1
|
Ayabe T, Hisasue M, Yamada Y, Nitta S, Kikuchi K, Neo S, Matsumoto Y, Horie R, Kawamoto K. Characterisation of canine CD34+/CD45 diminished cells by colony-forming unit assay and transcriptome analysis. Front Vet Sci 2022; 9:936623. [PMID: 36172613 PMCID: PMC9510753 DOI: 10.3389/fvets.2022.936623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are used for transplantation to reconstruct the haematopoietic pathways in humans receiving severe chemotherapy. However, the characteristics of canine HSPCs, such as specific surface antigens and gene expression profiles, are still unclear. This study aimed to characterise the haematopoietic ability and gene expression profiles of canine bone marrow HSPCs in healthy dogs. In this study, the CD34 positive (CD34+) cells were defined as classical HSPCs, CD34+/CD45 diminished (CD45dim) cells as more enriched HSPCs, and whole viable cells as controls. Haematopoietic abilities and gene expression profiles were evaluated using a colony-forming unit assay and RNA-sequencing analysis. Canine CD34+/CD45dim cells exhibited a significantly higher haematopoietic colony formation ability and expressed more similarity in the gene expression profiles to human and mouse HSPCs than those of the other cell fractions. Furthermore, the canine CD34+/CD45dim cells expressed candidate cell surface antigens necessary to define the canine haematopoietic hierarchy roadmap. These results indicate that the canine CD34+/CD45dim cells express the HSPC characteristics more than the other cell fractions, thereby suggesting that these cells have the potential to be used for studying haematopoietic stem cells in dogs.
Collapse
Affiliation(s)
- Taro Ayabe
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- *Correspondence: Masaharu Hisasue
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kaoruko Kikuchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Sakurako Neo
- Laboratory of Clinical Diagnosis, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Ryo Horie
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Kosuke Kawamoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| |
Collapse
|
2
|
Yang C, Chen F, Ren P, Lofchy L, Wan C, Shen J, Wang G, Gaikwad H, Ponder J, Jordan CT, Scheinman R, Simberg D. Delivery of a model lipophilic membrane cargo to bone marrow via cell-derived microparticles. J Control Release 2020; 326:324-334. [PMID: 32682903 DOI: 10.1016/j.jconrel.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Bone marrow (BM) is the central immunological organ and the origin of hematological diseases. Efficient and specific drug delivery to the BM is an unmet need. We tested delivery of fluorescent indocarbocyanine lipids (ICLs, DiR, DiD, DiI) as a model lipophilic cargo, via different carriers. Systemically injected T-lymphocyte cell line Jurkat delivered ICLs to the BM more efficiently than erythrocytes, and more selectively than PEGylated liposomes. Near infrared imaging showed that the delivery was restricted to the BM, lungs, liver and spleen, with no accumulation in the kidneys, brain, heart, intestines, fat tissue and pancreas. Following systemic injection of ICL-labeled cells in immunodeficient or immunocompetent mice, few cells arrived in the BM intact. However, between 5 and 10% of BM cells were ICL-positive. Confocal microscopy of intact BM confirmed that ICLs are delivered independently of the injected cells. Flow cytometry analysis showed that the lipid accumulated in both CD11b + and CD11b- cells, and in hematopoietic progenitors. In a xenograft model of acute myeloid leukemia, a single injection of 10 million Jurkat cells delivered DiD to ~15% of the tumor cells. ICL-labeled cells disappeared from blood almost immediately post-intravenous injection, but numerous cell-derived microparticles continued to circulate in blood. The microparticle particle formation was not due to the ICL labeling or complement attack and was observed after injection of both syngeneic and xenogeneic cells. Injection of microparticles produced in vitro from Jurkat cells resulted in a similar ICL delivery as the injection of intact Jurkat cells. Our results demonstrate a novel delivery paradigm wherein systemically injected cells release microparticles that accumulate in the BM. In addition, the results have important implications for studies involving systemically administered cell therapies.
Collapse
Affiliation(s)
- Chunyan Yang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China; The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fangfang Chen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China; The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Ping Ren
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laren Lofchy
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, CO 80309, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, CO 80309, USA
| | - Guankui Wang
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hanmant Gaikwad
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Ponder
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert Scheinman
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dmitri Simberg
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Zonari E, Desantis G, Petrillo C, Boccalatte FE, Lidonnici MR, Kajaste-Rudnitski A, Aiuti A, Ferrari G, Naldini L, Gentner B. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Reports 2017; 8:977-990. [PMID: 28330619 PMCID: PMC5390102 DOI: 10.1016/j.stemcr.2017.02.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ex vivo gene therapy based on CD34+ hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34+ cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34+CD38- cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing.
Collapse
Affiliation(s)
- Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
| | - Giacomo Desantis
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy
| | - Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | | | | | | | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan 20132, Italy; Hematology and Bone Marrow Transplantation Unit, IRCSS Ospedale San Raffaele, Milan 20132, Italy.
| |
Collapse
|
4
|
Muench MO, Kapidzic M, Gormley M, Gutierrez AG, Ponder KL, Fomin ME, Beyer AI, Stolp H, Qi Z, Fisher SJ, Bárcena A. The human chorion contains definitive hematopoietic stem cells from the fifteenth week of gestation. Development 2017; 144:1399-1411. [PMID: 28255007 DOI: 10.1242/dev.138438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023]
Abstract
We examined the contribution of the fetal membranes, amnion and chorion, to human embryonic and fetal hematopoiesis. A population of cells displaying a hematopoietic progenitor phenotype (CD34++ CD45low) of fetal origin was present in the chorion at all gestational ages, associated with stromal cells or near blood vessels, but was absent in the amnion. Prior to 15 weeks of gestation, these cells lacked hematopoietic in vivo engraftment potential. Differences in the chemokine receptor and β1 integrin expression profiles of progenitors between the first and second trimesters suggest that these cells had gestationally regulated responses to homing signals and/or adhesion mechanisms that influenced their ability to colonize the stem cell niche. Definitive hematopoietic stem cells, capable of multilineage and long-term reconstitution when transplanted in immunodeficient mice, were present in the chorion from 15-24 weeks gestation, but were absent at term. The second trimester cells also engrafted secondary recipients in serial transplantation experiments. Thus, the human chorion contains functionally mature hematopoietic stem cells at mid-gestation.
Collapse
Affiliation(s)
- Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA 94118, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Matthew Gormley
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Alan G Gutierrez
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Kathryn L Ponder
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Marina E Fomin
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Haley Stolp
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Zhongxia Qi
- Department of Laboratory Medicine, Clinical Cytogenetics Laboratory, University of California, San Francisco, CA 94107, USA
| | - Susan J Fisher
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Alicia Bárcena
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA .,Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Quách TD, Hopkins TJ, Holodick NE, Vuyyuru R, Manser T, Bayer RL, Rothstein TL. Human B-1 and B-2 B Cells Develop from Lin-CD34+CD38lo Stem Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3950-3958. [PMID: 27815443 DOI: 10.4049/jimmunol.1600630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The B-1 B cell population is an important bridge between innate and adaptive immunity primarily because B-1 cells produce natural Ab. Murine B-1 and B-2 cells arise from distinct progenitors; however, in humans, in part because it has been difficult to discriminate between them phenotypically, efforts to pinpoint the developmental origins of human B-1 and B-2 cells have lagged. To characterize progenitors of human B-1 and B-2 cells, we separated cord blood and bone marrow Lin-CD34+ hematopoietic stem cells into Lin-CD34+CD38lo and Lin-CD34+CD38hi populations. We found that transplanted Lin-CD34+CD38lo cells, but not Lin-CD34+CD38hi cells, generated a CD19+ B cell population after transfer into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1wjl/SxJ neonates. The emergent CD19+ B cell population was found in spleen, bone marrow, and peritoneal cavity of humanized mice and included distinct populations displaying the B-1 or the B-2 cell phenotype. Engrafted splenic B-1 cells exhibited a mature phenotype, as evidenced by low-to-intermediate expression levels of CD24 and CD38. The engrafted B-1 cell population expressed a VH-DH-JH composition similar to cord blood B-1 cells, including frequent use of VH4-34 (8 versus 10%, respectively). Among patients with hematologic malignancies who underwent hematopoietic stem cell transplantation, B-1 cells were found in the circulation as early as 8 wk posttransplantation. Altogether, our data demonstrate that human B-1 and B-2 cells develop from a Lin-CD34+CD38lo stem cell population, and engrafted B-1 cells in humanized mice exhibit an Ig-usage pattern comparable to B-1 cells in cord blood.
