1
|
Rioseras B, Bueno-García E, García-Torre A, López-Martínez R, Moro-García MA, Alonso-Álvarez S, Menéndez-García V, Lluna-González A, Sousa-Fernández A, Fernández-Gudin M, Campos-Riopedre L, Castro-Del Cueto C, Pérez-Fernández AB, Alonso-Rodríguez A, Menéndez-Peña C, Menéndez-Peña L, García-Arnaldo N, Feito-Díaz E, Fernández-Lorences A, Fraile-Manzano A, Fernández-Iglesias C, Rivera JA, Pérez-Fonseca C, Urdiales-Ruano E, Debán-Fernández M, Mendes-Moreira H, Herrero-Puente P, Alonso-Arias R. Characterisation of specific responses to three models of viral antigens in immunocompetent older adults. Immun Ageing 2024; 21:86. [PMID: 39639316 PMCID: PMC11619616 DOI: 10.1186/s12979-024-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Memory responses to the antigens that an individual encounters throughout life may vary with the intensity and duration of antigen contacts or even with changes in immune status over time. This work aims to characterise specific responses to latent CMV, seasonal influenza and novel SARS-CoV-2 infections in immunocompetent individuals over 60 years of age. Specific cellular and humoral responses were identified by IFN-γ and granzyme B release by ELISpot and antibody level measurement. T lymphocyte subpopulation phenotypes were characterised by flow cytometry. RESULTS Cellular and humoral responses to these viruses were detected in almost all patients. Influenza and SARS-CoV-2 cellular responses were positively correlated. There was no significant correlation between CMV and influenza or SARS-CoV-2 responses although both were consistently lower in CMV-seropositive patients. CMV responses were negatively correlated with the levels of the least differentiated subsets of T lymphocytes, and positively correlated with the most differentiated ones, contrary to what happened with the influenza responses. Nevertheless, SARS-CoV-2 cellular responses were negatively correlated with the most differentiated CD8+ T lymphocytes, while humoral responses were negatively correlated with the least differentiated T lymphocytes. Responses to the three viruses were correlated with a Th1/Th2/Th17 balance in favour of Th1. CONCLUSIONS The results indicate that memory responses differ depending on the durability of the antigen stimulus. Cellular responses to novel pathogens resemble those generated by seasonal but not CMV infection. Subpopulation distribution and the level of specific T lymphocytes against previous pathogens could be used as immunocompetent status biomarkers in older adults reflecting their ability to generate memory responses to new pathogens.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Rocío López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
- Medicine Laboratory Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Sara Alonso-Álvarez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Victoria Menéndez-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Alba Lluna-González
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Alejandra Sousa-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Marta Fernández-Gudin
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Laura Campos-Riopedre
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Corina Castro-Del Cueto
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Ana Belén Pérez-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Ana Alonso-Rodríguez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carla Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Lara Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Noelia García-Arnaldo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Estefanía Feito-Díaz
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Adriana Fernández-Lorences
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Agustín Fraile-Manzano
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carolina Fernández-Iglesias
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Jose Arturo Rivera
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carmen Pérez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Estíbaliz Urdiales-Ruano
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - María Debán-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Hugo Mendes-Moreira
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Pablo Herrero-Puente
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain.
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain.
| |
Collapse
|
2
|
Llitjos JF, Carrol ED, Osuchowski MF, Bonneville M, Scicluna BP, Payen D, Randolph AG, Witte S, Rodriguez-Manzano J, François B. Enhancing sepsis biomarker development: key considerations from public and private perspectives. Crit Care 2024; 28:238. [PMID: 39003476 PMCID: PMC11246589 DOI: 10.1186/s13054-024-05032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024] Open
Abstract
Implementation of biomarkers in sepsis and septic shock in emergency situations, remains highly challenging. This viewpoint arose from a public-private 3-day workshop aiming to facilitate the transition of sepsis biomarkers into clinical practice. The authors consist of international academic researchers and clinician-scientists and industry experts who gathered (i) to identify current obstacles impeding biomarker research in sepsis, (ii) to outline the important milestones of the critical path of biomarker development and (iii) to discuss novel avenues in biomarker discovery and implementation. To define more appropriately the potential place of biomarkers in sepsis, a better understanding of sepsis pathophysiology is mandatory, in particular the sepsis patient's trajectory from the early inflammatory onset to the late persisting immunosuppression phase. This time-varying host response urges to develop time-resolved test to characterize persistence of immunological dysfunctions. Furthermore, age-related difference has to be considered between adult and paediatric septic patients. In this context, numerous barriers to biomarker adoption in practice, such as lack of consensus about diagnostic performances, the absence of strict recommendations for sepsis biomarker development, cost and resources implications, methodological validation challenges or limited awareness and education have been identified. Biomarker-guided interventions for sepsis to identify patients that would benefit more from therapy, such as sTREM-1-guided Nangibotide treatment or Adrenomedullin-guided Enibarcimab treatment, appear promising but require further evaluation. Artificial intelligence also has great potential in the sepsis biomarker discovery field through capability to analyse high volume complex data and identify complex multiparametric patient endotypes or trajectories. To conclude, biomarker development in sepsis requires (i) a comprehensive and multidisciplinary approach employing the most advanced analytical tools, (ii) the creation of a platform that collaboratively merges scientific and commercial needs and (iii) the support of an expedited regulatory approval process.
Collapse
Affiliation(s)
- Jean-Francois Llitjos
- Open Innovation and Partnerships (OI&P), bioMérieux S.A., Marcy l'Etoile, France.
- Anesthesiology and Critical Care Medicine, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection Veterinary and Ecological Sciences, Liverpool, UK
- Department of Paediatric Infectious Diseases and Immunology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Marc Bonneville
- Medical and Scientific Affairs, Institut Mérieux, Lyon, France
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Didier Payen
- Paris 7 University Denis Diderot, Paris Sorbonne, Cité, France
| | - Adrienne G Randolph
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Bruno François
- Medical-Surgical Intensive Care Unit, Réanimation Polyvalente, Dupuytren University Hospital, CHU de Limoges, 2 Avenue Martin Luther King, 87042, Limoges Cedex, France.
- Inserm CIC 1435, Dupuytren University Hospital, Limoges, France.
- Inserm UMR 1092, Medicine Faculty, University of Limoges, Limoges, France.
| |
Collapse
|
3
|
Bliss CM, Nachbagauer R, Mariottini C, Cuevas F, Feser J, Naficy A, Bernstein DI, Guptill J, Walter EB, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Coughlan L. A chimeric haemagglutinin-based universal influenza virus vaccine boosts human cellular immune responses directed towards the conserved haemagglutinin stalk domain and the viral nucleoprotein. EBioMedicine 2024; 104:105153. [PMID: 38805853 PMCID: PMC11154122 DOI: 10.1016/j.ebiom.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).
