and neck incisions, with killing at 1, 2, 3, 5, or 8 hours after injury (n = 8/group). Bronchoalveolar lavage (BAL) and serum levels of TNF-α, IL-1β, and IL-6 were analyzed by enzyme-linked immunosorbent assay. Experiment 2: male Institute of Cancer Research mice were randomized to uninjured controls (n = 6), injury (surgical stress that was similar to experiment 1 except the peritoneum was left intact, n = 6), or cytokine injection with intraperitoneal injection of recombinant TNF-α, IL-1β, and IL-6. Animals were killed at 2 hours after injury, and nasal airway lavage and BAL IgA were analyzed by enzyme-linked immunosorbent assay. RESULTS : Experiment 1: BAL TNF-α, IL-1β, and IL-6 levels increased in bimodal pattern after injury at 3 hours and 8 hours versus controls (p < 0.05). Serum IL-6 did not increase at 3 hours, but did show a significant increase by 5 hours versus control (p < 0.05). Serum levels of TNF-α and IL-1β did not change. Experiment 2: both Injury and combination TNF-α, IL-1β, and IL-6 cytokine injection significantly increased IgA levels in airway lavage (BAL + nasal airway lavage) compared with control (p < 0.01 for both). CONCLUSIONS : Airway levels of TNF-α, IL-1β, and IL-6 increase in a bimodal pattern after injury with peaks at 3 hours and 8 hours, which do not correspond to serum changes. The peak at 8 hours is consistent with the known increase in airway IgA after injury. Intraperitoneal injection of a combination exogenous TNF-α, IL-1β, and IL-6 replicates the airway IgA increase after injury. This effect is not seen with individual cytokine injections.
Collapse
|
21
|
Bruno MEC, Rogier EW, Frantz AL, Stefka AT, Thompson SN, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis. Immunol Invest 2010; 39:356-82. [PMID: 20450283 DOI: 10.3109/08820131003622809] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The commensal microbiota of the human colon profoundly impacts host gene expression and mucosal homeostasis. Secretory IgA antibodies, which influence the composition of the intestinal microbiota and provide immunity against pathogens, are transported across intestinal epithelial cells (IEC) by the polymeric immunoglobulin receptor (pIgR). To compare the effects of different colonic bacteria on pIgR expression, the human IEC line HT-29 was stimulated with various species representing the 4 major phyla of colonic bacteria. Only bacteria from the family Enterobacteriaceae (phylum Proteobacteria) induced expression of pIgR and other target genes of bacterial pattern recognition receptors. HT-29 cells responded to purified ligands for Toll-like receptor (TLR)4 but not TLR2. Expression of pIgR and transport of IgA were significantly reduced in colons of mice deficient in the TLR adaptor MyD88, consistent with a role for TLR signaling in the regulation of pIgR by colonic bacteria. Induction of pIgR expression in HT-29 cells required NF-kappaB signaling but not MAPK signaling, in contrast to the requirement for both NF-kappaB and MAPK signaling for induction of pro-inflammatory genes. These results suggest that commensal Enterobacteriaceae may promote intestinal homeostasis by enhancing pIgR expression in IEC.
Collapse
Affiliation(s)
- Maria E C Bruno
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
22
|
Strugnell RA, Wijburg OLC. The role of secretory antibodies in infection immunity. Nat Rev Microbiol 2010; 8:656-67. [PMID: 20694027 DOI: 10.1038/nrmicro2384] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mucosal secretory immune system provides an important primary defence against disease, as studies of humans with mucosal humoral immunodeficiencies suggest that the absence of secretory immunoglobulin A leads to an increase in mucosal infections. However, the infection risks posed do not seem to provide the evolutionary drive to retain constitutive secretion of often 'hard won' protein, suggesting that secretory antibodies may have some other important function (or functions). This Review examines the evidence that secretory antibodies provide an important defence against infection in specific animal models and explores complementary explanations for the evolution of the secretory immune system.
Collapse
Affiliation(s)
- Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, VIC 3010 Australia.
| | | |
Collapse
|
23
|
Ying S, Kojima T, Kawada A, Nachat R, Serre G, Simon M, Takahara H. An intronic enhancer driven by NF-κB contributes to transcriptional regulation of peptidylarginine deiminase type I gene in human keratinocytes. J Invest Dermatol 2010; 130:2543-52. [PMID: 20596086 DOI: 10.1038/jid.2010.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptidylarginine deiminases (PADs) catalyze the conversion of protein-bound arginine to citrulline residues. In human epidermis, where filaggrin is the main deiminated protein, three PADs are detected with specific patterns of expression depending on the keratinocyte (KC) differentiation state. Previous characterizations of the PAD-encoding gene promoters have shown that proximal regulation alone is not sufficient to explain this specificity of expression. In this work, we describe an evolutionarily highly conserved nucleotide segment located in the first intron of the PAD1 gene (PADI1). Luciferase reporter assays showed that it enhances the activity of the PADI1 promoter, in a calcium- and orientation-independent manner. Mutation of a putative NF-κB cis-element markedly reduced its enhancer activity, which also confirmed its potential regulatory function. Chromatin immunoprecipitation assays evidenced the binding of both p65 and p50 NF-κB subunits to the cis-element, and RNA interference inhibition assays confirmed that NF-κB contributes to the PADI1 transcriptional control. Furthermore, the intronic enhancer and promoter of PADI1 potentially interact through chromatin looping, as indicated by chromosome conformation capture assays. Our findings provide evidence that an NF-κB-mediated signaling pathway is involved in PADI1 regulation in human epidermal KCs.