Collapse
Affiliation(s)
- Tâm D Quách
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Raja Vuyyuru
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Tim Manser
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ruthee-Lu Bayer
- Monter Cancer Center, North Shore University Hospital, Northwell Health, Lake Success, NY 11042; and
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; .,Hofstra-Northwell Health School of Medicine, Hempstead, NY 11549
| |
Collapse
|
6
|
Plesa A, Elhamri M, Clapisson G, Mattei E, Gazzo S, Hequet O, Tigaud I, Michallet M, Dumontet C, Thomas X. Higher percentage of CD34 + CD38- cells detected by multiparameter flow cytometry from leukapheresis products predicts unsustained complete remission in acute myeloid leukemia. Leuk Lymphoma 2014; 56:622-9. [PMID: 24884314 DOI: 10.3109/10428194.2014.927453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Relapse in acute myeloid leukemia (AML) after chemotherapy reflects the persistence of resistant leukemia stem cells (LSCs). These cells have been described in the CD34 + CD38- cell fraction. Leukapheresis products were harvested in 123 patients in morphological complete remission and analyzed by multiparameter flow cytometry. The CD34 + CD38- cell population showed a prognostic impact on survival. Median event-free survival (EFS) was 8.2 months (3-year EFS: 29%) for those with a higher percentage of CD34 + CD38- versus 91.9 months (3-year EFS: 62%) for those with a lower percentage for the entire cohort. These differences were confirmed in patients undergoing autologous stem cell transplant, with median EFS of 7.3 months versus 91.1 months (3-year EFS: 31% vs. 70%). Higher proportions of CD34 + CD38- cells were associated with adverse cytogenetics and with earlier relapses. Higher percentages of CD34 + CD38- cells in apheresis products reflect inadequate in vivo purging and reliably distinguish samples enriched in LSCs from those involving mainly normal cells.
Collapse
|
7
|
Ex vivo expansion of functional human UCB-HSCs/HPCs by coculture with AFT024-hkirre cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:412075. [PMID: 24719861 PMCID: PMC3955665 DOI: 10.1155/2014/412075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/30/2013] [Accepted: 12/16/2013] [Indexed: 01/05/2023]
Abstract
Kiaa1867 (human Kirre, hKirre) has a critical role in brain development and/or maintenance of the glomerular slit diaphragm in kidneys. Murine homolog of this gene, mKirre expressed in OP9 and AFT024 cells could support hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC) expansion in vitro. HKirre is also expressed in human FBMOB-hTERT cell line and fetal liver fibroblast-like cells but its function has remained unclear. In this paper, we cloned a hKirre gene from human fetal liver fibroblast-like cells and established a stably overexpressing hKirre-AFT024 cell line. Resultant cells could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than AFT024-control cells transformed with mock plasmid. The Expanded human umbilical cord blood (hUCB) CD34+ cells retained the capacity of multipotent differentiation as long as 8 weeks and successfully repopulated the bone marrow of sublethally irradiated NOD/SCID mice, which demonstrated the expansion of long-term primitive transplantable HSCs/HPCs. Importantly, hkirre could upregulate the expressions of Wnt-5A, BMP4, and SDF-1 and downregulate TGF-β with other hematopoietic growth factors. By SDS-PAGE and Western Blot analysis, a ~89 kDa protein in total lysate of AFT024-hKirre was identified. Supernatants from AFT024-hkirre could also support CD34+CD38− cells expansion. These results demonstrated that the AFT024-hKirre cells have the ability to efficiently expand HSCs/HPCs.
Collapse
|
8
|
Preethy S, John S, Ganesh JS, Srinivasan T, Terunuma H, Iwasaki M, Abraham SJ. Age-old wisdom concerning cell-based therapies with added knowledge in the stem cell era: our perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 6:13-8. [PMID: 24426785 PMCID: PMC3850297 DOI: 10.2147/sccaa.s41798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Among the various strategies providing a cure for illness, cell-based therapies have caught the attention of the world with the advent of the “stem cell” era. Our inherent understanding indicates that stem cells have been in existence since the birth of multicellular organisms. However, the formal discovery of stem cells in the last century, followed by their intricate and extensive analysis, has led to clinical and translational efforts with the aim of using them in the treatment of conditions which don’t have a definitive therapeutic strategy, has fueled our interest and expectations. Technological advances in our ability to study their cellular components in depth, along with surface markers and other finer constituents, that were unknown until last century, have improved our understanding, leading to several novel applications. This has created a need to establish guidelines, and in that process, there are expressed understandings and views which describe cell therapy along lines similar to that of biologic products, drugs, and devices. However, the age-old wisdom of using cells as tools for curing illness should not be misled by recent knowledge, to make cell therapy using highly complex stem cells equal to factory-synthesized and reproducible chemical compounds, drugs, or devices. This article analyses the differences between these two entities from various perspectives.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Nichi-In Centre for Regenerative Medicine, Chennai, India ; Hope Foundation Trust, Chennai, India
| | - Sudhakar John
- Nichi-In Centre for Regenerative Medicine, Chennai, India
| | | | | | | | | | - Samuel J Abraham
- Nichi-In Centre for Regenerative Medicine, Chennai, India ; Yamanashi University School of Medicine, Chuo, Japan
| |
Collapse
|
9
|
Snauwaert S, Vanhee S, Goetgeluk G, Verstichel G, Van Caeneghem Y, Velghe I, Philippé J, Berneman ZN, Plum J, Taghon T, Leclercq G, Thielemans K, Kerre T, Vandekerckhove B. RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica 2012; 97:1539-47. [PMID: 22532518 DOI: 10.3324/haematol.2012.065581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Criteria for good candidate antigens for immunotherapy of acute myeloid leukemia are high expression on leukemic stem cells in the majority of patients with acute myeloid leukemia and low or no expression in vital tissues. It was shown in vaccination trials that Receptor for Hyaluronic Acid Mediated Motility (RHAMM/HMMR) generates cellular immune responses in patients with acute myeloid leukemia and that these responses correlate with clinical benefit. It is not clear however whether this response actually targets the leukemic stem cell, especially since it was reported that RHAMM is expressed maximally during the G2/M phase of the cell cycle. In addition, tumor specificity of RHAMM expression remains relatively unexplored. DESIGN AND METHODS Blood, leukapheresis and bone marrow samples were collected from both acute myeloid leukemia patients and healthy controls. RHAMM expression was assessed at protein and mRNA levels on various sorted populations, either fresh or after manipulation. RESULTS High levels of RHAMM were expressed by CD34(+)CD38(+) and CD34(-) acute myeloid leukemia blasts. However, only baseline expression of RHAMM was measured in CD34(+)CD38(-) leukemic stem cells, and was not different from that in CD34(+)CD38(-) hematopoietic stem cells from healthy controls. RHAMM was significantly up-regulated in CD34(+) cells from healthy donors during in vitro expansion and during in vivo engraftment. Finally, we demonstrated an explicit increase in the expression level of RHAMM after in vitro activation of T cells. CONCLUSIONS RHAMM does not fulfill the criteria of an ideal target antigen for immunotherapy of acute myeloid leukemia. RHAMM expression in leukemic stem cells does not differ significantly from the expression in hematopoietic stem cells from healthy controls. RHAMM expression in proliferating CD34+ cells of healthy donors and activated T cells further compromises RHAMM-specific T-cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Sylvia Snauwaert
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion. PLoS One 2012; 7:e29383. [PMID: 22235291 PMCID: PMC3250442 DOI: 10.1371/journal.pone.0029383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
Background Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings CB derived CD34+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. Conclusion/Significance Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant procedures.
Collapse
|
11
|
Wild-type measles virus interferes with short-term engraftment of human CD34+ hematopoietic progenitor cells. J Virol 2011; 85:7710-8. [PMID: 21593150 DOI: 10.1128/jvi.00532-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.
Collapse
|
12
|
Development of a high-resolution purification method for precise functional characterization of primitive human cord blood–derived CD34–negative SCID-repopulating cells. Exp Hematol 2011; 39:203-213.e1. [DOI: 10.1016/j.exphem.2010.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/21/2022]
|
13
|
Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 2010; 117:1550-4. [PMID: 21163926 DOI: 10.1182/blood-2009-03-212803] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various combinations of antibodies directed to cell surface markers have been used to isolate human and rhesus macaque hematopoietic stem cells (HSCs). These protocols result in poor enrichment or require multiple complex steps. Recently, a simple phenotype for HSCs based on cell surface markers from the signaling lymphocyte activation molecule (SLAM) family of receptors has been reported in the mouse. We examined the possibility of using the SLAM markers to facilitate the isolation of highly enriched populations of HSCs in humans and rhesus macaques. We isolated SLAM (CD150(+)CD48(-)) and non-SLAM (not CD150(+)CD48(-)) cells from human umbilical cord blood CD34(+) cells as well as from human and rhesus macaque mobilized peripheral blood CD34(+) cells and compared their ability to form colonies in vitro and reconstitute immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 γc receptor(null), NSG) mice. We found that the CD34(+) SLAM population contributed equally or less to colony formation in vitro and to long-term reconstitution in NSG mice compared with the CD34(+) non-SLAM population. Thus, SLAM family markers do not permit the same degree of HSC enrichment in humans and rhesus macaques as in mice.