Collapse
Affiliation(s)
- Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Cancer & Genetics and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Mariottini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frans Cuevas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jodi Feser
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Abdi Naficy
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - David I Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Guptill
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Center for Vaccine Development and Global Health (CVD), Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Kittrakulrat J, Tiankanon K, Kerr SJ, Wattanatorn S, Udomkarnjananun S, Tungsanga S, Chaiteerakij R, Praditpornsilpa K, Eiam-Ong S, Avihingsanon Y, Tiranathanagul K, Vanichanan J, Townamchai N. A Randomized Controlled Study of Efficacy and Safety of Accelerated Versus Standard Hepatitis B Vaccination in Patients With Advanced CKD. Kidney Int Rep 2024; 9:853-862. [PMID: 38770057 PMCID: PMC11103956 DOI: 10.1016/j.ekir.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Hepatitis B virus (HBV) vaccination is crucial for seronegative patients with advanced chronic kidney disease (CKD) for protection during dialysis while preparing for transplantation. A standard regimen for HBV vaccination requires 24 weeks to be completed. An accelerated HBV vaccination regimen completed within 8 weeks has shown early effective seroconversion in healthcare workers. However, data for patients with advanced CKD are limited. Methods A randomized controlled trial was conducted in patients with advanced CKD (estimated glomerular filtration rate [GFR] <30 ml/min per 1.73 m2) and patients on dialysis. The patients were randomly assigned to either a standard HBV vaccination regimen (Engerix B; 40 μg at 0, 4, 8, and 24 weeks) or an accelerated regimen (40 μg at 0, 1, 4, and 8 weeks). The hepatitis B surface antibodies (anti-HBs) were measured at 12, 28, and 52 weeks. Seroconversion were defined as anti-HBs ≥10 IU/l. Results At 12 weeks, among the intention-to-treat (ITT) population of 133 participants (65 in the accelerated and 68 in the standard groups), the accelerated group demonstrated significantly higher rates of seroconversion (83.08% vs. 63.24%, P = 0.01). In the per-protocol (PP) analysis of 125 patients (62 in the standard and 63 in the accelerated groups), the accelerated group exhibited higher seroconversion rate compared with the standard group (85.71% vs. 69.35%, P = 0.03). At 28 and 52 weeks, the seroconversion rates were similar between the 2 groups. Conclusion In patients with advanced CKD, the accelerated HBV vaccination regimen demonstrated a significantly higher seroconversion rate at 12 weeks of vaccination. This finding suggests that the accelerated regimen is an effective option to achieve rapid seroconversion before initiating hemodialysis or before undergoing kidney transplantation.
Collapse
Affiliation(s)
- Jathurong Kittrakulrat
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, King Prajadhipok Memorial Hospital, Chanthaburi, Thailand
| | | | - Stephen J. Kerr
- Biostatistics Excellence Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- HIV-NAT, The Thai Red Cross AIDS Research Center, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Salin Wattanatorn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somkanya Tungsanga
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Nephrology and Immunology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | - Roongruedee Chaiteerakij
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Hemodialysis center, Benchakitti park Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Khajohn Tiranathanagul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Hemodialysis center, Benchakitti park Hospital, Bangkok, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
6
|
Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A, Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. A spatial sequencing atlas of age-induced changes in the lung during influenza infection. Nat Commun 2023; 14:6597. [PMID: 37852965 PMCID: PMC10584893 DOI: 10.1038/s41467-023-42021-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ryan J Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Donia Alson
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew R Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Soegiarto G, Purnomosari D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. PATHOPHYSIOLOGY 2023; 30:155-173. [PMID: 37218912 DOI: 10.3390/pathophysiology30020014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
In recent years, the elderly has become a rapidly growing proportion of the world's population as life expectancy is extending. Immunosenescence and inflammaging contribute to the increased risk of chronic non-communicable and acute infectious diseases. Frailty is highly prevalent in the elderly and is associated with an impaired immune response, a higher propensity to infection, and a lower response to vaccines. Additionally, the presence of uncontrolled comorbid diseases in the elderly also contributes to sarcopenia and frailty. Vaccine-preventable diseases that threaten the elderly include influenza, pneumococcal infection, herpes zoster, and COVID-19, which contribute to significant disability-adjusted life years lost. Previous studies had shown that conventional vaccines only yielded suboptimal protection that wanes rapidly in a shorter time. This article reviews published papers on several vaccination strategies that were developed for the elderly to solve these problems: more immunogenic vaccine formulations using larger doses of antigen, stronger vaccine adjuvants, recombinant subunit or protein conjugated vaccines, newly developed mRNA vaccines, giving booster shots, and exploring alternative routes of administration. Included also are several publications on senolytic medications under investigation to boost the immune system and vaccine response in the elderly. With all those in regard, the currently recommended vaccines for the elderly are presented.
Collapse
Affiliation(s)
- Gatot Soegiarto
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
- Master Program in Immunology, Postgraduate School, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Shin MS, Park HJ, Young J, Kang I. Implication of IL-7 receptor alpha chain expression by CD8 + T cells and its signature in defining biomarkers in aging. Immun Ageing 2022; 19:66. [PMID: 36544153 PMCID: PMC9768896 DOI: 10.1186/s12979-022-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
CD8+ T cells play an important role in host defense against infections and malignancies as well as contribute to the development of inflammatory disorders. Alterations in the frequency of naïve and memory CD8+ T cells are one of the most significant changes in the immune system with age. As the world population rapidly ages, a better understanding of aging immune function or immunosenescence could become a basis for discovering treatments of illnesses that commonly occur in older adults. In particular, biomarkers for immune aging could be utilized to identify individuals at high risk of developing age-associated conditions and help monitor the efficacy of therapeutic interventions targeting such conditions. This review details the possible role of CD8+ T cell subsets expressing different levels of the cytokine receptor IL-7 receptor alpha chain (IL-7Rα) and the gene signature associated with IL-7Rα as potential biomarkers for immune aging given the association of CD8+ T cells in host defense, inflammation, and immunosenescence.
Collapse
Affiliation(s)
- Min Sun Shin
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Hong-Jai Park
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Juan Young
- Departments of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Insoo Kang
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Knežević S, Kosanović D, Dragačević L, Živković I, Ilić V, Hajduković L, Savić O, Minić R. Age and gender associated changes in immunoglobulin subclass levels specific to S. pneumoniae, serotype 1. Comp Immunol Microbiol Infect Dis 2022; 87:101834. [DOI: 10.1016/j.cimid.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
|
10
|
Leone DM, Park HJ, Unlu S, Gurvitz M, Kang I, Elder RW. T Cell Response to Influenza Vaccination Remains Intact in Adults with Congenital Heart Disease Who Underwent Early Thymectomy. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 8:100359. [PMID: 35600131 PMCID: PMC9122016 DOI: 10.1016/j.ijcchd.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Introduction T cells developed in the thymus play a key role in vaccine immunity. Thymectomy occurs during infant congenital heart surgery and results in an altered T cell distribution. We investigated if adults with congenital heart disease (ACHD) who underwent early thymectomy have a diminished response to influenza vaccination. Methods Blood samples from ACHD with early thymectomy ≤ 1 year of age (ACHD-ET; n = 12), no thymectomy (ACHD-NT; n = 8), and healthy controls (HC; n = 14) were collected prior to and 4 weeks after influenza vaccination. Flow cytometric analysis of T cell subsets and vaccine-specific cytokine expressing CD4+ T cells as well as hemagglutination inhibition (HI) assays were completed. Results The mean age of the cohort was 34 ± 10.6 years and similar in all groups. The mean frequencies of naïve CD4+ and CD8+ T cells were lower in ACHD-ET than in HC (32.7% vs. 46.5%, p = 0.027 and 37.2% vs. 57.4%, p = 0.032, respectively). There was a rise in the frequency of memory CD4+ and CD8+ T cells in the ACHD-ET group. The ACHD-NT had no statistical difference from either group. The frequencies of influenza-specific memory CD4+ T cells expressing IFN-γ and TNF-α were increased after vaccination across all groups (p < 0.05). Conclusions ACHD-ET have fewer naïve T cells, suggesting immunosenescence. Despite this, they show an adequate T Cell response to vaccination in young adulthood. Our findings support routine vaccination is effective in this population, but research into older ACHD is necessary.
