1
|
Muravyeva A, Smirnikhina S. Strategies for Modifying Adenoviral Vectors for Gene Therapy. Int J Mol Sci 2024; 25:12461. [PMID: 39596526 PMCID: PMC11595218 DOI: 10.3390/ijms252212461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression. Various strategies and technologies aimed at improving the characteristics of adenoviral vectors are being developed to overcome these limitations. Significant attention is being paid to the creation of tissue-specific promoters, which allow for the controlled expression of transgenes, as well as capsid modifications that enhance tropism to target cells, which also play a key role in reducing immunogenicity and increasing the efficiency of gene delivery. This review focuses on modern approaches to adenoviral vector modifications made to enhance their effectiveness in gene therapy, analyzing the current achievements, challenges, and prospects for applying these technologies in clinical practice, as well as identifying future research directions necessary for successful clinical implementation.
Collapse
Affiliation(s)
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| |
Collapse
|
2
|
Duarte-Sanmiguel S, Higuita-Castro N, Gallego-Perez D. Nanoelectroporation and Collection of Genetically Modified Exosomes in Primary Cultures of Dendritic Cells. Methods Mol Biol 2020; 2050:79-84. [PMID: 31468481 DOI: 10.1007/978-1-4939-9740-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are cells of the immune system that behave as antigen presenters and assist in T cell activation. DCs have recently been used in cell-based immunotherapies for the treatment of different diseases due to the lack of adverse nonspecific immune responses, typically elicited by other approaches. Genetically modified DCs, for example, have been used to stimulate CD4/CD8 antigen presenting immune responses. However, genetic manipulation of primary DCs remains a challenge. Here we describe a protocol for nonviral, benign transfection of primary DCs using nanochannel-based electroporation, and the subsequent collection of genetically modified exosomes for downstream applications.
Collapse
Affiliation(s)
- Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. .,Department of Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Kiertscher SM, Gangalum PR, Ibrahim G, Tashkin DP, Roth MD. A Prospective Study of Humoral and Cellular Immune Responses to Hepatitis B Vaccination in Habitual Marijuana Smokers. J Neuroimmune Pharmacol 2018; 13:219-229. [PMID: 29340893 DOI: 10.1007/s11481-018-9776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023]
Abstract
Exposure to Δ9-tetrahydrocannabinol (THC) in vitro and in animal models can significantly impair the differentiation, activation and function of dendritic cells, T cells and B cells. However, studies directly assessing the impact of marijuana smoking on human immunity are lacking. A prospective study of immune responses to a standard hepatitis B vaccination was therefore carried out in a matched cohort of 9 marijuana smokers (MS) and 9 nonsmokers (NS). In addition to their regular marijuana use, MS smoked four marijuana cigarettes in a monitored setting on the day of each vaccination. Blood samples were collected over time to assess the development of hepatitis B-specific immunity. The majority of subjects from both the NS (8) and MS (6) groups developed positive hepatitis B surface antibody titers (>10 IU/L) and of these 6 NS and 5 MS were classified as high antibody (good) responders (>100 IU/L). The development of a good response correlated with the presence of hepatitis B-specific T cell proliferation and cytokine production, resulting in a clear distinction regarding the immune status of good responders versus non-responders. However, even though there were slighter more non-responders in the MS cohort, there were no significant differences between MS and NS with respect to peripheral blood cell phenotypes or vaccination-related changes in hepatitis B responses. While a larger cohort may be required to rule out a small suppressive effect, our findings do not suggest that habitual marijuana smoking exerts a major impact on the development of systemic immunity to hepatitis B vaccination.
Collapse
Affiliation(s)
- Sylvia M Kiertscher
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Pallavi R Gangalum
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Grace Ibrahim
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Donald P Tashkin
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA
| | - Michael D Roth
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, CHS 37-131, Los Angeles, CA, 90095-1690, USA.
| |
Collapse
|
4
|
Shimizu K, Sakurai F, Tomita K, Nagamoto Y, Nakamura SI, Katayama K, Tachibana M, Kawabata K, Mizuguchi H. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14035. [PMID: 26015975 PMCID: PMC4362365 DOI: 10.1038/mtm.2014.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 11/09/2022]
Abstract
Leaky expression of adenovirus (Ad) genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR) of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Yasuhito Nagamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation , Osaka, Japan
| | - Shin-Ichiro Nakamura
- Research Center of Animal Life Science, Shiga University of Medical Science , Shiga, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation , Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation , Osaka, Japan ; iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; The Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
5
|
Troegeler A, Lastrucci C, Duval C, Tanne A, Cougoule C, Maridonneau-Parini I, Neyrolles O, Lugo-Villarino G. An efficient siRNA-mediated gene silencing in primary human monocytes, dendritic cells and macrophages. Immunol Cell Biol 2014; 92:699-708. [PMID: 24890643 DOI: 10.1038/icb.2014.39] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Mononuclear phagocytes (MP) comprise monocytes, macrophages (MΦ) and dendritic cells (DC), including their lineage-committed progenitors, which together have an eminent role in health and disease. Lipid-based siRNA-mediated gene inactivation is an established approach to investigate gene function in MP cells. However, although there are few protocols dedicated for siRNA-mediated gene inactivation in primary human DC and MΦ, there are none available for primary human monocytes. Moreover, there is no available method to perform comparative studies of a siRNA-mediated gene silencing in primary monocytes and other MP cells. Here, we describe a protocol optimized for the lipid-based delivery of siRNA to perform gene silencing in primary human blood monocytes, which is applicable to DCs, and differs from the classical route of siRNA delivery into MΦs. Along with this protocol, we provide a comparative analysis of how monocytes, DC and MΦ are efficiently transfected with the target siRNA without affecting cell viability, resulting in strong gene knockdown efficiency, including the simultaneous inactivation of two genes. Moreover, siRNA delivery does not affect classical functions in MP such as differentiation, phagocytosis and migration, demonstrating that this protocol does not induce non-specific major alterations in these cells. As a proof-of-principle, a functional analysis of hematopoietic cell kinase (Hck) shows for the first time that this kinase regulates the protease-dependent migration mode in human monocytes. Collectively, this protocol enables efficient gene inactivation in primary MP, suggesting a wide spectrum of applications such as siRNA-based high-throughput screening, which could ultimately improve our knowledge about MP biology.
Collapse
Affiliation(s)
- Anthony Troegeler
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Claire Lastrucci
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Carine Duval
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Antoine Tanne
- Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Céline Cougoule
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Maridonneau-Parini
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Olivier Neyrolles
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- 1] CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France [2] Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Fu YH, Jiao YY, He JS, Giang GY, Zhang W, Yan YF, Ma Y, Hua Y, Zhang Y, Peng XL, Shi CX, Hong T. Sublingual administration of a helper-dependent adenoviral vector expressing the codon-optimized soluble fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in mice. Antiviral Res 2014; 105:72-9. [PMID: 24560779 DOI: 10.1016/j.antiviral.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
Sublingual (s.l.) immunization has been described as a convenient and safe way to induce mucosal immune responses in the respiratory and genital tracts. We constructed a helper-dependent adenoviral (HDAd) vector expressing a condon-optimized soluble fusion glycoprotein (sFsyn) of respiratory syncytial virus (HDAd-sFsyn) and explored the potential of s.l. immunization with HDAd-sFsyn to stimulate immune responses in the respiratory mucosa. The RSV specific systemic and mucosal immune responses were generated in BALB/c mice, and the serum IgG with neutralizing activity was significantly elevated after homologous boost with s.l. application of HDAd-sFsyn. Humoral immune responses could be measured even 14weeks after a single immunization. Upon challenge, s.l. immunization with HDAd-sFsyn displayed an effective protection against RSV infection. These findings suggest that s.l. administration of HDAd-sFsyn acts as an effective and safe mucosal vaccine against RSV infection, and may be a useful tool in the prevention of RSV infection.
