1
|
Zhang Y, Qin H, Zu B, Yu Z, Liu C, Shi J, Zhou B. Maternal Exposure to Environmentally Relevant Concentrations of Tris(2,4-di- tert-butylphenyl) Phosphate-Induced Developmental Toxicity in Zebrafish Offspring via Disrupting foxO1/ ripor2 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5474-5486. [PMID: 40087148 DOI: 10.1021/acs.est.4c14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Abnormal development and mortality in early life stages pose significant threats to the growth and continuation of fish populations. Tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP) is a novel organophosphate ester contaminant detected in natural waters. However, the potential effects of maternal exposure to TDtBPP on the early development of offspring embryos in fish remain unknown. Here, 30-day-old zebrafish were exposed to TDtBPP at 0, 50, 500, or 5000 ng/L for 180 days, and the exposed females were spawned with unexposed males. TDtBPP accumulation was detected in offspring embryos, accompanied by an increased malformation rate and mortality. The developmental abnormality of offspring embryos was identified to originate from the gastrula stage. Furthermore, based on transcriptome analysis, the down-regulation of RHO family interacting cell polarization regulator 2 gene (ripor2) was considered as a key toxic event, and this was confirmed in the subsequent knockdown experiment. Moreover, molecular docking studies and forkhead box O1 (foxO1) transcription factor inhibitor (AS1842856) exposure experiments demonstrated that the blockade of foxO1 transcriptional regulation was responsible for the decreased expression of ripor2. The results of this study demonstrated that the occurrence of developmental malformation and mortality in zebrafish offspring embryos following maternal TDtBPP exposure were triggered by the blockade of foxO1 transcriptional regulation and the consequent down-regulation of ripor2.
Collapse
Affiliation(s)
- Yongkang Zhang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Haiyu Qin
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bowen Zu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zichen Yu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Wang H, Syed AA, Krijgsveld J, Sigismondo G. Isolation of Proteins on Chromatin Reveals Signaling Pathway-Dependent Alterations in the DNA-Bound Proteome. Mol Cell Proteomics 2025; 24:100908. [PMID: 39842777 PMCID: PMC11889358 DOI: 10.1016/j.mcpro.2025.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Signaling pathways often convergence on transcription factors and other DNA-binding proteins that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DNA-binding proteins is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogs to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome. We then applied iPOC to investigate chromatome changes upon perturbation of the cancer-relevant PI3K-AKT-mTOR pathway. Our results show distinct dynamics of the DNA-bound proteome upon selective inhibition of PI3K, AKT, or mTOR, and we provide evidence how this signaling cascade regulates the DNA-bound status of SUZ12, thereby modulating H3K27me3 levels. Collectively, iPOC is a powerful approach to study the composition of the DNA-bound proteome operating downstream of signaling cascades, thereby both expanding our knowledge of the mechanism of action of the pathway and unveiling novel chromatin modulators that can potentially be targeted pharmacologically.
Collapse
Affiliation(s)
- Huiyu Wang
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Marchais M, Mangeney M. FOXO1 or not FOXO1: that is the question. Cancer Commun (Lond) 2025; 45:43-45. [PMID: 39509576 PMCID: PMC11758247 DOI: 10.1002/cac2.12624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
| | - Marianne Mangeney
- Physiology and Molecular Pathology of Endogenous and Infectious Retroviruses UnitCNRS UMR 9196Gustave Roussy InstituteParis‐Saclay UniversityVillejuifFrance
| |
Collapse
|
4
|
Monrose M, Holota H, Martinez G, Damon-Soubeyrand C, Thirouard L, Martinot E, Battistelli E, de Haze A, Bravard S, Tamisier C, Caira F, Coutton C, Barbotin AL, Boursier A, Lakhal L, Beaudoin C, Volle DH. Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402082. [PMID: 39318179 DOI: 10.1002/advs.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 09/26/2024]
Abstract
Male sexual function can be disrupted by exposure to exogenous compounds that cause testicular physiological alterations. The constitutive androstane receptor (Car) is a receptor for both endobiotics and xenobiotics involved in detoxification. However, its role in male fertility, particularly in regard to the reprotoxic effects of environmental pollutants, remains unclear. This study aims to investigate the role of the Car signaling pathway in male fertility. In vivo, in vitro, and pharmacological approaches are utilized in wild-type and Car-deficient mouse models. The results indicate that Car inhibition impaired male fertility due to altered sperm quality, specifically histone retention, which is correlated with an increased percentage of dying offspring in utero. The data highlighted interactions among Car, Akt, Foxo1, and histone acetylation. This study demonstrates that Car is crucial in germ cell homeostasis and male fertility. Further research on the Car signaling pathway is necessary to reveal unidentified causes of altered fertility and understand the harmful impact of environmental molecules on male fertility and offspring health.
Collapse
Affiliation(s)
- Mélusine Monrose
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Guillaume Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Christelle Damon-Soubeyrand
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Edwige Battistelli
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Stéphanie Bravard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Christelle Tamisier
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Charles Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Laila Lakhal
- INRAe UMR1331, ToxAlim, University of Toulouse, Toulouse, F-31027, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| |
Collapse
|
5
|
Hai B, Song Q, Du C, Mao T, Jia F, Liu Y, Pan X, Zhu B, Liu X. Comprehensive bioinformatics analyses reveal immune genes responsible for altered immune microenvironment in intervertebral disc degeneration. Mol Genet Genomics 2022; 297:1229-1242. [PMID: 35767190 PMCID: PMC9418280 DOI: 10.1007/s00438-022-01912-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
We sought to identify novel biomarkers and related mechanisms that might shape the immune infiltration in IDD, thereby providing novel perspective for IDD diagnosis and therapies. Gene expression data sets GSE124272 (for initial analysis) and GSE56081 (for validation analysis) involving samples from IDD patients and healthy controls were retrieved from the Gene Expression Omnibus (GEO) database. Immune genes associated with IDD were identified by GSEA; module genes that exhibited coordinated expression patterns and the strongest positive or negative correlation with IDD were identified by WGCNA. The intersection between immune genes and module genes was used for LASSO variable selection, whereby we obtained pivotal genes that were highly representative of IDD. We then correlated (Pearson correlation) the expression of pivotal genes with immune cell proportion inferred by CIBERSORT algorithm, and revealed the potential immune-regulatory roles of pivotal genes on the pathogenesis of IDD. We discovered several immune-associated pathways in which IDD-associated immune genes were highly clustered, and identified two gene modules that might promote or inhibit the pathogenesis of IDD. These candidate genes were further narrowed down to 8 pivotal genes, namely, MSH2, LY96, ADAM8, HEBP2, ANXA3, RAB24, ZBTB16 and PIK3CD, among which ANXA3, MSH2, ZBTB16, LY96, PIK3CD, ZBTB16, and ADAM8 were revealed to be correlated with the proportion of CD8 T cells and resting memory CD4 T cells. This work identified 8 pivotal genes that might be involved in the pathogenesis of IDD through triggering various immune-associated pathways and altering the composition of immune and myeloid cells in IDD patients, which provides novel perspectives on IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Qingpeng Song
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Fei Jia
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China.
| |
Collapse
|
6
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Shin N, Stubbs M, Koblish H, Yue EW, Soloviev M, Douty B, Wang KH, Wang Q, Gao M, Feldman P, Yang G, Hall L, Hansbury M, O'Connor S, Leffet L, Collins R, Katiyar K, He X, Waeltz P, Collier P, Lu J, Li YL, Li Y, Liu PCC, Burn T, Covington M, Diamond S, Shuey D, Roberts A, Yeleswaram S, Hollis G, Metcalf B, Yao W, Huber R, Combs A, Newton R, Scherle P. Parsaclisib Is a Next-Generation Phosphoinositide 3-Kinase δ Inhibitor with Reduced Hepatotoxicity and Potent Antitumor and Immunomodulatory Activities in Models of B-Cell Malignancy. J Pharmacol Exp Ther 2020; 374:211-222. [PMID: 32345620 DOI: 10.1124/jpet.120.265538] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.