Collapse
Affiliation(s)
- Shibo Ying
- Department of Applied Life Sciences, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Xue J, Thippegowda PB, Hu G, Bachmaier K, Christman JW, Malik AB, Tiruppathi C. NF-kappaB regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappaB site in the ICAM-1 gene. Physiol Genomics 2009; 38:42-53. [PMID: 19351910 PMCID: PMC2696150 DOI: 10.1152/physiolgenomics.00012.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/01/2009] [Indexed: 01/10/2023] Open
Abstract
Activation of NF-kappaB is essential for protease-activated receptor-1 (PAR-1)-mediated ICAM-1 expression in endothelial cells. Here we show that PAR-1 activation induces binding of both p65/RelA and NFATc1 to the NF-kappaB binding site localized in intron-1 of the ICAM-1 gene to initiate transcription in endothelial cells. We discovered the presence of two NF-kappaB binding sites in intron-1 (+70, NF-kappaB site 1; +611, NF-kappaB site 2) of the human ICAM-1 gene. Chromatin immunoprecipitation results showed that thrombin induced binding of p65/RelA and of NFATc1 specifically to intronic NF-kappaB site 1 of the ICAM-1 gene. Electrophoretic mobility shift and supershift assays confirmed the binding of p65/RelA and NFATc1 to the intronic NF-kappaB site 1 in thrombin-stimulated cells. Thrombin increased the expression of ICAM-1-promoter-intron 1-reporter (-1,385 to +234) construct approximately 25-fold and mutation of intronic NF-kappaB site 1 markedly reduced thrombin-induced reporter expression. Moreover, inhibition of calcineurin, knockdown of either NFATc1 or p65/RelA with siRNA significantly reduced thrombin-induced ICAM-1 expression and polymorphonuclear leukocyte adhesion to endothelial cells. In contrast, NFATc1 knockdown had no effect on TNF-alpha-induced ICAM-1 expression. Thus these results suggest that p65/RelA and NFATc1 bind to the intronic NF-kappaB site 1 sequence to induce optimal transcription of the ICAM-1 gene in response to thrombin in endothelial cells.
Collapse
Affiliation(s)
- Jiaping Xue
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sano Y, Hermsen JL, Kang W, Gomez FE, Lan J, Maeshima Y, Kudsk KA. Parenteral nutrition maintains pulmonary IgA antibody transport capacity, but not active transport, following injury. Am J Surg 2009; 198:105-9. [PMID: 19249732 DOI: 10.1016/j.amjsurg.2008.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Parenteral nutrition (PN) increases post-trauma pneumonia versus enteral feeding. PN impairs murine immunoglobulin A (IgA) airway defenses and abrogates a normal IgA increase following injury. This work investigates the effect of type/route of nutrition on lung IgA and its transport protein, polymeric immunoglobulin receptor (pIgR), after injury. METHODS Catheterized mice were randomized to Chow or PN for 5 days and sacrificed without injury (Chow: n = 12; PN n = 11), or 8 hours after laparotomy + neck incisions (Chow-injury: n = 11, PN-injury: n = 13). Bronchoalveolar lavage (BAL) and lung IgA levels were analyzed by enzyme-linked immunosorbent assay (ELISA) and lung pIgR by Western blot. RESULTS BAL IgA levels increased in Chow-injury versus PN-injury (P <.01) with no differences in pIgR. PN-injury tissue IgA levels decreased versus Chow (P <.01), Chow-injury (P <.01), and PN (P <.05). CONCLUSIONS PN impairs the airway IgA response to injury but not due to impaired IgA transport capacity/pIgR level.
Collapse
Affiliation(s)
- Yoshifumi Sano
- Department of Surgery, University of Wisconsin-Madison, College of Medicine, Public Health, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hermsen JL, Sano Y, Gomez FE, Maeshima Y, Kang W, Kudsk KA. Parenteral nutrition inhibits tumor necrosis factor-alpha-mediated IgA response to injury. Surg Infect (Larchmt) 2008; 9:33-40. [PMID: 18363466 DOI: 10.1089/sur.2007.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parenteral nutrition (PN) increases the incidence of pneumonia in severely injured patients compared with enteral feeding (ENT). Injury induces an innate airway IgA response in severely injured patients; similar responses occur in mice. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) stimulate the production of polymeric immunoglobulin receptor (pIgR), the protein required to transport immunoglobulin A (IgA) to mucosal surfaces. We have shown that PN alters levels of lung and nasal passage IgA and several IgA-stimulating cytokines. We hypothesized that TNF-alpha and IL-1beta blockade, as well as PN, would blunt the airway IgA response to injury. METHODS Male Institute of Cancer Research (ICR) mice were randomized to uninjured controls (n = 10) or to intra-peritoneal phosphate-buffered saline (PBS) (n = 9), antagonistic TNF-alpha antibody (100 mcg, n = 7), or antagonistic IL-1beta antibody (50 mcg, n = 8) 30 min prior to surgical stress with laparotomy and neck incisions. Mice were sacrificed at 8 h for nasal and bronchoalveolar lavage (NAL, BAL) to measure IgA by enzyme-linked immunosorbent assay. In a separate experiment, 12 mice underwent intravenous cannulation followed by chow (n = 5) or PN (n = 7) feeding for 5 days prior to the same stress and IgA measurement. RESULTS Injury significantly increased NAL and BAL IgA (225 +/- 104 ng) compared with baseline (145 +/- 38 ng; p = 0.01). Blockade of TNF-alpha eliminated the innate airway IgA response to injury (130 +/- 47 ng; p = 0.01), whereas IL-1beta blockade blunted and PN eliminated it completely. CONCLUSIONS Tumor necrosis factor-alpha is involved in the respiratory IgA immune response to injury. Both TNF-alpha blockade and PN impair this innate response, and blockade of IL-1beta impairs it to a degree. We hypothesize that these cytokines blunt this response via their known effects on the polymeric immunoglobulin receptor (pIgR), whereas the PN-induced deficit likely is multifactorial.