Collapse
Affiliation(s)
- Yuan-hui Fu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yue-Ying Jiao
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jin-sheng He
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Gui-Yuan Giang
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wei Zhang
- Department of Gastrointestinal Oncological Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yi-Fei Yan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Ma
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ying Hua
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ying Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiang-Lei Peng
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Chang-Xin Shi
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Tao Hong
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China; Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
7
|
Fu YH, He JS, Qiao W, Jiao YY, Hua Y, Zhang Y, Peng XL, Hong T. Intranasal immunization with a helper-dependent adenoviral vector expressing the codon-optimized fusion glycoprotein of human respiratory syncytial virus elicits protective immunity in BALB/c mice. Virol J 2013; 10:183. [PMID: 23742026 PMCID: PMC3685604 DOI: 10.1186/1743-422x-10-183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract. Currently, there is no clinically approved vaccine against RSV infection. Recent studies have shown that helper-dependent adenoviral (HDAd) vectors may represent effective and safe vaccine vectors. However, viral challenge has not been investigated following mucosal vaccination with HDAd vector vaccines. Methods To explore the role played by HDAd as an intranasally administered RSV vaccine vector, we constructed a HDAd vector encoding the codon optimized fusion glycoprotein (Fsyn) of RSV, designated HDAd-Fsyn, and delivered intranasally HDAd-Fsyn to mice. Results RSV-specific humoral and cellular immune responses were generated in BALB/c mice, and serum IgG with neutralizing activity was significantly elevated after a homologous boost with intranasal (i.n.) application of HDAd-Fsyn. Humoral immune responses could be measured even 14 weeks after a single immunization. Immunization with i.n. HDAd-Fsyn led to effective protection against RSV infection on challenge. Conclusion The results indicate that HDAd-Fsyn can induce powerful systemic immunity against subsequent i.n. RSV challenge in a mouse model and is a promising candidate vaccine against RSV infection.
Collapse
Affiliation(s)
- Yuan-Hui Fu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing 100044, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Adaptive immune responses elicited by baculovirus and impacts on subsequent transgene expression in vivo. J Virol 2013; 87:4965-73. [PMID: 23408634 DOI: 10.1128/jvi.03510-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Baculovirus (BV) is a promising gene therapy vector and typically requires readministration because BV mediates transient expression. However, how the prime-boost regimen triggers BV-specific adaptive responses and their impacts on BV readministration, transgene expression, and therapeutic/vaccine efficacy remain unknown. Here we unraveled that BV injection into BALB/c mice induced the production of BV-specific antibodies, including IgG1 and IgG2a, which could neutralize BV by antagonizing the envelope protein gp64 and impede BV-mediated transgene expression. Moreover, humans did not possess preexisting anti-BV antibodies. BV injection also elicited BV-specific Th1 and Th2 responses as well as CD4(+) and CD8(+) T cell responses. gp64 was a primary immunogen to activate the antibody and CD8(+) T cell response, with its peptide at positions 457 to 465 (peptide 457-465) being the major histocompatibility complex (MHC) class I epitope to stimulate CD8(+) T cell and cytotoxic responses. Nonetheless, a hybrid Sleeping Beauty-based BV enabled long-term expression for >1 year by a single injection, indicating that the T cell responses did not completely eradicate BV-transduced cells and implicating the potential of this hybrid BV vector for gene therapy. These data unveil that BV injection triggers adaptive immunity and benefit rational design of BV administration schemes for gene therapy and vaccination.
Collapse
|
9
|
Felizardo TC, Wang JCM, McGray RAJ, Evelegh C, Spaner DE, Fowler DH, Bramson JL, Medin JA. Differential immune responses mediated by adenovirus- and lentivirus-transduced DCs in a HER-2/neu overexpressing tumor model. Gene Ther 2011; 18:986-95. [PMID: 21490686 PMCID: PMC6948845 DOI: 10.1038/gt.2011.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 11/08/2022]
Abstract
Recent investigations have demonstrated that adenoviral and lentiviral vectors encoding HER-2 can be utilized in cancer immunotherapy. However, it is not known whether both viral systems elicit a similar immune response. Here, we compare the immune response in mice induced by dendritic cells (DCs) infected with either recombinant adenovirus or lentivirus encoding rat HER-2 (rHER-2). Both vaccine types yielded similar control of tumor growth, but we found clear differences in their immune responses 10 days after DC immunization. Adenovirus rHER-2-transduced DCs elicited locally and systemically high frequencies of CD4+ and CD8+ T cells, while lentivirus rHER-2-transduced DCs predominantly led to CD4+ T-cell infiltration at the tumor site. Splenocytes from mice immunized with lentivirus rHER-2-transduced DCs secreted higher levels of interferon (IFN)-γ, mainly by CD4+ T cells, following stimulation by RM-1-mHER-2 tumors. In contrast, the adenovirus vaccinated group exhibited CD4+ and CD8+ T cells that both contributed to IFN-γ production. Besides an established cellular immune response, the rHER-2/DC vaccine elicited a significant humoral response that was highest in the adenovirus group. DC subsets and regulatory T cells in the spleen were also differentially modulated in the two vaccine systems. Finally, adoptive transfer of splenocytes from both groups of immunized mice strongly inhibited in vivo tumor growth. Our results suggest that not only the target antigen but also the virus system may determine the nature and magnitude of antitumor immunity by DC vaccination.
Collapse
Affiliation(s)
- TC Felizardo
- Campbell Family Cancer Research Institute and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - JCM Wang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - RAJ McGray
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - C Evelegh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - DE Spaner
- Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - DH Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - JL Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - JA Medin
- Campbell Family Cancer Research Institute and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Bowles R, Patil S, Pincas H, Sealfon SC. Optimized protocol for efficient transfection of dendritic cells without cell maturation. J Vis Exp 2011:e2766. [PMID: 21775957 PMCID: PMC3196177 DOI: 10.3791/2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dendritic cells (DCs) can be considered sentinels of the immune system which play a critical role in its initiation and response to infection. Detection of pathogenic antigen by naïve DCs is through pattern recognition receptors (PRRs) which are able to recognize specific conserved structures referred to as pathogen-associated molecular patterns (PAMPS). Detection of PAMPs by DCs triggers an intracellular signaling cascade resulting in their activation and transformation to mature DCs. This process is typically characterized by production of type 1 interferon along with other proinflammatory cytokines, upregulation of cell surface markers such as MHCII and CD86 and migration of the mature DC to draining lymph nodes, where interaction with T cells initiates the adaptive immune response. Thus, DCs link the innate and adaptive immune systems. The ability to dissect the molecular networks underlying DC response to various pathogens is crucial to a better understanding of the regulation of these signaling pathways and their induced genes. It should also help facilitate the development of DC-based vaccines against infectious diseases and tumors. However, this line of research has been severely impeded by the difficulty of transfecting primary DCs. Virus transduction methods, such as the lentiviral system, are typically used, but carry many limitations such as complexity and bio-hazardous risk (with the associated costs). Additionally, the delivery of viral gene products increases the immunogenicity of those transduced DCs. Electroporation has been used with mixed results, but we are the first to report the use of a high-throughput transfection protocol and conclusively demonstrate its utility. In this report we summarize an optimized commercial protocol for high-throughput transfection of human primary DCs, with limited cell toxicity and an absence of DC maturation. Transfection efficiency (of GFP plasmid) and cell viability were more than 50% and 70% respectively. FACS analysis established the absence of increase in expression of the maturation markers CD86 and MHCII in transfected cells, while qRT-PCR demonstrated no upregulation of IFNβ. Using this electroporation protocol, we provide evidence for successful transfection of DCs with siRNA and effective knock down of targeted gene RIG-I, a key viral recognition receptor, at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Robert Bowles
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, USA
| | | | | | | |
Collapse
|
11
|
Nierkens S, Janssen EM. Harnessing dendritic cells for tumor antigen presentation. Cancers (Basel) 2011; 3:2195-213. [PMID: 24212804 PMCID: PMC3757412 DOI: 10.3390/cancers3022195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens.