Collapse
Affiliation(s)
- Niu Shin
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Eddy W Yue
- Incyte Research Institute, Wilmington, Delaware
| | | | - Brent Douty
- Incyte Research Institute, Wilmington, Delaware
| | | | - Qian Wang
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | | - Leslie Hall
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Lynn Leffet
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Xin He
- Incyte Research Institute, Wilmington, Delaware
| | - Paul Waeltz
- Incyte Research Institute, Wilmington, Delaware
| | | | - Jin Lu
- Incyte Research Institute, Wilmington, Delaware
| | - Yun-Long Li
- Incyte Research Institute, Wilmington, Delaware
| | - Yanlong Li
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | | | | - Dana Shuey
- Incyte Research Institute, Wilmington, Delaware
| | | | | | - Greg Hollis
- Incyte Research Institute, Wilmington, Delaware
| | | | - Wenqing Yao
- Incyte Research Institute, Wilmington, Delaware
| | - Reid Huber
- Incyte Research Institute, Wilmington, Delaware
| | | | | | | |
Collapse
|
10
|
CD5 signalosome coordinates antagonist TCR signals to control the generation of Treg cells induced by foreign antigens. Proc Natl Acad Sci U S A 2020; 117:12969-12979. [PMID: 32434911 DOI: 10.1073/pnas.1917182117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD5 is characterized as an inhibitory coreceptor with an important regulatory role during T cell development. The molecular mechanism by which CD5 operates has been puzzling and its function in mature T cells suggests promoting rather than repressing effects on immune responses. Here, we combined quantitative mass spectrometry and genetic studies to analyze the components and the activity of the CD5 signaling machinery in primary T cells. We found that T cell receptor (TCR) engagement induces the selective phosphorylation of CD5 tyrosine 429, which serves as a docking site for proteins with adaptor functions (c-Cbl, CIN85, CRKL), connecting CD5 to positive (PI3K) and negative (UBASH3A, SHIP1) regulators of TCR signaling. c-CBL acts as a coordinator in this complex enabling CD5 to synchronize positive and negative feedbacks on TCR signaling through the other components. Disruption of CD5 signalosome in mutant mice reveals that it modulates TCR signal outputs to selectively repress the transactivation of Foxp3 and limit the inopportune induction of peripherally induced regulatory T cells during immune responses against foreign antigen. Our findings bring insights into the paradigm of coreceptor signaling, suggesting that, in addition to providing dualistic enhancing or dampening inputs, coreceptors can engage concomitant stimulatory and inhibitory signaling events, which act together to promote specific functional outcomes.
Collapse
|
11
|
Wang K, Peng S, Xiong S, Niu A, Xia M, Xiong X, Zeng G, Huang Q. Naringin inhibits autophagy mediated by PI3K-Akt-mTOR pathway to ameliorate endothelial cell dysfunction induced by high glucose/high fat stress. Eur J Pharmacol 2020; 874:173003. [PMID: 32045600 DOI: 10.1016/j.ejphar.2020.173003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
As a flavonoid, naringin (Nar) has been shown to have multiple pharmacological effects including lowering blood cholesterol, reducing thrombus formation and improving microcirculation. However, effects of Nar on function and autophagy of vascular endothelial cells under high glucose and high fat (HG/HF) stress are largely unclear. This study was designed to investigate such effects of Nar in human umbilical vein endothelial cells (HUVECs) and to determine whether such effects are related to autophagy. Our present results show that 86 μM of Nar inhibits the autophagy levels and protects the cells against the dysfunction induced by HG/HF stress. Moreover, Nar increases the phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and mammalian rapamycin target protein (mTOR). However, pretreatment with rapamycin (RAPA, 5 μM, autophagy inducer), LY294002(10 μM, PI3K inhibitor) and Akt inhibitor Ⅳ (0.5 μM, Akt inhibitor) partially abrogates the protective effects of Nar, suggesting that the protective effects of Nar are achieved by activating the PI3K-Akt-mTOR pathway to inhibit autophagy. In conclusion, Nar improves the function of HUVECs under HG/HF stress through activating the PI3K-Akt-mTOR pathway to inhibit autophagy. The findings offer an insight into HG/HF stress-induced autophagy and indicate that Nar might have potential to prevent and treat the diabetic angiopathy.
Collapse
Affiliation(s)
- Kun Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shengjia Peng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Nanchang Joint Programme, Queen Mary University of London, Nanchang, Jiangxi, 330006, PR China
| | - Shaofeng Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Ailin Niu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Min Xia
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
12
|
Roux A, Bismuth G, Mangeney M. [FOXO1 transcription factor: a key player in T cell/HIV-1 interaction]. Med Sci (Paris) 2020; 36:24-26. [PMID: 32014093 DOI: 10.1051/medsci/2019256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arthur Roux
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| | - Georges Bismuth
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| | - Marianne Mangeney
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
13
|
Güler A, Lopez Venegas M, Adankwah E, Mayatepek E, Nausch N, Jacobsen M. Suppressor of cytokine signalling 3 is crucial for interleukin-7 receptor re-expression after T-cell activation and interleukin-7 dependent proliferation. Eur J Immunol 2019; 50:234-244. [PMID: 31621896 DOI: 10.1002/eji.201948302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 10/15/2019] [Indexed: 01/19/2023]
Abstract
SOCS3 is a crucial feedback inhibitor of several cytokine pathways with potential regulatory functions during T cell receptor activation. A role of SOCS3 in IL-7-dependent homeostatic mechanisms has been assumed but the underlying mechanisms remain unclear. We investigated the role of SOCS3 in IL-7 receptor α-chain (IL-7Rα) expression and IL-7 effects on activated human CD4+ T cells. SOCS3 expression modulation by lentiviral transduction combined with T cell phenotyping, receptor signalling analysis, and a novel competitive in vitro assay were applied. Time course analyses following T-cell activation showed IL-7Rα re-expression after initial down-regulation that was accompanied by increased SOCS3 expression starting on day 2. T cells with low SOCS3 expression (SOCS3kd ) had decreased IL-7Rα levels due to impaired re-expression. SOCS3 mediated effects on IL-7Rα were not affected by recombinant IL-7 or blocking of IL-2. We found no evidence for SOCS3 effects on IL7RA transcriptional regulation. Functionally, SOCS3kd T cells showed decreased IL-7-dependent proliferation as compared to vector control T cells under competitive in vitro conditions. This impaired IL-7 response of SOCS3kd T cells was accompanied by decreased STAT5 phosphorylation late during IL-7 signalling. We identified a novel SOCS3 function in IL-7Rα regulation during T-cell activation with crucial implications for IL-7-dependent mechanisms.