Collapse
|
14
|
The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. Blood 2010; 117:1840-50. [PMID: 21063023 DOI: 10.1182/blood-2010-04-281329] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The stromal cell-derived factor-1 (SDF-1)/chemokine C-X-C receptor 4 (CXCR4) axis plays a critical role in homing and engraftment of hematopoietic stem/progenitor cells (HSCs) during bone marrow transplantation. To investigate the transcriptional regulation provided by this axis, we performed the first differential transcriptome profiling of human cord blood CD34(+) cells in response to short-term exposure to SDF-1 and identified a panel of genes with putative homing functions. We demonstrated that CD9, a member of the tetraspanin family of proteins, was expressed in CD34(+)CD38(-/lo) and CD34(+)CD38(+) cells. CD9 levels were enhanced by SDF-1, which simultaneously down-regulated CXCR4 membrane expression. Using specific inhibitors and activators, we demonstrated that CD9 expression was modulated via CXCR4, G-protein, protein kinase C, phospholipase C, extracellular signal-regulated kinase, and Janus kinase 2 signals. Pretreatment of CD34(+) cells with the anti-CD9 monoclonal antibody ALB6 significantly inhibited SDF-1-mediated transendothelial migration and calcium mobilization, whereas adhesion to fibronectin and endothelial cells was enhanced. Pretreatment of CD34(+) cells with ALB6 significantly impaired their homing to bone marrow and spleen of sublethally irradiated NOD/SCID (nonobese diabetic/severe combined immune-deficient) mice. Sorted CD34(+)CD9(-) cells displayed lower bone marrow homing capacity compared with that of total CD34(+) cells. CD9 expression on homed CD34(+) cells was significantly up-regulated in vivo. Our results indicate that CD9 might possess specific functions in HSC homing.
Collapse
|
15
|
Tacke M, Ball CR, Schmidt M, Klingenberg S, Maurer B, Fessler S, Eaves CJ, von Kalle C, Glimm H. The inherent differentiation program of short-term hematopoietic repopulating cells changes during human ontogeny. Stem Cells Dev 2010; 19:621-8. [PMID: 19788397 DOI: 10.1089/scd.2009.0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human umbilical cord blood (CB) could be an attractive source of hematopoietic repopulating cells for clinical stem cell therapy because of its accessibility and low propensity for unwanted immune reaction against the host. However, CB recipients suffer from severely delayed and often chronically deficient platelet recovery of unknown cause. Here we show that human short-term repopulating cells (STRCs), which predominantly carry early hematopoietic reconstitution after transplantation, display an intrinsically fixed differentiation program in vivo that changes during ontogeny. Compared to adult sources of hematopoietic cells, CB myeloidrestricted STRC-M showed a markedly reduced megakaryocytic and erythroid cell output in the quantitative xenotransplantation of human short-term hematopoiesis in NOD/SCID-beta2m(-/-) mice. This output in vivo was not altered by pre-treating CB cells before transplantation with growth factors that effectively stimulate megakaryocytopoiesis in vitro. Moreover, injecting mice with granulocyte colony-stimulating factor did not affect the differentiation of human STRC. These findings demonstrate that the differentiation capacity of human STRCs is developmentally regulated by mechanisms inaccessible to currently available hematopoietic growth factors, and explain why thrombopoiesis is deficient in clinical CB transplantation.
Collapse
Affiliation(s)
- Marlene Tacke
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hematopoietic activity of human short-term repopulating cells in mobilized peripheral blood cell transplants is restricted to the first 5 months after transplantation. Blood 2010; 115:5023-5. [PMID: 20382848 DOI: 10.1182/blood-2010-02-271528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinetics of hematopoietic recovery driven by different types of human stem and progenitor cells after transplantation are not fully understood. Short-term repopulating cells (STRCs) dominate early hematopoiesis after transplantation. STRCs are highly enriched in adult mobilized peripheral blood compared with cord blood, but the length of their contribution to hematopoiesis remains unclear. To understand posttransplantation durability and lineage contribution of STRCs, we compared repopulation kinetics of mobilized peripheral blood (high STRC content) with cord blood transplants (low STRC content) in long-lived NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (IL2RG(-/-)) mice. This comparison demonstrates that quantitative contribution of human STRCs to hematopoiesis is restricted to the first 5 months after transplantation. The ratio of STRCs to long-term repopulating cells dramatically changes during ontogeny. This model enables to precisely determine early and late engraftment kinetics of defined human repopulating cell types and to preclinically assess the engraftment kinetics of engineered stem cell transplants.
Collapse
|
17
|
Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J, Wuchter P, Dillmann F, Eckstein V, Wenz F, Goldschmidt H, Ho AD, Calandra G. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 2010; 11:992-1001. [PMID: 19929463 DOI: 10.3109/14653240903121245] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AIMS Previous studies in xenograft models have shown that human peripheral blood progenitor cells (PBPC) mobilized with the CXCR4 antagonist plerixafor (AMD3100) have a higher bone marrow (BM) reconstitution potential than granulocyte-colony-stimulating factor (G-CSF)-mobilized PBPC. METHODS PBPC obtained during G-CSF-supported mobilization before and after a supplementary administration of AMD3100 from patients with multiple myeloma and non-Hodgkin's lymphoma (n=15; phase II study) were investigated for co-expression of primitive and lineage-associated markers, their proliferative activity in vitro and repopulation potential after clinical transplantation. RESULTS A significant increase in primitive CD34+ CD38(-) cells was observed in intraindividual comparisons of all patients after administration of G-CSF+AMD3100 (peripheral blood: median 8-fold, range 2,4-fold - 39-fold) compared with G-CSF alone. Using a long-term culture-initiating cell assay, this increase was confirmed. After transplantation of G-CSF+AMD3100-mobilized PBPC, the time to leukocyte reconstitution > 1 x 10(3)/microL and platelet reconstitution > 2 x 10(4)/microL was 14 (10-19 days) and 13 days (10-15 days), respectively. A complete and stable hematologic reconstitution (platelets > 1.5 x 10(5)/microL) was observed in 91% of all patients within 35 days. CONCLUSIONS An additional application of AMD3100 to a standard G-CSF mobilization regimen leads to a significant increase in primitive PBPC with high repopulation capacity.
Collapse
Affiliation(s)
- Stefan Fruehauf
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA). Blood 2009; 113:5765-75. [PMID: 19359409 DOI: 10.1182/blood-2009-01-198374] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In most human somatic cells, telomeres shorten as a function of DNA replication. Telomere length is therefore an indirect measure of the replicative history of cells. We measured the telomere lengths at XpYp chromosomes in purified human hematopoietic populations enriched for stem cells (Lin(-)CD34(+)CD38(-)Rho(-)) and successively more mature cells. The average telomere length showed expected length changes, pointing to the utility of this method for classifying novel differentiation markers. Interestingly, the frequency of abruptly shortened telomeres increased in terminally differentiated adult populations, suggesting that damage to telomeric DNA occurs or is not repaired upon hematopoietic differentiation. When Lin(-)CD34(+)CD38(-)Rho(-) cord blood cells were transplanted into immunodeficient mice, the telomeres of the most primitive regenerated human hematopoietic cells lost approximately 3 kb, indicative of more than 30 cell divisions. Further losses in differentiating cells were similar to those observed in pretransplantation cell populations. These results indicate extensive self-renewal divisions of human hematopoietic stem cells are the primary cause of telomere erosion upon transplantation rather than added cell divisions in downstream progenitors.
Collapse
|
19
|
Lin H, De Stanchina E, Zhou XK, She Y, Hoang D, Cheung SW, Cassileth B, Cunningham-Rundles S. Maitake beta-glucan enhances umbilical cord blood stem cell transplantation in the NOD/SCID mouse. Exp Biol Med (Maywood) 2009; 234:342-53. [PMID: 19144872 DOI: 10.3181/0807-rm-226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beta glucans are cell wall constituents of yeast, fungi and bacteria, as well as mushrooms and barley. Glucans are not expressed on mammalian cells and are recognized as pathogen-associated molecular patterns (PAMPS) by pattern recognition receptors (PRR). Beta glucans have potential activity as biological response modifiers for hematopoiesis and enhancement of bone marrow recovery after injury. We have reported that Maitake beta glucan (MBG) enhanced mouse bone marrow (BMC) and human umbilical cord blood (CB) cell granulocyte-monocyte colony forming unit (GM-CFU) activity in vitro and protected GM-CFU forming stem cells from doxorubicin (DOX) toxicity. The objective of this study was to determine the effects of MBG on expansion of phenotypically distinct subpopulations of progenitor and stem cells in CB from full-term infants cultured ex vivo and on homing and engraftment in vivo in the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse. MBG promoted a greater expansion of CD34+CD33+CD38- human committed hematopoietic progenitor (HPC) cells compared to the conventional stem cell culture medium (P = 0.002 by ANOVA). CD34+CXCR4+CD38- early, uncommitted human hematopoietic stem cell (HSC) numbers showed a trend towards increase in response to MBG. The fate of CD34+ enriched CB cells after injection into the sublethally irradiated NOS/SCID mouse was evaluated after retrieval of xenografted human CB from marrow and spleen by flow cytometric analysis. Oral administration of MBG to recipient NOS/SCID mice led to enhanced homing at 3 days and engraftment at 6 days in mouse bone marrow (P = 0.002 and P = 0.0005, respectively) compared to control mice. More CD34+ human CB cells were also retrieved from mouse spleen in MBG treated mice at 6 days after transplantation. The studies suggest that MBG promotes hematopoiesis through effects on CD34+ progenitor cell expansion ex vivo and when given to the transplant recipient could enhance CD34+ precursor cell homing and support engraftment.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.