Collapse
Affiliation(s)
- Joshua L Hermsen
- Department of Surgery, University of Wisconsin-Madison College of Medicine and Public Health, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53792-7375, USA
| | | | | | | | | | | |
Collapse
|
27
|
Yuvaraj S, Lahham S, Marreddy RKR, Dijkstra G, Wolken WAM, Lolkema JS, Helfrich W, Johansen FE, Peppelenbosch MP, Bos NA. Human scFv SIgA expressed on Lactococcus lactis
as a vector for the treatment of mucosal disease. Mol Nutr Food Res 2008; 52:913-20. [DOI: 10.1002/mnfr.200700132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Liu X, Ye L, Christianson GJ, Yang JQ, Roopenian DC, Zhu X. NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. THE JOURNAL OF IMMUNOLOGY 2007; 179:2999-3011. [PMID: 17709515 PMCID: PMC2667116 DOI: 10.4049/jimmunol.179.5.2999] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neonatal Fc receptor for IgG (FcRn) functions to transport maternal IgG to a fetus or newborn and to protect IgG from degradation. Although FcRn is expressed in a variety of tissues and cell types, the extent to which FcRn expression is regulated by immunological and inflammatory events remains unknown. Stimulation of intestinal epithelial cell lines, macrophage-like THP-1, and freshly isolated human monocytes with the cytokine TNF-alpha rapidly up-regulated FcRn gene expression. In addition, the TLR ligands LPS and CpG oligodeoxynucleotide enhanced the level of FcRn expression in THP-1 and monocytes. Treatment of TNF-stimulated THP-1 cells with the NF-kappaB-specific inhibitor or overexpression of a dominant negative mutant inhibitory NF-kappaB (IkappaBalpha; S32A/S36A) resulted in down-regulation of FcRn expression. By using chromatin immunoprecipitation we identified three NF-kappaB binding sequences within introns 2 and 4 of the human FcRn gene. An EMSA confirmed the p50/p50 and/or p65/p50 complex (s) bound to intron 2- or 4-derived oligonucleotides containing putative NF-kappaB binding sequences, respectively. The intronic NF-kappaB sequences in combination with the promoter or alone regulated the expression of a luciferase reporter gene in response to TNF-alpha stimulation or overexpression of NF-kappaB p65 and p50. DNA looping interactions potentially occurred after the stimulation between intronic NF-kappaB sequences and the FcRn promoter as shown by a chromosome conformation capture assay. Finally, TNF-alpha stimulations enhanced IgG transport across an intestinal Caco-2 epithelial monolayer. Together, these data provide the first evidence that NF-kappaB signaling via intronic sequences regulates FcRn expression and function.
Collapse
Affiliation(s)
- Xindong Liu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Lilin Ye
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | | | - Jun-Qi Yang
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH 45237
| | | | - Xiaoping Zhu
- Laboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
- Address correspondence and reprint requests to Dr. Xiaoping Zhu, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742. E-mail address:
| |
Collapse
|
29
|
Takenouchi-Ohkubo N, Moro I, Mukae S, Kaneko Y, Komiyama K. Tumour necrosis factor-alpha-mediated human polymeric immunoglobulin receptor expression is regulated by both mitogen-activated protein kinase and phosphatidylinositol-3-kinase in HT-29 cell line. Immunology 2007; 123:500-7. [PMID: 17971154 DOI: 10.1111/j.1365-2567.2007.02716.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human polymeric immunoglobulin receptor (pIgR) is present on the surface of glandular epithelium, and it plays a crucial role in the mucosal immune defence. pIgR expression in HT-29 cells is up-regulated by one of the proinflammatory cytokines, tumour necrosis factor (TNF)-alpha. However, the mechanism used by the TNF-alpha-mediated signalling pathway has not been examined exclusively. To elucidate this mechanism in detail, HT-29 cells were cotreated with TNF-alpha and mitogen-activated protein kinase kinase (MAPKK, also called MEK1) inhibitor, PD98059, and the amount of free secretory component (SC) secreted into the culture medium was measured. The amount of free SC stimulated by TNF-alpha was increased by addition of PD98059. This up-regulation occurred at the transcriptional level. The amount of SC was also up-regulated by addition of TNF-alpha with U0126, an inhibitor of MEK1 and MEK2. Nuclear factor (NF)-kappaB activity and NF-kappaB binding to the kappaB2 site localized upstream of the pIgR gene did not change after coincubation of HT-29 cells with TNF-alpha and PD98059. The expression level of pIgR by TNF-alpha was decreased by LY294002, an inhibitor of phosphatidylinositol-3-kinase (PI3K), at the transcriptional level. Extracellular signal-regulated kinase (ERK)1/2 phosphorylation and NF-kappaB binding to the kappaB2 site were not affected by LY294002 treatment. These data suggest that TNF-alpha-mediated pIgR expression is negatively regulated by ERK pathway, which is independent of NF-kappaB. In addition, decrease of SC production by Ly294002 suggests that the presence of PI3K mediated regulation of SC production.