Collapse
Affiliation(s)
- David M Leone
- Section of Pediatric Cardiology, Yale School of Medicine, New Haven, CT
| | - Hong-Jai Park
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Serhan Unlu
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Michelle Gurvitz
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
| | - Insoo Kang
- Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT
| | - Robert W Elder
- Section of Pediatric Cardiology, Yale School of Medicine, New Haven, CT
- Adult Congenital Heart Program, Yale School of Medicine, New Haven, CT
| |
Collapse
|
11
|
Thyagarajan B, Faul J, Vivek S, Kim JK, Nikolich-Žugich J, Weir D, Crimmins EM. Age-Related Differences in T-Cell Subsets in a Nationally Representative Sample of People Older Than Age 55: Findings From the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2022; 77:927-933. [PMID: 34633448 PMCID: PMC9071411 DOI: 10.1093/gerona/glab300] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Though T-cell immunosenescence is a major risk factor for age-related diseases, susceptibility to infections, and responses to vaccines, differences in T-cell subset counts and representation by age and sex have not been determined for a large sample representative of the national population of the United States. We evaluated the counts of T-cell subsets including total, CD4+, and CD8+ T cells and their naïve (Tn), effector memory (Tem), and effector subsets, in the context of age, sex, and exposure to cytomegalovirus (CMV) infection among 8 848 Health and Retirement Study participants, a nationally representative study of adults older than 55 years. Total T cells (CD3+) and CD4+ cells declined markedly with age; CD8+ T cells declined somewhat less. While CD4+ T cell declines with age occurred for both CMV-seropositive and CMV-seronegative groups, total T cells and CD8+ cells were both substantially higher among the CMV-seropositive group. Numbers of Tn CD4+ and CD8+ cells were strongly and inversely related to age, were better conserved among women, and were independent of CMV seropositivity. By contrast, accumulation of the CD8+ and CD4+ Tem and effector subsets was CMV-associated. This is the first study to provide counts of T-cell subsets by age and sex in a national sample of US adults older than the age of 55 years. Understanding T-cell changes with age and sex is an important first step in determining strategies to reduce its impact on age-related diseases and susceptibility to infection.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jung K Kim
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - David Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Vakili ME, Faghih Z, Sarvari J, Doroudchi M, Hosseini SN, Kabelitz D, Kalantar K. Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunol Res 2022; 70:469-480. [PMID: 35445310 PMCID: PMC9273562 DOI: 10.1007/s12026-022-09278-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Jalali S, Harpur CM, Piers AT, Auladell M, Perriman L, Li S, An K, Anderson J, Berzins SP, Licciardi PV, Ashhurst TM, Konstantinov IE, Pellicci DG. A high-dimensional cytometry atlas of peripheral blood over the human life span. Immunol Cell Biol 2022; 100:805-821. [PMID: 36218032 PMCID: PMC9828744 DOI: 10.1111/imcb.12594] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Age can profoundly affect susceptibility to a broad range of human diseases. Children are more susceptible to some infectious diseases such as diphtheria and pertussis, while in others, such as coronavirus disease 2019 and hepatitis A, they are more protected compared with adults. One explanation is that the composition of the immune system is a major contributing factor to disease susceptibility and severity. While most studies of the human immune system have focused on adults, how the immune system changes after birth remains poorly understood. Here, using high-dimensional spectral flow cytometry and computational methods for data integration, we analyzed more than 50 populations of immune cells in the peripheral blood, generating an immune cell atlas that defines the healthy human immune system from birth up to 75 years of age. We focused our efforts on children under 18 years old, revealing major changes in immune cell populations after birth and in children of schooling age. Specifically, CD4+ T effector memory cells, Vδ2+ gamma delta (γδ)T cells, memory B cells, plasmablasts, CD11c+ B cells and CD16+ CD56bright natural killer (NK) cells peaked in children aged 5-9 years old, whereas frequencies of T helper 1, T helper 17, dendritic cells and CD16+ CD57+ CD56dim NK cells were highest in older children (10-18 years old). The frequency of mucosal-associated invariant T cells was low in the first several years of life and highest in adults between 19 and 30 years old. Late adulthood was associated with fewer mucosal-associated invariant T cells and Vδ2+ γδ T cells but with increased frequencies of memory subsets of B cells, CD4+ and CD8+ T cells and CD57+ NK cells. This human immune cell atlas provides a critical resource to understand changes to the immune system during life and provides a reference for investigating the immune system in the context of human disease. This work may also help guide future therapies that target specific populations of immune cells to protect at-risk populations.
Collapse
Affiliation(s)
- Sedigheh Jalali
- Murdoch Children's Research InstituteMelbourneVICAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVICAustralia
| | | | - Adam T Piers
- Murdoch Children's Research InstituteMelbourneVICAustralia,Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineMelbourneVICAustralia
| | - Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia,Global Product Development Consulting for Infectious DiseasesPharmaceutical Product Development (PPD), Part of Thermo Fisher ScientificBennekomThe Netherlands
| | - Louis Perriman
- Murdoch Children's Research InstituteMelbourneVICAustralia,The Fiona Elsey Cancer Research InstituteBallaratVICAustralia,Federation UniversityBallaratVICAustralia
| | - Shuo Li
- Murdoch Children's Research InstituteMelbourneVICAustralia
| | - Kim An
- Murdoch Children's Research InstituteMelbourneVICAustralia,Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineMelbourneVICAustralia
| | - Jeremy Anderson
- Murdoch Children's Research InstituteMelbourneVICAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVICAustralia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia,The Fiona Elsey Cancer Research InstituteBallaratVICAustralia,Federation UniversityBallaratVICAustralia
| | - Paul V Licciardi
- Murdoch Children's Research InstituteMelbourneVICAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVICAustralia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research FacilityThe University of Sydney and Centenary InstituteSydneyNSWAustralia,School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Igor E Konstantinov
- Murdoch Children's Research InstituteMelbourneVICAustralia,Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineMelbourneVICAustralia,Cardiothoracic SurgeryRoyal Children's HospitalMelbourneVICAustralia
| | - Daniel G Pellicci
- Murdoch Children's Research InstituteMelbourneVICAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVICAustralia,Melbourne Centre for Cardiovascular Genomics and Regenerative MedicineMelbourneVICAustralia,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
14
|
Harris R, Yang J, Pagan K, Cho SJ, Stout-Delgado H. Antiviral Gene Expression in Young and Aged Murine Lung during H1N1 and H3N2. Int J Mol Sci 2021; 22:ijms222212097. [PMID: 34829979 PMCID: PMC8618707 DOI: 10.3390/ijms222212097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
Influenza is a respiratory virus that alone or in combination with secondary bacterial pathogens can contribute to the development of acute pneumonia in persons >65 years of age. Host innate immune antiviral signaling early in response to influenza is essential to inhibit early viral replication and guide the initiation of adaptive immune responses. Using young adult (3 months) and aged adult mice infected with mouse adapted H1N1 or H3N2, the results of our study illustrate dysregulated and/or diminished activation of key signaling pathways in aged lung contribute to increased lung inflammation and morbidity. Specifically, within the first seven days of infection, there were significant changes in genes associated with TLR and RIG-I signaling detected in aged murine lung in response to H1N1 or H3N2. Taken together, the results of our study expand our current understanding of age-associated changes in antiviral signaling in the lung.
Collapse
MESH Headings
- A549 Cells
- Animals
- DEAD Box Protein 58/genetics
- Disease Models, Animal
- Gene Expression Regulation, Viral/genetics
- Humans
- Immunity, Innate/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/genetics
- Influenza, Human/microbiology
- Influenza, Human/virology
- Lung/metabolism
- Lung/microbiology
- Lung/pathology
- Mice
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/microbiology
- Orthomyxoviridae Infections/virology
- Pneumonia/genetics
- Pneumonia/microbiology
- Pneumonia/virology
- Toll-Like Receptors/genetics
- Virus Replication/genetics
Collapse
|
15
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
16
|
Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, Swaminathan G. Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Front Immunol 2021; 12:643255. [PMID: 34054810 PMCID: PMC8155485 DOI: 10.3389/fimmu.2021.643255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence in clinical and preclinical studies indicates that success of immunotherapies can be impacted by the state of the microbiome. Understanding the role of the microbiome during immune-targeted interventions could help us understand heterogeneity of treatment success, predict outcomes, and develop additional strategies to improve efficacy. In this review, we discuss key studies that reveal reciprocal interactions between the microbiome, the immune system, and the outcome of immune interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination as two crucial therapeutic areas with strong potential for immunomodulation by the microbiota. By juxtaposing studies across both therapeutic areas, we highlight three factors prominently involved in microbial immunomodulation: short-chain fatty acids, microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued interrogation of these models and pathways may reveal critical mechanistic synergies between the microbiome and the immune system, resulting in novel approaches designed to influence the efficacy of immune-targeted interventions.