Collapse
|
21
|
Quiescent Human Hematopoietic Stem Cells in the Bone Marrow Niches Organize the Hierarchical Structure of Hematopoiesis. Stem Cells 2008; 26:3228-36. [DOI: 10.1634/stemcells.2008-0552] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
McKenzie JL, Gan OI, Doedens M, Dick JE. Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Exp Hematol 2007; 35:1429-36. [PMID: 17656009 DOI: 10.1016/j.exphem.2007.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 05/10/2007] [Accepted: 05/29/2007] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although increased expression of CD38 on the surface of human CD34(+) cells is associated with differentiation, we reported recently that both lineage-negative (Lin(-)) CD34(+)CD38(-) and Lin(-)CD34(+)CD38(lo) fractions of cord blood contain primitive severe combined immunodeficient (SCID)-repopulating cells (SRC). Thus, it is important to determine if a hierarchical relationship exists between the SRC from these two populations or if CD38 is reversibly expressed. MATERIALS AND METHODS To determine if SRC from the CD34(+)CD38(-) and CD34(+)CD38(lo) cell fractions could generate SRC of the same and/or alternate CD38 expression, cells from primary nonobese diabetic/SCID mice transplanted with CD34(+)CD38(-) cells were resorted into both CD34(+)CD38(-) and CD34(+)CD38(lo) fractions and injected into separate secondary recipients, which were evaluated for human cell engraftment 7 to 10 weeks later. As primary mice transplanted with CD34(+)CD38(lo) cells also contained cells of both immunophenotype, these cells were also resorted and transplanted into separate secondary recipients. The cell-cycle status of various CD34(+) SRC fractions were evaluated using Hoechst 33342 and Pyronin Y staining in order to determine if CD38 expression was coordinated with divisional activation. RESULTS Each cell fraction obtained from primary recipients was able to reconstitute secondary mice, indicating that CD38 expression reversibly oscillates between negative and low levels on CD34(+) repopulating cells. CD38 expression on repopulating cells correlated with a transition between the G(0) and G(1) phases of the cell cycle. CONCLUSION CD38 is reversibly expressed on CD34(+) SRC between negative and low levels and corresponds to a change in the cell-cycle state. These observations establish a foundation to uncover the molecular program of stem cell regulation and underscore the importance of functional assessments when isolating and characterizing human hematopoietic stem cells.
Collapse
Affiliation(s)
- Joby L McKenzie
- Division of Cell and Molecular Biology, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Jiang X, Smith C, Eaves A, Eaves C. The challenges of targeting chronic myeloid leukemia stem cells. ACTA ACUST UNITED AC 2007; 7 Suppl 2:S71-80. [PMID: 17382016 DOI: 10.3816/clm.2007.s.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic myeloid leukemia (CML) is sustained by a clonally amplified population of Bcr Abl-positive pluripotent stem cells. Persistence of a large, functionally intact yet suppressed residual normal hematopoietic stem cell population in most patients with CML has made it possible to aim at the development of curative therapies. However, achieving this goal requires the identification of agents that will eradicate the leukemic stem cell population. Several potent Bcr-Abl-targeted drugs have now been introduced into clinical practice with remarkable effects. Nevertheless, accumulating data indicate that the leukemic CML stem cells in patients with chronic phase CML are less responsive to these agents than the bulk of the neoplastic cells. In this article, we review emerging evidence that CML stem cells have a number of unusual properties that underlie their relative insensitivity to treatment, including those that specifically target the Bcr-Abl oncoprotein. The biology of the neoplastic stem cells in patients with CML is clearly important to the future attainment of cures and might also prove a paradigm relevant to other types of malignancies that are sustained by transformed stem cell populations.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/analysis
- Benzamides
- Cell Differentiation
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Genomic Instability
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
24
|
McKenzie JL, Gan OI, Doedens M, Wang JCY, Dick JE. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 2006; 7:1225-33. [PMID: 17013390 DOI: 10.1038/ni1393] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/17/2006] [Indexed: 12/14/2022]
Abstract
Hematopoiesis requires tight regulation of the hematopoietic stem cell (HSC) population; however, the dynamics of HSC use at steady state are uncertain. Over 3-7 months, we evaluated the repopulation and self-renewal of more than 600 individual human 'severe combined immunodeficiency mouse-repopulating cells' (SRCs), tracked on the basis of lentiviral integration sites, in serially transplanted immune-deficient mice, as well as of SRC daughter cells that migrated to different marrow locations in a single mouse. Our data demonstrate maintenance by self-renewing SRCs after an initial period of clonal instability, a result inconsistent with the clonal succession model. We found wide variation in proliferation kinetics and self-renewal among SRCs, as well as between SRC daughter cells that repopulated equivalently, suggesting that SRC fate is unpredictable before SRCs enter more rigid 'downstream' developmental programs.
Collapse
Affiliation(s)
- Joby L McKenzie
- Division of Cell and Molecular Biology, University Health Network, University of Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
25
|
Vanheusden K, Van Coppernolle S, De Smedt M, Plum J, Vandekerckhove B. In vitro expanded cells contributing to rapid severe combined immunodeficient repopulation activity are CD34+38-33+90+45RA-. Stem Cells 2006; 25:107-14. [PMID: 16973833 DOI: 10.1634/stemcells.2006-0256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expansion of hematopoietic stem cells could be used clinically to shorten the prolonged aplastic phase after umbilical cord blood (UCB) transplantation. In this report, we investigated rapid severe combined immunodeficient (SCID) repopulating activity (rSRA) 2 weeks after transplantation of CD34(+) UCB cells cultured with serum on MS5 stromal cells and in serum- and stroma-free cultures. Various subpopulations obtained after culture were studied for rSRA. CD34(+) expansion cultures resulted in vast expansion of CD45(+) and CD34(+) cells. Independent of the culture method, only the CD34(+)33(+)38(-) fraction of the cultured cells contained rSRA. Subsequently, we subfractionated the CD34(+)38(-) fraction using stem cell markers CD45RA and CD90. In vitro differentiation cultures showed CD34(+) expansion in both CD45RA(-) and CD90(+) cultures, whereas little increase in CD34(+) cells was observed in both CD45RA(+) and CD90(-) cultures. By four-color flow cytometry, we could demonstrate that CD34(+)38(-)45RA(-) and CD34(+)38(-)90(+) cell populations were largely overlapping. Both populations were able to reconstitute SCID/nonobese diabetic mice at 2 weeks, indicating that these cells contained rSRA activity. In contrast, CD34(+)38(-)45RA(+) or CD34(+)38(-)90(-) cells contributed only marginally to rSRA. Similar results were obtained when cells were injected intrafemorally, suggesting that the lack of reconstitution was not due to homing defects. In conclusion, we show that after in vitro expansion, rSRA is mediated by CD34(+)38(-)90(+)45RA(-) cells. All other cell fractions have limited reconstitutive potential, mainly because the cells have lost stem cell activity rather than because of homing defects. These findings can be used clinically to assess the rSRA of cultured stem cells.
Collapse
Affiliation(s)
- Katrien Vanheusden
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | |
Collapse
|
26
|
Nilsson SK, Simmons PJ, Bertoncello I. Hemopoietic stem cell engraftment. Exp Hematol 2006; 34:123-9. [PMID: 16459179 DOI: 10.1016/j.exphem.2005.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Susan K Nilsson
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
27
|
Abstract
The substantial understanding that has been gained over the past 5 decades of the biology of blood formation is largely due to the development of functional quantitative assays for cells at all stages of differentiation, from multipotential stem cells to mature cells. The majority of studies have involved the mouse because the ease with which repopulation studies can be carried out with this animal model allows the assay of complete lineage development from stem cells. In the past decade, advances in repopulation assays for human stem cells using xenotransplantation have greatly enhanced our understanding of human stem cell biology. Importantly, the xenotransplantation methodology has also been used to identify the cancer stem cell that initiates and sustains leukemic proliferation, providing key evidence for the cancer stem cell hypothesis. This hypothesis argues that cancer cells are functionally heterogeneous and hierarchically organized such that only specific cells are capable of sustaining tumor growth and continuously producing the cells that make up the bulk of the tumor. Recent studies have also brought into focus the importance of the intimate relationship between the stem cell (normal or leukemic) and its microenvironment. Coming into view are the molecular players involved in stem cell homing, migration, and adhesion, as well as the cellular components of the microenvironmental niche. Here we review recent studies that have begun, to elucidate the interplay between normal and leukemic human stem cells and their microenvironment.
