1
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
2
|
Zhu X, Hong S, Bu J, Liu Y, Liu C, Li R, Zhang T, Zhang Z, Li L, Zhou X, Hua Z, Zhu B, Hou B. Antiviral memory B cells exhibit enhanced innate immune response facilitated by epigenetic memory. SCIENCE ADVANCES 2024; 10:eadk0858. [PMID: 38552009 PMCID: PMC10980274 DOI: 10.1126/sciadv.adk0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The long-lasting humoral immunity induced by viral infections or vaccinations depends on memory B cells with greatly increased affinity to viral antigens, which are evolved from germinal center (GC) responses. However, it is unclear whether antiviral memory B cells represent a distinct subset among the highly heterogeneous memory B cell population. Here, we examined memory B cells induced by a virus-mimicking antigen at both transcriptome and epigenetic levels and found unexpectedly that antiviral memory B cells exhibit an enhanced innate immune response, which appeared to be facilitated by the epigenetic memory that is established through the memory B cell development. In addition, T-bet is associated with the altered chromatin architecture and is required for the formation of the antiviral memory B cells. Thus, antiviral memory B cells are distinct from other GC-derived memory B cells in both physiological functions and epigenetic landmarks.
Collapse
Affiliation(s)
- Xiping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingping Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Hua
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Kawaguchi Y, Shimizu T, Ando H, Ishima Y, Ishida T. Development of a Nanocarrier-Based Splenic B Cell-Targeting System for Loading Antigens in Vitro. Biol Pharm Bull 2022; 45:926-933. [PMID: 35786600 DOI: 10.1248/bpb.b22-00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B cells are types of lymphocytes that are involved in the production of antibodies against pathogens. They also deliver and present antigens for the priming of T cells. Recently, we developed an in vivo splenic marginal zone (MZ) B cell-targeting liposomes decorated with polyethylene glycol (PEG) containing a hydroxyl-terminus group (HO-PEG-Lip). In an expansion of a previous study, we used HO-PEG-Lip as an in vitro antigen delivery tool to splenic B cells to test the ability of this formulation to overcome the limitations of the poor antigen uptake ability of B cells for implantation. To achieve our purpose, various factors were optimized. These factors include cell number, liposome concentration, pre-opsonization of liposomes, fresh serum concentration, and incubation time, all of which affect the extent of interaction between liposomes and B cells. As a result, we confirmed that the HO-PEG-Lip required incubation at 37 °C for at least 20 min with 50% mouse fresh serum followed by a subsequent incubation at 37 °C for at least another 30 min with splenic B cells. By using such a loading system, fluorescein isothiocyanate (FITC)-labeled ovalbumin (OVA), a model antigen, encapsulated in HO-PEG-Lip could be efficiently loaded into splenic B cells. In addition, HO-PEG-Lip and FITC-labeled OVA encapsulated in HO-PEG-Lip were efficiently associated with MZ-B cells with high levels of complement receptors (CRs) rather than follicular B cells with low levels of CRs. These results propose a novel and useful system to efficiently load antigens into B cells in vitro by taking advantage of complement systems.
Collapse
Affiliation(s)
- Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
4
|
Pardy RD, Gentile ME, Carter AM, Condotta SA, King IL, Richer MJ. An Epidemic Zika Virus Isolate Drives Enhanced T Follicular Helper Cell and B Cell-Mediated Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1719-1728. [PMID: 35346966 PMCID: PMC8976755 DOI: 10.4049/jimmunol.2100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that recently caused a series of increasingly severe outbreaks. We previously demonstrated that, compared with a pre-epidemic isolate (ZIKVCDN), a Brazilian ZIKV isolate (ZIKVBR) possesses a novel capacity to suppress host immunity, resulting in delayed viral clearance. However, whether ZIKVBR modulates CD4 T cell responses remains unknown. In this study, we show that, in comparison with ZIKVCDN infection, CD4 T cells are less polarized to the Th1 subtype following ZIKVBR challenge in mice. In contrast, we observed an enhanced accumulation of T follicular helper cells 10, 14, and 21 d postinfection with ZIKVBR This response correlated with an enhanced germinal center B cell response and robust production of higher avidity-neutralizing Abs following ZIKVBR infection. Taken together, our data suggest that contemporary ZIKV strains have evolved to differentially induce CD4 T cell, B cell, and Ab responses and this could provide a model to further define the signals required for T follicular helper cell development.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maria E Gentile
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Alexandria M Carter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie A Condotta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Irah L King
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada;
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Protective Immunity Induced by Virus-Like Particle Containing Merozoite Surface Protein 9 of Plasmodium berghei. Vaccines (Basel) 2020; 8:vaccines8030428. [PMID: 32751598 PMCID: PMC7564927 DOI: 10.3390/vaccines8030428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Merozoite surface protein 9 (MSP-9) from Plasmodium has shown promise as a vaccine candidate due to its location and possible role in erythrocyte invasion. In this study, we generated virus-like particles (VLPs) targeting P. berghei MSP-9, and investigated the protection against lethal doses of P. berghei in a mouse model. We found that VLP vaccination induced a P. berghei-specific IgG antibody response in the sera and CD4+ and CD8+ T cell populations in blood compared to a naïve control group. Upon challenge infection with P. berghei, vaccinated mice showed a significant increase in CD4+ and CD8+ effector memory T cell and memory B cell populations. Importantly, MSP-9 VLP immunization inhibited levels of the pro-inflammatory cytokines IFN-γ and IL-6 in the spleen and parasite replication in blood, resulting in significantly prolonged survival time. These results suggest that the MSP-9 VLP vaccine may constitute an effective malaria vaccine.