Collapse
Affiliation(s)
- Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Damien J. Cabral
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
- Infectious Disease and Vaccine Research, Merck & Co., Inc., West Point, PA, United States
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| |
Collapse
|
17
|
Bueno SM, Abarca K, González PA, Gálvez NM, Soto JA, Duarte LF, Schultz BM, Pacheco GA, González LA, Vázquez Y, Ríos M, Melo-González F, Rivera-Pérez D, Iturriaga C, Urzúa M, Dominguez A, Andrade CA, Berrios RV, Canedo-Marroquín G, Covián C, Moreno-Tapia D, Saavedra F, Vallejos OP, Donato P, Espinoza P, Fuentes D, González M, Guzmán P, Muñoz-Venturelli P, Pérez CM, Potin M, Rojas A, Fasce R, Fernández J, Mora J, Ramírez E, Gaete-Argel A, Oyarzún-Arrau A, Valiente-Echeverría F, Soto-Rifo R, Weiskopf D, Sette A, Zeng G, Meng W, González-Aramundiz JV, Kalergis AM. Interim report: Safety and immunogenicity of an inactivated vaccine against SARS-CoV-2 in healthy chilean adults in a phase 3 clinical trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.31.21254494. [PMID: 35441164 PMCID: PMC9016657 DOI: 10.1101/2021.03.31.21254494] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND The ongoing COVID-19 pandemic has had a significant impact worldwide, with an incommensurable social and economic burden. The rapid development of safe and protective vaccines against this disease is a global priority. CoronaVac is a vaccine prototype based on inactivated SARS-CoV-2, which has shown promising safety and immunogenicity profiles in pre-clinical studies and phase 1/2 trials in China. To this day, four phase 3 clinical trials are ongoing with CoronaVac in Brazil, Indonesia, Turkey, and Chile. This article reports the safety and immunogenicity results obtained in a subgroup of participants aged 18 years and older enrolled in the phase 3 Clinical Trial held in Chile. METHODS This is a multicenter phase 3 clinical trial. Healthcare workers aged 18 years and older were randomly assigned to receive two doses of CoronaVac or placebo separated by two weeks (0-14). We report preliminary safety results obtained for a subset of 434 participants, and antibody and cell-mediated immunity results obtained in a subset of participants assigned to the immunogenicity arm. The primary and secondary aims of the study include the evaluation of safety parameters and immunogenicity against SARS-CoV-2 after immunization, respectively. This trial is registered at clinicaltrials.gov ( NCT04651790 ). FINDINGS The recruitment of participants occurred between November 27 th , 2020, until January 9 th , 2021. 434 participants were enrolled, 397 were 18-59 years old, and 37 were ≥60 years old. Of these, 270 were immunized with CoronaVac, and the remaining 164 participants were inoculated with the corresponding placebo. The primary adverse reaction was pain at the injection site, with a higher incidence in the vaccine arm (55.6%) than in the placebo arm (40.0%). Moreover, the incidence of pain at the injection site in the 18-59 years old group was 58.4% as compared to 32.0% in the ≥60 years old group. The seroconversion rate for specific anti-S1-RBD IgG was 47.8% for the 18-59 years old group 14 days post immunization (p.i.) and 95.6% 28 and 42 days p.i. For the ≥60 years old group, the seroconversion rate was 18.1%, 100%, and 87.5% at 14, 28, and 42 days p.i., respectively. Importantly, we observed a 95.7% seroconversion rate in neutralizing antibodies for the 18-59 years old group 28 and 42 days p.i. The ≥60 years old group exhibited seroconversion rates of 90.0% and 100% at 28 and 42 days p.i. Interestingly, we did not observe a significant seroconversion rate of anti-N-SARS-CoV-2 IgG for the 18-59 years old group. For the participants ≥60 years old, a modest rate of seroconversion at 42 days p.i. was observed (37.5%). We observed a significant induction of a T cell response characterized by the secretion of IFN-γ upon stimulation with Mega Pools of peptides derived from SARS-CoV-2 proteins. No significant differences between the two age groups were observed for cell-mediated immunity. INTERPRETATION Immunization with CoronaVac in a 0-14 schedule in adults of 18 years and older in the Chilean population is safe and induces specific IgG production against the S1-RBD with neutralizing capacity, as well as the activation of T cells secreting IFN-γ, upon recognition of SARS-CoV-2 antigens. FUNDING Ministry of Health of the Chilean Government; Confederation of Production and Commerce, Chile; Consortium of Universities for Vaccines and Therapies against COVID-19, Chile; Millennium Institute on Immunology and Immunotherapy.
Collapse
|
18
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
19
|
Désy O, Vallin P, Béland S, Bouchard-Boivin F, Gama AP, De Serres SA. Longitudinal immune profile reveals reduced function of pro-inflammatory monocytes with age following kidney transplantation. Am J Transplant 2021; 21:1147-1159. [PMID: 32777159 DOI: 10.1111/ajt.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023]
Abstract
Toxicity of immunosuppression, notably the risk of infection, increases with age. However, the dynamic changes in innate immune response following transplantation are unclear. Based on recent observations, we hypothesized that pro-inflammatory capacity would decrease with age. We analyzed approximately 300 PBMC samples collected longitudinally in 45 de novo, adult kidney recipients and performed detailed phenotypic and functional profiling of monocytes and T cell subsets. Inflammatory response to TLR4 stimulation and indirect allostimulation using mismatched HLA peptides were assessed. In patients aged ≥56 years, TNF-α production by intermediate monocytes was similar to that in younger patients early posttransplant, but diminished substantially later. Adjusted analyses suggested that this was not attributable to confounding factors. In contrast, the alloimmune response to HLA peptides measured by IFN-γ in CD4+ T cells and TNF-α in monocytes was stable over time, but was low in older recipients. Measurement of CD80-86 surface expression revealed no signal for a lower costimulation capacity of APCs. These results suggest that older recipients have a reduced function of their innate pro-inflammatory immune cells posttransplant while maintaining a stable, low alloimmune response over time. The effect of reduced immunosuppressant doses on preventing this phenomenon needs to be clarified.
Collapse
Affiliation(s)
- Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Patrice Vallin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - François Bouchard-Boivin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Alcino P Gama
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Sacha A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
20
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Abstract
Community protective immunity can affect RNA virus evolution by selecting for new antigenic variants on the scale of years, exemplified by the need of annual evaluation of influenza vaccines. The extent to which this process termed antigenic drift affects coronaviruses remains unknown. Alike the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seasonal human coronaviruses (HCoV) likely emerged from animal reservoirs as new human pathogens in the past. We therefore analyzed the long-term evolutionary dynamics of the ubiquitous HCoV-229E and HCoV-OC43 in comparison with human influenza A virus (IAV) subtype H3N2. We focus on viral glycoprotein genes that mediate viral entry into cells and are major targets of host neutralizing antibody responses. Maximum likelihood and Bayesian phylogenies of publicly available gene datasets representing about three decades of HCoV and IAV evolution showed that all viruses had similar ladder-like tree shapes compatible with antigenic drift, supported by different tree shape statistics. Evolutionary rates inferred in a Bayesian framework were 6.5 × 10-4 (95% highest posterior density (HPD), 5.4-7.5 × 10-4) substitutions per site per year (s/s/y) for HCoV-229E spike (S) genes and 5.7 × 10-4 (95% HPD, 5-6.5 × 10-4) s/s/y for HCoV-OC43 S genes, which were about fourfold lower than the 2.5 × 10-3 (95% HPD, 2.3-2.7 × 10-3) s/s/y rate for IAV hemagglutinin (HA) genes. Coronavirus S genes accumulated about threefold less (P < 0.001) non-synonymous mutations (dN) over time than IAV HA genes. In both IAV and HCoV, the average rate of dN within the receptor binding domains (RBD) was about fivefold higher (P < 0.0001) than in other glycoprotein gene regions. Similarly, most sites showing evidence for positive selection occurred within the RBD (HCoV-229E, 6/14 sites, P < 0.05; HCoV-OC43, 23/38 sites, P < 0.01; IAV, 13/15 sites, P = 0.08). In sum, the evolutionary dynamics of HCoV and IAV showed several similarities, yet amino acid changes potentially representing antigenic drift occurred on a lower scale in endemic HCoV compared to IAV. It seems likely that pandemic SARS-CoV-2 evolution will bear similarities with IAV evolution including accumulation of adaptive changes in the RBD, requiring vaccines to be updated regularly, whereas higher SARS-CoV-2 evolutionary stability resembling endemic HCoV can be expected in the post-pandemic stage.