Collapse
Affiliation(s)
- Alptekin Güler
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Miguel Lopez Venegas
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
14
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
15
|
Curdlan sulfate/O-linked quaternized chitosan nanoparticles acting as potential adjuvants promote multiple arms of immune responses. Carbohydr Polym 2019; 213:100-111. [DOI: 10.1016/j.carbpol.2019.02.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
|
16
|
Roux A, Leroy H, De Muylder B, Bracq L, Oussous S, Dusanter-Fourt I, Chougui G, Tacine R, Randriamampita C, Desjardins D, Le Grand R, Bouillaud F, Benichou S, Margottin-Goguet F, Cheynier R, Bismuth G, Mangeney M. FOXO1 transcription factor plays a key role in T cell-HIV-1 interaction. PLoS Pathog 2019; 15:e1007669. [PMID: 31042779 PMCID: PMC6513100 DOI: 10.1371/journal.ppat.1007669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/13/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 is dependent on the host cell for providing the metabolic resources for completion of its viral replication cycle. Thus, HIV-1 replicates efficiently only in activated CD4+ T cells. Barriers preventing HIV-1 replication in resting CD4+ T cells include a block that limits reverse transcription and also the lack of activity of several inducible transcription factors, such as NF-κB and NFAT. Because FOXO1 is a master regulator of T cell functions, we studied the effect of its inhibition on T cell/HIV-1 interactions. By using AS1842856, a FOXO1 pharmacologic inhibitor, we observe that FOXO1 inhibition induces a metabolic activation of T cells with a G0/G1 transition in the absence of any stimulatory signal. One parallel outcome of this change is the inhibition of the activity of the HIV restriction factor SAMHD1 and the activation of the NFAT pathway. FOXO1 inhibition by AS1842856 makes resting T cells permissive to HIV-1 infection. In addition, we found that FOXO1 inhibition by either AS1842856 treatment or upon FOXO1 knockdown induces the reactivation of HIV-1 latent proviruses in T cells. We conclude that FOXO1 has a central role in the HIV-1/T cell interaction and that inhibiting FOXO1 with drugs such as AS1842856 may be a new therapeutic shock-and-kill strategy to eliminate the HIV-1 reservoir in human T cells. HIV-1 is controlled by host restriction factors that interfere with its life cycle. However, the virus has equipped itself to counter these strategies. We report a new interplay between HIV-1 and human T lymphocytes through the FOXO1 transcription factor. By using AS1842856, a drug targeting FOXO1, we found that FOXO1 inhibition triggers metabolic activation and G0/G1 transition of resting T cells and also by the inactivation of the SAMHD1 viral restriction factor. FOXO1 inhibition makes resting CD4+ T cells permissive to HIV-1 infection. We finally found that pharmacologic (AS1842856 treatment) or genetic (shRNA) silencing of FOXO1 reactivate HIV-1 latent proviruses. Thus FOXO1 appears as an important player of the HIV-1/T-cell relationship and a new potential therapeutic target for intervention during HIV-1 infection.
Collapse
Affiliation(s)
- Arthur Roux
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Héloise Leroy
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Bénédicte De Muylder
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Lucie Bracq
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
- International Associated Laboratory (LIA VirHost), CNRS, Université Paris Descartes, Institut Pasteur Paris, and Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
| | - Samia Oussous
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Isabelle Dusanter-Fourt
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Ghina Chougui
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Rachida Tacine
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Clotilde Randriamampita
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Delphine Desjardins
- CEA, Université Paris Sud, INSERM -Immunology of Viral Infections and Autoimmune Diseases department (IMVA), U1184, IDMIT Department, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM -Immunology of Viral Infections and Autoimmune Diseases department (IMVA), U1184, IDMIT Department, Fontenay-aux-Roses, France
| | - Frederic Bouillaud
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Serge Benichou
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
- International Associated Laboratory (LIA VirHost), CNRS, Université Paris Descartes, Institut Pasteur Paris, and Institut Pasteur Shangai-Chinese Academy of Sciences, Shangai, China
| | - Florence Margottin-Goguet
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Remi Cheynier
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Marianne Mangeney
- NSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Du YN, Tang XF, Xu L, Chen WD, Gao PJ, Han WQ. SGK1-FoxO1 Signaling Pathway Mediates Th17/Treg Imbalance and Target Organ Inflammation in Angiotensin II-Induced Hypertension. Front Physiol 2018; 9:1581. [PMID: 30524295 PMCID: PMC6262360 DOI: 10.3389/fphys.2018.01581] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023] Open
Abstract
It has been demonstrated that serum/glucocorticoid regulated kinase 1 (SGK1) and the downstream transcription factor forkhead box O1 (FoxO1) plays a critical role in the differentiation of T helper 17 cells/regulatory T cells (Th17/Treg). In the present study, we hypothesized that this SGK1-FoxO1 signaling pathway is involved in Th17/Treg imbalance and target organ damage in angiotensin II (AngII)-induced hypertensive mice. Results show that SGK1 inhibitor EMD638683 significantly reversed renal dysfunction and cardiac dysfunction in echocardiography as indicated by decreased blood urine nitrogen and serum creatinine in AngII-infused mice. Flow cytometric assay shows that there was significant Th17/Treg imbalance in spleen and in renal/cardiac infiltrating lymphocytes as indicated by the increased Th17 cells (CD4+-IL17A+ cells) and decreased Treg cells (CD4+-Foxp3+). Consistently, real-time PCR shows that Th17-related cytokines including IL-17A, IL-23, and tumor necrosis factor α (TNF-α) was increased and Treg-related cytokine IL-10 was decreased in renal and cardiac infiltrating lymphocytes in AngII-infused mice. Meanwhile, SGK1 protein level, as well as its phosphorylation and activity, was significantly increased in spleen in AngII-infused rats. Furthermore, it was found that splenic phosphorylated FoxO1 was significantly increased, whereas total FoxO1 in nuclear preparation was significantly decreased in AngII-infused mice, suggesting that increased FoxO1 phosphorylation initiate its translocation from cytoplasm to nucleus. Notably, all changes were significantly inhibited by the treatment of EMD638683. These results suggest that SGK1 was involved in Th17/Treg imbalance and target organ damage in AngII-induced hypertension.