Collapse
Affiliation(s)
- Stefan Nierkens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA, The Netherlands; E-Mail:
| | - Edith M. Janssen
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
13
|
Bowles R, Patil S, Pincas H, Sealfon SC. Validation of efficient high-throughput plasmid and siRNA transfection of human monocyte-derived dendritic cells without cell maturation. J Immunol Methods 2010; 363:21-8. [PMID: 20875421 PMCID: PMC3964480 DOI: 10.1016/j.jim.2010.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 12/25/2022]
Abstract
Transfection of primary immune cells is difficult to achieve at high efficiency and without cell activation and maturation. Dendritic cells (DCs) represent a key link between the innate and adaptive immune systems. Delineating the signaling pathways involved in the activation of human primary DCs and reverse engineering cellular inflammatory pathways have been challenging tasks. We optimized and validated an effective high-throughput transfection protocol, allowing us to transiently express DNA in naïve primary DCs, as well as investigate the effect of gene silencing by RNA interference. Using a high-throughput nucleofection system, monocyte-derived DCs were nucleoporated with a plasmid expressing green fluorescent protein (GFP), and transfection efficiency was determined by flow cytometry, based on GFP expression. To evaluate the effect of nucleoporation on DC maturation, the expression of cell surface markers CD86 and MHCII in GFP-positive cells was analyzed by flow cytometry. We established optimal assay conditions with a cell viability reaching 70%, a transfection efficiency of over 50%, and unchanged CD86 and MHCII expression. We examined the impact of small interfering RNA (siRNA)-mediated knockdown of RIG-I, a key viral recognition receptor, on the induction of the interferon (IFN) response in DCs infected with Newcastle disease virus. RIG-I protein was undetectable by Western blot in siRNA-treated cells. RIG-I knockdown caused a 75% reduction in the induction of IFNβ mRNA compared with the negative control siRNA. This protocol should be a valuable tool for probing the immune response pathways activated in human DCs.
Collapse
Affiliation(s)
| | | | - Hanna Pincas
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
14
|
Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2:1886-1917. [PMID: 21994713 PMCID: PMC3186006 DOI: 10.3390/v2091886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022] Open
Abstract
Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.
Collapse
Affiliation(s)
| | - Philip Ng
- Author to whom correspondence should be addressed; Tel.: +1 7137984158; E-Mail:
| |
Collapse
|
15
|
Reconstitution of huPBL-NSG mice with donor-matched dendritic cells enables antigen-specific T-cell activation. J Neuroimmune Pharmacol 2010; 6:148-57. [PMID: 20532647 PMCID: PMC3028099 DOI: 10.1007/s11481-010-9223-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/18/2010] [Indexed: 11/18/2022]
Abstract
Humanized mouse models provide a unique opportunity to study human immune cells in vivo, but traditional models have been limited to the evaluation of non-specific T-cell interactions due to the absence of antigen-presenting cells. In this study, immunodeficient NOD/SCID/IL2r-γnull (NSG) mice were engrafted with human peripheral blood lymphocytes alone or in combination with donor-matched monocyte-derived dendritic cells (DC) to determine whether antigen-specific T-cell activation could be reconstituted. Over a period of 3 weeks, transferred peripheral blood lymphocytes reconstituted the spleen and peripheral blood of recipient mice with predominantly human CD45-positive lymphocytes. Animals exhibited a relatively normal CD4/CD8 ratio (average 1.63:1) as well as reconstitution of CD3/CD56 (averaging 17.8%) and CD20 subsets (averaging 4.0%). Animals reconstituted with donor-matched CD11c+ DC also demonstrated a CD11c+ population within their spleen, representing 0.27% to 0.43% of the recovered human cells with concurrent expression of HLA-DR, CD40, and CD86. When immunized with adenovirus, either as free replication-incompetent vector (AdV) or as vector-transduced DC (DC/AdV), there was activation and expansion of AdV-specific T-cells, an increase in Th1 cytokines in serum, and skewing of T-cells toward an effector/memory phenotype. T-cells recovered from animals challenged with AdV in vivo proliferated and secreted a Th1-profile of cytokines in response to DC/AdV challenge in vitro. Our results suggest that engrafting NSG mice with a combination of lymphocytes and donor-matched DC can reconstitute antigen responsiveness and allow the in vivo assessment of human immune response to viruses, vaccines, and other immune challenges.
Collapse
|
16
|
Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice. Biochem Biophys Res Commun 2010; 391:857-61. [DOI: 10.1016/j.bbrc.2009.11.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/23/2009] [Indexed: 11/17/2022]
|
17
|
Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 2009; 8:761-77. [PMID: 19485756 DOI: 10.1586/erv.09.29] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical evaluations of adenovirus (Ad)-based vectors for gene therapy were initiated in the mid-1990s and led to great anticipation for future utility. However, excitement surrounding gene therapy, particularly Ad-based therapy, was diminished upon the death of Jesse Gelsinger, and recent discouraging results from the HIV vaccine STEP trial have brought efficacy and safety issues to the forefront again. Even so, Ad vectors are still considered among the safest and most effective vaccine vectors. Innate and pre-existing immunity to Ad mediate much of the acute toxicities and reduced therapeutic efficacies observed following vaccination with this vector. Thus, innovative strategies must continue to be developed to reduce Ad-specific antigenicity and immune recognition. This review provides an overview and critique of the most promising strategies, including results from preclinical trials in mice and nonhuman primates, which aim to revive the future of Ad-based vaccines.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Departments of Medicine, University of Alabama at Birmingham, BMR2 470, 901 19th Street South, Birmingham, AL 35294-32172, USA.
| | | | | |
Collapse
|
18
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
19
|
Abstract
The best hope of controlling the HIV pandemic is the development of an effective vaccine. In addition to the stimulation of virus neutralising antibodies, a vaccine will need an effective T-cell response against the virus. Vaccines based on recombinant adenoviruses (rAd) are promising candidates to stimulate anti-HIV T-cell responses. This review discusses the different rAd vector types, problems raised by host immune responses against them and strategies that are being adopted to overcome this problem. Vaccines need to target and stimulate dendritic cells and thus the tropism and interaction of rAd-based vaccines with these cells is covered. Different rAd vaccination regimes and the need to stimulate mucosal responses are discussed together with data from animal studies on immunogenicity and virus challenge experiments. The review ends with a discussion of the recent disappointing Merck HIV vaccine trial.
Collapse
Affiliation(s)
- Steven Patterson
- Department of Immunology, Imperial College, Chelsea and Westminster Hospital, London, UK.
| | | | | |
Collapse
|
20
|
Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 2008; 31:294-309. [PMID: 18317358 DOI: 10.1097/cji.0b013e31816a8910] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-1 27-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-1 51-73 were followed by IFN-gamma ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-gamma ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1-specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adenovirus encoding the cDNA for MART-1/Melan-A (AdVMART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma.
Collapse
|
21
|
Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-γ and antibody responses in mice. Vaccine 2008; 26:2818-23. [DOI: 10.1016/j.vaccine.2008.03.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/22/2008] [Accepted: 03/31/2008] [Indexed: 12/12/2022]
|
22
|
Martina Y, Avitabile D, Piersanti S, Cherubini G, Saggio I. Different modulation of cellular transcription by adenovirus 5, DeltaE1/E3 adenovirus and helper-dependent vectors. Virus Res 2007; 130:71-84. [PMID: 17601622 DOI: 10.1016/j.virusres.2007.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 01/12/2023]
Abstract
One problem encountered in the use of adenoviral vectors for gene therapy is their toxicity. Although many studies have analyzed this question in vivo, few researches have investigated adenovirus vector effects at the cellular level using a large-scale approach. In particular, no such data are available for helper-dependent adenovirus vectors (HD), which are promising adenovirus vectors for clinical applications since they are devoid of all viral genes and can host large transgene cassettes. The present study used gene chips to examine (Affymetrix HG-U95Av2 interrogating 12,626 unique human transcripts) the effect on liver cells of HD vectors versus that of DeltaE1/E3 adenovirus vector and wild type Adenovirus (Ad5). The effects of the DeltaE1/E3 adenovirus and of HD vectors were comparable, and significantly milder than that of Ad5. Interestingly the expression signatures of DeltaE1/E3 adenovirus and HD vectors were non-overlapping both at the single gene and the pathway level, suggesting specific and different interactions between the host cell and the two gene therapy vectors.