Collapse
Affiliation(s)
- Wendy K Jo
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Felix Drexler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Editorial of Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8030376. [PMID: 32664485 PMCID: PMC7565606 DOI: 10.3390/vaccines8030376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
|
24
|
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol 2020; 145:1309-1321. [PMID: 32386655 PMCID: PMC7198995 DOI: 10.1016/j.jaci.2020.03.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Impaired vaccine responses in older individuals are associated with alterations in both the quantity and quality of the T-cell compartment with age. As reviewed herein, the T-cell response to vaccination requires a fine balance between the generation of inflammatory effector T cells versus follicular helper T (TFH) cells that mediate high-affinity antibody production in tandem with the induction of long-lived memory cells for effective recall immunity. During aging, we find that this balance is tipped where T cells favor short-lived effector but not memory or TFH responses. Consistently, vaccine-induced antibodies commonly display a lower protective capacity. Mechanistically, multiple, potentially targetable, changes in T cells have been identified that contribute to these age-related defects, including posttranscription regulation, T-cell receptor signaling, and metabolic function. Although research into the induction of tissue-specific immunity by vaccines and with age is still limited, current mechanistic insights provide a framework for improved design of age-specific vaccination strategies that require further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif.
| |
Collapse
|
25
|
Seledtsov VI, von Delwig AA. Immune memory limits human longevity: the role of memory СD4+ T cells in age-related immune abnormalities. Expert Rev Vaccines 2020; 19:209-215. [DOI: 10.1080/14760584.2020.1745638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Victor Ivanovich Seledtsov
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
- Department of Medical Biotechnologies, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | |
Collapse
|
26
|
Yang J, Zhang J, Han T, Liu C, Li X, Yan L, Yang B, Yang X. Effectiveness, immunogenicity, and safety of influenza vaccines with MF59 adjuvant in healthy people of different age groups: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19095. [PMID: 32049815 PMCID: PMC7035094 DOI: 10.1097/md.0000000000019095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Influenza is a severe disease burden among all age groups. This study aimed to review the efficacy of inactivated influenza vaccines with MF59 adjuvant and non-adjuvanted inactivated influenza vaccines among all age groups against specific influenza vaccine strains. METHODS Literature search of PubMed, Embase, Medline, OVID, and Cochrane Library Trials (CENTRAL) was implemented up to March 1, 2019. Homogeneity qualified studies were included forData were extracted such as study country location, demographic characteristics, and measure outcomes, and were analyzed by a random effect model and sensitivity analyses to identify heterogeneity. Risk of bias was evaluated using the Cochrane Risk of Bias Tool. RESULTS We retrieved 1,021 publications and selected 31 studies for full review, including 17 trials for meta-analysis and 6 trials for qualitative synthesis. MF59-adjuvanted influenza vaccines demonstrated better immunogenicity against specific vaccine virus strains compared to non-adjuvanted influenza vaccine both in healthy adult group (RR = 2.10; 95% CI: 1.28-3.44) and the healthy aged (RR = 1.26; 95% CI: 1.10-1.44). CONCLUSION The quality of evidence is moderate to high for seroconversion and seroprotection rates of influenza vaccine. MF59-adjuvanted influenza vaccines are superior to non-adjuvanted influenza vaccines to enhance immune responses of vaccination in healthy adults and older adults, and could be considered for routine use especially the monovalent prepandemic influenza vaccines.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Chen Liu
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Xinghang Li
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Luyao Yan
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Baifeng Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- China Biotechnology Co., Ltd., Peking China, China
| |
Collapse
|
27
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
29
|
Bissel SJ, Carter CE, Wang G, Johnson SK, Lashua LP, Kelvin AA, Wiley CA, Ghedin E, Ross TM. Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2389-2399. [PMID: 31585069 DOI: 10.1016/j.ajpath.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/29/2022]
Abstract
Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Chalise E Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Lauren P Lashua
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York
| | - Alyson A Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Centre for Vaccinology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York; Department of Epidemiology, College of Global Public Health, New York University, New York, New York
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia; Department of Infectious Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
31
|
Arsenović-Ranin N, Petrović R, Živković I, Bufan B, Stoiljković V, Leposavić G. Influence of aging on germinal centre reaction and antibody response to inactivated influenza virus antigens in mice: sex-based differences. Biogerontology 2019; 20:475-496. [PMID: 31049769 DOI: 10.1007/s10522-019-09811-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
The study examined sex-specificities in age-related changes in BALB/c mice IgG antibody responses to immunisation with trivalent inactivated split-virus influenza bulk. Aging diminished the total serum IgG antibody responses to H1N1 and H3N2 and B influenza virus antigens in mice of both sexes, but they remained greater in aged females. This sex difference in aged mice correlated with the greater post-immunisation increase in the frequency of spleen germinal centre (GC) B cells and more favourable T follicular regulatory (Tfr)/GC B cell ratio, as Tfr cells are suggested to control antibody production through suppression of glycolysis. The greater post-immunisation GC B cell response in aged females compared with males correlated with the greater proliferation of B cells and CD4+ cells in splenocyte cultures from aged females restimulated with inactivated split-virus influenza from the bulk. To support the greater post-immunisation increase in the frequency GC B cell in aged females was more favourable Tfr/T follicular helper (Tfh) cell ratio. Additionally, compared with aged males, in age-matched females the greater avidity of serum IgG antibodies was found. However, in aged females IgG2a/IgG1 antibody ratio, reflecting spleen Th1/Th2 cytokine balance, was shifted towards IgG1 when compared with age-matched male mice. This shift was ascribed to a more prominent decline in the titres of functionally important IgG2a antibodies in females with aging. The study suggest that biological sex should be considered as a variable in designing strategies to manipulate with immune outcome of immunisation in aged animals, and possibly, at very long distance, humans.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia.
| |
Collapse
|
32
|
Shin MS, Yim K, Moon K, Park HJ, Mohanty S, Kim JW, Montgomery RR, Shaw AC, Krishnaswamy S, Kang I. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry. Clin Immunol 2019; 200:24-30. [PMID: 30659916 DOI: 10.1016/j.clim.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
We investigated the effect of aging on the multi-dimensional characteristics and heterogeneity of human peripheral CD8+ T cells defined by the expression of a set of molecules at the single cell level using the recently developed mass cytometry or Cytometry by Time-Of-Flight (CyTOF) and computational algorithms. CD8+ T cells of young and older adults had differential expression of molecules, especially those related to cell activation and migration, permitting the clustering of young and older adults through an unbiased approach. The changes in the expression of individual molecules were collectively reflected in the altered high-dimensional profiles of CD8+ T cells in older adults as visualized by the dimensionality reduction analysis tools principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). A combination of PhenoGraph clustering and t-SNE analysis revealed heterogeneous subsets of CD8+ T cells that altered with aging. Furthermore, intermolecular quantitative relationships in CD8+ T cells appeared to change with age as determined by the computational algorithm conditional-Density Resampled Estimate of Mutual Information (DREMI). The results of our study showed that heterogeneity, multidimensional characteristics, and intermolecular quantitative relationships in human CD8+ T cells altered with age, distinctively clustering young and older adults through an unbiased approach.