Collapse
Affiliation(s)
- Ya-Nan Du
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Xiao-Feng Tang
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Lian Xu
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Dong Chen
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China
| | - Ping-Jin Gao
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Qing Han
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Hypertension, Shanghai, China.,Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Sogkas G, Fedchenko M, Dhingra A, Jablonka A, Schmidt RE, Atschekzei F. Primary immunodeficiency disorder caused by phosphoinositide 3-kinase δ deficiency. J Allergy Clin Immunol 2018; 142:1650-1653.e2. [PMID: 30040974 DOI: 10.1016/j.jaci.2018.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Georgios Sogkas
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany.
| | - Mykola Fedchenko
- Institute of Pathology, Hannover Medical University, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical University, Hannover, Germany
| | - Alexandra Jablonka
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany
| | - Reinhold E Schmidt
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany
| | - Faranaz Atschekzei
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany
| |
Collapse
|
19
|
Froehlich J, Versapuech M, Megrelis L, Largeteau Q, Meunier S, Tanchot C, Bismuth G, Delon J, Mangeney M. FAM65B controls the proliferation of transformed and primary T cells. Oncotarget 2018; 7:63215-63225. [PMID: 27556504 PMCID: PMC5325358 DOI: 10.18632/oncotarget.11438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Cell quiescence is controlled by regulated genome-encoded programs that actively express genes which are often down-regulated or inactivated in transformed cells. Among them is FoxO1, a transcription factor that imposes quiescence in several cell types, including T lymphocytes. In these cells, the FAM65B encoding gene is a major target of FOXO1. Here, we show that forced expression of FAM65B in transformed cells blocks their mitosis because of a defect of the mitotic spindle, leading to G2 cell cycle arrest and apoptosis. Upon cell proliferation arrest, FAM65B is engaged in a complex containing two proteins well known to be involved in cell proliferation i.e. the HDAC6 deacetylase and the 14.3.3 scaffolding protein. In primary T cells, FAM65B is down-regulated upon T cell receptor engagement, and maintaining its expression blocks their proliferation, establishing that the decrease of FAM65B expression is required for proliferation. Conversely, inhibiting FAM65B expression in naive T lymphocytes decreases their activation threshold. These results identify FAM65B as a potential new target for controlling proliferation of both transformed and normal cells.
Collapse
Affiliation(s)
- Jeanne Froehlich
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Margaux Versapuech
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laura Megrelis
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Quitterie Largeteau
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvain Meunier
- Inserm, PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Corinne Tanchot
- Inserm, PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Georges Bismuth
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Delon
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marianne Mangeney
- Inserm, Institut Cochin, Paris, France.,Cnrs, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Shin N, Li YL, Mei S, Wang KH, Hall L, Katiyar K, Wang Q, Yang G, Rumberger B, Leffet L, He X, Rupar M, Bowman K, Favata M, Li J, Liu M, Li Y, Covington M, Koblish H, Soloviev M, Shuey D, Burn T, Diamond S, Fridman J, Combs A, Yao W, Yeleswaram S, Hollis G, Vaddi K, Huber R, Newton R, Scherle P. INCB040093 Is a Novel PI3K δ Inhibitor for the Treatment of B Cell Lymphoid Malignancies. J Pharmacol Exp Ther 2018; 364:120-130. [PMID: 29127109 DOI: 10.1124/jpet.117.244947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/31/2017] [Indexed: 03/08/2025] Open
Abstract
Phosphatidylinositol 3-kinase delta (PI3Kδ) is a critical signaling molecule in B cells and is considered a target for development of therapies against various B cell malignancies. INCB040093 is a novel PI3Kδ small-molecule inhibitor and has demonstrated promising efficacy in patients with Hodgkin's lymphoma in clinical studies. In this study, we disclose the chemical structure and the preclinical activity of the compound. In biochemical assays, INCB040093 potently inhibits the PI3Kδ kinase, with 74- to >900-fold selectivity against other PI3K family members. In vitro and ex vivo studies using primary B cells, cell lines from B cell malignancies, and human whole blood show that INCB040093 inhibits PI3Kδ-mediated functions, including cell signaling and proliferation. INCB040093 has no significant effect on the growth of nonlymphoid cell lines and was less potent in assays that measure human T and natural killer cell proliferation and neutrophil and monocyte functions, suggesting that the impact of INCB040093 on the human immune system will likely be restricted to B cells. INCB040093 inhibits the production of macrophage-inflammatory protein-1β (MIP-1beta) and tumor necrosis factor-β (TNF-beta) from a B cell line, suggesting a potential effect on the tumor microenvironment. In vivo, INCB040093 demonstrates single-agent activity in inhibiting tumor growth and potentiates the antitumor growth effect of the clinically relevant chemotherapeutic agent, bendamustine, in the Pfeiffer cell xenograft model of non-Hodgkin's lymphoma. INCB040093 has a favorable exposure profile in rats and an acceptable safety margin in rats and dogs. Taken together, data presented in this report support the potential utility of orally administered INCB040093 in the treatment of B cell malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xin He
- Incyte, Wilmington, Delaware
| | | | | | | | - Jun Li
- Incyte, Wilmington, Delaware
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Forkhead box O (FOXO) transcription factors are central regulators of cellular homeostasis. FOXOs respond to a wide range of external stimuli, including growth factor signaling, oxidative stress, genotoxic stress, and nutrient deprivation. These signaling inputs regulate FOXOs through a number of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and methylation. Covalent modifications can affect localization, DNA binding, and interactions with other cofactors in the cell. FOXOs integrate the various modifications to regulate cell type-specific gene expression programs that are essential for metabolic homeostasis, redox balance, and the stress response. Together, these functions are critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis during development and to support healthy aging.
Collapse
|
22
|
Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, Gollnick H. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cells in vitro. DERMATO-ENDOCRINOLOGY 2017; 9:e1356518. [PMID: 29484090 PMCID: PMC5821168 DOI: 10.1080/19381980.2017.1356518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells in vitro. T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.
Collapse
Affiliation(s)
- Yasaman Mirdamadi
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexander Goihl
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Sven Quist
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Harald Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
23
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
24
|
Oteiza A, Mechti N. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA. J Gen Virol 2017; 98:1864-1878. [PMID: 28699853 DOI: 10.1099/jgv.0.000837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The connection between the repression of human immunodeficiency virus type 1(HIV-1) transcription and the resting CD4+ T cell state suggests that the host transcription factors involved in the active maintenance of lymphocyte quiescence are likely to repress the viral transactivator, Tat, thereby restricting HIV-1 transcription. In this study, we analysed the interplay between Tat and the forkhead box transcription factors, FoxO1 and FoxO4. We show that FoxO1 and FoxO4 antagonize Tat-mediated transactivation of HIV-1 promoter through the repression of Tat protein expression. No effect was observed on the expression of two HIV-1 accessory proteins, Vif and Vpr. Unexpectedly, we found that FoxO1 and FoxO4 expression causes a strong dose-dependent post-transcriptional suppression of Tat mRNA, indicating that FoxO should effectively inhibit HIV-1 replication by destabilizing Tat mRNA and suppressing Tat-mediated HIV-1 transcription. In accordance with this, we observed that the Tat mRNA half-life is reduced by FoxO4 expression. The physiological relevance of our findings was validated using the J-Lat 10.6 model of latently infected cells. We demonstrated that the overexpression of a constitutively active FoxO4-TM mutant antagonized HIV-1 transcription reactivation in response to T cell activators, such as TNF-α or PMA. Altogether, our findings demonstrate that FoxO factors can control HIV-1 transcription and provide new insights into their potential role during the establishment of HIV-1 latency.