Collapse
Affiliation(s)
- Yuri Martina
- Department of Genetics and Molecular Biology, University La Sapienza, and Fondazione Parco Biomedico S. Raffaele, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Presentation of tumor antigens by dendritic cells genetically modified with viral and nonviral vectors. JOURNAL OF IMMUNOTHERAPY (HAGERSTOWN, MD. : 1997) 2007. [PMID: 17063124 DOI: 10.1097/01.cji.0000211312.36363.5600002371-200611000-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genetic modification of dendritic cells (DCs) with recombinant vectors encoding tumor antigens may aid in developing new immunotherapeutic treatments for patients with cancer. Here, we characterized antigen presentation by human DCs genetically modified with plasmid cDNAs, RNAs, adenoviruses, or retroviruses, encoding the melanoma antigen gp100 or the tumor-testis antigen NY-ESO-1. Monocyte-derived DCs were electroporated with cDNAs or RNAs, or transduced with adenoviruses. CD34+ hematopoietic stem cell-derived DCs were used for retroviral transduction. Genetically modified DCs were coincubated with CD8+ and CD4+ T cells that recognized major histocompatibility complex class I- and class II-restricted epitopes from gp100 and NY-ESO-1, and specific recognition was evaluated by interferongamma secretion. Cytokine release by both CD8+ and CD4+ T cells was consistently higher in response to DCs modified with adenoviruses than cDNAs or RNAs, and maturation of DCs after genetic modification did not consistently alter patterns of recognition. Also, retrovirally transduced DCs encoding gp100 were well recognized by both CD8+ and CD4+ T cells. These data suggest that DCs transduced with viral vectors may be more efficient than DCs transfected with cDNAs or RNAs for the induction of tumor reactive CD8+ and CD4+ T cells in vitro and in human vaccination trials.
Collapse
|
24
|
Lotem M, Zhao Y, Riley J, Hwu P, Morgan RA, Rosenberg SA, Parkhurst MR. Presentation of tumor antigens by dendritic cells genetically modified with viral and nonviral vectors. J Immunother 2006; 29:616-27. [PMID: 17063124 PMCID: PMC2174598 DOI: 10.1097/01.cji.0000211312.36363.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic modification of dendritic cells (DCs) with recombinant vectors encoding tumor antigens may aid in developing new immunotherapeutic treatments for patients with cancer. Here, we characterized antigen presentation by human DCs genetically modified with plasmid cDNAs, RNAs, adenoviruses, or retroviruses, encoding the melanoma antigen gp100 or the tumor-testis antigen NY-ESO-1. Monocyte-derived DCs were electroporated with cDNAs or RNAs, or transduced with adenoviruses. CD34+ hematopoietic stem cell-derived DCs were used for retroviral transduction. Genetically modified DCs were coincubated with CD8+ and CD4+ T cells that recognized major histocompatibility complex class I- and class II-restricted epitopes from gp100 and NY-ESO-1, and specific recognition was evaluated by interferongamma secretion. Cytokine release by both CD8+ and CD4+ T cells was consistently higher in response to DCs modified with adenoviruses than cDNAs or RNAs, and maturation of DCs after genetic modification did not consistently alter patterns of recognition. Also, retrovirally transduced DCs encoding gp100 were well recognized by both CD8+ and CD4+ T cells. These data suggest that DCs transduced with viral vectors may be more efficient than DCs transfected with cDNAs or RNAs for the induction of tumor reactive CD8+ and CD4+ T cells in vitro and in human vaccination trials.
Collapse
Affiliation(s)
- Michal Lotem
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Xiang M, Eisenbach C, Lupu CM, Ernst E, Stremmel W, Encke J. Induction of Antigen-Specific Immune Responsesin VivoAfter Vaccination with Dendritic Cells Transduced with Adenoviral Vectors Encoding Hepatitis C Virus NS3. Viral Immunol 2006; 19:210-9. [PMID: 16817764 DOI: 10.1089/vim.2006.19.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that play a critical role in the initiation of immunity to viral infections. Direct transduction of DC appears to be the major pathway in vivo responsible for induction of antigen specific immune responses. The aim of this study was to explore the vaccine potential of DC transduced with adenoviral vectors encoding the HCV nonstructural protein 3 (AdNS3) compared to DC pulsed with recombinant NS3 (rNS3). Mice (Balb/c and C57BL/6 transgenic for HLA-A2.1) were immunized with DC based vaccines. After the immunization, antigen specific immune responses including humoral responses, cytokine secretion, and IFN-gamma-producing T cell responses were analyzed. In both strains of mice inoculated with DC transduced with an adenovirus, the generated NS3 specific antibody response and IFN-gamma-secreting T cell response were stronger than that generated by rNS3-pulsed DC. Analysis of the cytokine profiles revealed that immunization with AdNS3 transduced DC shifted the antigen specific immunity towards Th1 responses. DC transduced with AdNS3 are superior to DC pulsed with rNS3 in inducing vigorous humoral and Th1-type cellular responses against NS3. The results demonstrate for the first time the immunogenic potential of genetically modified DC by a prime and boost approach in eliciting a strong NS3-specific, cell-mediated, humoral immune response in both Balb/c mice and HLA-A2.1 transgenic mice.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Harui A, Roth MD, Sanghvi M, Vira D, Mizuguchi H, Basak SK. Centrifugation enhances integrin-mediated transduction of dendritic cells by conventional and RGD-modified adenoviral vectors. J Immunol Methods 2006; 312:94-104. [PMID: 16626731 DOI: 10.1016/j.jim.2006.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/17/2006] [Accepted: 02/27/2006] [Indexed: 11/24/2022]
Abstract
The level of antigen loading can impact on the capacity for dendritic cells (DC) to activate T cell responses. Several different approaches to adenoviral (Ad)-based transduction were therefore assessed for their effect on both transgene expression and T cell activation. While a conventional E1(-)/E3Delta Ad vector (Ad/GFP) produced a concentration-dependent expression of GFP, a modified vector expressing Arginine-Glycine-Aspartic Acid (RGD) sequence on its fiber knob (Ad-RGD/GFP) enhanced transgene expression by 9-20-fold at each MOI. The addition of centrifugal force (2000xg) during DC transduction with Ad/GFP also increased expression up to 20-fold. However, combining centrifugation with the Ad-RGD/GFP vector produced no effect on transduction rate and only a 1.5- to 2-fold increase in GFP expression, suggesting overlapping mechanisms of action. Consistent with this, exogenous RGD peptide blocked transduction regardless of the vector used, or the addition of centrifugal force, and transduction was primarily limited to DC expressing the CD51 integrin receptor. Ad vectors expressing ovalbumin (OVA) were used to assess transduced DC for their capacity to activate OVA-specific T cells. We observed a significant relationship between transgene expression and the capacity for T cell activation regardless of whether transgene expression was increased by using a higher MOI, an RGD-modified vector, or by employing centrifugal force. Furthermore, combining these approaches produced synergistic effects on T cell activation. We conclude that RGD-modified vectors and centrifugation both enhance DC transduction by increasing entry via integrin receptors and that the capacity for T cell activation can be optimized by combining approaches to achieve the highest possible level of transgene expression.