Collapse
Affiliation(s)
- N Takenouchi-Ohkubo
- Department of Pathology, Nihon University, School of Dentistry, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
30
|
Li L, Chang MX, Nie P. Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 2007; 118:270-82. [PMID: 17604124 DOI: 10.1016/j.vetimm.2007.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/11/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI-1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response.
Collapse
Affiliation(s)
- L Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | | | | |
Collapse
|
31
|
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467-84. [PMID: 17227687 DOI: 10.1016/j.vaccine.2006.12.001] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/08/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating intimately with adaptive immunity. Local generation of secretory IgA (SIgA) constitutes the largest humoral immune system of the body. Secretory antibodies function both by performing antigen exclusion at mucosal surfaces and by virus and endotoxin neutralization within epithelial cells without causing tissue damage. SIgA is thus persistently containing commensal bacteria outside the epithelial barrier but can also target invasion of pathogens and penetration of harmful antigens. Resistance to toxin-producing bacteria such as Vibrio cholerae and enterotoxigenic Escherichia coli appears to depend largely on SIgA, and so does herd protection against horizontal faecal-oral spread of enteric pathogens under naïve or immunized conditions--with a substantial innate impact both on cross-reactivity and memory. Like natural infections, live mucosal vaccines or adequate combinations of non-replicating vaccines and mucosal adjuvants, give rise not only to SIgA antibodies but also to longstanding serum IgG and IgA responses. However, there is considerably disparity with regard to migration of memory/effector cells from mucosal inductive sites to secretory effector sites and systemic immune organs. Also, although immunological memory is generated after mucosal priming, this may be masked by a self-limiting response protecting the inductive lymphoid tissue in the gut. The intranasal route of vaccine application targeting nasopharynx-associated lymphoid tissue may be more advantageous for certain infections, but only if successful stimulation is achieved without the use of toxic adjuvants that might reach the central nervous system. The degree of protection obtained after mucosal vaccination ranges from reduction of symptoms to complete inhibition of re-infection. In this scenario, it is often difficult to determine the relative importance of SIgA versus serum antibodies, but infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents. Nevertheless, relatively few mucosal vaccines have been approved for human use, and more basic work is needed in vaccine and adjuvant design, including particulate or live-vectored combinations.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway.
| |
Collapse
|
32
|
Samant RS, Clark DW, Fillmore RA, Cicek M, Metge BJ, Chandramouli KH, Chambers AF, Casey G, Welch DR, Shevde LA. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 2007; 6:6. [PMID: 17227585 PMCID: PMC1796551 DOI: 10.1186/1476-4598-6-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/16/2007] [Indexed: 02/08/2023] Open
Abstract
Background Osteopontin (OPN), a secreted phosphoglycoprotein, has been strongly associated with tumor progression and aggressive cancers. MDA-MB-435 cells secrete very high levels of OPN. However metastasis-suppressed MDA-MB-435 cells, which were transfected with breast cancer metastasis suppressor 1 (BRMS1), expressed significantly less OPN. BRMS1 is a member of mSin3-HDAC transcription co-repressor complex and has been shown to suppress the metastasis of breast cancer and melanoma cells in animal models. Hence we hypothesized that BRMS1 regulates OPN expression. Results The search for a BRMS1-regulated site on the OPN promoter, using luciferase reporter assays of the promoter deletions, identified a novel NF-κB site (OPN/NF-κB). Electrophoretic mobility shift assays and chromatin immunoprecipitations (ChIP) confirmed this site to be an NF-κB-binding site. We also show a role of HDAC3 in suppression of OPN via OPN/NF-κB. Conclusion Our results show that BRMS1 regulates OPN transcription by abrogating NF-κB activation. Thus, we identify OPN, a tumor-metastasis activator, as a crucial downstream target of BRMS1. Suppression of OPN may be one of the possible underlying mechanisms of BRMS1-dependent suppression of tumor metastasis.
Collapse
Affiliation(s)
- Rajeev S Samant
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - David W Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca A Fillmore
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Muzaffer Cicek
- Lerner Research Institute, Cleveland Clinic Lerner School of Medicine, Ohio, USA
| | - Brandon J Metge
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | | | - Ann F Chambers
- Department of Cancer Biology, The London Regional Cancer Program, London, Ontario, Canada
| | - Graham Casey
- Lerner Research Institute, Cleveland Clinic Lerner School of Medicine, Ohio, USA
| | - Danny R Welch
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Cell Biology and Pharmacology/Toxicology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- National Foundation for Cancer Research-Center for Metastasis Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lalita A Shevde
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
33
|
Hawkins RD, Ren B. Genome-wide location analysis: insights on transcriptional regulation. Hum Mol Genet 2006; 15 Spec No 1:R1-7. [PMID: 16651365 DOI: 10.1093/hmg/ddl043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene expression analysis of microarray data can provide a global view of the transcriptome of a cell or specific tissue type, revealing important information about the kinds of signaling pathways, genes and protein classifications that are active. However, transcript profiles alone do not reveal how expression levels are controlled or which transcription factors (TFs) are responsible. Establishing transcriptional regulatory networks requires knowledge of TFs bound to promoter, enhancer and repressor elements. Accessibility of these sites and an additional level of control are mediated by chromatin and DNA modifications. Genome-wide location analysis is a tool for identifying protein-DNA interaction sites on a genomic scale. Applications of this tool are proving invaluable in determining in vivo target genes of TFs, epigenetic marks and cis-regulatory elements. Here, we will discuss how advances have been made in each of these categories and how this has helped to elucidate regulatory networks and control mechanisms.