Collapse
Affiliation(s)
- Min Sun Shin
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kristina Yim
- Departments of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kevin Moon
- Departments of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hong-Jai Park
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Subhasis Mohanty
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph W Kim
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth R Montgomery
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Smita Krishnaswamy
- Departments of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Insoo Kang
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
33
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Immunosenescence Modulation by Vaccination. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121048 DOI: 10.1007/978-3-319-99375-1_71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A decline in immune function is a hallmark of aging that leads to complicated illness from a variety of infectious diseases, cancer and other immune-mediated disorders, and may limit the ability to appropriately respond to vaccination. How vaccines might alter the senescent immune response and what are the immune correlates of protection will be addressed from the perspective of (1) stimulating a previously primed response as in the case of vaccines for seasonal influenza and herpes zoster, (2) priming the response to novel antigens such as pandemic influenza or West Nile virus, (3) vaccination against bacterial pathogens such as pneumococcus and pertussis, (4) vaccines against bacterial toxins such as tetanus and Clostridium difficile, and (5) vaccine approaches to mitigate effects of cytomegalovirus on immune senescence. New or improved vaccines developed over recent years demonstrate the considerable opportunity to improve current vaccines and develop new vaccines as a preventive approach to a variety of diseases in older adults. Strategies for selecting appropriate immunologic targets for new vaccine development and evaluating how vaccines may alter the senescent immune response in terms of potential benefits and risks in the preclinical and clinical trial phases of vaccine development will be discussed.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Withers SS, Moore PF, Chang H, Choi JW, McSorley SJ, Kent MS, Monjazeb AM, Canter RJ, Murphy WJ, Sparger EE, Rebhun RB. Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:64-74. [PMID: 29859828 PMCID: PMC6197816 DOI: 10.1016/j.dci.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
While dogs are increasingly being utilized as large-animal models of disease, important features of age-related immunosenescence in the dog have yet to be evaluated due to the lack of defined naïve vs. memory T lymphocyte phenotypes. We therefore performed multi-color flow cytometry on peripheral blood mononuclear cells from young and aged beagles, and determined the differential cytokine production by proposed memory subsets. CD4+ and CD8+ T lymphocytes in aged dogs displayed increased cytokine production, and decreased proliferative capacity. Antibodies targeting CD45RA and CD62L, but less so CD28 or CD44, defined canine cells that consistently exhibited properties of naïve-, central memory-, effector memory-, and terminal effector-like CD4+ and CD8+ T lymphocyte subsets. Older dogs demonstrated decreased frequencies of naïve-like CD4+ and CD8+ T lymphocytes, and an increased frequency of terminal effector-like CD8+ T lymphocytes. Overall findings revealed that aged dogs displayed features of immunosenescence similar to those reported in other species.
Collapse
Affiliation(s)
- Sita S Withers
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter F Moore
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, 2921 Stockton Blvd, Sacramento, CA 95716, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Li Y, Wang XL, Zheng X. Impact of weather factors on influenza hospitalization across different age groups in subtropical Hong Kong. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1615-1624. [PMID: 29804235 DOI: 10.1007/s00484-018-1561-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 05/19/2023]
Abstract
Accumulating evidence demonstrates the significant influence of weather factors, especially temperature and humidity, on influenza seasonality. However, it is still unclear whether temperature variation within the same day, that is diurnal temperature range (DTR), is related to influenza seasonality. In addition, the different effects of weather factors on influenza seasonality across age groups have not been well documented in previous studies. Our study aims to explore the effects of DTR and humidity on influenza seasonality, and the differences in the association between weather factors and influenza seasonality among different age groups in Hong Kong, China. Generalized additive models were conducted to flexibly assess the impact of DTR, absolute humidity (vapor pressure, VP), and relative humidity on influenza seasonality in Hong Kong, China, from January 2012 to December 2016. Stratified analyses were performed to determine if the effects of weather factors differ across age groups (< 5, 5-9, 10-64, and > 64 years). The results suggested that DTR, absolute humidity, and relative humidity were significantly related to influenza seasonality in dry period (when VP is less than 20 mb), while no significant association was found in humid period (when VP is greater than 20 mb). The percentage changes of hospitalization rates due to influenza associated with per unit increase of weather factors in the very young children (age 0-4) and the elderly (age 65+) were higher than that in the adults (age 10-64). Diurnal temperature range is significantly associated with influenza seasonality in dry period, and the effects of weather factors differ across age groups in Hong Kong, China.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, 200032, China
| | - Xi-Ling Wang
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, 200032, China
| | - Xueying Zheng
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
37
|
Provinciali M, Barucca A, Orlando F, Pierpaoli E. Booster immunizations with DNA plasmids encoding HER-2/neu prevent spontaneous mammary cancer in HER-2/neu transgenic mice over life span. Sci Rep 2017; 7:3078. [PMID: 28596550 PMCID: PMC5465096 DOI: 10.1038/s41598-017-03286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022] Open
Abstract
Cancer vaccines are less effective at old than at young age because of immunosenescence. Besides, in preliminary observations we showed that the immunization with HER-2/neu DNA plasmid in transgenic young mice (standard immunization, SI) delays but not abrogate spontaneous mammary tumours progressively appearing during aging. In this study we evaluated whether booster immunizations (BI) of HER-2/neu transgenic mice with HER-2/neu DNA plasmids every 6 (ECD6), 3 (ECD3), or 1.5 (ECD1.5) months after SI induce a protective immunity that could be maintained over life span. The long term BI significantly improved the effect of SI increasing the number of tumour free mice at 110 weeks of age from 13% (SI) to 58% (BI). Both the number and the volume of tumour masses were reduced in BI than in SI groups. The protective effect of BI was associated with increased antibody production with isotype switching to IgG2a, augmented CD4 T cells, and increased in vivo cytotoxicity of HER-2/neu specific cytotoxic T lymphocytes, mainly in ECD1.5 and ECD3 groups. The transfer of sera from ECD1.5 mice to untreated HER-2/neu mice highly protected against tumour development than sera from SI mice. We conclude that BI induce a protective immunity effective over life span.
Collapse
Affiliation(s)
- Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy.
| | - Alessandra Barucca
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| |
Collapse
|
38
|
Namkoong H, Ishii M, Funatsu Y, Kimizuka Y, Yagi K, Asami T, Asakura T, Suzuki S, Kamo T, Fujiwara H, Tasaka S, Betsuyaku T, Hasegawa N. Theory and strategy for Pneumococcal vaccines in the elderly. Hum Vaccin Immunother 2016; 12:336-43. [PMID: 26406267 PMCID: PMC5049722 DOI: 10.1080/21645515.2015.1075678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pneumonia is the fourth-leading cause of death globally, and Streptococcus pneumoniae is the most important causative pathogen. Because the incidence of pneumococcal diseases is likely to increase with the aging society, we should determine an optimal strategy for pneumococcal vaccination. While consensus indicates that 23-valent pneumococcal polysaccharide vaccine prevents invasive pneumococcal diseases (IPD), its effects on community-acquired pneumonia (CAP) remain controversial. Recently, a 13-valent pneumococcal conjugate vaccine (PCV13) was released. The latest clinical study (CAPiTA study) showed that PCV13 reduced vaccine-type CAP and IPD. Based on these results, the Advisory Committee on Immunization Practices recommended initial vaccination with PCV13 for the elderly. Scientific evidence regarding immunosenescence is needed to determine a more ideal vaccination strategy for the elderly with impaired innate and adaptive immunity. Continuing research on the cost effectiveness of new vaccine strategies considering constantly changing epidemiology is also warranted.