Collapse
|
6
|
Hua Z, Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunol Rev 2020; 296:24-35. [PMID: 32304104 DOI: 10.1111/imr.12859] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
B cells have been known for their ability to present antigens to T cells for almost 40 years. However, the precise roles of B cell antigen presentation in various immune responses are not completely understood. The term "professional" antigen-presenting cells (APCs) was proposed to distinguish APCs that are required for initiating the immune responses from those use antigen presentation to enhance their own effector functions. Unlike dendritic cells, which are defined as professional APCs for their well-established functions in activating naive T cells, B cells have been shown in the past to mostly present antigens to activated CD4+ T cells mainly to seek help from T helper cells. However, recent evidence suggested that B cells can act as professional APCs under infectious conditions or conditions mimicking viral infections. B cell antigen receptors (BCRs) and the innate receptor Toll-like receptors are activated synergistically in response to pathogens or virus-like particles, under which conditions B cells are not only potent but also the predominant APCs to turn naive CD4+ T cells into T follicular helper cells. The discovery of B cells as professional APCs to initiate CD4+ T cell response provides a new insight for both autoimmune diseases and vaccine development.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|
8
|
The formation of mutated IgM memory B cells in rat splenic marginal zones is an antigen dependent process. PLoS One 2019; 14:e0220933. [PMID: 31490967 PMCID: PMC6730915 DOI: 10.1371/journal.pone.0220933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022] Open
Abstract
Previous studies in rodents have indicated that only a minor fraction of the immunoglobulin heavy chain variable region (IGHV-Cμ) transcripts carry somatic mutations and are considered memory B cells. This is in marked contrast to humans where nearly all marginal zone B (MZ-B) cells are mutated. Here we show in rats that the proportion of mutated IgM+ MZ-B cells varies significantly between the various IGHV genes analyzed, ranging from 27% mutated IGHV5 transcripts to 65% mutated IGHV4 transcripts. The observed data on mutated sequences in clonally-related B cells with a MZ-B cell or follicular B (FO-B) cell phenotype indicates that mutated IgM+ MZ-B and FO-B cells have a common origin. To further investigate the origin of mutated IgM+ MZ-B cells we determined whether mutations occurred in rearranged IGHV-Cμ transcripts using IGHV4 and IGHV5 genes from neonatal rat MZ-B cells and FO-B cells. We were not able to detect mutations in any of the IGHV4 and IGHV5 genes expressed by MZ-B cells or FO-B cells obtained from neonatal rat spleens. Germinal centres (GCs) are absent from neonatal rat spleen in the first few weeks of their life, and no mutations were found in any of the neonatal sequences, not even in the IGHV4 gene family which accumulates the highest number of mutated sequences (66%) in the adult rat. Therefore, these data do not support the notion that MZ-B cells in rats mutate their IGHV genes as part of their developmental program, but are consistent with the notion that mutated rat MZ-B cells require GCs for their generation. Our findings support that the splenic MZ of rats harbors a significant number of memory type IgM+ MZ-B cells with mutated IGHV genes and propose that these memory MZ-B cells are probably generated as a result of an antigen driven immune response in GCs, which still remains to be proven.
Collapse
|
9
|
Krueger CC, Thoms F, Keller E, Vogel M, Bachmann MF. Virus-Specific Secondary Plasma Cells Produce Elevated Levels of High-Avidity Antibodies but Are Functionally Short Lived. Front Immunol 2019; 10:1831. [PMID: 31447844 PMCID: PMC6691049 DOI: 10.3389/fimmu.2019.01831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Most vaccines aim at inducing durable antibody responses and are designed to elicit strong B cell activation and plasma cell (PC) formation. Here we report characteristics of a recently described secondary PC population that rapidly originates from memory B cells (MBCs) upon challenge with virus-like particles (VLPs). Upon secondary antigen challenge, all VLP-specific MBCs proliferated and terminally differentiated to secondary PCs or died, as they could not undergo multiple rounds of re-stimulation. Secondary PCs lived in bone marrow and secondary lymphoid organs and exhibited increased production of antibodies with much higher avidity compared to primary PCs, supplying a swift wave of high avidity antibodies early after antigen recall. Unexpectedly, however, secondary PCs were functionally short-lived and most of them could not be retrieved in lymphoid organs and ceased to produce antibodies. Nevertheless, secondary PCs are an early source of high avidity antibodies and induction of long-lived MBCs with the capacity to rapidly differentiate to secondary PCs may therefore be an underestimated possibility to induce durable protection by vaccination.
Collapse
Affiliation(s)
- Caroline C Krueger
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Elsbeth Keller
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland.,Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Abstract
The marginal zone (MZ) is largely composed of a unique subpopulation of B cells, the so-called MZ-B cells. At a molecular level, memory B cells are characterized by the presence of somatically mutated IGV genes. The earliest studies in the rat have documented the presence of hapten-specific MZ-B cells after immunization in the MZ. This work later received experimental support demonstrating that the IGHV-Cµ transcripts expressed by phenotypically defined splenic MZ-B cells (defined as CD90negIgMhighIgDlow B cells) can carry somatic hypermutation. However, only a minor fraction (< 10%-20%) of these MZ-B cells is mutated and is considered to represent memory B cells. Memory B cells can either be class-switched (IgG, IgA, IgE), or non-class-switched (IgM) B cells. B cells in the MZ are a heterogeneous population of cells and both naïve MZ-B cells; class switched and unswitched memory MZ-B cells are present at this unique site in the spleen. Naïve MZ-B cells carry unmutated Ig genes, produce low-affinity IgM molecules and constitute a first line of defense against invading pathogens. Memory MZ-B cells express high-affinity Ig molecules, directed to (microbial) antigens that have been encountered. In this review, we report on the memory compartment of splenic MZ-B cells in the rat to provide insights into the origin and function of these memory MZ-B cells.
Collapse
Affiliation(s)
- Jacobus Hendricks
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Frans G M Kroese
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Hanadhita D, Rahma A, Prawira AY, Mayasari NLPI, Satyaningtijas AS, Hondo E, Agungpriyono S. The spleen morphophysiology of fruit bats. Anat Histol Embryol 2019; 48:315-324. [PMID: 30968443 PMCID: PMC7159459 DOI: 10.1111/ahe.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
Spleen is one of the important lymphoid organs with wide variations of morphological and physiological functions according to species. Morphology and function of the spleen in bats, which are hosts to several viral strains without exhibiting clinical symptoms, remain to be fully elucidated. This study aims to examine the spleen morphology of fruit bats associated with their physiological functions. Spleen histological observations were performed in three fruit bats species: Cynopterus titthaecheilus (n = 9), Rousettus leschenaultii (n = 3) and Pteropus vampyrus (n = 3). The spleens of these fruit bats were surrounded by a thin capsule. Red pulp consisted of splenic cord and wide vascular space filled with blood. Ellipsoids in all three studied species were found numerously and adjacent to one another forming macrophages aggregates. White pulp consisted of periarteriolar lymphoid sheaths (PALS), lymphoid follicles and marginal zone. The lymphoid follicle contained a germinal centre and a tingible body macrophage that might reflect an active immune system. The marginal zone was prominent and well developed. This study reports some differences in spleen structure of fruit bats compared to other bat species previously reported and discusses possible physiological implications of the spleen based on its morphology.