Collapse
Affiliation(s)
- Airi Harui
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095-1690, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Gene-based modulation of immune functions is a promising means of eliciting protective immunity and induction of tolerance. Novel viral and non-viral DNA delivery systems are being investigated to achieve efficient gene transfer into mammalian cells. Antigen-presenting cells (APCs), in particular dendritic cells, are crucial targets in this context due to their capacity to initiate and direct effector functions. The increasing relevance of APCs as targets of DNA vectors calls for an assessment of vector-driven activation of these cells. For viral vectors, a putative pathway of APC activation would be Toll-like receptor signalling for certain RNA genome viruses. On the other hand, non-viral vectors appear to mature APCs by interaction of polymeric particulates or bioactive lipids with cellular mechanisms. The rational design of DNA-based therapies is possible only when the intrinsic effects of the vector and immune modulation originating from the DNA are delineated. This paper will summarise recent reports of adjuvant properties of viral and non-viral delivery systems.
Collapse
Affiliation(s)
- Wilson S Meng
- Duquesne University, Division of Pharmaceutical Sciences, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
28
|
Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 2006; 12 Suppl 1:S18-27. [PMID: 16231052 DOI: 10.1038/sj.gt.3302612] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Last-generation adenovirus vectors, also called helper-dependent or gutless adenovirus, are very attractive for gene therapy because the associated in vivo immune response is highly reduced compared to first- and second-generation adenovirus vectors, while maintaining high transduction efficiency and tropism. Nowadays, gutless adenovirus is administered in different organs, such as the liver, muscle or the central nervous system achieving high-level and long-term transgene expression in rodents and primates. However, as devoid of all viral coding regions, gutless vectors require viral proteins supplied in trans by a helper virus. To remove contamination by a helper virus from the final preparation, different systems based on the excision of the helper-packaging signal have been generated. Among them, Cre-loxP system is mostly used, although contamination levels still are 0.1-1% too high to be used in clinical trials. Recently developed strategies to avoid/reduce helper contamination were reviewed.
Collapse
Affiliation(s)
- R Alba
- Gene Therapy Laboratory, Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
29
|
Marques JT, Rebouillat D, Ramana CV, Murakami J, Hill JE, Gudkov A, Silverman RH, Stark GR, Williams BRG. Down-regulation of p53 by double-stranded RNA modulates the antiviral response. J Virol 2005; 79:11105-14. [PMID: 16103161 PMCID: PMC1193603 DOI: 10.1128/jvi.79.17.11105-11114.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G(1) arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G(1) arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication.
Collapse
Affiliation(s)
- Joao T Marques
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aldrich WA, Ren C, White AF, Zhou SZ, Kumar S, Jenkins CB, Shaw DR, Strong TV, Triozzi PL, Ponnazhagan S. Enhanced transduction of mouse bone marrow-derived dendritic cells by repetitive infection with self-complementary adeno-associated virus 6 combined with immunostimulatory ligands. Gene Ther 2005; 13:29-39. [PMID: 16136165 DOI: 10.1038/sj.gt.3302601] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The potential of adeno-associated virus (AAV)-based vectors in human gene therapy is being explored for several diseases. Although sustained transgene expression and low vector-associated cellular immunity are attractive features of recombinant (r) AAV, the wider application of rAAV vectors encapsidated in serotype 2 capsid is hampered by poor transduction efficiency in many target tissues. These include ex vivo-generated dendritic cells (DC), which have demonstrated promising immunotherapeutic activity. We report here that efficient transduction of mouse bone marrow-derived DC can be achieved with self-complementary (sc) rAAV encapsidated in serotype 6 capsid. Sequential exposure of DC precursor cultures to IL-4 and GM-CSF with sc rAAV6 encoding the human tumor antigen, carcinoembryonic antigen (CEA), for 7 days followed by activation with CpG oligodeoxynucleotides (ODN) and anti-mouse CD40 antibody resulted in highly efficient transduction of DC. DC surface markers as determined by flow cytometry analysis of sc rAAV6-transduced DC were comparable to nontransduced DC. Efficiency of vector transduction and transgene expression were confirmed by immunostaining and real-time PCR. Microarray analysis of RNA from CpG ODN and CD40 antibody stimulated sc AAV6-transduced DC revealed upregulation of transcription factors and cytokines involved in immune activation and downregulation of inhibitory factors, suggesting a possible role of transcriptional activation in the observed effect. The adoptive transfer into syngeneic mice of the ex vivo-transduced and activated DC resulted in the development of CEA-specific antibody and T-helper 1-associated immune responses. Immunized mice also developed antibody to AAV6 capsid protein, which did not crossreact with AAV2 capsid protein. These studies demonstrate the potential utility of sc rAAV serotype 6-based vectors in transduction of DC for genetic vaccination approaches.
Collapse
Affiliation(s)
- W A Aldrich
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Salucci V, Lena AM, Ciliberto G, Scarselli E, La Monica N. Adenovirus Transduction and Culture Conditions Affect the Immunogenicity of Murine Dendritic Cells. Scand J Immunol 2005; 62:206-17. [PMID: 16179007 DOI: 10.1111/j.1365-3083.2005.01658.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenovirus vectors encoding carcinoembryonic antigen (Ad-CEA) or costimulatory molecules CD80, intercellular adhesion molecule-1 (ICAM-1) and leucocyte function-associated antigen-3 (LFA-3) (Ad-STIM) were used to transduce murine bone marrow-derived dendritic cells (BMDC). BMDC were characterized for expression of activation markers and for their ability to elicit protective immunity against MC38-CEA tumours in wildtype and CEA-transgenic (CEA-tg) mice. To determine optimal culture conditions, studies were conducted using BMDC cultured in heterologous bovine serum or autologous mouse serum. Transduction of cells grown in presence of heterologous serum increased the expression of costimulatory molecules, major histocompatibility complex class II, of IL-6 and IL-12. Upon vaccination, tumour protection was not specific and was observed also with untransduced cells. Transduced BMDC cultured in the presence of autologous serum showed low expression of the activation markers, did not express IL-6 and had reduced ability to stimulate T-cell proliferation. Nonetheless, CEA-specific CD8+ T-cell response was enhanced upon coinfection of Ad-STIM and Ad-CEA in both mouse strains, although this immune response was not sufficient to protect CEA-tg mice from tumour challenge. These studies support the use of BMDC transduced with Ad vectors encoding tumour antigens for cancer immunotherapy and demonstrate that culture conditions greatly affect the immunological properties of these cells.
Collapse
Affiliation(s)
- V Salucci
- Istituto di Ricerche di Biologia Molecolare (IRBM), Pomezia, Italy
| | | | | | | | | |
Collapse
|
32
|
Mian A, Guenther M, Finegold M, Ng P, Rodgers J, Lee B. Toxicity and adaptive immune response to intracellular transgenes delivered by helper-dependent vs. first generation adenoviral vectors. Mol Genet Metab 2005; 84:278-88. [PMID: 15694178 DOI: 10.1016/j.ymgme.2004.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/08/2004] [Accepted: 11/09/2004] [Indexed: 11/26/2022]
Abstract
The host immune response to intracellular transgenes delivered by helper-dependent (HDV) vs. first generation (FGV) adenoviral vectors has been relatively unstudied. Previous studies showed short-term correction of bovine and murine argininosuccinate synthetase (ASS) deficiency after first generation adenoviral-mediated liver gene therapy. To determine whether the host adaptive immune response against the intracellular transgene human ASS (hASS) contributed to loss of gene expression in this setting, the same vector (FGV-CAG-hASS) was injected into Rag-/- (immunodeficient) mice. As in wild-type C57BL/6 (B6) mice, Rag-/- mice also showed significant loss of hASS expression and vector by week 4 post-injection, with concomitant elevation of liver enzymes and disruption of liver architecture. Therefore, direct toxicity due to vector rather than adaptive immune response against hASS primarily accounted for loss of expression with FGVs. In contrast to hASS, beta-galactosidase is strongly immunogenic and activates the host adaptive immune response. Loss of transgene expression was observed in B6 mice with either a FGV or a HDV expressing beta-galactosidase. However, the drop in gene expression observed with the HDV was primarily due to the adaptive immune response, since both beta-galactosidase expression and vector genome were sustained in immunodeficient mice treated with HDV. As expected, with weakly immunogenic hASS, vector genome and hASS expression were sustained with a HDV in spite of ubiquitous expression of the transgene. Therefore, viral gene expression is a primary determinant of intermediate and chronic toxicities at day 3 and week 4 post-injection. However, even in the absence of viral gene expression, strongly immunogenic intracellular transgenes can stimulate clearance of transduced hepatocytes.