Collapse
Affiliation(s)
- R David Hawkins
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
34
|
Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 2005; 206:83-99. [PMID: 16048543 DOI: 10.1111/j.0105-2896.2005.00278.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
Collapse
Affiliation(s)
- Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
35
|
Pal K, Kaetzel CS, Brundage K, Cunningham CA, Cuff CF. Regulation of polymeric immunoglobulin receptor expression by reovirus. J Gen Virol 2005; 86:2347-2357. [PMID: 16033983 DOI: 10.1099/vir.0.80690-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA and IgA-coated immune complexes from the lamina propria across epithelia and into secretions. The effect of reovirus infection on regulation of pIgR expression in the human intestinal epithelial cell line HT-29 was characterized in this report. Both replication-competent and UV-inactivated reovirus at m.o.i. equivalents of 1-100 p.f.u. per cell upregulated pIgR mRNA by 24 h post-infection and intracellular pIgR protein was increased at 48 h following exposure to UV-inactivated virus. Binding of virus to HT-29 cells was required, as pre-incubating virus with specific antiserum, but not non-immune serum, inhibited reovirus-mediated pIgR upregulation. Endosomal acidification leading to uncoating of virus is a required step for pIgR upregulation, as ammonium chloride or bafilomycin A1 pre-treatment inhibited virus-induced pIgR upregulation. Inhibition experiments using the calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal suggested that calpains are involved in reovirus-mediated pIgR upregulation. Upregulation of pIgR following virus infection appears to be an innate immune response against invading pathogens that could help the host clear infection effectively. Signalling induced by microbes and their products may serve to augment pIgR-mediated transcytosis of IgA, linking the innate and acquired immune responses to viruses.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen Brundage
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Cynthia A Cunningham
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| | - Christopher F Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9177, Morgantown, WV 26506-9177, USA
| |
Collapse
|
36
|
Schneeman TA, Bruno MEC, Schjerven H, Johansen FE, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. THE JOURNAL OF IMMUNOLOGY 2005; 175:376-84. [PMID: 15972671 DOI: 10.4049/jimmunol.175.1.376] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IgA Abs help to maintain homeostasis at mucosal surfaces by promoting defense mechanisms that protect against pathogens while suppressing inflammatory responses to commensal organisms and food Ags. The polymeric Ig receptor (pIgR) mediates transport of IgA across mucosal epithelial cells. We hypothesized that signaling through TLRs may up-regulate pIgR expression by intestinal epithelial cells and thus enhance IgA-mediated homeostasis. To test this hypothesis we treated the HT29 human intestinal epithelial cell line with dsRNA, a ligand for TLR3, or LPS, a ligand for TLR4. Both dsRNA and LPS up-regulated levels of pIgR mRNA and cell surface pIgR protein. By contrast, dsRNA but not LPS up-regulated expression of TLR3 and TLR4 mRNA. However, cell surface expression of both TLR3 and TLR4 was enhanced by treatment of HT29 cells with their respective ligands. Transfection of HT29 cells with wild-type and mutated promoter/enhancer plasmids suggested that TLR3 and TLR4 signal primarily through NF-kappaB to enhance transcription of pIgR mRNA. TLR3 signaling resulted in a more pronounced inflammatory response than did TLR4, as evidenced by up-regulation of the transcription factor IFN regulatory factor-1, chemokines IL-8 and RANTES, and the proinflammatory cytokine TNF. Signaling through LPS/TLR4 appears to up-regulate pIgR expression while minimizing proinflammatory responses, a mechanism that could promote IgA-mediated homeostasis in the presence of commensal Gram-negative bacteria.
Collapse
Affiliation(s)
- Tracey A Schneeman
- Department of Microbiology, Immunology and Molecular, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bruno MEC, Kaetzel CS. Long-Term Exposure of the HT-29 Human Intestinal Epithelial Cell Line to TNF Causes Sustained Up-Regulation of the Polymeric Ig Receptor and Proinflammatory Genes through Transcriptional and Posttranscriptional Mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:7278-84. [PMID: 15905574 DOI: 10.4049/jimmunol.174.11.7278] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transport of IgA Abs across intestinal epithelial cells into gut secretions is mediated by the polymeric Ig receptor (pIgR). The cytokine TNF plays a central role in initiating and amplifying inflammatory reactions, and is implicated in the pathogenesis of inflammatory bowel diseases. Acute exposure of intestinal epithelial cell lines to TNF has been shown to up-regulate transcription of genes encoding pIgR and a number of proinflammatory factors, but the effects of chronic exposure to TNF have not been studied. We found that exposure of HT-29 human colon carcinoma cells to TNF for up to 20 days reduced the rate of cell proliferation, but did not cause gross morphological changes. Expression of mRNA encoding pIgR and several proinflammatory genes increased acutely, and then diminished but remained elevated above control levels throughout the experiment. Changes in gene expression were paralleled by increased expression of the transcription factors IFN regulatory factor-1 and the RelB subunit of NF-kappaB. HT-29 cells activated the endogenous TNF gene in response to TNF treatment, but the level of TNF production was insufficient to maintain pIgR and proinflammatory gene expression after withdrawal of exogenous TNF. Chronic exposure to TNF caused a marked increase in pIgR mRNA stability and a small but significant decrease in TNF mRNA stability, but no change in the half-lives of IL-8, c-Myc, and GAPDH. In summary, we observed different effects of acute vs chronic exposure to TNF on gene expression, and found evidence for transcriptional and posttranscriptional regulation of expression of the pIgR.