Collapse
Affiliation(s)
- Desrayni Hanadhita
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Anisa Rahma
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Aryani Sismin Satyaningtijas
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| |
Collapse
|
12
|
Xu M, Jiang Y, Wang J, Liu J, Liu C, Liu D, Yang S. Distinct variations of antibody secreting cells and memory B cells during the course of Kawasaki disease. BMC Immunol 2019; 20:16. [PMID: 31159728 PMCID: PMC6547606 DOI: 10.1186/s12865-019-0299-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Both antibody secreting cells (ASCs) and memory B cells are essential for the maintenance of humoral immunity. To date, limit studies have focused on the two populations in Kawasaki disease (KD). To address the status of humoral immunity during KD, our current concentration is on the variations of ASCs and memory B cells, as well as their subsets in both acute and remission stages of KD. Methods ASCs were defined as the population with high expressions of CD27 and CD38 among CD3-CD20- lymphocytes. Based on the expression of surface marker CD138 and intracellular marker IgG, ASCs were further divided into two subsets. Memory B cells were characterized by the expressions of IgD, CD27 and IgM, upon which memory B cells were further categorized into CD27 + IgD- (switched memory, Sm), CD27-IgD- (Double negative, DN) and CD27 + IgD + IgM+ (marginal zone, MZ) B cells. Collectively, six populations were analyzed using flow cytometry. The blood samples were collected from KD patients in different stages and healthy controls. Results In the acute stage, the percentages of ASCs, CD138+ ASCs, and IgG+ ASCs were significantly increased. In contrast, the percentages of memory B cells including Sm and MZ B cells were significantly decreased. Correlation analysis found ASCs positively correlated with the level of serum IgM, whereas MZ B cells not only positively correlated with the level of serum IgG, IgA, and IgM, but also positively correlated with the level of serum complement C3 and C4 and negatively correlated with the value of C-reactive protein (CRP). In the remission stage, the percentages of IgG+ ASCs and MZ B cells were significantly reduced, whereas other subsets presented heterogeneous variations. Conclusions Our study provided direct evidence that ASCs contributed to the pathogenesis of KD, and it was the first time to describe the variation of memory B cells in this disease. Among the subsets, only IgG+ ASCs presented a significant increase in the acute stage and decreased after IVIG administration, indicating the involvement of IgG+ ASCs in the inflammation of KD and also suggesting that IVIG played an inhibitory role in the expression of cytoplasmic IgG. Electronic supplementary material The online version of this article (10.1186/s12865-019-0299-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Xu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jinghua Wang
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jinxiang Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Congcong Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China
| | - Deying Liu
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China.,Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sirui Yang
- Department of Pediatric Rheumatology, Immunology, and Allergy, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Krueger CC, Thoms F, Keller E, Leoratti FMS, Vogel M, Bachmann MF. RNA and Toll-Like Receptor 7 License the Generation of Superior Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion. Front Immunol 2019; 10:736. [PMID: 31024563 PMCID: PMC6467167 DOI: 10.3389/fimmu.2019.00736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Secondary plasma cells (PCs) originate from memory B cells and produce increased levels of antibodies with higher affinity compared to PCs generated during primary responses. Here we demonstrate that virus-like particles (VLPs) only induce secondary PCs in the presence of toll-like receptor (TLR) 7 and if they are loaded with RNA. Furthermore, adoptive transfer experiments demonstrate that RNA and TLR7 signaling are required for secondary PC generation, both at the level of memory B cell as well as PC differentiation. TLR7-signaling occurred in a B cell intrinsic manner as TLR7-deficient B cells in an otherwise TLR7-competent environment failed to differentiate into secondary PCs. Therefore, RNA inside VLPs is essential for the generation of memory B cells, which are competent to differentiate to secondary PCs and for the differentiation of secondary PCs themselves. While we have not tested all other TLR or non-TLR adjuvants with our VLPs, these data have obvious implications for vaccine design, as RNA packaged into VLPs is a simple way to enhance induction of memory B cells capable of generating secondary PCs.
Collapse
Affiliation(s)
- Caroline C. Krueger
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Elsbeth Keller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Fabiana M. S. Leoratti
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Abstract
Defective clearance of apoptotic cells in MFG-E8 deficient mice results in lupus-like disease in the mixed B6x129, but not pure B6 background. The lack of overt autoimmunity in MFG-E8-/- B6 mice suggests that accumulation of apoptotic cells is not sufficient to break central tolerance. However, the delayed clearance of apoptotic cells in the follicles of MFG-E8-/- B6 mice provides an excellent opportunity to investigate how B cells respond to excessive apoptotic cells in the periphery under relatively non-inflammatory conditions. In MFG-E8-/- B6 mice, we found increased IgG2c production against apoptotic cells and oxidized LDL. Apoptotic cell induced antibody responses depended on MyD88 signal and T cell help. In addition, MFG-E8-/- B6 mice had enlarged MZ B cell compartments as well as an enhanced antibody response to NP-Ficoll. Moreover, a significant percentage of MZ B cells in aged MFG-E8-/- B6 mice migrated into follicles. Injecting apoptotic cells or oxidized LDL into wild type mice as well as physiological accumulation of LDL in ApoE-/- mice recapitulated the translocation of MZ B cells. To determine how MFG-E8 deficiency affects the functions of autoreactive B cells specific for nucleic acids in the periphery under non-inflammatory conditions, we utilized BCR transgenic mice to bypass central selection and compared the differentiation of TLR9 dependent anti-dsDNA 56R B cells and TLR7 dependent anti-ssRNA H564 B cells in MFG-E8-/- mice. In MFG-E8-/- 56R mice, anti-dsDNA specific 56R/Vκ38c B cells differentiated into MZ B cells but not AFCs. On the contrary, in MFG-E8-/-H564 mice, anti-ssRNA specific H564 B cells further differentiated into GC B cells and AFCs. Adoptive transfer of activated autoreactive B cells confirmed that H564 B cells were more sensitive to apoptotic cell antigens than 56R B cells. Our observations provide new insights about the MZ B cell translocation in lupus patients as well as the dichotomy of TLR9 and TLR7 signals in the pathogenesis of lupus.
Collapse
Affiliation(s)
- YuFeng Peng
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hong S, Zhang Z, Liu H, Tian M, Zhu X, Zhang Z, Wang W, Zhou X, Zhang F, Ge Q, Zhu B, Tang H, Hua Z, Hou B. B Cells Are the Dominant Antigen-Presenting Cells that Activate Naive CD4+ T Cells upon Immunization with a Virus-Derived Nanoparticle Antigen. Immunity 2018; 49:695-708.e4. [DOI: 10.1016/j.immuni.2018.08.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
|
16
|
Sebina I, Pepper M. Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics. Curr Opin Immunol 2018; 51:46-54. [PMID: 29477969 DOI: 10.1016/j.coi.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Humoral immune responses are crucial for protection against invading pathogens and are the underlying mechanism of protection for most successful vaccines. Our understanding of how humoral immunity develops is largely based on animal models utilizing experimental immunization systems. While these studies have made enormous progress for the field and have defined many of the fundamental principles of B cell differentiation and function, we are only now beginning to appreciate the complexities of humoral immune responses induced by infection. Co-evolution of the adaptive immune system and the pathogenic world has created a diverse array of B cell responses to infections, with both shared and unique strategies. In this review, we consider the common mechanisms that regulate the development of humoral immune responses during infection and highlight recent findings demonstrating the evolution of unique strategies used by either host or pathogen for survival.