Collapse
Affiliation(s)
- Alexandra Oteiza
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nadir Mechti
- CNRS UMR5235, DIMNP, Université de Montpellier, Bat 24, CC107, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
26
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
27
|
Sujobert P, Trautmann A. Conflicting Signals for Cancer Treatment. Cancer Res 2016; 76:6768-6773. [PMID: 27872099 DOI: 10.1158/0008-5472.can-16-1393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 09/10/2016] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing technologies have provided us with a precise description of the mutational burden of cancers, making it possible to identify targetable oncogene addictions. However, the emergence of resistant clones is an inevitable limitation of therapies targeting these addictions. Alternative approaches to cancer treatment are therefore required. We propose here a novel approach, based on the notion of conflicting signals and on a phenotypic description of cancer cells. "Phenotype" is an inherently complex notion that we describe in the conceptual framework of the epigenetic landscape, with a view to bridging the gap between theory and practice at the patient's bedside. By passing from theory to the description of several examples, we will illustrate how this approach can facilitate data analysis and the design of new strategies for cancer treatment. Cancer Res; 76(23); 6768-73. ©2016 AACR.
Collapse
Affiliation(s)
- Pierre Sujobert
- INSERM, U1052, Cancer Research Center of Lyon, Lyon, France. .,CNRS UMR 5286, Lyon, France.,Université Claude Bernard Lyon-1, Lyon, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Laboratoire d'Hématologie, Pierre-Bénite, France
| | - Alain Trautmann
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe labellisée "Ligue contre le Cancer," Paris, France
| |
Collapse
|
28
|
Holmes TD, Bryceson YT. Natural killer cell memory in context. Semin Immunol 2016; 28:368-76. [PMID: 27354353 DOI: 10.1016/j.smim.2016.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
Abstract
Immune memory has traditionally been considered a hallmark of vertebrate T and B lymphocytes. However, given the advantage in mounting quicker and more robust responses to recurrent infection, it is unsurprising that alternative strategies of memory are found in various immune cells throughout the evolutionary tree. In this context, a variety of NK cell memory subsets have recently been identified. Mouse models of cytomegalovirus infection have been instrumental in revealing the kinetics and molecular mechanisms of long-lived NK cell memory. Moreover, murine liver-resident memory NK cell subsets have been identified that potentially harbour antigen-specificity. Phenotypic counter-parts have recently been characterised in the human liver, adding to the mounting evidence suggesting that a spectrum of NK cell memory subsets exist in primates. These include cytomegalovirus-associated peripheral blood NK cell expansions that in humans have been shown to harbour epigenetic alterations that impact cellular phenotype and function. Here we discuss some general mechanisms of non-classical immune memory. We highlight themes of commonality that may yield clues to the molecular mechanisms of NK cell memory, whilst emphasising some outstanding questions.
Collapse
Affiliation(s)
- Tim D Holmes
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Jiang J, Zhang Y, Guo Y, Yu C, Chen M, Li Z, Tian S, Sun C. MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation. Oncotarget 2016; 6:6359-72. [PMID: 25849943 PMCID: PMC4467442 DOI: 10.18632/oncotarget.3438] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that multiple phosphatases deactivate the PI3K/AKT signaling pathway. Here we demonstrated that, by suppressing multiple phosphatases, miR-3127 promotes growth of hepatocellular carcinoma (HCC). Our study also reveals clinical significance of miR-3127 expression in HCC patients. MiR-3127 expression was markedly upregulated in HCC tissues and cells. Furthermore, high miR-3127 expression was associated with an aggressive phenotype and poor prognosis. MiR-3127 overexpression promoted HCC cell proliferation in vitro and tumor growth in vivo. Also, miR-3127 accelerated G1-S transition by activating AKT/ FOXO1 signaling, by directly targeting the 3' untranslated regions (3`UTR) of pleckstrin homology domain leucine-rich repeat protein phosphatase 1/2 (PHLPP1/2), inositol polyphosphate phosphatase 4A (INPP4A), and inositol polyphosphate-5-phosphatase J (INPP5J) mRNA, repressing their expression. In agreement, the miRNA antagonist antagomir-3127 suppressed HCC cell proliferation and tumor growth by inhibiting the AKT/FOXO1 signaling. Taken together, these findings suggest that silencing miR-3127 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Yi Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Yuting Guo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| |
Collapse
|
30
|
Schäll D, Schmitt F, Reis B, Brandt S, Beer-Hammer S. SLy1 regulates T-cell proliferation duringListeria monocytogenesinfection in a Foxo1-dependent manner. Eur J Immunol 2015; 45:3087-97. [DOI: 10.1002/eji.201545609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel Schäll
- Department of Pharmacology and Experimental Therapy; Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics; Interfaculty Center of Pharmacogenomics and Drug Research; University of Tübingen; Tübingen Germany
| | - Fee Schmitt
- Department of Pharmacology and Experimental Therapy; Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics; Interfaculty Center of Pharmacogenomics and Drug Research; University of Tübingen; Tübingen Germany
| | - Bernhard Reis
- Institute of Medical Microbiology and Hospital Hygiene; Heinrich Heine University; Düsseldorf Germany
| | - Simone Brandt
- Institute of Medical Microbiology and Hospital Hygiene; Heinrich Heine University; Düsseldorf Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy; Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics; Interfaculty Center of Pharmacogenomics and Drug Research; University of Tübingen; Tübingen Germany
- Institute of Medical Microbiology and Hospital Hygiene; Heinrich Heine University; Düsseldorf Germany
| |
Collapse
|
31
|
Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, Bismuth G, Charvet C. Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program. THE JOURNAL OF IMMUNOLOGY 2015; 195:1791-803. [PMID: 26170390 DOI: 10.4049/jimmunol.1500849] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023]
Abstract
An uncontrolled exaggerated Th17 response can drive the onset of autoimmune and inflammatory diseases. In this study, we show that, in T cells, Foxo1 is a negative regulator of the Th17 program. Using mixed bone marrow chimeras and Foxo1-deficient mice, we demonstrate that this control is effective in vivo, as well as in vitro during differentiation assays of naive T cells with specific inhibitor of Foxo1 or inhibitors of the PI3K/Akt pathway acting upstream of Foxo1. Consistently, expressing this transcription factor in T cells strongly decreases Th17 generation in vitro as well as transcription of both IL-17A and IL-23R RORγt-target genes. Finally, at the molecular level, we demonstrate that Foxo1 forms a complex with RORγt via its DNA binding domain to inhibit RORγt activity. We conclude that Foxo1 is a direct antagonist of the RORγt-Th17 program acting in a T cell-intrinsic manner.