Collapse
Affiliation(s)
- Maria E C Bruno
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, 40536, USA
| | | |
Collapse
|
38
|
Kumagai N, Ohno K, Tameshige R, Hoshijima M, Yogo K, Ishida N, Takeya T. Induction of mouse c-src in RAW264 cells is dependent on AP-1 and NF-kappaB and important for progression to multinucleated cell formation. Biochem Biophys Res Commun 2005; 325:758-68. [PMID: 15541355 DOI: 10.1016/j.bbrc.2004.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 11/16/2022]
Abstract
C-src is known to play an essential role in osteoclastogenesis. We studied the regulatory mechanism as well as the significance of c-src induction in RANKL-induced differentiation of mouse monocytic RAW264 cells to TRAP-positive-multinucleated cells. We determined the genomic organization of the 5'-terminal region of mouse c-src. Mutational and biochemical analyses in the region 0.9 kb upstream of the transcription start site revealed that c-Fos and JNK pathways, in addition to NF-kappaB, participate in c-src induction in response to RANKL. On the other hand, when the expression of c-src was suppressed by introducing antisense src, the number of multinucleated cells formed was significantly reduced. Together, these findings show that the expression of c-src is under the control of AP-1 and NF-kappaB in the differentiation of RAW264 cells and that c-src plays an essential role at the stage of progression to multinucleated cell formation.
Collapse
Affiliation(s)
- Naoko Kumagai
- Graduate School of Biological Sciences, NAIST, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Meng F, Zolova O, Kokorina NA, Dobretsova A, Wight PA. Characterization of an intronic enhancer that regulates myelin proteolipid protein (Plp) gene expression in oligodendrocytes. J Neurosci Res 2005; 82:346-56. [PMID: 16155935 DOI: 10.1002/jnr.20640] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein (approximately 50%) present in mature myelin from the central nervous system (CNS). Plp gene activity is low to nonexistent early in development but sharply increases, concurrently with the active myelination period of CNS development. Work from our laboratory suggests that the temporal regulation of Plp gene expression in mice is mediated by a positive regulatory element located within Plp intron 1 DNA. We have termed this regulatory element/region ASE (for antisilencer/enhancer). The ASE is situated approximately 1 kb downstream of exon 1 DNA and encompasses nearly 100 bp. To understand the mechanisms by which the ASE augments Plp gene expression in oligodendrocytes, Plp-lacZ constructs were generated and transfected into a mouse oligodendroglial cell line (N20.1). Results presented here demonstrate that upstream regulatory elements in the Plp promoter/5'-flanking DNA are not required for ASE activity; the ASE worked perfectly well when the thymidine kinase (TK) promoter was substituted for the Plp promoter. However, the relative location of the ASE appears to be important. When placed upstream of 2.4 kb of Plp 5'-flanking DNA, or downstream of the lacZ expression cassette, the ASE was no longer effective. Thus, the ASE might have to be in the context of the intron in order to function. To begin to identify the crucial nucleotides within the ASE, orthologous sequences from rat, human, cow, and pig Plp genes were swapped for the mouse sequence. Results presented here demonstrate that the orthologous sequence from rat can substitute for the mouse ASE, unlike those from human, cow, or pig.
Collapse
Affiliation(s)
- Fanxue Meng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
41
|
Horie-Inoue K, Bono H, Okazaki Y, Inoue S. Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Biochem Biophys Res Commun 2004; 325:1312-7. [PMID: 15555570 DOI: 10.1016/j.bbrc.2004.10.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Indexed: 11/26/2022]
Abstract
Androgen receptor (AR) recognizes and binds to 15-bp palindromic androgen response element (ARE) sequences with high affinity in vitro, which consist of two hexameric half-sites arranged as inverted repeats with a 3-bp spacer. Although a few near-consensus ARE sequences have been actually identified in the transcriptional regulatory regions of androgen-responsive genes, it has been unclear whether the exact consensus sequences function as bona fide AREs in vivo. A genome-wide in silico screening of palindromic AREs identified 563 exact consensus sequences in the human genome. The distribution of perfect palindromic AREs among the chromosomes is basically consistent with the length of chromosomes. Using human prostate cancer cell line LNCaP treated with a synthetic androgen R1881 as a model, in vivo AR binding abilities of 21 consensus AREs were analyzed by chromatin immunoprecipitation. Of 21 genomic fragments containing perfect AREs in chromosome X, 8 fragments recruited more ARs (>4-fold enrichment) even compared with the proximal ARE region of prostate-specific antigen. A couple of proximal genes or putative transcripts in the vicinity of the perfect AREs were found to be androgen-responsive analyzed by quantitative RT-PCR. Our results suggest that some of perfect palindromic AREs could function as in vivo AR binding sites in the human genome and regulate gene transcription.
Collapse
Affiliation(s)
- Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | | | | | | |
Collapse
|
42
|
Schjerven H, Tran TN, Brandtzaeg P, Johansen FE. De novo synthesized RelB mediates TNF-induced up-regulation of the human polymeric Ig receptor. THE JOURNAL OF IMMUNOLOGY 2004; 173:1849-57. [PMID: 15265917 DOI: 10.4049/jimmunol.173.3.1849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Secretory Abs, which operate in a principally noninflammatory fashion, constitute the first line of acquired immune defense of mucosal surfaces. Such Abs are generated by polymeric Ig receptor (pIgR)-mediated export of dimeric IgA and pentameric IgM. TNF activates a proinflammatory gene repertoire in mucosal epithelial cells and also enhances pIgR expression. In this study we show that TNF-induced up-regulation of the human pIgR critically depends on an NF-kappa B site and flanking sequences within a 204-bp region of the first intron in the pIgR gene, a region largely overlapping with a recently characterized IL-4-responsive enhancer. The intronic NF-kappa B site was rapidly bound by NF-kappa B p65/p50 heterodimers present in nuclear extracts after TNF treatment of HT-29 cells, but a more delayed binding of RelB agreed better with the slow, protein synthesis-dependent, transcriptional activation of the pIgR gene. Overexpression of NF-kappa B p65 caused transient up-regulation of a pIgR-derived reporter gene, whereas overexpression of RelB showed a stronger and more sustained effect. Finally, we demonstrated that inhibition of endogenous RelB by RNA interference severely reduced the TNF responsiveness of our pIgR-derived reporter gene. Thus, TNF-induced signaling pathways required for up-regulated pIgR expression appear to differ from those of the proinflammatory gene repertoire.