Collapse
Affiliation(s)
- Ismail Sebina
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Tian M, Hua Z, Hong S, Zhang Z, Liu C, Lin L, Chen J, Zhang W, Zhou X, Zhang F, DeFranco AL, Hou B. B Cell–Intrinsic MyD88 Signaling Promotes Initial Cell Proliferation and Differentiation To Enhance the Germinal Center Response to a Virus-like Particle. THE JOURNAL OF IMMUNOLOGY 2017; 200:937-948. [DOI: 10.4049/jimmunol.1701067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/25/2017] [Indexed: 11/19/2022]
|
18
|
Liao W, Hua Z, Liu C, Lin L, Chen R, Hou B. Characterization of T-Dependent and T-Independent B Cell Responses to a Virus-like Particle. THE JOURNAL OF IMMUNOLOGY 2017; 198:3846-3856. [DOI: 10.4049/jimmunol.1601852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
|
19
|
Zabel F, Fettelschoss A, Vogel M, Johansen P, Kündig TM, Bachmann MF. Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation. Immunology 2017; 150:329-342. [PMID: 27861835 DOI: 10.1111/imm.12688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 02/03/2023] Open
Abstract
Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP+ memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP+ memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation.
Collapse
Affiliation(s)
- Franziska Zabel
- Department of Dermatology, Zurich University Hospital, Schlieren/Zurich, Switzerland
| | - Antonia Fettelschoss
- Department of Dermatology, Zurich University Hospital, Schlieren/Zurich, Switzerland
| | - Monique Vogel
- Inselspital, Department of Immunology, University of Bern, Bern, Switzerland
| | - Pål Johansen
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Martin F Bachmann
- Department of Dermatology, Zurich University Hospital, Schlieren/Zurich, Switzerland.,Inselspital, Department of Immunology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Natarajan P, Liu J, Santhanakrishnan M, Gibb DR, Slater LM, Hendrickson JE. Bortezomib decreases the magnitude of a primary humoral immune response to transfused red blood cells in a murine model. Transfusion 2016; 57:82-92. [PMID: 27734515 DOI: 10.1111/trf.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Few therapeutic options currently exist to prevent or to mitigate transfusion-associated red blood cell (RBC) alloimmunization. We hypothesized that bortezomib, a proteasome inhibitor currently being utilized for HLA alloantibody and ADAMTS13 autoantibody reduction, may be beneficial in a transfusion setting. Herein, we utilized a reductionist murine model to test our hypothesis that bortezomib would decrease RBC alloimmune responses. STUDY DESIGN AND METHODS Wild-type mice were treated with bortezomib or saline and transfused with murine RBCs expressing the human KEL glycoprotein. Levels of anti-KEL immunoglobulins in transfusion recipients were measured by flow cytometry. The impact of bortezomib treatment on recipient plasma cells (PCs) and other immune cells was also assessed by flow cytometry and immunofluorescence. RESULTS After bortezomib treatment, mice had a 50% reduction in splenic white blood cells and a targeted reduction in marrow PCs. Mice treated with bortezomib before the transfusion of KEL RBCs became alloimmunized in three of three experiments, although their serum anti-KEL IgG levels were 2.6-fold lower than those in untreated mice. Once a primary antibody response was established, bortezomib treatment did not prevent an anamnestic response from occurring. CONCLUSION To the extent that these findings are generalizable to other RBC antigens and to humans, bortezomib monotherapy is unlikely to be of significant clinical benefit in a transfusion setting where complete prevention of alloimmunization is desirable. Given the impact on PCs, however, it remains plausible that bortezomib therapy may be beneficial for RBC alloimmunization prevention or mitigation if used in combination with other immunomodulatory therapies.
Collapse
Affiliation(s)
- Prabitha Natarajan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Lewis M Slater
- Hematology-Oncology Section, Medicine Health Care Group Long Beach Veterans Affairs, and Division of Hematology-Oncology and Department of Medicine, University of California, Irvine, California
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Abstract
Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| | - Nicole F Steinmetz
- Departments of 2Biomedical Engineering
- Radiology
- Materials Science and Engineering, and
- Macromolecular Science and Engineering, Case Western Reserve University, Schools of Medicine and Engineering, Cleveland, Ohio 44106;
| |
Collapse
|
22
|
Wen AM, Wang Y, Jiang K, Hsu GC, Gao H, Lee KL, Yang AC, Yu X, Simon DI, Steinmetz NF. Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J Mater Chem B 2015; 3:6037-6045. [PMID: 26509036 DOI: 10.1039/c5tb00879d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arterial and venous thrombosis are among the most common causes of death and hospitalization worldwide. Nanotechnology approaches hold great promise for molecular imaging and diagnosis as well as tissue-targeted delivery of therapeutics. In this study, we developed and investigated bioengineered nanoprobes for identifying thrombus formation; the design parameters of nanoparticle shape and surface chemistry, i.e. incorporation of fibrin-binding peptides CREKA and GPRPP, were investigated. Two nanoparticle platforms based on plant viruses were studied - icosahedral cowpea mosaic virus (CPMV) and elongated rod-shaped tobacco mosaic virus (TMV). These particles were loaded to carry contrast agents for dual-modality magnetic resonance (MR) and optical imaging, and both modalities demonstrated specificity of fibrin binding in vitro with the presence of targeting peptides. Preclinical studies in a carotid artery photochemical injury model of thrombosis confirmed thrombus homing of the nanoprobes, with the elongated TMV rods exhibiting significantly greater attachment to thrombi than icosahedral (sphere-like) CPMV. While in vitro studies confirmed fibrin-specificity conferred by the peptide ligands, in vivo studies indicated the nanoparticle shape had the greatest contribution toward thrombus targeting, with no significant contribution from either targeting ligand. These results demonstrate that nanoparticle shape plays a critical role in particle deposition at the site of vascular injury. Shaping nanotechnologies opens the door for the development of novel targeted diagnostic and therapeutic strategies (i.e., theranostics) for arterial and venous thrombosis.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kai Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Greg C Hsu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Alice C Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel I Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106. ; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106. ; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106. ; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
23
|
Huang KYA, Lin JJ, Chiu CH, Yang S, Tsao KC, Huang YC, Lin TY. A Potent Virus-Specific Antibody-Secreting Cell Response to Acute Enterovirus 71 Infection in Children. J Infect Dis 2015; 212:808-17. [PMID: 25712974 DOI: 10.1093/infdis/jiv094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) remains a leading pathogen for acute infectious diseases in children, especially in Asia. The cellular basis for establishing a virus-specific antibody response to acute EV71 infections is unclear in children. METHODS We studied the magnitude of virus-specific antibody-secreting B cells (ASCs) and its relationship with serological response, clinical parameters, and virological parameters among children with laboratory-confirmed EV71 infection. RESULTS A potent EV71 genogroup B- and virus-specific ASC response was detected in the first week of illness among genotype B5 EV71-infected children. The cross-reactive EV71-specific ASC response to genogroup C viral antigens composed about 10% of the response. The EV71-specific ASC response in children aged ≥3 years produced immunoglobulin G predominantly, but immunoglobulin M was predominant in younger children. Proliferation marker was expressed by the majority of circulating ASCs in the acute phase of EV71 infection. Virus-specific ASC responses significantly correlated with throat viral load, fever duration, and serological genogroup-specific neutralization titer. CONCLUSIONS The presence of a virus-specific ASC response serves an early cellular marker of an EV71-specific antibody response. Further detailed study of EV71-specific ASCs at the monoclonal level is crucial to delineate the specificity and function of antibody immunity in children.