Collapse
Affiliation(s)
- Asad Mian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Harui A, Roth MD, Kiertscher SM, Mitani K, Basak SK. Vaccination with helper-dependent adenovirus enhances the generation of transgene-specific CTL. Gene Ther 2005; 11:1617-26. [PMID: 15295617 DOI: 10.1038/sj.gt.3302332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant adenoviral vectors (AdV) have been used experimentally as vaccines to present antigenic transgenes in vivo. However, administration of first-generation vectors (FG-AdV) is often limited by their induction of antiviral immunity. To address this limitation, helper-dependent vectors (HD-AdV) were developed that lack viral coding regions. While the administration of HD-AdV results in long-term gene expression in vivo, their utility as immunogens has never been examined. Direct vaccination with 10(8) blue-forming units (BFU) of HD-AdV injected into C57BL/6 mice lead to superior transgene-specific CTL and antibody responses when compared to the same amount of a FG-AdV. The antibody responses to viral antigens were high in response to both the vectors. As a mechanism to reduce viral exposure, dendritic cells (DC) were transduced with HD-AdV in vitro and then used as a cell-based vaccine. DC transduced with HD-AdV expressed higher levels of transgene-specific mRNA and up to 1200-fold higher levels of transgene protein than did DC transduced with a FG-AdV. In addition, HD-AdV-transduced DC stimulated superior transgene-specific CTL responses when administered in vivo, an effect that was further enhanced by maturing the DC with LPS prior to administration. In contrast to direct immunization with HD-AdV, vaccination with HD-AdV-transduced DC was associated with limited antibody responses against the AdV. We conclude that HD-AdV stimulates superior transgene-specific immune responses when compared to a FG-AdV, and that immunization with a DC-based vaccine maintains this efficacy while limiting antiviral reactivity.
Collapse
Affiliation(s)
- A Harui
- Pulmonary & Critical Care Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1690, USA
| | | | | | | | | |
Collapse
|
34
|
Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int Immunopharmacol 2005; 5:13-21. [PMID: 15589455 DOI: 10.1016/j.intimp.2004.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As arbitrators of the immune response, dendritic cells (DC) are uniquely placed to negotiate the balance between the opposing forces of tolerance and immunity, making them attractive candidates for clinical applications. Accordingly, DC have been used successfully in the treatment of cancer, enhancing immune responses to tumour-associated antigens (TAA) in experimental animal models and phase I clinical trials. A novel source of DC that has recently been described is the embryonic stem (ES) cell whose differentiation in vitro may be directed along multiple lineage pathways. Such pluripotency offers unparalleled opportunities for the treatment of chronic and degenerative disease states by the replacement of affected tissues, a vision which has inspired the emerging field of regenerative medicine. By sharing the genotype of therapeutic cell types, such as cardiomyocytes and dopaminergic neurons derived from the same ES cell line, so-called esDC may offer prospects for reprogramming the immune system to tolerate the grafted tissues. Here, we describe how the unique properties of esDC and the ES cells from which they derive, make them eminently suited to clinical applications, overcoming many of the issues that currently limit the effectiveness of DC-based immune intervention.
Collapse
Affiliation(s)
- Paul J Fairchild
- The University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK.
| | | | | | | |
Collapse
|
35
|
Abstract
Gene therapy is a clinical strategy that may potentially treat an array of genetic and nongenetic diseases, as well as a novel method for drug delivery and vaccination. To these ends, adenovirus vectors are a promising means to deliver specific genes of interest into the patient. A major limitation of the use of adenovirus vectors is the host immune response. Adenovirus vectors induce the innate arm of the immune system that results in inflammation of transduced tissues and efficient clearance of administered vectors. Unlike adaptive immunity, the innate response is mediated by the adenovirus particle and does not require viral transcription. In vivo, the innate immune response involves the induction of cytokines and activation of effector leukocytes that comprise the host response to these agents. A number of interactions with leukocytes and with epithelial and endothelial cells are essential in triggering the host response to adenovirus vectors. Signal transduction via MAP kinases and NF-kappaB-mediated gene transcription are triggered during early virus-cell interactions and are key events in the innate recognition of adenovirus vector transduction. This review aims to describe data examining cellular and molecular mechanisms involved in the adenovirus-mediated innate immune response.
Collapse
Affiliation(s)
- Daniel A Muruve
- Department of Medicine, University of Calgary, Calgary, AB, T2N 4N1 Canada.
| |
Collapse
|
36
|
Sakai Y, Morrison BJ, Burke JD, Park JM, Terabe M, Janik JE, Forni G, Berzofsky JA, Morris JC. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res 2004; 64:8022-8. [PMID: 15520211 DOI: 10.1158/0008-5472.can-03-3442] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are powerful antigen-presenting cells that process antigens and present peptide epitopes in the context of the major histocompatibility complex molecules to generate immune responses. DCs are being studied as potential anticancer vaccines because of their ability to present antigens to naive T cells and to stimulate the expansion of antigen-specific T-cell populations. We investigated an antitumor vaccination using DCs modified by transfer of a nonsignaling neu oncogene, a homologue of human HER-2/neu, in a transgenic model of breast cancer. BALB-neuT mice develop breast cancers as a consequence of mammary gland-specific expression of an activated neu oncogene. We vaccinated BALB-neuT mice with bone marrow-derived DCs transduced with Ad.Neu, a recombinant adenovirus expressing a truncated neu oncoprotein. The vaccine stimulated the production of specific anti-neu antibodies, enhanced interferon-gamma expression by T cells, and prevented or delayed the onset of mammary carcinomas in the mice. Over 65% of vaccinated mice remained tumor free at 28 weeks of age, whereas all of the mice in the control groups developed tumors. When challenged with a neu-expressing breast cancer cell line, vaccinated tumor-free animals had delayed tumor growth compared with controls. The antitumor effect of the vaccine was specific for expression of neu. Studies showed that CD4+ T cells were required in order to generate antitumor immunity. Importantly, the effectiveness of the vaccine was not diminished by preexisting immunity to adenovirus, whereas the protection afforded by vaccination that used direct injection of Ad.Neu was markedly reduced in mice with anti-adenovirus antibody titers. DCs modified by recombinant adenoviruses expressing tumor-associated antigens may provide an effective antitumor vaccination strategy.
Collapse
Affiliation(s)
- Yoshio Sakai
- Cancer Gene Therapy Section, Metabolism Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1374, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jiang Z, Schiedner G, van Rooijen N, Liu CC, Kochanek S, Clemens PR. Sustained Muscle Expression of Dystrophin from a High-Capacity Adenoviral Vector with Systemic Gene Transfer of T Cell Costimulatory Blockade. Mol Ther 2004; 10:688-96. [PMID: 15451453 DOI: 10.1016/j.ymthe.2004.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022] Open
Abstract
Adenoviral vector (Ad)-mediated gene delivery of normal, full-length dystrophin to skeletal muscle provides a promising strategy for the treatment of Duchenne muscular dystrophy (DMD). However, cellular and humoral immune responses induced by vector gene transfer limit the application of this approach. Blockade of the costimulatory interaction between naïve T cells and antigen-presenting cells has proven to be a successful means to diminish immunity induced by gene transfer. In this study we explore the potential of supplementing dystrophin gene delivery to dystrophin-deficient Dmd mouse skeletal muscle with systemic gene delivery of CTLA4Ig and CD40Ig molecules to effect costimulatory blockade. We found that systemic administration of a high-capacity Ad (HC-Ad) vector carrying murine CTLA4Ig (AdmCTLA4Ig) either alone or codelivered with an HC-Ad vector carrying murine CD40Ig (AdmCD40Ig) provided sustained expression of recombinant full-length murine dystrophin from an HC-Ad vector carrying the dystrophin cDNA (AdmDys). The level of AdmDys vector genomes remained stable in animals cotreated with systemic delivery of vectors carrying molecules to block costimulation. In addition, muscle CD4(+) and CD8(+) T cell infiltrates and Th1 cytokine production by splenocytes were reduced. The production of neutralizing antibody against Ad vector was significantly inhibited in mice receiving systemic codelivery of both AdmCTLA4Ig and AdmCD40Ig, but not in the mice treated with AdmCTLA4Ig alone. The results suggested that coblockade of both CD28/B7 and CD40L/CD40 costimulatory pathways is required for effective inhibition of the Ad vector-induced humoral immune response in Dmd mice, whereas blockade of CD28/B7 alone by murine CTLA4Ig would be sufficient for prolonged dystrophin expression in treated muscle.