Collapse
Affiliation(s)
- John E Dick
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
28
|
McKenzie JL, Gan OI, Doedens M, Dick JE. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 2005; 106:1259-61. [PMID: 15878972 DOI: 10.1182/blood-2005-03-1081] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe nonobese diabetic/severe combined immune deficiency (NOD/SCID) xenotransplantation model has emerged as a widely used assay for human hematopoietic stem cells; however, barriers still exist that limit engraftment. We previously identified a short-term SCID-repopulating cell (SRC) following direct intrafemoral injection into NOD/SCID mice, whereas others characterized similar SRCs using NOD/SCID mice depleted of natural killer (NK) cell activity. To determine the model that most efficiently detects short-term SRCs, we compared human engraftment in 6 different xenotransplantation models: NOD/SCID-β2-microglobulin-null mice, anti-CD122 (interleukin-2 receptor β [IL-2Rβ])–treated or unmanipulated NOD/SCID mice, each given transplants by intravenous or intrafemoral injection. Human cell engraftment was highest in intrafemorally injected anti-CD122–treated NOD/SCID mice compared to all other groups at 2 and 6 weeks after transplantation. These modifications to the SRC assay provide improved detection of human stem cells and demonstrate that CD122+ cells provide barriers to stem cell engraftment, a finding with potential clinical relevance.
Collapse
Affiliation(s)
- Joby L McKenzie
- Department of Molecular and Medical Genetics, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
29
|
Abstract
Migration of hematopoietic stem cells through the blood, across the endothelial vasculature to different organs and to their bone marrow (BM) niches, requires active navigation, a process termed homing. Homing is a rapid process and is the first and essential step in clinical stem cell transplantation. Similarly, homing is required for seeding of the fetal BM by hematopoietic progenitors during development. Homing has physiological roles in adult BM homeostasis, which are amplified during stress-induced recruitment of leukocytes from the BM reservoir and during stem cell mobilization, as part of host defense and repair. Homing is thought to be a coordinated, multistep process, which involves signaling by stromal-derived factor 1 (SDF-1) and stem cell factor (SCF), activation of lymphocyte function-associated antigen 1 (LFA-1), very late antigen 4/5 (VLA-4/5) and CD44, cytoskeleton rearrangement, membrane type 1 (MT1)-matrix metalloproteinase (MMP) activation and secretion of MMP2/9. Rolling and firm adhesion of progenitors to endothelial cells in small marrow sinusoids under blood flow is followed by trans-endothelial migration across the physical endothelium/extracellular matrix (ECM) barrier. Stem cells finalize their homing uniquely, by selective access and anchorage to their specialized niches in the extravascular space of the endosteum region and in periarterial sites. This review is focused on mechanisms and key regulators of human stem cell homing to the BM in experimental animal models and clinical transplantation protocols.
Collapse
Affiliation(s)
- Tsvee Lapidot
- Weizmann Institute of Science, Department of Immunology, PO Box 26, Rehovot, 76100, Israel.
| | | | | |
Collapse
|
30
|
Glimm H, Schmidt M, Fischer M, Schwarzwaelder K, Wissler M, Klingenberg S, Prinz C, Waller CF, Lange W, Eaves CJ, von Kalle C. Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood 2005; 106:893-8. [PMID: 15845903 PMCID: PMC1895162 DOI: 10.1182/blood-2004-07-2859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short-term hematopoietic reconstituting cells have been identified in mice, nonhuman primates, and among human cells that engraft xenogeneic hosts. We now present clonal marking data demonstrating a rapid but unsustained contribution of cultured human autografts to the initial phase of hematologic recovery in myeloablated patients. Three patients received transplants of granulocyte colony-stimulating factor-mobilized autologous peripheral blood (PB) cells, of which a portion (8%-25% of the CD34+ cells) had been incubated in vitro with growth factors (5 days) and clinical grade LN retrovirus (3-5 days). More than 9% of the clonogenic and long-term culture-initiating cells harvested were transduced. Semiquantitative and linear amplification-mediated polymerase chain reaction analyses of serial PB samples showed that marked white blood cells appeared in all 3 patients within 11 days and transiently constituted up to 0.1% to 1% of those produced in the first month. However, within another 2 to 9 months, marked cells had permanently decreased to very low levels. Analysis of more than 50 vector insertion sites showed none of the clones detected in the first month were active later. Eighty percent of inserts were located within or near genes, 2 near CXCR4. These findings provide direct evidence of cells with rapid but transient repopulating activity in patients and demonstrate their efficient transduction in vitro.
Collapse
Affiliation(s)
- Hanno Glimm
- Department of Internal Medicine I, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Daldrup-Link HE, Rudelius M, Oostendorp RAJ, Jacobs VR, Simon GH, Gooding C, Rummeny EJ. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 2005; 12:502-10. [PMID: 15831425 DOI: 10.1016/j.acra.2004.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES To compare and optimize ferumoxides labeling of human hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking with a clinical 1.5 T MR scanner. MATERIALS AND METHODS Human hematopoietic progenitor cells, derived from umbilical cord blood or peripheral blood, were labeled with Ferumoxides by simple incubation or lipofection. Cellular iron uptake was quantified with spectrometry. Then, 3 x 10(7)-labeled cells were injected into the tail vein of 12 female nude Balb/c mice. The mice underwent magnetic resonance imaging before and 24 hours after injection. Precontrast and postcontrast signal intensities of liver, spleen, and bone marrow were measured and tested for significant differences with the t-test. Immunostains served as a histopathologic standard of reference. RESULTS After labeling by simple incubation, only umbilical cord blood cells, but not peripheral blood cells, showed a significant iron uptake and could be tracked in vivo with magnetic resonance imaging. Using lipofection, both cell types could be tracked in vivo. A significant decline in signal intensity was observed in liver, spleen, and bone marrow at 24 hours after injection of efficiently labeled ferumoxides cells (P < .05). Histopathology proved the distribution of iron oxide-labeled cells to these organs. CONCLUSION Hematopoietic progenitor cells from umbilical cord blood can be labeled by simple incubation with an Food and Drug Administration-approved magnetic resonance contrast agent with sufficient efficiency to provide an in vivo cell tracking at 1.5 T. Progenitor cells from peripheral blood need to be labeled with adjunctive transfection techniques to be depicted in vivo at 1.5 T.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, University of California San Francisco, UCSF Medical Center, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Byk T, Kahn J, Kollet O, Petit I, Samira S, Shivtiel S, Ben-Hur H, Peled A, Piacibello W, Lapidot T. Cycling G1 CD34+/CD38+Cells Potentiate the Motility and Engraftment of Quiescent G0 CD34+/CD38−/lowSevere Combined Immunodeficiency Repopulating Cells. Stem Cells 2005; 23:561-74. [PMID: 15790777 DOI: 10.1634/stemcells.2004-0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism of human stem cell expansion ex vivo is not fully understood. Furthermore, little is known about the mechanisms of human stem cell homing/repopulation and the role that differentiating progenitor cells may play in these processes. We report that 2- to 3-day in vitro cytokine stimulation of human cord blood CD34(+)-enriched cells induces the production of short-term repopulating, cycling G1 CD34(+)/CD38(+) cells with increased matrix metalloproteinase (MMP)-9 secretion as well as increased migration capacity to the chemokine stromal cell-derived factor-1 (SDF-1) and homing to the bone marrow of irradiated nonobese diabetic severe/combined immunodeficiency (NOD/SCID) mice. These cycling G1 cells enhance SDF-1-mediated in vitro migration and in vivo homing of quiescent G0 CD34(+) cells, which is partially abrogated after inhibition of MMP-2/-9 activity. Moreover, the engraftment potential of quiescent G0 SCID repopulating cells (SRCs) is also increased by the cycling G1 CD34(+)/CD38(+) cells. This effect is significantly abrogated after incubation of cycling G1 cells with a neutralizing anti-CXCR4 antibody. Our data suggest synergistic interactions between accessory cycling G1 CD34(+)/CD38(+) committed progenitor cells and quiescent, primitive G0 CD34(+)/CD38(-/low) SRC/stem cells, the former increasing the motility and engraftment potential of the latter, partly via secretion of MMP-9.
Collapse
Affiliation(s)
- Tamara Byk
- The Weizmann Institute of Science, Department of Immunology, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Glimm H, Schmidt M, Fischer M, Klingenberg S, Lange W, Waller CF, Eaves CJ, von Kalle C. Evidence of similar effects of short-term culture on the initial repopulating activity of mobilized peripheral blood transplants assessed in NOD/SCID-beta2microglobulin(null) mice and in autografted patients. Exp Hematol 2005; 33:20-5. [PMID: 15661394 DOI: 10.1016/j.exphem.2004.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/07/2004] [Accepted: 09/29/2004] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Human mobilized peripheral blood (mPB) is known to contain high numbers of cells with rapid but short-term repopulating activity in NOD/SCID-beta2microglobulin(-/-) mice. Here we assessed the effect of short-term culture on these cells and compared the levels of retained activity with the pace of hematologic recovery in myeloablated patients transplanted with similarly cultured autografts of the same cells. PATIENTS AND METHODS In a phase 1 clinical study, mPB cells were collected from 6 advanced cancer patients. CD34(+) cells were then harvested, cultured for 3 days in the presence of early-acting growth factors, and transplanted, and posttransplant recovery of blood cell parameters monitored. Assays for primitive hematopoietic activity using both in vivo (in NOD/SCID-beta2microglobulin(-/-) mice) and in vitro (CFC and LTC-IC) endpoints were also performed on the cells pre- and posttransplant. RESULTS All patients showed event-free, timely leukocyte recoveries but slightly delayed platelet recoveries in some cases. During the 3-day period of culture, the CFCs doubled but the LTC-IC activity decreased (twofold), as did the short-term repopulating activity in NOD/SCID-beta2microglobulin(-/-) mice. CONCLUSION Patients can be transplanted with 3-day cultured autografts with minimal effects on hematologic recovery. This is associated with a variable but, on average, modest loss of short-term repopulating activity detectable in NOD/SCID-beta2microglobulin(-/-) mice.