Collapse
Affiliation(s)
- Kuan-Ying Arthur Huang
- Department of Pediatrics, Chang Gung Children's Hospital Molecular Infectious Disease Research Centre
| | - Jainn-Jim Lin
- Department of Pediatrics, Chang Gung Children's Hospital
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Children's Hospital Molecular Infectious Disease Research Centre
| | - Shuan Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital
| | - Yhu-Chering Huang
- Department of Pediatrics, Chang Gung Children's Hospital College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Schoonen L, van Hest JCM. Functionalization of protein-based nanocages for drug delivery applications. NANOSCALE 2014; 6:7124-41. [PMID: 24860847 DOI: 10.1039/c4nr00915k] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
Collapse
Affiliation(s)
- Lise Schoonen
- Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
25
|
Primary and long-term B-cell responses in the upper airway and lung after influenza A virus infection. Immunol Res 2014; 59:73-80. [DOI: 10.1007/s12026-014-8541-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Klimek L, Schendzielorz P, Mueller P, Saudan P, Willers J. Immunotherapy of allergic rhinitis: new therapeutic opportunities with virus-like particles filled with CpG motifs. Am J Rhinol Allergy 2013; 27:206-12. [PMID: 23710957 DOI: 10.2500/ajra.2013.27.3875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The incidence of allergic rhinitis (AR) has increased constantly over the last decades. The disease can significantly lower quality of life and subsequently might progress to allergic asthma. Allergen-specific immunotherapy is mostly used to cope with the cause of the disease. However, incidence of systemic reactions or limited compliance hampers the widespread use of this therapeutic approach. Therefore, new candidates are examined to improve immunotherapy of allergies. Recently, a new technology was developed with the aim to positively influence the immune system of allergic patients. Virus-like particles (VLPs) represent a potent vaccine platform that has been proven to be immunogenic and clinically effective. To enhance immune cell activation, addition of Toll-like receptor ligands and/or depot-forming adjuvants seems to be helpful. In this context, CpG motifs represent intensive investigated and potent stimulators of T cells. This article focuses on the function of VLPs and CpG motifs and their clinical experience for treatment of AR. METHODS A literature review was performed. RESULTS Several published studies showed a beneficial impact of the treatment on allergic symptoms. They tested VLPs filled with or without CpG motifs in combination with or without allergen. CONCLUSION Results encourage further investigations of VLPs and CpG motifs as adjuncts to or even alternative candidates for immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Ludger Klimek
- Zentrum für Rhinologie and Allergologie, Wiesbaden, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
B lymphocytes are often considered a homogenous population. However, B cells in both mouse and humans are comprised of distinct subpopulations that differ in development, phenotype, function, and microenvironmental niches. Much of our understanding about how these different B-cells populations mount antibody responses has been derived from experimental findings in mouse models and based on the use of model antigens. These reductionist studies performed over decades have been invaluable in defining the parameters of the B-cell antibody response to different types of antigens. However, these antigens also are now known to differ in a significant manner from bona fide physiological pathogens, and precisely how these different B-cell subsets divide labor in the primary humoral immune defense of pathogens is less well understood. While there are no absolutes in this area, there are recurring themes that divide the roles of B-cell subsets to different arms of the antibody response. This review provides an overview of rules that govern the B-cell labor roles, exceptions that break these rules, and models that have been used to define them.
Collapse
Affiliation(s)
- Cristina L Swanson
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO, USA
| | | | | |
Collapse
|
28
|
Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13:118-32. [PMID: 23348416 DOI: 10.1038/nri3383] [Citation(s) in RCA: 550] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective responses to microorganisms involve the nonspecific but rapid defence mechanisms of the innate immune system, followed by the specific but slow defence mechanisms of the adaptive immune system. Located as sentinels at the interface between the circulation and lymphoid tissue, splenic marginal zone B cells rapidly respond to blood-borne antigens by adopting 'crossover' defensive strategies that blur the conventional boundaries of innate and adaptive immunity. This Review discusses how marginal zone B cells function as innate-like lymphocytes that mount rapid antibody responses to both T cell-dependent and T cell-independent antigens. These responses require the integration of activation signals from germline-encoded and somatically recombined receptors for microorganisms with helper signals from effector cells of the innate and adaptive immune systems.
Collapse
|
29
|
Morphologic and functional effects of gamma secretase inhibition on splenic marginal zone B cells. Int J Alzheimers Dis 2012; 2012:289412. [PMID: 23316412 PMCID: PMC3534238 DOI: 10.1155/2012/289412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/17/2012] [Indexed: 11/18/2022] Open
Abstract
The γ-secretase complex is a promising target in Alzheimer's disease because of its role in the amyloidogenic processing of β-amyloid precursor protein. This enzyme also catalyzes the cleavage of Notch receptor, resulting in the nuclear translocation of intracellular Notch where it modulates gene transcription. Notch signaling is essential in cell fate decisions during embryogenesis, neuronal differentiation, hematopoiesis, and development of T and B cells, including splenic marginal zone (MZ) B cells. This B cell compartment participates in the early phases of the immune response to blood-borne bacteria and viruses. Chronic treatment with the oral γ-secretase inhibitor RO4929097 resulted in dose-dependent decreased cellularity (atrophy) of the MZ of rats and mice. Significant decreases in relative MZ B-cell numbers of RO4929097-treated animals were confirmed by flow cytometry. Numbers of MZ B cells reverted to normal after a sufficient RO4929097-free recovery period. Functional characterization of the immune response in relation to RO4929097-related MZ B cell decrease was assessed in mice vaccinated with inactivated vesicular stomatitis virus (VSV). Compared with the immunosuppressant cyclosporin A, RO4929097 caused only mild and reversible delayed early neutralizing IgM and IgG responses to VSV. Thus, the functional consequence of MZ B cell decrease on host defense is comparatively mild.
Collapse
|
30
|
Taylor JJ, Jenkins MK, Pape KA. Heterogeneity in the differentiation and function of memory B cells. Trends Immunol 2012; 33:590-7. [PMID: 22920843 DOI: 10.1016/j.it.2012.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Vaccines that induce neutralizing antibodies have led to the eradication of small pox and have severely reduced the prevalence of many other infections. However, even the most successful vaccines do not induce protective antibodies in all individuals, and can fail to induce lifelong immunity. A key to remedying these shortcomings may lie in a better understanding of long-lived memory B cells. Recent studies have revealed novel insights into the differentiation and function of these cells, and have shown that the memory B cell pool is much more heterogeneous than previously appreciated.