Collapse
Affiliation(s)
- Zhilong Jiang
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
38
|
Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T, Clark SA, Ross PJ, Meulenbroek RA, Maelandsmo GM, Parks RJ. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 2004; 78:5966-72. [PMID: 15140994 PMCID: PMC415814 DOI: 10.1128/jvi.78.11.5966-5972.2004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helper-dependent adenovirus (HD-Ad) vectors with all adenoviral genes deleted mediate very long-term expression of therapeutic transgenes in a variety of animal models of disease. These vectors are associated with reduced toxicity and improved safety relative to traditional early region 1 deletion first-generation Ad (FG-Ad) vectors. Many studies have clearly demonstrated that FG-Ad vectors induce innate and adaptive immune responses in vivo; however, a comprehensive analysis of host immune responses to HD-Ad vectors has not yet been performed. In DBA/2 mice, intravenous injection of HD-Ad vectors encoding LacZ (HD-AdLacZ) or a murine secreted alkaline phosphatase (HD-AdSEAP) induced an early expression of inflammatory cytokine and chemokine genes in the liver, including interferon-inducible protein 10, macrophage inflammatory protein 2, and tumor necrosis factor alpha, and were expressed in a pattern similar to that induced by FG-Ad vectors encoding AdSEAP. Like AdSEAP, and consistent with the pattern of cellular gene expression, HD-AdLacZ and HD-AdSEAP induced the recruitment of CD11b-positive leukocytes to the transduced liver within hours of administration. AdSEAP also induced a second phase of liver inflammation, consisting of inflammatory gene expression and CD3-positive lymphocytic infiltrates 7 days posttransduction. In contrast, beyond 24 h no infiltrates or expression of inflammatory genes was detected in the livers of mice receiving HD-AdSEAP. Despite the lack of liver inflammation at 7 days, Ad-specific cytotoxic T lymphocytes could be detected in mice receiving HD-AdSEAP. This lack of liver inflammation was not due to reduced transduction since levels of transgene expression and the amounts of vector DNA in the liver were equivalent in mice receiving HD-AdSEAP and AdSEAP. These results demonstrate that HD-Ad vectors induce intact innate but attenuated adaptive immune responses in vivo.
Collapse
Affiliation(s)
- Daniel A Muruve
- Faculty of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB, T2N 4N1 Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Basak SK, Kiertscher SM, Harui A, Roth MD. Modifying Adenoviral Vectors for Use as Gene-Based Cancer Vaccines. Viral Immunol 2004; 17:182-96. [PMID: 15279698 DOI: 10.1089/0882824041310603] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The past decade has produced significant advances in our understanding of antigen-presenting cells, tumor antigens, and other components of the immune response to cancer. Gene-based vaccination is emerging as one of the more promising approaches for loading dendritic cells (DC) with tumor-associated antigens. In this respect, it is proposed that adenoviral (AdV) vectors can deliver high antigen concentrations, promote effective processing and MHC expression, and stimulate potent cell-mediated immunity. While AdV vectors have performed well in pre-clinical vaccine models, their application to patient care has limitations. The in vivo administration of AdV vectors is associated with both innate and adaptive host responses that result in tissue inflammation and injury, viral neutralization, and premature clearance of AdV-transduced cells. A variety of strategies have been developed to address these limitations. The ideal vaccine would avoid vector-related immune responses, have relative specificity for transducing DC, and induce high levels of transgene expression. This review describes the range of host responses to AdV vaccines, identifies strategies to reduce viral recognition and enhance transgene antigen expression, and suggests future approaches to vector development and administration. There is every reason to believe that safer and more effective forms of AdV-based vaccines can be developed and applied to patient therapy.
Collapse
Affiliation(s)
- Saroj K Basak
- Pulmonary and Critical Care Medicine and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690, USA
| | | | | | | |
Collapse
|
40
|
Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS, Butterfield LH. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother 2004; 27:191-200. [PMID: 15076136 DOI: 10.1097/00002371-200405000-00003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) have been shown to require a degree of maturation to stimulate antigen-specific, type 1 cytotoxic T lymphocytes in numerous murine models. Limited data in humans suggest that immature DCs (DC) can induce tolerance, yet a variety of nonmatured DC used clinically have induced antigen-specific type 1 T cells in vivo to various tumor-associated antigens. Use of adenovirus to engineer DCs is an efficient method for delivery of entire genes to DC, but the data on the biologic effects of viral transduction are contradictory. The authors demonstrate that DCs transduced with adenovirus (AdV) clearly become more mature by the phenotypic criterion of upregulation of CD83 and downregulation of CD14. Transduced DCs also decrease production of IL-10, and a subset of transduced DCs produce increased levels of IL-12 p70. This level of maturation is superior to that achieved by treatment of these cells with tumor necrosis factor-alpha or interferon-alpha but less pronounced than with CD40L trimer or CD40L + interferon-gamma. Maturation by AdV transduction alone leads to efficient stimulation of antigen-specific T cells from both healthy donors and patients with advanced cancer using two defined human tumor-associated antigens, MART-1 and AFP. Given the pivotal role of DCs in immune activation, it is important to understand the direct biologic effects of AdV on DCs, as well as the impact these biologic changes have on the stimulation of antigen-specific T cells. This study has important implications for the design of DC-based clinical trials.
Collapse
Affiliation(s)
- Lana Schumacher
- Division of Surgical Oncology, UCLA Medical Center, University of California Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Cho HI, Kim HJ, Oh ST, Kim TG. In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2004; 22:224-36. [PMID: 14615150 DOI: 10.1016/s0264-410x(03)00569-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carcinoembryonic antigen (CEA), which is expressed in several cancer types, is a potential target for specific immunotherapy. In this study, the feasibility of using dendrite cells (DCs) for tumor immunotherapy after transduction with a recombinant adenovirus containing CEA gene (AdVCEA) was investigated. The recombinant AdV provided a highly efficient reproducible gene transfer into monocyte-derived DCs and its efficiency was increased in a multiplicity of infection (MOI)-dependent manner. As consequence of AdVCEA infection, the level of surface CEA on DCs was slightly increased and the dose (MOI) of AdVCEA had no effect on the surface CEA expression. However, the intracellular CEA expression was impressively increased in an MOI-dependent manner. Moreover, the AdVCEA infection had no appreciable effect on apoptosis of DCs compared with that of mock-infected and actinomycin D (AcD)-treated DCs. The AdVCEA-infected DCs-induced CEA-specific proliferative responses and it was higher than that of peptide-loaded DCs. The T-cell lines, primed by the recombinant AdVCEA-infected DCs in vitro, not only recognized CEA peptide-loaded target cells but also CEA-expressing tumor cell lines in a human leukocyte antigen (HLA) class I-restricted manner. Cytotoxic activity toward target cells was found to be mediated primarily by CD8(+) T-cells, although both CD8(+) cells and CD4(+) cells were able to lyse CEA peptide-loaded target cells. These preliminary results suggest that DCs, transduced with AdV encoding CEA, may be used for the development of adoptive cellular immunotherapy and DC-based cancer vaccine for the treatment of CEA-expressing tumors.