Collapse
Affiliation(s)
- Ho Namkoong
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Makoto Ishii
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Yohei Funatsu
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Yoshifumi Kimizuka
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Kazuma Yagi
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Takahiro Asami
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Takanori Asakura
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Shoji Suzuki
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Testuro Kamo
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Hiroshi Fujiwara
- b Center for Infectious Diseases and Infection Control; Keio University School of Medicine ; Tokyo , Japan
| | - Sadatomo Tasaka
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Tomoko Betsuyaku
- a Division of Pulmonary Medicine Department of Medicine ; Keio University School of Medicine ; Tokyo , Japan
| | - Naoki Hasegawa
- b Center for Infectious Diseases and Infection Control; Keio University School of Medicine ; Tokyo , Japan
| |
Collapse
|
39
|
Fink AL, Klein SL. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiology (Bethesda) 2016; 30:408-16. [PMID: 26525340 DOI: 10.1152/physiol.00035.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly.
Collapse
Affiliation(s)
- Ashley L Fink
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
40
|
Lin Y, Kim J, Metter EJ, Nguyen H, Truong T, Lustig A, Ferrucci L, Weng NP. Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. IMMUNITY & AGEING 2016; 13:24. [PMID: 27547234 PMCID: PMC4990976 DOI: 10.1186/s12979-016-0079-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 01/09/2023]
Abstract
Background Alterations in the number and composition of lymphocytes and their subsets in blood are considered a hallmark of immune system aging. However, it is unknown whether the rates of change of lymphocytes are stable or change with age, or whether the inter-individual variations of lymphocyte composition are stable over time or undergo different rates of change at different ages. Here, we report a longitudinal analysis of T- and B-cells and their subsets, and NK cells in the blood of 165 subjects aged from 24 to 90 years, with each subject assessed at baseline and an average of 5.6 years follow-up. Results The rates of change of T-(CD4+ and CD8+) and B-cells, and NK cells were relative stable throughout the adult life. A great degree of individual variations in numbers of lymphocytes and their subsets and in the rates of their changes with age was observed. Among them, CD4+ T cells exhibited the highest degree of individual variation followed by NK cells, CD8+ T cells, and B cells. Different types of lymphocytes had distinct trends in their rates of change which did not appear to be influenced by CMV infection. Finally, the rates of CD4+, CD8+ T cells, naive CD4+ and naïve CD8+ T cells were closely positively correlated. Conclusion Our findings provide evidence that the age-associated changes in circulating lymphocytes were at relative stable rates in vivo in a highly individualized manner and the levels of selected cytokines/cytokine receptors in serum might influence these age-associated changes of lymphocytes in circulation. Electronic supplementary material The online version of this article (doi:10.1186/s12979-016-0079-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Lin
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| | - Jiewan Kim
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| | - E Jeffrey Metter
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38111 USA
| | - Huy Nguyen
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| | - Thai Truong
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| | - Ana Lustig
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD 21224 USA
| |
Collapse
|
41
|
Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M, Rouphael N, Frasca D, Gersten M, Mehta AK, Gaujoux R, Li GM, Gupta S, Ahmed R, Mulligan MJ, Shen-Orr S, Blomberg BB, Subramaniam S, Pulendran B. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 2016; 43:1186-98. [PMID: 26682988 DOI: 10.1016/j.immuni.2015.11.012] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/17/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons and in diverse populations is unknown. We applied systems approaches to study immune responses in young, elderly, and diabetic subjects vaccinated with the seasonal influenza vaccine across five consecutive seasons. Signatures of innate immunity and plasmablasts correlated with and predicted influenza antibody titers at 1 month after vaccination with >80% accuracy across multiple seasons but were not associated with the longevity of the response. Baseline signatures of lymphocyte and monocyte inflammation were positively and negatively correlated, respectively, with antibody responses at 1 month. Finally, integrative analysis of microRNAs and transcriptomic profiling revealed potential regulators of vaccine immunity. These results identify shared vaccine-induced signatures across multiple seasons and in diverse populations and might help guide the development of next-generation vaccines that provide persistent immunity against influenza.
Collapse
Affiliation(s)
- Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo 05508, Brazil; Department of Pathology, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA
| | - Thomas Hagan
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Sai S Duraisingham
- Department of Immunology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Oxford OX3 7J, UK
| | - Eva K Lee
- Center for Operations Research in Medicine & Healthcare, School of Industrial & Systems Engineering, Georgia Institute of Technology, North Avenue NW, Atlanta, GA 30332, USA
| | - Marcin Kwissa
- Institute for Molecular Engineering, University of Chicago, 5640 S. Elis Avenue, Chicago, IL 60637, USA
| | - Nadine Rouphael
- Hope Clinic of Emory University, 500 Irvin Court/Suite 200, Atlanta, GA 30030, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | - Merril Gersten
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Aneesh K Mehta
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA
| | - Renaud Gaujoux
- Department of Immunology, Faculty of Medicine, Technion, 1 Efron Street, Haifa 3109601, Israel
| | - Gui-Mei Li
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Mark J Mulligan
- Hope Clinic of Emory University, 500 Irvin Court/Suite 200, Atlanta, GA 30030, USA
| | - Shai Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion, 1 Efron Street, Haifa 3109601, Israel
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA.
| | - Bali Pulendran
- Department of Pathology, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| |
Collapse
|
42
|
Formenti SC, Golden EB, Demaria S. Local radiotherapy and GM-CSF in metastatic cancer: lessons from a proof of principle trial. Oncoimmunology 2016. [DOI: 10.1080/2162402x.2015.1102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Encouse B. Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
43
|
McElhaney JE, Kuchel GA, Zhou X, Swain SL, Haynes L. T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Front Immunol 2016; 7:41. [PMID: 26941738 PMCID: PMC4766518 DOI: 10.3389/fimmu.2016.00041] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 02/03/2023] Open
Abstract
One of the most profound public health consequences of immune senescence is reflected in an increased susceptibility to influenza and other acute respiratory illnesses, as well as a loss of influenza vaccine effectiveness in older people. Common medical conditions and mental and psychosocial health issues as well as degree of frailty and functional dependence accelerate changes associated with immune senescence. All contribute to the increased risk for complications of influenza infection, including pneumonias, heart diseases, and strokes that lead to hospitalization, disability, and death in the over 65 population. Changes in mucosal barrier mechanisms and both innate and adaptive immune functions converge in the reduced response to influenza infection, and lead to a loss of antibody-mediated protection against influenza with age. The interactions of immune senescence and reduced adaptive immune responses, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dysregulated cytokine production, pose major challenges to the development of vaccines designed to improve T-cell-mediated immunity. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather than to inducing sterilizing immunity to infection. Standard assays of antibody titers correlate with protection against influenza illness but do not detect important changes in cellular immune mechanisms that correlate with vaccine-mediated protection against influenza in older people. This article will discuss: (i) the burden of influenza in older adults and how this relates to changes in T-cell function, (ii) age-related changes in different T-cell subsets and immunologic targets for improved influenza vaccine efficacy in older, and (iii) the development of correlates of clinical protection against influenza disease to expedite the process of new vaccine development for the 65 and older population. Ultimately, these efforts will address the public health need for improved protection against influenza in older adults and “vaccine preventable disability.”