Collapse
Affiliation(s)
- Justin J Taylor
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
Barral P, Sánchez-Niño MD, van Rooijen N, Cerundolo V, Batista FD. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J 2012; 31:2378-90. [PMID: 22505026 PMCID: PMC3364740 DOI: 10.1038/emboj.2012.87] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/15/2012] [Indexed: 01/14/2023] Open
Abstract
Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.
Collapse
Affiliation(s)
- Patricia Barral
- Lymphocyte Interaction Laboratory, Cancer Research UK, London Research Institute, London, UK
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | - Nico van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VUMC, Amsterdam, The Netherlands
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|
32
|
Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 2011; 22:901-8. [PMID: 21592772 PMCID: PMC3206135 DOI: 10.1016/j.copbio.2011.04.020] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 12/31/2022]
Abstract
Several nanoparticle platforms are currently being developed for applications in medicine, including both synthetic materials and naturally occurring bionanomaterials such as viral nanoparticles (VNPs) and their genome-free counterparts, virus-like particles (VLPs). A broad range of genetic and chemical engineering methods have been established that allow VNP/VLP formulations to carry large payloads of imaging reagents or drugs. Furthermore, targeted VNPs and VLPs can be generated by including peptide ligands on the particle surface. In this article, we highlight state-of-the-art virus engineering principles and discuss recent advances that bring potential biomedical applications a step closer. Viral nanotechnology has now come of age and it will not be long before these formulations assume a prominent role in the clinic.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Multiple HIV-1-specific IgG3 responses decline during acute HIV-1: implications for detection of incident HIV infection. AIDS 2011; 25:2089-97. [PMID: 21832938 DOI: 10.1097/qad.0b013e32834b348e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Different HIV-1 antigen specificities appear in sequence after HIV-1 transmission and the immunoglobulin G (IgG) subclass responses to HIV antigens are distinct from each other. The initial predominant IgG subclass response to HIV-1 infection consists of IgG1 and IgG3 antibodies with a noted decline in some IgG3 antibodies during acute HIV-1 infection. Thus, we postulate that multiple antigen-specific IgG3 responses may serve as surrogates for the relative time since HIV-1 acquisition. DESIGN We determined the magnitude, peak, and half-life of HIV-1 antigen-specific IgG1 and IgG3 antibodies in 41 HIV-1-infected individuals followed longitudinally from acute infection during the first appearance of HIV-1-specific antibodies through approximately 6 months after infection. METHODS We used quantitative HIV-1-binding antibody multiplex assays and exponential decay models to estimate concentrations of IgG1 and IgG3 antibodies to eight different HIV-1 proteins including gp140 Env, gp120 Env, gp41 Env, p66 reverse transcriptase, p31 Integrase, Tat, Nef, and p55 Gag proteins during acute/recent HIV-1 infection. RESULTS Among HIV-1-specific IgG3 responses, anti-gp41 IgG3 antibodies were the first to appear. We found that anti-gp41 Env IgG3 and anti-p66 reverse transcriptase IgG3 antibodies, in addition to anti-Gag IgG3 antibodies, each consistently and measurably declined after acute infection, in contrast to the persistent antigen-specific IgG1 responses. CONCLUSION The detailed measurements of the decline in multiple HIV-specific IgG3 responses simultaneous with persistent IgG1 responses during acute and recent HIV-1 infection could serve as markers for detection of incident HIV infection.
Collapse
|
34
|
Hansson J, Bosco N, Favre L, Raymond F, Oliveira M, Metairon S, Mansourian R, Blum S, Kussmann M, Benyacoub J. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol Immunol 2011; 48:1091-101. [DOI: 10.1016/j.molimm.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 12/21/2022]
|
35
|
Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 2011; 34:375-84. [PMID: 21353603 PMCID: PMC3064721 DOI: 10.1016/j.immuni.2011.01.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/01/2010] [Accepted: 01/11/2011] [Indexed: 12/22/2022]
Abstract
The contribution of Toll-like receptor (TLR) signaling to T cell-dependent (TD) antibody responses was assessed by using mice lacking the TLR signaling adaptor MyD88 in individual cell types. When a soluble TLR9 ligand was used as adjuvant for a protein antigen, MyD88 was required in dendritic cells but not in B cells to enhance the TD antibody response, regardless of the inherent immunogenicity of the antigen. In contrast, a TLR9 ligand contained within a virus-like particle substantially augmented the TD germinal center IgG antibody response, and this augmentation required B cell MyD88. The ability of B cells to discriminate between antigens based on the physical form of a TLR ligand probably reflects an adaptation to facilitate strong antiviral antibody responses.
Collapse
Affiliation(s)
- Baidong Hou
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| | | | - Gary Ott
- Dynavax Technologies, Berkeley, CA, USA 94710
| | - Matthew L. Wheeler
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| | - Ming Ji
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| | - Lili Kuzmich
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| | - Linda M. Lee
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| | | | | | - Anthony L. DeFranco
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA 94143
| |
Collapse
|
36
|
Hendricks J, Visser A, Dammers PM, Burgerhof JGM, Bos NA, Kroese FGM. Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations. Mol Immunol 2011; 48:874-82. [PMID: 21256598 DOI: 10.1016/j.molimm.2010.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
The vast majority of rodent splenic marginal zone (MZ)-B cells are naive IgM(+) cells. A small fraction of these MZ-B cells carry mutated V-genes, and represent IgM(+) memory MZ-B cells. Here we reveal further heterogeneity of B cells with a MZ-B cell phenotype, by providing evidence for the existence of class-switched memory MZ-B cells in the rat. In essence, we observed IGHV5 encoded Cγ transcripts, among FACS-purified MZ-B cells, defined as HIS24(low)HIS57(bright) cells. Furthermore, we found that most IgG encoding transcripts are mutated. There is no significant difference in IGHV5 repertoire and subclass usage of these IgG encoding transcripts collected from B cells with a MZ-B cell phenotype and B cells with a follicular (FO) B cell phenotype. However, the IGHV5 genes encoding for IgG antibodies of MZ-B cells exhibited significantly fewer mutations, compared to those with a FO-B cell phenotype. In one rat we found a clonally related set of IgG encoding sequences, of which one was derived from the MZ-B cell fraction and the other from the FO-B cell fraction. We speculate that these two subpopulations of class-switched B cells are both descendants from naive FO-B cells and are generated in germinal centers. Class-switched memory cells with a MZ-B cell phenotype may provide the animal with a population of IgG memory cells that can respond rapidly to blood-borne pathogens.