Collapse
Affiliation(s)
- Hyun-Il Cho
- Department of Microbiology and Immunology, College of Medicine, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, 137-701, Seoul, South Korea
| | | | | | | |
Collapse
|
42
|
Tuettenberg A, Jonuleit H, Tüting T, Brück J, Biermann V, Kochanek S, Knop J, Enk AH. Early Adenoviral Gene Expression Mediates Immunosuppression by Transduced Dendritic Cell (DC): Implications for Immunotherapy Using Genetically Modified DC. THE JOURNAL OF IMMUNOLOGY 2004; 172:1524-30. [PMID: 14734730 DOI: 10.4049/jimmunol.172.3.1524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long-lasting, high-level gene expression in the absence of a toxic or inflammatory response to viral Ags is necessary for the successful application of genetically modified dendritic cell (DC). We previously demonstrated that efficient transduction of mature DC using DeltaE1DeltaE3 adenoviruses suppressed their stimulatory capacity for T cells. The current study was designed to investigate in more detail the suppressive effect of Ad-DC. We demonstrate that immunosuppression is not mediated by alterations in the T cell phenotype or cytokine profiles released by stimulated T cells. Also DC phenotypes are not affected. However, we demonstrate a cell cycle arrest of the T cell population stimulated by adenovirally transduced DC. Surprisingly, only freshly transduced DC are perturbed in their stimulatory capacity. Experiments using cycloheximide to block early intracellular viral gene expression showed that viral genes expressed in DC are responsible for this transient immunosuppression. In agreement with these findings, high-capacity (gutless) Ad-vectors that differ in viral gene expression from conventional DeltaE1DeltaE3 adenovirus are suitable for an efficient transduction of human DC. DC transduced with gutless Ad-vectors showed a high allostimulatory capacity for CD4(+) and CD8(+) T cells. Thus, the immunosuppressive effect of DeltaE1DeltaE3 Ad-transduced mature DC seems to be the result of early viral gene expression in DC that can be prevented using gutless Ad-vectors for transduction. These results have important implications for the use of genetically modified DC for therapeutic application.
Collapse
|
43
|
Zhang HG, Hsu HC, Yang PA, Yang X, Wu Q, Liu Z, Yi N, Mountz JD. Identification of multiple genetic loci that regulate adenovirus gene therapy. Gene Ther 2003; 11:4-14. [PMID: 14681692 DOI: 10.1038/sj.gt.3302136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A key aspect of the immune response to adenovirus (Ad) gene therapy is the generation of a cytotoxic T-cell (CTL) response. To better understand the genetic network underlying these events, 20 strains of C57BL/6 x DBA/2 (BXD) recombinant inbred (RI) mice were administered with AdLacZ and analyzed at days 7, 21, 30, and 50 for liver beta-galactosidase (LacZ) expression and CTL response. Sera levels of interferon gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) were analyzed at different times after AdLacZ. There was a distinct strain-dependent expression of LacZ, which was strongly correlated with the CTL response. Among the five BXD RI strains that exhibited significantly prolonged LacZ expression, four also exhibited a marked defect in the production of Ad-specific CTL. There was a strong correlation between the sera levels of IFN-gamma, TNF-alpha, and IL-6, but cytokine responses were not significantly correlated with LacZ expression or the CTL response. Quantitative trait loci regulating LacZ on day 30 were found on chromosome (Chr) 19 (33 cM) and Chr 15 (42.8 cM). Cytotoxicity mapped to Chr 7 (41.0 and 57.4-65.2 cM), Chr 15 (61.7 cM), and Chr X (27.8 cM). IFN-gamma production mapped to Chr 18 (22, 27, and 32 cM) and Chr 11 (64.0 cM). TNF-alpha and IL-6 production mapped to Chr 6 (91.5 cM) Chr 9 (42.0 cM) and Chr 8 (52 and 73.0 cM). These results indicate that different strains of mice exhibit different pathways for effective clearance of AdLacZ depending on genetic polymorphisms and interactions at multiple genetic loci.
Collapse
Affiliation(s)
- H-G Zhang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Recent advances in pancreatic islet transplantation emphasize the potential of this approach for the long-term control of blood glucose levels in diabetic patients. However, tissue-replacement therapy will become widely available as a treatment for diabetes only when new sources of islets and insulin-producing cells are found. Here, we review recent evidence that documents the potential of mature liver as a source of tissue for generating a functional endocrine pancreas, by ectopic expression of pancreatic transcription and differentiation factors. When key events in the transconversion process have been identified, using the liver as a source of pancreatic tissue might provide a valuable approach for replacing impaired beta cell function in diabetics.
Collapse
|
45
|
Molinier-Frenkel V, Prévost-Blondel A, Hong SS, Lengagne R, Boudaly S, Magnusson MK, Boulanger P, Guillet JG. The maturation of murine dendritic cells induced by human adenovirus is mediated by the fiber knob domain. J Biol Chem 2003; 278:37175-82. [PMID: 12855705 DOI: 10.1074/jbc.m303496200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the mechanism of adenovirus serotype 5 (Ad5)-mediated maturation of bone marrow-derived murine dendritic cells (DC) using (i) Ad5 vectors with wild-type capsid (AdE1 degrees, AdGFP); (ii) Ad5 vector mutant deleted of the fiber C-terminal knob domain (AdGFPDeltaknob); and (iii) capsid components isolated from Ad5-infected cells or expressed as recombinant proteins, hexon, penton, penton base, full-length fiber, fiber knob, and fiber mutants. We found that penton capsomer (penton base linked to its fiber projection), full-length fiber protein, and its isolated knob domain were all capable of inducing DC maturation, whereas no significant DC maturation was observed for hexon or penton base alone. This capacity was severely reduced for AdGFPDeltaknob and for fiber protein deletion mutants lacking the beta-stranded region F of the knob (residues Leu-485-Thr-486). The DC maturation effect was fully retained in a recombinant fiber protein deleted of the HI loop (FiDeltaHI), a fiber (Fi) deletion mutant that failed to trimerize, suggesting that the fiber knob-mediated DC activation did not depend on the integrity of the HI loop and on the trimeric status of the fiber. Interestingly, peptide-pulsed DC that had been stimulated with Ad5 knob protein induced a potent CD8+ T cell response in vivo.
Collapse
Affiliation(s)
- Valérie Molinier-Frenkel
- Département d'Immunologie, Institut Cochin, INSERM U567, CNRS UMR 8104, Laboratoire membre de l'Institut Fédératif de Recherche 116, Université R. Descartes, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 2003; 278:31950-7. [PMID: 12775714 DOI: 10.1074/jbc.m303127200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic and duodenal homeobox gene-1 (PDX-1) regulates pancreas development during embryogenesis, whereas in the adult it controls beta-cell function. Here we analyze whether PDX-1 functions as a pancreatic differentiation factor and a bona fide master regulator when ectopically expressed in mature fully differentiated liver in vivo. By ectopic and transient PDX-1 expression in liver in vivo, using the first generation recombinant adenoviruses, we demonstrate that PDX-1 induces in liver a wide repertoire of both exocrine and endocrine pancreatic gene expression. Moreover, PDX-1 induces its own expression (auto-induction), which in turn may explain the long lasting nature of the "liver to pancreas" transdifferentiation. Insulin as well glucagon-producing cells are mainly located in the proximity of hepatic central veins, possibly allowing direct hormone release into the bloodstream, without affecting normal hepatic function. Importantly, we demonstrate that hepatic insulin production triggered by Ad-CMV-PDX-1 recombinant adenovirus administration is functional and prevents streptozotocin-induced hyperglycemia in Balb/c mice even 8 months after the initial treatment. We conclude that PDX-1 plays an important instructive role in pancreas differentiation, not only from primitive gut endoderm but also from mature liver. Transconversion of liver to pancreas may serve as a novel approach for generating endocrine-pancreatic tissue that can replace malfunctioning beta-cells in diabetics.
Collapse
Affiliation(s)
- Idit Ber
- Endocrine Institute, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|