Collapse
Affiliation(s)
- Alexandra Lainé
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Bruno Martin
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marine Luka
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Lucile Mir
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Cédric Auffray
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Bruno Lucas
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Georges Bismuth
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Céline Charvet
- INSERM U1016, Institut Cochin, 75014 Paris, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; andUniversité Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
32
|
Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, Cantrell DA, Hedrick SM. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 2015; 42:239-251. [PMID: 25692700 PMCID: PMC4334393 DOI: 10.1016/j.immuni.2015.01.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1−/− GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner. ICOS signaling transiently inactivates FOXO1 to generate Tfh cells FOXO1 regulates a Tfh cell gene program exemplified by negative regulation of Bcl6 Enforced nuclear localization of FOXO1 prevents Tfh cell differentiation FOXO1 promotes final GC-Tfh cell differentiation
Collapse
Affiliation(s)
- Erica L Stone
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Carol D Katayama
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Yann M Kerdiles
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Chen-Yen Lai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Elizabeth Emslie
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Yin C Lin
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Edward Yang
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Doreen A Cantrell
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA.
| |
Collapse
|
33
|
Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD. mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest 2015; 125:2090-108. [PMID: 25893604 DOI: 10.1172/jci77746] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell-specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.
Collapse
|
34
|
Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nat Commun 2015; 6:6074. [PMID: 25606824 PMCID: PMC4302769 DOI: 10.1038/ncomms7074] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
Development of an immune or autoimmune response involves T-cell activation in lymphoid organs and subsequent migration to peripheral tissues. Here we show that T-cell-specific ablation of the kinase TBK1 promotes T-cell activation but causes retention of effector T cells in the draining lymph node in a neuroinflammatory autoimmunity model, experimental autoimmune encephalomyelitis (EAE). At older ages, the T-cell-conditional TBK1-knockout mice also spontaneously accumulate T cells with activated phenotype. TBK1 controls the activation of AKT and its downstream kinase mTORC1 by a mechanism involving TBK1-stimulated AKT ubiquitination and degradation. The deregulated AKT-mTORC1 signalling in turn contributes to enhanced T-cell activation and impaired effector T-cell egress from draining lymph nodes. Treatment of mice with a small-molecule inhibitor of TBK1 inhibits EAE induction. These results suggest a role for TBK1 in regulating T-cell migration and establish TBK1 as a regulator of the AKT-mTORC1 signalling axis. T cells that are activated by self-antigens in the periphery can migrate into the brain causing neuroinflammatory disease. Here the authors show that TBK1 is necessary for activated T-cell egress from the lymph node, and blocking TBK1 ameliorates autoimmunity in a mouse model of multiple sclerosis.
Collapse
|
35
|
Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thorac Cancer 2015; 6:2-9. [PMID: 26273328 PMCID: PMC4448460 DOI: 10.1111/1759-7714.12164] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/03/2014] [Indexed: 01/21/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are a cluster of small non-coding RNA molecules predicted to regulate more than 30% of coding messenger (m)RNAs in the human genome and proven to be essential in developmental and pathological processes. The miR-182 gene was first found to be abundantly expressed in sensory organs and regulates the development of the retina and inner ear. Further studies revealed its roles in osteogenesis and T cell differentiation. In addition, the involvement of miR-182 in cancer initiation and progression has recently been uncovered by a growing body of evidence, the majority of which supports its promoting effects in cell proliferation, angiogenesis, and invasion, as well as distant metastasis of various cancer types. Clinical analyses demonstrated the link of miR-182 expression to poor prognosis in cancer patients. Mechanistically, multiple downstream genes including missing-in-metastasis, microphthalm-associated transcription factor, FoxO1, cylindromatiosis, and others, can be targeted by miR-182 and mediate its roles in cancer. miR-182 is also interconnected with prominent cancer-related signaling pathways, such as transforming growth factor beta and nuclear factor kappa beta. Interestingly, it was shown that in vivo targeting of miR-182 prevented liver metastasis of melanoma. miR-182 is emerging as an important regulator of malignancies, which warrants further study to establish the application potential of miR-182 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
36
|
Beck TC, Gomes AC, Cyster JG, Pereira JP. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. ACTA ACUST UNITED AC 2014; 211:2567-81. [PMID: 25403444 PMCID: PMC4267240 DOI: 10.1084/jem.20140457] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Joao Pereira and colleagues at Yale University show that B cell egress from bone marrow is a passive process, similar to that of red blood cells. Immature B cells that approached bone marrow sinusoids decreased their expression of CXCR4 and rounded up, allowing them to be passively swept away. Leukocyte residence in lymphoid organs is controlled by a balance between retention and egress-promoting chemoattractants sensed by pertussis toxin (PTX)–sensitive Gαi protein–coupled receptors (GPCRs). Here, we use two-photon intravital microscopy to show that immature B cell retention within bone marrow (BM) was strictly dependent on amoeboid motility mediated by CXCR4 and CXCL12 and by α4β1 integrin–mediated adhesion to VCAM-1. However, B lineage cell egress from BM is independent of PTX-sensitive GPCR signaling. B lineage cells expressing PTX rapidly exited BM even though their motility within BM parenchyma was significantly reduced. Our experiments reveal that when immature B cells are near BM sinusoids their motility is reduced, their morphology is predominantly rounded, and cells reverse transmigrate across sinusoidal endothelium in a largely nonamoeboid manner. Immature B cell egress from BM was dependent on a twofold CXCR4 down-regulation that was antagonized by antigen-induced BCR signaling. This passive mode of cell egress from BM also contributes significantly to the export of other hematopoietic cells, including granulocytes, monocytes, and NK cells, and is reminiscent of erythrocyte egress.
Collapse
Affiliation(s)
- Thomas C Beck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Ana Cordeiro Gomes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143 Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
37
|
Dong H, Zhang X, Dai X, Lu S, Gui B, Jin W, Zhang S, Zhang S, Qian Y. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J Neuroinflammation 2014; 11:140. [PMID: 25115727 PMCID: PMC4149204 DOI: 10.1186/s12974-014-0140-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
Background Lithium, an effective mood stabilizer for the treatment of bipolar disorders, has been recently suggested to have a role in neuroprotection during neurodegenerative diseases. The pathogenesis of neurological disorders often involves the activation of microglia and associated inflammatory processes. Thus, in this study, we aimed to understand the role of lithium in microglial activation and to elucidate the underlying mechanism(s). Methods Primary microglial cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). The cells were assessed regarding the responses of pro-inflammatory cytokines, and the associated signaling pathways were evaluated. Results Lithium significantly inhibited LPS-induced microglial activation and pro-inflammatory cytokine production. Further analysis showed that lithium could activate PI3K/Akt signaling. Analyses of the associated signaling pathways demonstrated that the lithium pretreatment led to the suppression of LPS-induced toll-like receptor 4 (TLR4) expressions via the PI3K/Akt/FoxO1 pathway. Conclusions This study demonstrates that lithium can inhibit LPS-induced TLR4 expression and microglial activation through the PI3K/Akt/FoxO1 signaling pathway. These results suggest that lithium plays an important role in microglial activation and neuroinflammation-related diseases, which may lead to a new therapeutic strategy for the treatment of neuroinflammation-related disorders.