Collapse
Affiliation(s)
- Janet E McElhaney
- Health Sciences North Research Institute, Sudbury, ON, Canada; UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine , Farmington, CT , USA
| | - Xin Zhou
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School , North Worcester, MA , USA
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
44
|
Silva LCR, de Araújo AL, Fernandes JR, Matias MDST, Silva PR, Duarte AJS, Garcez Leme LE, Benard G. Moderate and intense exercise lifestyles attenuate the effects of aging on telomere length and the survival and composition of T cell subpopulations. AGE (DORDRECHT, NETHERLANDS) 2016; 38:24. [PMID: 26863877 PMCID: PMC5005879 DOI: 10.1007/s11357-016-9879-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Studies indicate that exercise might delay human biological aging, but the effects of long-term exercise on T cell function are not well known. We tested the hypothesis that moderate or intense exercise lifestyle may attenuate the effects of aging on the telomere length and the survival and composition of T cell subpopulations. Elderly (65-85 years) with intense training lifestyle (IT, n = 15), moderate training lifestyle (MT, n = 16), and who never trained (NT, n = 15) were studied. Although the three groups presented the age-associated contraction of the TCD4(+)/TCD8(+) naïve compartments and expansion of the memory compartments, both training modalities were associated with lower proportion of terminally differentiated (CD45RA(+)CCR7(neg)) TCD4(+) and TCD8(+) cells, although among the latter cells, the reduction reached statistical significance only with IT. MT was associated with higher proportion of central memory TCD4(+) cells, while IT was associated with higher proportion of effector memory TCD8(+) cells. However, both training lifestyles were unable to modify the proportion of senescent (CD28(neg)) TCD8(+) cells. Telomeres were longer in T cells in both training groups; with IT, telomere length increased mainly in TCD8(+) cells, whereas with MT, a modest increase in telomere length was observed in both TCD8(+) and TCD4(+) cells. Reduced commitment to apoptosis of resting T cells, as assessed by caspase-3 and Bcl-2 expression, was seen predominantly with IT. Measurement of pro-inflammatory cytokines in serum and peripheral blood mononuclear cell (PBMC)'s supernatants did not show chronic low-grade inflammation in any of the groups. In conclusion, MT and IT lifestyles attenuated some of the effects of aging on the immune system.
Collapse
Affiliation(s)
- Léia Cristina Rodrigues Silva
- Laboratory of Dermatology and Immunodeficiencies, Dermatology Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP, Brazil
| | - Adriana Ladeira de Araújo
- Laboratory of Dermatology and Immunodeficiencies, Dermatology Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies, Dermatology Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP, Brazil
| | | | - Paulo Roberto Silva
- Laboratory of Movement Studies, Department of Orthopedics and Traumatology, School of Medicine, USP, São Paulo, SP, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, Dermatology Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP, Brazil
| | | | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies, Dermatology Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP, Brazil.
- Medical Mycology Laboratory, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.
- , R. Dr. Eneas de Carvalho Aguiar, 470, Cerqueira Cesar, São Paulo, CEP 05403-903, Brazil.
| |
Collapse
|
45
|
Epigenetic Control of Haematopoietic Stem Cell Aging and Its Clinical Implications. Stem Cells Int 2015; 2016:5797521. [PMID: 26681950 PMCID: PMC4670691 DOI: 10.1155/2016/5797521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
Aging, chronic inflammation, and environmental insults play an important role in a number of disease processes through alterations of the epigenome. In this review we explore how age-related changes in the epigenetic landscape can affect heterogeneity within the haematopoietic stem cell (HSC) compartment and the deriving clinical implications.
Collapse
|
46
|
Geest KSM, Abdulahad WH, Teteloshvili N, Tete SM, Peters JH, Horst G, Lorencetti PG, Bos NA, Lambeck A, Roozendaal C, Kroesen B, Koenen HJPM, Joosten I, Brouwer E, Boots AMH. Low-affinity TCR engagement drives IL-2-dependent post-thymic maintenance of naive CD4+ T cells in aged humans. Aging Cell 2015; 14:744-53. [PMID: 26010129 PMCID: PMC4568962 DOI: 10.1111/acel.12353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2015] [Indexed: 12/18/2022] Open
Abstract
Insight into the maintenance of naive T cells is essential to understand defective immune responses in the context of aging and other immune compromised states. In humans, naive CD4+ T cells, in contrast to CD8+ T cells, are remarkably well retained with aging. Here, we show that low-affinity TCR engagement is the main driving force behind the emergence and accumulation of naive-like CD4+ T cells with enhanced sensitivity to IL-2 in aged humans. In vitro, we show that these CD45RA(+) CD25(dim) CD4(+) T cells can develop from conventional naive CD25(-) CD4+ T cells upon CD3 cross-linking alone, in the absence of costimulation, rather than via stimulation by the homeostatic cytokines IL-2, IL-7, or IL-15. In vivo, TCR engagement likely occurs in secondary lymphoid organs as these cells were detected in lymph nodes and spleen where they showed signs of recent activation. CD45RA(+) CD25(dim) CD4+ T cells expressed a broad TCRVβ repertoire and could readily differentiate into functional T helper cells. Strikingly, no expansion of CD45RA(+) CD25(dim) CD8+ T cells was detected with aging, thereby implying that maintenance of naive CD4+ T cells is uniquely regulated. Our data provide novel insight into the homeostasis of naive T cells and may guide the development of therapies to preserve or restore immunity in the elderly.
Collapse
Affiliation(s)
- Kornelis S. M. Geest
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Nato Teteloshvili
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Hanzeplein 19713 GZ Groningen The Netherlands
| | - Sarah M. Tete
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Jorieke H. Peters
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Pedro G. Lorencetti
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Nicolaas A. Bos
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Annechien Lambeck
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Bart‐Jan Kroesen
- Department of Laboratory Medicine University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Hans J. P. M. Koenen
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine – Medical Immunology Radboud University Medical Centre Postbus 9101 6500 HB Nijmegen The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
47
|
Stervbo U, Bozzetti C, Baron U, Jürchott K, Meier S, Mälzer JN, Nienen M, Olek S, Rachwalik D, Schulz AR, Neumann A, Babel N, Grützkau A, Thiel A. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets. AGE (DORDRECHT, NETHERLANDS) 2015; 37:93. [PMID: 26324156 PMCID: PMC5005833 DOI: 10.1007/s11357-015-9829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Immunosenescence results from a continuous deterioration of immune responses resulting in a decreased response to vaccines. A well-described age-related alteration of the immune system is the decrease of de novo generation of T and B cells. In addition, the accumulation of memory cells and loss of diversity in antigen specificities resulting from a lifetime of exposure to pathogens has also been described. However, the effect of aging on subsets of γδTCR(+) T cells and Tregs has been poorly described, and the efficacy of the recall response to common persistent infections in the elderly remains obscure. Here, we investigated alterations in the subpopulations of the B and T cells among 24 healthy young (aged 19-30) and 26 healthy elderly (aged 53-67) individuals. The analysis was performed by flow cytometry using freshly collected peripheral blood. γδTCR(+) T cells were overall decreased, while CD4(+)CD8(-) cells among γδTCR(+) T cells were increased in the elderly. Helios(+)Foxp3(+) and Helios(-)Foxp3(+) Treg cells were unaffected with age. Recent thymic emigrants, based on CD31 expression, were decreased among the Helios(+)Foxp3(+), but not the Helios(-)Foxp3(+) cell populations. We observed a decrease in Adenovirus-specific CD4(+) and CD8(+) T cells and an increase in CMV-specific CD4(+) T cells in the elderly. Similarly, INFγ(+)TNFα(+) double-positive cells were decreased among activated T cells after Adenovirus stimulation but increased after CMV stimulation. The data presented here indicate that γδTCR(+) T cells might stabilize B cells, and functional senescence might dominate at higher ages than those studied here.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Cecilia Bozzetti
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Udo Baron
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Meier
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Nora Mälzer
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mikalai Nienen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sven Olek
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Dominika Rachwalik
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Axel Ronald Schulz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Avidan Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
48
|
Hagan T, Nakaya HI, Subramaniam S, Pulendran B. Systems vaccinology: Enabling rational vaccine design with systems biological approaches. Vaccine 2015; 33:5294-301. [PMID: 25858860 DOI: 10.1016/j.vaccine.2015.03.072] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 01/25/2023]
Abstract
Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines.
Collapse
Affiliation(s)
- Thomas Hagan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bali Pulendran
- Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
49
|
|
50
|
The aging bone marrow and its impact on immune responses in old age. Immunol Lett 2014; 162:310-5. [DOI: 10.1016/j.imlet.2014.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022]
|