Collapse
Affiliation(s)
- Jacobus Hendricks
- Department of Cell Biology, Immunology Section, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Abstract
Interleukin-2 (IL-2) and IL-21 share activities in the control of T- and B-cell maturation, proliferation, function, and survival. However, opposing roles for IL-2 and IL-21 have been reported in the development of regulatory T cells. To dissect unique, redundant, and opposing activities of IL-2 and IL-21, we compared T- and B-cell development and function in mice lacking both IL-2 receptor α (IL-2Rα) and IL-21R (double knockouts [DKO]) with single knockout and wild-type (WT) mice. Similarly to il2ra−/− mice, DKO showed reduced numbers of regulatory T cells and, consequently, hyper-activation and proliferation of T cells associated with inflammatory disease (ie, colitis), weight loss, and reduced survival. The absence of IL-2Rα resulted in overproduction of IL-21 by IFN-γ–producing CD4+ T cells, which induced apoptosis of marginal zone (MZ) B cells. Hence, MZ B cells and MZ B-cell immunoglobulin M antibody responses to Streptococcus pneumoniae phosophorylcholine were absent in il2ra−/− mice but were completely restored in DKO mice. Our results highlight key roles of IL-2 in inhibiting IL-21 production by CD4+ T cells and of IL-21 in negatively regulating MZ B-cell survival and antibody production.
Collapse
|
38
|
Bryan MA, Guyach SE, Norris KA. Specific humoral immunity versus polyclonal B cell activation in Trypanosoma cruzi infection of susceptible and resistant mice. PLoS Negl Trop Dis 2010; 4:e733. [PMID: 20625554 PMCID: PMC2897841 DOI: 10.1371/journal.pntd.0000733] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 05/17/2010] [Indexed: 12/17/2022] Open
Abstract
Background The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute infection. Methodology/Principal Findings Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6 mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific humoral responses in the resistant C57Bl/6 mice. Conclusions/Significance The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine responses were associated with amplified polyclonal B cell activation and diminished specific humoral immunity. These results demonstrate that polyclonal B cell activation during acute experimental Chagas disease is not a generalized response and suggest that the nature of humoral immunity during T. cruzi infection contributes to host susceptibility. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection.
Collapse
Affiliation(s)
- Marianne A. Bryan
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Siobhan E. Guyach
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen A. Norris
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Chen Y, Wermeling F, Sundqvist J, Jonsson AB, Tryggvason K, Pikkarainen T, Karlsson MCI. A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses. Eur J Immunol 2010; 40:1451-60. [PMID: 20162551 DOI: 10.1002/eji.200939891] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recognition of microbial components by TLR, key sensors of infection, leads to induction of inflammatory responses. We found that, in vivo, TLR4 engagement by LPS induces up-regulation of the class A scavenger receptors (SR) macrophage receptor with a collagenous structure (MARCO) and SR-A, which occurs, at least in the case of MARCO, via both MyD88-dependent and -independent pathways. When challenging mice with a low dose of LPS followed by a high dose, class A SR-deficient mice showed a higher survival rate than WT mice. This was paired with increased production of IL-10 and anti-LPS Ab, as well as increased activation status of marginal zone B cells. However, the receptors were not crucial for survival when challenging mice i.p. with Neisseria meningitidis or Listeria monocytogenes, but they were found to contribute to microbial capture and clearance. This indicates physiological significance for the up-regulation of class A SR during early stages of bacterial infection. Thus, we believe that we have revealed a mechanism where SR regulate the activation status of the immune system and are involved in balancing a proper immune response to infection. This regulation could also be important in maintaining tolerance since these receptors have been shown to be involved in regulation of self-reactivity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Cells, Cultured/drug effects
- Cytokines/biosynthesis
- Cytokines/genetics
- Escherichia coli Infections/immunology
- Female
- Gene Expression Regulation
- Humans
- Immunoglobulin M/biosynthesis
- Interleukin-10/biosynthesis
- Interleukin-10/genetics
- Lipopolysaccharides/immunology
- Lipopolysaccharides/toxicity
- Macrophage Activation
- Macrophages, Peritoneal/physiology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phagocytosis
- RNA, Messenger/biosynthesis
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Scavenger Receptors, Class A/physiology
- Specific Pathogen-Free Organisms
- Spleen/immunology
- Toll-Like Receptor 4/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Yunying Chen
- Department of Medicine, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bessa J, Kopf M, Bachmann MF. Cutting Edge: IL-21 and TLR Signaling Regulate Germinal Center Responses in a B Cell-Intrinsic Manner. THE JOURNAL OF IMMUNOLOGY 2010; 184:4615-9. [DOI: 10.4049/jimmunol.0903949] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J Virol 2009; 84:1110-23. [PMID: 19889768 DOI: 10.1128/jvi.01709-09] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious respiratory infections in children as well as a serious cause of disease in elderly and immunosuppressed populations. There are no licensed vaccines available to prevent RSV disease. We have developed a virus-like particle (VLP) vaccine candidate for protection from RSV. The VLP is composed of the NP and M proteins of Newcastle disease virus (NDV) and a chimeric protein containing the cytoplasmic and transmembrane domains of the NDV HN protein and the ectodomain of the human RSV G protein (H/G). Immunization of mice with 10 or 40 microg total VLP-H/G protein by intraperitoneal or intramuscular inoculation stimulated antibody responses to G protein which were as good as or better than those stimulated by comparable amounts of UV-inactivated RSV. Immunization of mice with two doses or even a single dose of these particles resulted in the complete protection of mice from RSV replication in the lungs. Immunization with these particles induced neutralizing antibodies with modest titers. Upon RSV challenge of VLP-H/G-immunized mice, no enhanced pathology in the lungs was observed, although lungs of mice immunized in parallel with formalin-inactivated RSV (FI-RSV) showed the significant pathology that has previously been documented after immunization with FI-RSV. Thus, the VLP-H/G candidate vaccine was immunogenic in BALB/c mice and prevented replication of RSV in murine lungs, with no evidence of immunopathology. These data support further development of virus-like particle vaccine candidates for protection against RSV.
Collapse
|
42
|
Bessa J, Jegerlehner A, Hinton HJ, Pumpens P, Saudan P, Schneider P, Bachmann MF. Alveolar Macrophages and Lung Dendritic Cells Sense RNA and Drive Mucosal IgA Responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:3788-99. [DOI: 10.4049/jimmunol.0804004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Colino J, Chattopadhyay G, Sen G, Chen Q, Lees A, Canaday DH, Rubtsov A, Torres R, Snapper CM. Parameters underlying distinct T cell-dependent polysaccharide-specific IgG responses to an intact gram-positive bacterium versus a soluble conjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2009; 183:1551-9. [PMID: 19570830 DOI: 10.4049/jimmunol.0900238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IgG anti-polysaccharide (PS) responses to both intact Streptococcus pneumoniae (Pn) and PS conjugate vaccines are dependent on CD4(+) T cells, B7-dependent costimulation, and CD40-CD40-ligand interactions. Nevertheless, the former response, in contrast to the latter, is mediated by an ICOS-independent, apoptosis-prone, extrafollicular pathway that fails to generate PS-specific memory. We show that pre-existing PS-specific Igs, the bacterial surface or particulation, selective recruitment of B cell subsets, or activation and recruitment of Pn protein-specific CD4(+) T cells do not account for the failure of Pn to generate PS-specific IgG memory. Rather, the data suggest that the critical factor may be the lack of covalent attachment of PS to protein in intact Pn, highlighting the potential importance of the physicochemical relationship of PS capsule with the underlying bacterial structure for in vivo induction of PS-specific Igs.