Collapse
|
38
|
Kuo MS, Auriau J, Pierre-Eugène C, Issad T. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor. PLoS One 2014; 9:e92737. [PMID: 24647478 PMCID: PMC3960261 DOI: 10.1371/journal.pone.0092737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/25/2014] [Indexed: 12/15/2022] Open
Abstract
Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH) domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore an attractive target for drug discovery. However, current assays for measurement of PIP3 production are technically demanding and not amenable to high-throughput screening. We have established a MCF-7-derived breast cancer cell line, that stably co-expresses the PH domain of Akt fused to Renilla luciferase and YFP fused to a membrane localization signal. This BRET biosensor pair permits to monitor, in real time, in living cells, PIP3 production at the plasma membrane upon stimulation by different ligands, including insulin, the insulin analogue glargine, IGF1, IGF2 and EGF. Moreover, several known inhibitors that target different steps of the PI3K/Akt pathway caused inhibition of ligand-induced BRET. Cetuximab, a humanized anti-EGF receptor monoclonal antibody used for the treatment of cancer, completely inhibited EGF-induced BRET, and the tyrosine kinase inhibitor tyrphostine AG1024 inhibited insulin effect on PIP3 production. Moreover, the effects of insulin and IGF1 were inhibited by molecules that inhibit PI3K catalytic activity or the interaction between PIP3 and the PH domain of Akt. Finally, we showed that human serum induced a dose-dependent increase in BRET signal, suggesting that this stable clone may be used as a prognostic tool to evaluate the PI3K stimulatory activity present in serum of human patients. We have thus established a cell line, suitable for the screening and/or the study of molecules with stimulatory or inhibitory activities on the PI3K/Akt pathway that will constitute a new tool for translational research in diabetes and cancer.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Johanna Auriau
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Preston GC, Feijoo-Carnero C, Schurch N, Cowling VH, Cantrell DA. The impact of KLF2 modulation on the transcriptional program and function of CD8 T cells. PLoS One 2013; 8:e77537. [PMID: 24155966 PMCID: PMC3796494 DOI: 10.1371/journal.pone.0077537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022] Open
Abstract
Krüppel-like factor 2 (KLF2) is a transcription factor that is highly expressed in quiescent T lymphocytes and downregulated in effector T cells. We now show that antigen receptor engagement downregulates KLF2 expression in a graded response determined by the affinity of T cell antigen receptor (TCR) ligand and the integrated activation of protein kinase B and the MAP kinases ERK1/2. The present study explores the importance of KLF2 downregulation and reveals that the loss of KLF2 controls a select portion of the CD8 effector T cell transcriptional program. In particular, KLF2 loss is required for CD8 T cells to express the inflammatory chemokine receptor CXCR3 and for maximum clonal expansion of T cells. KLF2 thus negatively controls the ability of CD8 T cells to respond to the CXCR3 ligand CXCL10. Strikingly, the KLF2 threshold for restraining expression of CXCR3 is very low and quite distinct to the KLF2 threshold for restraining T cell proliferation. KLF2 is thus an analogue (tunable) not a digital (on/off) cellular switch where the magnitude of KLF2 expression differentially modifies the T cell responses.
Collapse
Affiliation(s)
- Gavin C. Preston
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Carmen Feijoo-Carnero
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nick Schurch
- Data Analysis Group, Department of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, United Kingdom
| | - Victoria H. Cowling
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A. Cantrell
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Zack JA, Kim SG, Vatakis DN. HIV restriction in quiescent CD4⁺ T cells. Retrovirology 2013; 10:37. [PMID: 23557201 PMCID: PMC3626626 DOI: 10.1186/1742-4690-10-37] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/01/2013] [Indexed: 12/23/2022] Open
Abstract
The restriction of the Human Immunodeficiency Virus (HIV) infection in quiescent CD4+ T cells has been an area of active investigation. Early studies have suggested that this T cell subset is refractory to infection by the virus. Subsequently it was demonstrated that quiescent cells could be infected at low levels; nevertheless these observations supported the earlier assertions of debilitating defects in the viral life cycle. This phenomenon raised hopes that identification of the block in quiescent cells could lead to the development of new therapies against HIV. As limiting levels of raw cellular factors such as nucleotides did not account for the block to infection, a number of groups pursued the identification of cellular proteins whose presence or absence may impact the permissiveness of quiescent T cells to HIV infection. A series of studies in the past few years have identified a number of host factors implicated in the block to infection. In this review, we will present the progress made, other avenues of investigation and the potential impact these studies have in the development of more effective therapies against HIV.
Collapse
Affiliation(s)
- Jerome A Zack
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
41
|
Nunès JA, Guittard G. An Emerging Role for PI5P in T Cell Biology. Front Immunol 2013; 4:80. [PMID: 23565114 PMCID: PMC3613722 DOI: 10.3389/fimmu.2013.00080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are critical regulators in cell biology. Phosphatidylinositol 4,5-bisphosphate, also known as PI(4,5)P2 or PIP2, was the first variety of phosphoinositide to enter in the T cell signaling scene. Phosphatidylinositol bis-phosphates are the substrates for different types of enzymes such as phospholipases C (β and γ isoforms) and phosphoinositide 3-kinases (PI3K class IA and IB) that are largely involved in signal transduction. However until recently, only a few studies highlighted phosphatidylinositol monophosphates as signaling molecules. This was mostly due to the difficulty of detection of some of these phosphoinositides, such as phosphatidylinositol 5-phosphate, also known as PI5P. Some compelling evidence argues for a role of PI5P in cell signaling and/or cell trafficking. Recently, we reported the detection of a PI5P increase upon TCR triggering. Here, we describe the current knowledge of the role of PI5P in T cell signaling. The future challenges that will be important to achieve in order to fully characterize the role of PI5P in T cell biology, will be discussed.
Collapse
Affiliation(s)
- Jacques A Nunès
- Immunology and Cancer, UMR7258, CNRS, Centre de Recherche en Cancerologie de Marseille Marseille, France ; Immunology and Cancer, U1068, INSERM, Centre de Recherche en Cancerologie de Marseille Marseille, France ; Immunology and Cancer, Institut Paoli-Calmettes Marseille, France ; Centre de Recherche en Cancerologie de Marseille, Aix-Marseille University Marseille, France
| | | |
Collapse
|
42
|
van der Windt GJW, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 2013; 249:27-42. [PMID: 22889213 DOI: 10.1111/j.1600-065x.2012.01150.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clearance or control of pathogens or tumors usually requires T-cell-mediated immunity. As such, understanding the mechanisms that govern the function, maintenance, and persistence of T cells will likely lead to new treatments for controlling disease. During an immune response, T-cell development is marked by striking changes in metabolism. There is a growing appreciation that these metabolic changes underlie the capacity of T cells to perform particular functions, and this has led to a recent focus on the idea that the manipulation of cellular metabolism can be used to shape adaptive immune responses. Although interest in this area has grown in the last few years, a full understanding of the metabolic control of T-cell functions, particularly during an immune response in vivo, is still lacking. In this review, we first provide a basic overview of metabolism in T cells, and then we focus on recent studies providing new or updated insights into the regulation of metabolic pathways and how they underpin T-cell differentiation and memory T-cell development.