Collapse
Affiliation(s)
- Hanno Glimm
- Department of Internal Medicine I, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shier LR, Schultz KR, Imren S, Regan J, Issekutz A, Sadek I, Gilman A, Luo Z, Panzarella T, Eaves CJ, Couban S. Differential effects of granulocyte colony-stimulating factor on marrow- and blood-derived hematopoietic and immune cell populations in healthy human donors. Biol Blood Marrow Transplant 2005; 10:624-34. [PMID: 15319774 DOI: 10.1016/j.bbmt.2004.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A recent phase III trial comparing granulocyte colony-stimulating factor (G-CSF)-stimulated bone marrow (G-BM) and G-CSF-mobilized peripheral blood (G-PB) in matched sibling allograft recipients showed that G-BM produced a similar hematologic recovery but a reduced incidence of extensive chronic graft-versus-host disease, indicating differences in the cell populations infused. As a first step toward identifying these differences, we treated a group of healthy adult humans with 4 daily doses of G-CSF 10 microg/kg and monitored the effects on various hematopoietic and immune cell types in the PB and BM over 12 days. G-CSF treatment caused rapid and large but transient increases in the number of circulating CD34+ cells, colony-forming cells, and long-term culture-initiating cells and in the short-term repopulating activity detectable in nonobese diabetic/severe combined immunodeficiency/beta2-microglobulin-null mice. Similar but generally less marked changes occurred in the same cell populations in the BM. G-CSF also caused transient perturbations in some immune cell types in both PB and BM: these included a greater increase in the frequency of naive B cells and CD123+ dendritic cells in the BM. The rapidity of the effects of G-CSF on the early progenitor activity of the BM provides a rationale for the apparent equivalence in rates of hematologic recovery obtained with G-BM and G-PB allotransplants. Accompanying effects on immune cell populations are consistent with a greater ability of G-BM to promote tolerance in allogeneic recipients, and this could contribute to a lower rate of chronic graft-versus-host disease.
Collapse
Affiliation(s)
- Luke R Shier
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xu M, Bruno E, Chao J, Ni H, Lindgren V, Nunez R, Mahmud N, Finazzi G, Fruchtman SM, Popat U, Liu E, Prchal JT, Rondelli D, Barosi G, Hoffman R. The constitutive mobilization of bone marrow-repopulating cells into the peripheral blood in idiopathic myelofibrosis. Blood 2005; 105:1699-705. [PMID: 15471948 DOI: 10.1182/blood-2004-06-2485] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractIdiopathic myelofibrosis (IM) is characterized by the constitutive mobilization of CD34+ cells. IM peripheral blood (PB) CD34+ cells had a reduced cloning efficiency and a lower frequency of cobblestone areas compared with normal granulocyte colony-stimulating factor (G-CSF)-mobilized PB CD34+ cells. IM CD34+ cells engrafted nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, demonstrating that they contain bone marrow (BM)-repopulating cells. G-CSF-mobilized CD34+ cells produced multiple hematopoietic lineages within the NOD/SCID mice with a predominance of CD19+ cells. By contrast, IM CD34+ cells produced predominantly CD33+ cells, increased numbers of CD41+ cells, but fewer CD19+ cells. Transcriptional clonality assays of the engrafted human IM cells demonstrated their clonal origin. CD34+ cells from one patient isolated prior to leukemic transformation were capable of generating acute leukemia in NOD/SCID mice. The engrafted human cells exhibited the same abnormal karyotype as primary cells in a portion of the population. These findings demonstrate that BM-repopulating cells and more differentiated progenitor cells are constitutively mobilized into the PB in IM, and that their differentiation program is abnormal. In addition, the NOD/SCID model may be useful in gaining an understanding of the events occurring during the transition of IM to acute leukemia. (Blood. 2005;105:1699-1705)
Collapse
Affiliation(s)
- Mingjiang Xu
- Section of Hematology/Oncology, University of Illinois at Chicago Cancer Center, Chicago, IL 60607-7171, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E, Lambie K, Shaw G, Holyoake TL, Petzer AL, Auewarakul C, Barnett MJ, Eaves CJ, Eaves AC. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia 2005; 19:435-41. [PMID: 15674418 DOI: 10.1038/sj.leu.2403649] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenograft models of chronic phase human chronic myeloid leukemia (CML) have been difficult to develop because of the persistence of normal hematopoietic stem cells in most chronic phase CML patients and the lack of methods to selectively isolate the rarer CML stem cells. To circumvent this problem, we first identified nine patients' samples in which the long-term culture-initiating cells were predominantly leukemic and then transplanted cells from these samples into sublethally irradiated NOD/SCID and NOD/SCID-beta2microglobulin-/- mice. This resulted in the consistent and durable (>5 months) repopulation of both host genotypes with similar numbers of BCR-ABL+/Ph+ cells. The regenerated leukemic cells included an initial, transient population derived from CD34+CD38+ cells as well as more sustained populations derived from CD34+CD38- progenitors, indicative of a hierarchy of transplantable leukemic cells. Analysis of the phenotypes produced revealed a reduced output of B-lineage cells, enhanced myelopoiesis with excessive production of erythroid and megakaropoietic cells and the generation of primitive (CD34+) leukemic cells displaying an autocrine IL-3 and G-CSF phenotype, all characteristics of primary CML cells. These findings demonstrate the validity of this xenograft model of chronic phase human CML, which should enable future investigation of disease pathogenesis and new approaches to therapy.
Collapse
Affiliation(s)
- W Eisterer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Bräuer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RAJ. Migration of Iron Oxide–labeled Human Hematopoietic Progenitor Cells in a Mouse Model: In Vivo Monitoring with 1.5-T MR Imaging Equipment. Radiology 2005; 234:197-205. [PMID: 15618382 DOI: 10.1148/radiol.2341031236] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the use of clinical 1.5-T magnetic resonance (MR) imaging equipment to depict the in vivo distribution of iron oxide-labeled human hematopoietic progenitor cells in athymic mice. MATERIALS AND METHODS This study was approved by the ethical committee, and all women had given consent to donate umbilical cord blood for research. Twenty athymic female Balb/c mice underwent MR imaging before and 1, 4, 24, and 48 hours after intravenous injection of (1-3) x 10(7) human hematopoietic progenitor cells labeled with the superparamagnetic iron oxide particles ferumoxides through simple incubation (n = 10) or P7228 through lipofection (n = 10). Fifteen female Balb/c control mice were examined after intravenous injection of the pure contrast agents (n = 6 for both probes) or nonlabeled cells (n = 3). Signal intensities of liver, spleen, and bone marrow on MR images obtained before and after injection were measured and compared for significant differences by using the t test. MR imaging data were compared with the results of immunostaining against human CD31(+) cells and against the coating of the contrast agents; these results served as the standard of reference. RESULTS Ferumoxides was internalized into more mature CD34(-) cells but not into CD34(+) stem cells, while P7228 liposomes were internalized into both CD34(-) and CD34(+) cells. After injection of iron oxide-labeled hematopoietic cells, a significant decrease in MR signal intensity was observed in liver and spleen at 1, 4, 24, and 48 hours after injection (P < .05) and in the bone marrow at 24 and 48 hours after injection (P < .05). The signal intensity decrease in bone marrow was significantly stronger after injection of iron oxide-labeled cells compared to controls that received injections of the pure contrast agent (P < .05). Results of histopathologic examination confirmed homing of iron oxide-labeled human progenitor cells in the murine recipient organs. CONCLUSION The in vivo distribution of intravenously administered iron oxide-labeled hematopoietic progenitor cells can be monitored with 1.5-T MR imaging equipment.
Collapse
|
38
|
Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL, Wijnands E, Blom B, Spits H. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood 2004; 104:3886-93. [PMID: 15319293 DOI: 10.1182/blood-2004-02-0656] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tumor suppressor p53 plays an important role in regulating cell cycle progression and apoptosis. Here we applied RNA interference to study the role of p53 in human hematopoietic development in vivo. An siRNA construct specifically targeting the human tumor-suppressor gene p53 was introduced into human CD34(+) progenitor cells by lentivirus-mediated gene transfer, which resulted in more than 95% knockdown of p53. We adapted the human-SCID mouse model to optimize the development of hematopoietic cells, particularly of T cells. This was achieved by the intraperitoneal injection of CD34(+) precursor cells into newborn Rag2(-/-) gammac(-/-) mice that lack T, B, and NK cells. Robust development of T cells was observed in these mice, with peripheral T-cell repopulation 8 weeks after injection of the precursor cells. Other lymphocyte and myeloid subsets also developed in these mice. Injecting p53 siRNA-transduced CD34(+) cells resulted in stable expression and down-modulation of p53 in the mature T-cell offspring. Inactivating p53 did not affect the development of CD34(+) cells into various mature leukocyte subsets, including T cells, but it conferred resistance to gamma-irradiation and other p53-dependent apoptotic stimuli to the T cells.