Collapse
Affiliation(s)
- Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Keller SA, von Allmen CE, Hinton HJ, Bauer M, Muntwiler S, Dietmeier K, Saudan P, Bachmann MF. Follicular and Marginal Zone B Cells Fail to Cross-Present MHC Class I-Restricted Epitopes Derived from Viral Particles. THE JOURNAL OF IMMUNOLOGY 2009; 182:6261-6. [DOI: 10.4049/jimmunol.0804035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 2008; 105:14336-41. [PMID: 18812621 DOI: 10.1073/pnas.0805942105] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to their low immunogenicity in patients, humanized or fully human mAbs are becoming increasingly important for the treatment of a growing number of diseases, including cancer, infections, and immune disorders. Here, we describe a technology allowing for the rapid isolation of fully human mAbs. In contrast to previously described methods, B cells specific for an antigen of interest are directly isolated from peripheral blood mononuclear cells (PBMC) of human donors. Recombinant, antigen-specific single-chain Fv (scFv) libraries are generated from this pool of B cells and screened by mammalian cell surface display by using a Sindbis virus expression system. This method allows isolating antigen-specific antibodies by a single round of FACS. The variable regions (VRs) of the heavy chains (HCs) and light chains (LCs) are isolated from positive clones and recombinant fully human antibodies produced as whole IgG or Fab fragments. In this manner, several hypermutated high-affinity antibodies binding the Qbeta virus like particle (VLP), a model viral antigen, as well as antibodies specific for nicotine were isolated. All antibodies showed high expression levels in cell culture. The human nicotine-specific mAbs were validated preclinically in a mouse model. Thus, the technology presented here allows for rapid isolation of high-affinity, fully human antibodies with therapeutic potential from human volunteers.
Collapse
|
46
|
Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur J Immunol 2008; 38:114-26. [PMID: 18081037 DOI: 10.1002/eji.200636959] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intranasal (i.n.) immunization aims to induce local as well as systemic immune responses. In the present study, we assessed a vaccine platform based on virus-like particles (VLP) derived from the RNA phage Qbeta for i.n. immunization. We found that both i.n. and subcutaneous (s.c.) administration of Qbeta-VLP elicited strong and comparable specific IgG responses in serum and lung. Surprisingly, both routes also induced high levels of specific IgA in serum. In contrast, only i.n. administration of Qbeta-VLP resulted in local IgA production in the lung. Efficient induction of B cell responses by i.n. administration of VLP was further supported by the presence of large numbers of germinal centers (GC) as well as memory B cells in the spleen and plasma cells in the bone marrow. Results obtained for the VLP itself could be extended to an antigen covalently attached to it. Specifically, i.n. immunization of mice with VLP displaying the influenza virus derived ectodomain of the M2 protein resulted in strong M2-specific antibody responses as well as anti-viral protection. In contrast, i.n. immunization with VLP displaying p33 peptide, the major CTL epitope of lymphocytic choriomeningitis virus, induced relatively inefficient cytotoxic T cell responses, resulting in low numbers of specific T cells and poor effector cell differentiation. Taken together, these results suggest that effective antibody-based vaccines are achievable by i.n. administration of Qbeta-VLP displaying specific antigens.
Collapse
Affiliation(s)
- Juliana Bessa
- Cytos Biotechnology AG, Zürich-Schlieren, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM. TLR Agonists Promote Marginal Zone B Cell Activation and Facilitate T-Dependent IgM Responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:3882-8. [DOI: 10.4049/jimmunol.180.6.3882] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Hinton HJ, Jegerlehner A, Bachmann MF. Pattern recognition by B cells: the role of antigen repetitiveness versus Toll-like receptors. Curr Top Microbiol Immunol 2008; 319:1-15. [PMID: 18080412 DOI: 10.1007/978-3-540-73900-5_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses induce excellent antibody responses due to several intrinsic features. Their repetitive, organised structure is optimal for the activation of the B cell receptor (BCR), leading to an increased humoral response and a decreased dependence on T cell help. Viruses also trigger Toll-like receptors (TLRs), which in addition to increasing overall Ig levels, drive the switch to the IgG2a isotype. This isotype is more efficient in viral and bacterial clearance and will activate complement, which in turn lowers the threshold of BCR activation. Exploiting these characteristics in vaccine design may help us to create vaccines which are as safe as a recombinant vaccine yet still as effective as a virus in inducing B cell responses.
Collapse
Affiliation(s)
- H J Hinton
- Cytos Biotechnology AG, Wagistrasse 25, 8952 Zürich-Schlieren, Switzerland
| | | | | |
Collapse
|
49
|
Joller N, Spörri R, Hilbi H, Oxenius A. Induction and protective role of antibodies inLegionella pneumophila infection. Eur J Immunol 2007; 37:3414-23. [DOI: 10.1002/eji.200737591] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
de Andrés B, Cortegano I, Serrano N, del Rio B, Martín P, Gonzalo P, Marcos MAR, Gaspar ML. A population of CD19highCD45R-/lowCD21low B lymphocytes poised for spontaneous secretion of IgG and IgA antibodies. THE JOURNAL OF IMMUNOLOGY 2007; 179:5326-34. [PMID: 17911619 DOI: 10.4049/jimmunol.179.8.5326] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ab responses to selected Ags are produced by discrete B cell populations whose presence and functional relevance vary along the ontogeny. The earliest B lineage-restricted precursors in gestational day 11 mouse embryos display the CD19(+)CD45R/B220(-) phenotype. Phenotypically identical cells persist throughout gestation and in postnatal life, in parallel to the later-arising, CD19(+)CD45R(+) B cells. Very early after birth, the CD19(+)CD45R(-) B cell subset included high frequencies of spontaneously Ig-secreting cells. In the adult spleen, a small subset of CD19(high)CD45R(-/low)IgM(+/-)IgD(-)CD21/Cr2(-/low) cells, which was detected in perifollicular areas, displayed genetic and phenotypical traits of highly differentiated B cells, and was enriched in IgG- and IgA-secreting plasma cells. In vitro differentiation and in vivo adoptive transfer experiments of multipotent hemopoietic progenitors revealed that these CD19(high)CD45R(-/low) B cells were preferentially regenerated by embryo-, but not by adult bone marrow-, derived progenitors, except when the latter were inoculated into newborn mice. Both the early ontogenical emergence and the natural production of serum Igs, are shared features of this CD19(high)CD45R(-/low) B cell population with innate-like B lymphocytes such as B1 and marginal zone B cells, and suggest that the new population might be related to that category.
Collapse
Affiliation(s)
- Belén de Andrés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|