Collapse
Affiliation(s)
- Gerritje J W van der Windt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
43
|
Rougerie P, Largeteau Q, Megrelis L, Carrette F, Lejeune T, Toffali L, Rossi B, Zeghouf M, Cherfils J, Constantin G, Laudanna C, Bismuth G, Mangeney M, Delon J. Fam65b is a new transcriptional target of FOXO1 that regulates RhoA signaling for T lymphocyte migration. THE JOURNAL OF IMMUNOLOGY 2012; 190:748-55. [PMID: 23241886 DOI: 10.4049/jimmunol.1201174] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Forkhead box O (FOXO) transcription factors favor both T cell quiescence and trafficking through their control of the expression of genes involved in cell cycle progression, adhesion, and homing. In this article, we report that the product of the fam65b gene is a new transcriptional target of FOXO1 that regulates RhoA activity. We show that family with sequence similarity 65 member b (Fam65b) binds the small GTPase RhoA via a noncanonical domain and represses its activity by decreasing its GTP loading. As a consequence, Fam65b negatively regulates chemokine-induced responses, such as adhesion, morphological polarization, and migration. These results show the existence of a new functional link between FOXO1 and RhoA pathways, through which the FOXO1 target Fam65b tonically dampens chemokine-induced migration by repressing RhoA activity.
Collapse
|
44
|
Valitutti S. The Serial Engagement Model 17 Years After: From TCR Triggering to Immunotherapy. Front Immunol 2012; 3:272. [PMID: 22973273 PMCID: PMC3428561 DOI: 10.3389/fimmu.2012.00272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022] Open
Abstract
More than 15 years ago the serial engagement model was proposed as an attempt to solve the low affinity/high sensitivity paradox of TCR antigen recognition. Since then, the model has undergone ups and downs marked by the technical and conceptual advancements made in the field of T lymphocyte activation. Here, I describe the development of the model and survey recent literature providing evidence either for or against the idea that serial TCR/pMHC engagement might contribute to T lymphocyte activation. I also discuss how the concept of serial TCR engagement might be useful in the design of immunotherapeutic approaches aimed at potentiating T lymphocyte responses in vivo.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM, UMR 1043, Section Dynamique Moléculaire des Interactions Lymphocytaires, Centre de Physiopathologie de Toulouse Purpan Toulouse, France
| |
Collapse
|
45
|
Matarese G, Procaccini C, Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev 2012; 249:116-34. [DOI: 10.1111/j.1600-065x.2012.01154.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Han JM, Patterson SJ, Levings MK. The Role of the PI3K Signaling Pathway in CD4(+) T Cell Differentiation and Function. Front Immunol 2012; 3:245. [PMID: 22905034 PMCID: PMC3417165 DOI: 10.3389/fimmu.2012.00245] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022] Open
Abstract
The relative activity of regulatory versus conventional CD4(+) T cells ultimately maintains the delicate balance between immune tolerance and inflammation. At the molecular level, the activity of phosphatidylinositol 3-kinase (PI3K) and its downstream positive and negative regulators has a major role in controlling the balance between immune regulation and activation of different subsets of effector CD4(+) T cells. In contrast to effector T cells which require activation of the PI3K to differentiate and mediate their effector function, regulatory T cells rely on minimal activation of this pathway to develop and maintain their characteristic phenotype, function, and metabolic state. In this review, we discuss the role of the PI3K signaling pathway in CD4(+) T cell differentiation and function, and focus on how modulation of this pathway in T cells can alter the outcome of an immune response, ultimately tipping the balance between tolerance and inflammation.
Collapse
Affiliation(s)
- Jonathan M Han
- Department of Surgery, Child and Family Research Institute, The University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
47
|
Defining the human T helper 17 cell phenotype. Trends Immunol 2012; 33:505-12. [PMID: 22682163 DOI: 10.1016/j.it.2012.05.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/01/2023]
Abstract
T helper (Th) 17 cells represent a third effector arm of CD4 T cells and complement the function of the Th1 and Th2 cell lineages. Here, we provide an overview of the transcription factors, cytokines, chemokines, and cytokine and chemokine receptors that characterize the Th17 cell phenotype. Data relevant for human Th17 cells are emphasized, with a focus on the function of two markers that have recently been associated with human Th17 cells, CD161 and interleukin-4-induced gene 1 (IL4I1). Also considered is the basis of Th17 cell plasticity towards the Th1 lineage, and we suggest that this plasticity together with the limited expansion of Th17 cells in response to T cell receptor (TCR) triggering accounts for the rarity of human Th17 cells in inflamed tissues.
Collapse
|
48
|
Haftmann C, Stittrich AB, Sgouroudis E, Matz M, Chang HD, Radbruch A, Mashreghi MF. Lymphocyte signaling: regulation of FoxO transcription factors by microRNAs. Ann N Y Acad Sci 2012; 1247:46-55. [DOI: 10.1111/j.1749-6632.2011.06264.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson TJ, Djuretic IM, Sundrud MS, Unutmaz D. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. ACTA ACUST UNITED AC 2011; 208:1875-87. [PMID: 21825017 PMCID: PMC3171088 DOI: 10.1084/jem.20102516] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PI-3K–mediated repression of FOXO1 and KLF2 promotes proinflammatory cytokine expression by lineage-committed human CCR6+ Th17/Th22 memory cells. Human memory T cells (TM cells) that produce IL-17 or IL-22 are currently defined as Th17 or Th22 cells, respectively. These T cell lineages are almost exclusively CCR6+ and are important mediators of chronic inflammation and autoimmunity. However, little is known about the mechanisms controlling IL-17/IL-22 expression in memory Th17/Th22 subsets. We show that common γ chain (γc)–using cytokines, namely IL-2, IL-7, and IL-15, potently induce Th17-signature cytokine expression (Il17a, Il17f, Il22, and Il26) in CCR6+, but not CCR6−, TM cells, even in CCR6+ cells lacking IL-17 expression ex vivo. Inhibition of phosphoinositide 3-kinase (PI-3K) or Akt signaling selectively prevents Th17 cytokine induction by γc-cytokines, as does ectopic expression of the transcription factors FOXO1 or KLF2, which are repressed by PI-3K signaling. These results indicate that Th17 cytokines are tuned by PI-3K signaling in CCR6+ TM cells, which may contribute to chronic or autoimmune inflammation. Furthermore, these findings suggest that ex vivo analysis of IL-17 expression may greatly underestimate the frequency and pathogenic potential of the human Th17 compartment.
Collapse
Affiliation(s)
- Qi Wan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJY, Fulop T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev 2011; 10:370-8. [PMID: 20933612 DOI: 10.1016/j.arr.2010.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Decreased immune responsiveness associated with aging is generally termed "immunosenescence". Several theories have been proposed to explain age-related declines in immune responses. Here, we will focus on and describe potential defects in T cell signal transduction from the membrane to the nucleus, leading to changes in the type, intensity and duration of the response as a major factor contributing to immunosenescence. We will first detail T cell signaling through the T cell receptor (TCR), CD28 and IL-2 receptor (IL-2R) and then discuss the observed age-related alterations to these signaling pathways. The role of membrane rafts in T cell signaling and T cell aging will be described. These factors will be considered in the context of the notion that age-related changes to T cell signaling may be attributed to changes in the functionality of the T cells due to shifts in T cell subpopulations with age. For this reason, we conclude by highlighting the application of multiparametric signaling analysis in leukocyte subsets using flow cytometry as a means to obtain a clearer picture with respect to age-related changes to immune signaling.
Collapse
|