Collapse
Affiliation(s)
- Hilde Schjerven
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, Rikshospitalet University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
43
|
Takenouchi-Ohkubo N, Asano M, Chihaya H, Chung-Hsuing WU, Ishikasa K, Moro I. Retinoic acid enhances the gene expression of human polymeric immunoglobulin receptor (pIgR) by TNF-alpha. Clin Exp Immunol 2004; 135:448-54. [PMID: 15008977 PMCID: PMC1808977 DOI: 10.1111/j.1365-2249.2004.02398.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, the detailed mechanisms for the effects of vitamin A on the expression of polymeric immunoglobulin receptor (pIgR) were examined. Expression of the pIgR by tumour necrosis factor (TNF-alpha) was enhanced by the addition of all-trans retinoic acid (ATRA) or 9-cis retinoic acid (9CRA). This enhancement was mediated mainly by RARalpha, and regulated at the transcriptional level. Transcription factor nuclear factor-kappaB (NF-kappaB) binding and activation were not influenced by addition of ATRA. These data imply that RA, in combination with TNF-alpha, could up-regulate the expression of pIgR. In addition, we hypothesize that up-regulation of pIgR by RA is controlled through the RAR-dependent signalling pathway and that it plays a role in enhancement of mucosal immunity.
Collapse
Affiliation(s)
- N Takenouchi-Ohkubo
- Department of Pathology, Nihon University, School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Johansen FE, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol 2004; 25:150-7. [PMID: 15036043 DOI: 10.1016/j.it.2004.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Finn-Eirik Johansen
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | |
Collapse
|
45
|
Bruno MEC, West RB, Schneeman TA, Bresnick EH, Kaetzel CS. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene. Mol Immunol 2004; 40:695-708. [PMID: 14644095 DOI: 10.1016/j.molimm.2003.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Secretory antibodies protect mucosal surfaces from ingested, inhaled and sexually transmitted pathogens. The polymeric immunoglobulin receptor (pIgR) transports antibodies across mucosal epithelia into external secretions. We and others have identified a region of the human polymeric immunoglobulin receptor gene (locus PIGR) that is sufficient for basal transcriptional activity. An E-Box motif, which binds transcription factors of the basic helix-loop-helix/leucine zipper (bHLH/zip) family, was identified as a major regulatory element in the PIGR gene promoter. Transient transfection of PIGR promoter reporter plasmids in intestinal epithelial cell (IEC) lines suggested that the transcription factors upstream stimulatory factor (USF) and c-Myc may exert opposing effects on PIGR promoter activity. Mutations within and flanking the E-Box that favored USF binding enhanced promoter activity, while mutations that favored c-Myc binding reduced promoter activity. Ectopic expression of USF1 or USF2 enhanced PIGR promoter activity, while exogenous c-Myc did not. Electrophoretic mobility shift assays (EMSA) demonstrated that USF1 and USF2 bound to the E-Box motif as homo- and heterodimers. Chromatin immunoprecipitation (ChIP) demonstrated that USF proteins bind the PIGR promoter in vivo, which is enriched in acetylated histones. E-Box motifs are commonly observed in promoters of genes that are highly expressed in the human colon. Genes that are down-regulated in colorectal cancer, including PIGR, frequently have non-canonical E-Boxes, while genes that are up-regulated in colorectal cancer generally have canonical E-Boxes. The results of our experiments may shed light on the mechanisms of dysregulated expression of pIgR in inflammatory bowel disease and colorectal cancer, diseases associated with aberrant expression of c-Myc.
Collapse
Affiliation(s)
- Maria E C Bruno
- Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
46
|
Ackermann LW, Denning GM. Nuclear factor-kappaB contributes to interleukin-4- and interferon-dependent polymeric immunoglobulin receptor expression in human intestinal epithelial cells. Immunology 2004; 111:75-85. [PMID: 14678201 PMCID: PMC1782392 DOI: 10.1111/j.1365-2567.2004.01773.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Revised: 09/29/2003] [Accepted: 09/30/2003] [Indexed: 12/18/2022] Open
Abstract
Polymeric immunoglobulins (pIgs) that are present at mucosal surfaces play key roles in both the innate and adaptive immune responses. These pIgs are delivered to the mucosal surface via transcytosis across the epithelium, a process mediated by the polymeric immunoglobulin receptor (pIgR). Previous studies demonstrate that expression of the pIgR is regulated by multiple immunomodulatory factors including interleukin-4 (IL-4) and interferon-gamma (IFN-gamma). In studies using human intestinal epithelial cells (HT29), multiple inhibitors of the transcription factor nuclear factor-kappaB (NF-kappaB), including a dominant negative IkappaBalpha-serine mutant, inhibited both IL-4- and IFN-dependent increases in pIgR expression. Under identical conditions, NF-kappaB inhibitors had no effect on cytokine-dependent increases in expression of the transcription factor interferon regulatory factor-1. Over-expression of the IkappaBalpha-serine mutant also inhibited reporter gene expression in response to IL-4, TNF-alpha, IL-1beta, and in some cases IFN-gamma using constructs with sequences from the pIgR promoter. Reduced levels of pIgR were observed even when inhibitors were added >/=24 hr after cytokines suggesting that prolonged activation of NF-kappaB is required. Finally, reporter gene studies with NF-kappaB enhancer elements indicated that IFN-gamma alone and IL-4 in combination with other cytokines activated NF-kappaB in HT29 cells. Together, these studies provide additional insight into the signalling pathways that contribute to expression of the pIgR, a critical player in mucosal immunity.