Collapse
Affiliation(s)
- Ramon Gimeno
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Daldrup-Link HE, Rudelius M, Metz S, Piontek G, Pichler B, Settles M, Heinzmann U, Schlegel J, Oostendorp RAJ, Rummeny EJ. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 2004; 31:1312-21. [PMID: 15138719 DOI: 10.1007/s00259-004-1484-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1x10(6)-3x10(8) labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10(6) cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, UCSF Medical Center, University of California in San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ahmed F, Ings SJ, Pizzey AR, Blundell MP, Thrasher AJ, Ye HT, Fahey A, Linch DC, Yong KL. Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood 2004; 103:2079-87. [PMID: 14630817 DOI: 10.1182/blood-2003-06-1770] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The reduced engraftment potential of hematopoietic stem/progenitor cells (HSPCs) after exposure to cytokines may be related to the impaired homing ability of actively cycling cells. We tested this hypothesis by quantifying the short-term homing of human adult CD34+ cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) animals. We show that the loss of engraftment ability of cytokine-activated CD34+ cells is associated with a reduction in homing of colony-forming cells (CFCs) to bone marrow (BM) at 24 hours after transplantation (from median 2.8% [range, 1.9%-6.1%] to 0.3% [0.0%-0.7%]; n = 3; P < .01), coincident with an increase in CFC accumulation in the lungs (P < .01). Impaired BM homing of cytokine-activated cells was not restored by using sorted cells in G0G1 or by inducing cell cycle arrest at the G1/S border. Blocking Fas ligation in vivo did not increase the BM homing of cultured cells. Finally, we tested cytokine combinations or culture conditions previously reported to restore the engraftment of cultured cells but did not find that any of these was able to reverse the changes in homing behavior of cytokine-exposed cells. We suggest that these changes in homing and, as a consequence, engraftment result from the increased migratory capacity of infused activated cells, leading to the loss of selectivity of the homing process.
Collapse
Affiliation(s)
- Forhad Ahmed
- Department of Haematology, Royal Free and University College Medical School, London, WC1E 6HX, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Josephson NC, Trobridge G, Russell DW. Transduction of long-term and mobilized peripheral blood-derived NOD/SCID repopulating cells by foamy virus vectors. Hum Gene Ther 2004; 15:87-92. [PMID: 14965380 DOI: 10.1089/10430340460732481] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foamy virus (FV) vectors are a promising gene delivery system for use in hematopoietic stem cell gene therapy. Previous FV vector marking studies in the NOD/SCID xenotransplantation model used umbilical cord blood (UCB)-derived SCID repopulating cells (SRCs) that were assayed 5-10 weeks posttransplantation. We now report efficient FV vector transduction (>65%) of UCB-derived primitive, long-term SRCs engrafted for 18 weeks. In addition, we evaluated gene transfer into mobilized peripheral blood (MPB)-derived SRCs by improved, deleted FV vectors containing minimal cis-acting sequences and packaged by split helper constructs that would be appropriate for use in clinical trials. When used at a multiplicity of infection of 1 in a 10-hr transduction protocol, these improved vectors transduced 34% of engrafted MPB-derived SRCs.
Collapse
|
42
|
Mazurier F, Gan OI, McKenzie JL, Doedens M, Dick JE. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004; 103:545-52. [PMID: 14504079 DOI: 10.1182/blood-2003-05-1558] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Abstract
Knowledge of the composition and interrelationship of the various hematopoietic stem cells (HSCs) that comprise the human HSC pool and the consequence of culture on each class is required for effective therapies based on stem cells. Clonal tracking of retrovirally transduced HSCs in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice revealed heterogeneity in the repopulation capacity of SCID-repopulating cells (SRCs). However, it is impossible to establish whether HSC heterogeneity is intrinsic or whether the culture conditions required for retroviral transduction induce qualitative and quantitative alterations to SRCs. Here, we report establishment of a clonal tracking method that uses lentivectors to transduce HSCs with minimal manipulation during overnight culture without cytokine stimulation. By serial bone marrow (BM) sampling of mice receiving transplants, short-term SRCs (ST-SRCs) and long-term SRCs (LT-SRCs) were identified on the basis of repopulation dynamics demonstrating that their existence is not an experimental artifact but reflects the state of the HSC pool. However, 4 days of culture in conditions previously used for SRC retroviral transduction significantly reduced SRC number as assessed by clonal analysis. These studies provide a foundation to understand the molecular and cellular determinants of human HSC development and to develop therapies targeted to specific HSC classes.
Collapse
Affiliation(s)
- Frederic Mazurier
- Division of Cell and Molecular Biology, University Health Network, Ste 7-700, 620 University Ave, Toronto, ON, Canada M5G 2C1
| | | | | | | | | |
Collapse
|
43
|
Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 2003; 102:3478-82. [PMID: 12946998 DOI: 10.1182/blood-2003-05-1432] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The standard approach to assess hematopoietic stem cell (HSC) engraftment in experimental bone marrow transplantation models relies on detection of donor hematopoietic cells in host bone marrow following death; this approach provides data from only a single time point after transplantation for each animal. In vivo bioluminescence imaging was therefore explored as a method to gain a dynamic, longitudinal profile of human HSC engraftment in a living xenogeneic model. Luciferase expression using a lentiviral vector allowed detection of distinctly different patterns of engraftment kinetics from human CD34+ and CD34+CD38- populations in the marrow NOD/SCID/beta 2mnull mice. Imaging showed an early peak (day 13) of engraftment from CD34+ cells followed by a rapid decline in signal. Engraftment from the more primitive CD34+CD38- population was relatively delayed but by day 36 increased to significantly higher levels than those from CD34+ cells (P <.05). Signal intensity from CD34+CD38-engrafted mice continued to increase during more than 100 days of analysis. Flow cytometry analysis of bone marrow from mice after death demonstrated that levels of 1% donor cell engraftment could be readily detected by bioluminescence imaging; higher engraftment levels corresponded to higher image signal intensity. In vivo bioluminescence imaging provides a novel method to track the dynamics of engraftment of human HSC and progenitors in vivo.
Collapse
Affiliation(s)
- Xiuli Wang
- Division of Research Immunology/BMT, Department of Radiology, and Congresman Dixon Cellular Imaging Core, Childrens Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027,USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plett PA, Frankovitz SM, Orschell CM. Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood 2003; 102:2285-91. [PMID: 12775569 DOI: 10.1182/blood-2002-12-3742] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whether hematopoietic stem cells (HSCs) home selectively to bone marrow (BM) early after transplantation remains an issue of debate. Better understanding of homing mechanisms may benefit BM transplantation protocols in cases of limited graft cell number or nonmyeloablative conditioning regimens. Using flow cytometry and serial transplantation to stringently identify HSCs, trafficking patterns of long-term engrafting cells were mapped between BM and spleen early after transplantation. Low-density BM cells were tracked in irradiated or nonirradiated mice 1, 3, 6, and 20 hours after transplantation, at which time recipient BM and spleen were analyzed for recovery of primitive donor cells by phenotype and adhesion molecule expression. In addition, phenotypically defined HSC-enriched or HSC-depleted grafts were tracked 20 hours after transplantation in recipient BM and spleen and analyzed for recovery and long-term repopulating potential in mice undergoing serial transplantation. Regardless of irradiation status, recovery of donor Sca-1+ lin- cells was higher at most time points in recipient BM than in spleen, while recovery of total Sca-1+ cells was variable. A significantly higher percentage of BM-homed donor Sca-1+ cells expressed CD43, CD49e, and CD49d 20 hours after transplantation than spleen-homed cells, which contained significantly more non-HSC phenotypes. Furthermore, BM-homed cells were significantly enriched for cells capable of secondary multilineage hematopoiesis in mice undergoing serial transplantation compared with spleen-homed cells. These results support the notion of specific homing of HSCs to BM by 20 hours after transplantation and provide a basis for the enhanced engraftment potential afforded some Sca-1+ lin- cells subfractionated on the basis of adhesion molecule expression.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine, Indiana University School of Medicine, 1044 W Walnut Street, Indianapolis, IN 46202-5254, USA
| | | | | |
Collapse
|
45
|
Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9:959-63. [PMID: 12796774 DOI: 10.1038/nm886] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 04/30/2003] [Indexed: 11/09/2022]
Abstract
A major problem hampering effective stem cell-based therapies is the absence of a clear understanding of the human hematopoietic stem cell (HSC) pool composition. The severe combined immunodeficiency (SCID) repopulating cell (SRC) xenotransplant assay system provides a powerful tool for characterizing the frequency, cell surface markers, cell cycle status, homing and response to cytokine stimulation of human HSCs. Clonal tracking of retrovirally transduced SRCs and transplantation of specific subpopulations revealed SRC classes with distinct repopulation potentials. However, all HSC repopulation assays are based on intravenous injection, a complex process that requires circulation through blood, recognition and extravasation through bone marrow vasculature, and migration to a supportive microenvironment. Thus, some classes of HSCs may remain undetected. By direct intrafemoral injection, we identified rapid SRCs (R-SRCs) within the Lin-CD34+CD38loCD36- subpopulation. R-SRCs rapidly generate high levels of human myeloid and erythroid cells within the injected femur, migrate to the blood and colonize individual bones of non-obese diabetic (NOD)-SCID mice within 2 weeks after transplantation. Lentivector-mediated clonal analysis of individual R-SRCs revealed heterogeneity in their proliferative and migratory properties. The identification of a new HSC class and an effective intrafemoral assay provide the tools required to develop more effective stem cell-based therapies that rely on rapid reconstitution.