Collapse
Affiliation(s)
- Laynez W Ackermann
- Infectious Diseases Research Laboratory, Department of Internal Medicine, The Veterans Affairs Medical Center and The University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
47
|
|
48
|
Marshall LJ, Perks B, Bodey K, Suri R, Bush A, Shute JK. Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med 2003; 169:399-406. [PMID: 14597481 DOI: 10.1164/rccm.200305-619oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Secretory IgA contributes to humoral defense mechanisms against pathogens targeting mucosal surfaces, and secretory component (SC) fulfills multiple roles in this defense. The aims of this study were to quantify total SC and to analyze the form of free SC in sputa from normal subjects, subjects with asthma, and subjects with cystic fibrosis (CF). Significantly higher levels of SC were detected in CF compared with both other groups. Gel filtration chromatography revealed that SC in CF was relatively degraded. Free SC normally binds interleukin (IL)-8 and inhibits its function. However, in CF sputa, IL-8 binding to intact SC was reduced. Analysis of the total carbohydrate content of free SC signified overglycosylation in CF compared with normal subjects and subjects with asthma. Monosaccharide composition analysis of free SC from CF subjects revealed overfucosylation and undersialylation, in agreement with the reported CF glycosylation phenotype. SC binding to IL-8 did not interfere with the binding of IL-8 to heparin, indicating distinct binding sites on IL-8 for negative regulation of function by SC and heparin. We suggest that defective structure and function of SC contribute to the characteristic sustained inflammatory response in the CF airways.
Collapse
Affiliation(s)
- Lindsay J Marshall
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Da Silva CA, Heilbock C, Kassel O, Frossard N. Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin‐1β through concerted regulation of a GRE‐like and an NF‐κB response element. FASEB J 2003; 17:2334-6. [PMID: 14563684 DOI: 10.1096/fj.03-0136fje] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of stem cell factor SCF, a major mast cell growth factor, is potentiated shortly after co-treatment with interleukin (IL)-1beta and glucocorticoids. SCF promoter contains a GRE-like sequence and a putative kappaB site. We assessed the mechanisms of the regulation of SCF transcription in human lung fibroblasts in culture. Chromatin immunoprecipitation showed that co-treatment with IL-1beta and the glucocorticoid budesonide increased the SCF promoter occupancy by NF-kappaB and GR, as compared with IL-1beta and budesonide alone. In reporter gene assays, IL-1beta time-dependently increased the promoter activity, which was abolished by either pre-treatment with the MAP kinase inhibitors PD98059 (MEK) and SB203580 (p38), pre-treatment with the NF-kappaB inhibitor PDTC, or deletion of the kappaB site. Budesonide time-dependently decreased the promoter activity, an effect requiring the GRE-like element. Co-treatment with IL-1beta and budesonide potentiated the promoter activity at 30 min, an effect blocked by PD98059 and SB203580, PDTC, or deletion of the kappaB or GRE-like element. In conclusion, the GRE-like sequence mediating the repression of SCF expression, thus acting as a negative-responsive element, is turned into a positive element in an NF-kappaB site-dependent manner, indicating a concerted action of these two regulatory elements in the potentiation of SCF gene expression.
Collapse
|
50
|
Martone R, Euskirchen G, Bertone P, Hartman S, Royce TE, Luscombe NM, Rinn JL, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M. Distribution of NF-kappaB-binding sites across human chromosome 22. Proc Natl Acad Sci U S A 2003; 100:12247-52. [PMID: 14527995 PMCID: PMC218744 DOI: 10.1073/pnas.2135255100] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have mapped the chromosomal binding site distribution of a transcription factor in human cells. The NF-kappaB family of transcription factors plays an essential role in regulating the induction of genes involved in several physiological processes, including apoptosis, immunity, and inflammation. The binding sites of the NF-kappaB family member p65 were determined by using chromatin immunoprecipitation and a genomic microarray of human chromosome 22 DNA. Sites of binding were observed along the entire chromosome in both coding and noncoding regions, with an enrichment at the 5' end of genes. Strikingly, a significant proportion of binding was seen in intronic regions, demonstrating that transcription factor binding is not restricted to promoter regions. NF-kappaB binding was also found at genes whose expression was regulated by tumor necrosis factor alpha, a known inducer of NF-kappaB-dependent gene expression, as well as adjacent to genes whose expression is not affected by tumor necrosis factor alpha. Many of these latter genes are either known to be activated by NF-kappaB under other conditions or are consistent with NF-kappaB's role in the immune and apoptotic responses. Our results suggest that binding is not restricted to promoter regions and that NF-kappaB binding occurs at a significant number of genes whose expression is not altered, thereby suggesting that binding alone is not sufficient for gene activation.
Collapse
Affiliation(s)
- Rebecca Martone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8005, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|