Collapse
Affiliation(s)
- Frédéric Mazurier
- Division of Cell and Molecular Biology, University Health Network, and Dept of Molecular Genetics and Microbiology, University of Toronto, 620 University Ave, Toronto, Ontario M5G 2C1, Canada
| | | | | | | |
Collapse
|
46
|
Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJT, Plum J, Leclercq G. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17:1157-63. [PMID: 12764384 DOI: 10.1038/sj.leu.2402947] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Class I homeobox (HOX) genes comprise a large family of transcription factors that have been implicated in normal and malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degenerated RT-PCR and Affymetrix microarray analysis, we analyzed the expression pattern of this gene family in human multipotent stem cells from fetal liver (FL) and adult bone marrow (ABM), and in T-cell progenitors from child thymus. We show that FL and ABM stem cells are similar in terms of HOX gene expression, but significant differences were observed between these two cell types and child thymocytes. As the most immature thymocytes are derived from immigrated FL and ABM stem cells, this indicates a drastic change in HOX gene expression upon entry into the thymus. Further analysis of HOX-A7, HOX-A9, HOX-A10, and HOX-A11 expression with specific RT-PCR in all thymocyte differentiation stages showed a sequential loss of 3' region HOX-A cluster genes during intrathymic T-cell development and an unexpected expression of HOX-A11, previously not recognized to play a role in hematopoiesis. Also HOX-B3 and HOX-C4 were expressed throughout thymocyte development. Overall, these data provide novel evidence for an important role of certain HOX genes in human T-cell development.
Collapse
Affiliation(s)
- T Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, Ghent B-9000, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Eaves C, Jiang X, Eisterer W, Chalandon Y, Porada G, Zanjani E, Eaves A. New models to investigate mechanisms of disease genesis from primitive BCR-ABL(+) hematopoietic cells. Ann N Y Acad Sci 2003; 996:1-9. [PMID: 12799276 DOI: 10.1111/j.1749-6632.2003.tb03226.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three years ago we described a novel autocrine IL-3/G-CSF mechanism active in the leukemic CD34(+) cells from chronic myeloid leukemia (CML) patients in chronic phase (PNAS 96: 12804-12809, [1999]). We also showed that exposure of the most primitive CD34(+) cells from normal human bone marrow to excess IL-3 stimulates not only the division of these cells but also their differentiation. In contrast, both IL-3 and G-CSF cause an expansion of the more mature types of normal CD34(+) progenitors. These findings suggested that the autocrine IL-3/G-CSF mechanism active in CML stem cells can compromise their self-renewal in spite of increasing their proliferative activity, which, in turn, might explain the paradoxically slow rate of expansion of this compartment over time in patients with latent disease. To investigate this hypothesis, we have begun to characterize the numbers and types of cells generated from chronic phase CML patients' cells transplanted into adult immunodeficient mice or fetal sheep, and also from transplants of primitive murine and human hematopoietic cells transduced with a retroviral BCR-ABL vector. Our findings to date using these models reinforce the importance of the autocrine IL-3/G-CSF mechanism in the development of CML. BCR-ABL appears to directly activate IL-3 and G-CSF production in primitive hematopoietic cells and this is important to their transplantable leukemogenic activity. However, the development in vivo of an overt leukemia from primitive BCR-ABL(+) hematopoietic cells can be very delayed. These models thus offer new opportunities for analyzing the molecular events that underlie the pathogenesis of human CML and the future testing of new therapeutic approaches.
Collapse
Affiliation(s)
- Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, and the University of British Columbia, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
A major problem hampering the development of effective stem cell-based therapies is the absence of a clear understanding of the composition of the hematopoietic stem cell (HSC) pool in humans and how ex vivo manipulation can differentially affect the various HSC classes. This paper will review recent advances in the use of the NOD/SCID xenotransplant assay to characterize the human stem cell compartment and to determine how ex vivo culture affects stem cells. Using lentivector-mediated clonal tracking we found that only 4 days of culture can significantly reduce the number of SCID-repopulating cells (SRCs) contributing to the human graft. Similar results were seen with a competitive assay strategy where non-cultured cells marked with the RFP-lentivector markedly outcompete cultured cells marked with a EGFP-lentivector both transplanted into the same NOD/SCID mouse. A novel intrafemoral (IF) assay was developed to permit the transplantation of human stem cells that might be difficult to detect using the traditional IV injection method. With the IF assay we identified a novel class of human stem cell with the ability to rapidly generate a large graft of human myeloid and erythroid cells within 2 weeks post transplant.
Collapse
Affiliation(s)
- Frederic Mazurier
- Division of Cell and Molecular Biology, University Health Network, and Department of Molecular Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | | | | | |
Collapse
|
49
|
Szilvassy SJ, Ragland PL, Miller CL, Eaves CJ. The marrow homing efficiency of murine hematopoietic stem cells remains constant during ontogeny. Exp Hematol 2003; 31:331-8. [PMID: 12691921 DOI: 10.1016/s0301-472x(03)00005-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Several recent studies have established the potential clinical utility of hematopoietic stem cells (HSCs) not only for marrow rescue but also for regenerating diseased or damaged nonhematopoietic tissues. These findings have focused renewed interest in understanding the in vivo trafficking patterns of HSCs from different sources. Previous experiments have suggested that the half-life of HSCs in the circulation is short, although the actual proportion that return to the bone marrow (BM) following transplantation has not been previously quantitated. The present study was undertaken to measure this fraction and compare the values obtained for functionally defined HSCs from adult murine BM and day-14 fetal liver (FL). METHODS The number of HSCs that could be recovered from the BM of lethally irradiated mice 24 hours after intravenous injection of Ly-5 congenic BM or FL cells was determined by limiting-dilution competitive repopulating unit (CRU) assays in secondary mice. RESULTS The marrow seeding efficiency of both adult BM- and FL-CRU able to produce lymphoid and myeloid progeny for 5-26 weeks posttransplant was approximately 10%. FL-CRU generated clones that were approximately threefold larger than those produced by BM-CRU. Interestingly, clones produced by "homed" HSCs were approximately twofold smaller than those produced by freshly isolated HSCs. Differences were also seen in the proportions of lymphoid vs myeloid progeny generated by fresh and homed HSCs. CONCLUSIONS These data suggest common mechanisms regulating the BM homing of long-term repopulating HSCs throughout ontogeny despite subtle differences in the size and composition of the clones they generate.
Collapse
Affiliation(s)
- Stephen J Szilvassy
- Blood and Marrow Transplant Program, University of Kentucky, Lexington, Ky., USA.
| | | | | | | |
Collapse
|
50
|
Madhusudhan T, Richhariya A, Majumdar SS, Mukhopadhyay A. An in vitro model for grafting of hematopoietic stem cells predicts bone marrow reconstitution of myeloablative mice. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2003; 12:243-52. [PMID: 12804183 DOI: 10.1089/152581603321628386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Homing and engraftment of hematopoietic stem cells (HSCs) to bone marrow (BM) is a complex process that primarily depends on the cell-surface expression of adhesion molecules on stem and stromal cells. Here we report an in vitro model for homing of stem cells on pre-established stromal layer; the stroma-adhered cells were found to engraft, multiply, and differentiate in BM of age-matched mice. In vitro study revealed that initially the adhesion of BM cells on irradiated stroma was increased with time, and it attained a peak at 2 h of contacts. During that time, 44.1 +/- 6.5% (n = 8) cells were adhered, and this value was maintained up to 6 x 10(6) cells. The adhered cell fraction was enriched by 3.9-, 2.5-, and 1.7-fold Sca-1, colony forming cell (CFC), and cobblestone area forming cells (CAFC), respectively, as compared to the fresh BM cells. These adhered cells homed to BM with an engraftment efficiency of 11.8 +/- 2.5% (n = 6). The homed cells reconstituted BM of myeloablative mice by self-renewing and differentiating into myeloid cells. Overall, a simple in vitro model system has been described to study homing and grafting of HSCs that can be deployed to any possible experimental conditions to investigate the interactions between stromal and stem cells.
Collapse
Affiliation(s)
- T Madhusudhan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|