1
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Kang S, Brulois K, Choi YJ, Zhang S, Jung JU. Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference. J Med Virol 2025; 97:e70179. [PMID: 39831393 PMCID: PMC11744495 DOI: 10.1002/jmv.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection. Upon co-expression of viral MARCH proteins with LTβR ligands, we showed that K3 and K5 selectively targeted LTβ, but not LIGHT, for the downregulation of surface expression. Specifically, K3 and K5 E3 ligases interacted with the transmembrane domain of LTβ. Intriguingly, K3 interacted with an immature form of LTβ, whereas K5 targeted the fully mature form. Subsequent biochemical analyses revealed that K3 disrupted the initial steps of N-glycosylation maturation of LTβ. This interference resulted in the sequestration of LTβ within the endoplasmic reticulum, impeding its trafficking to the plasma membrane. Consequently, the K3-mediated downregulation of LTβ surface expression suppressed the LTβR downstream signaling pathway. These findings uncover a novel mechanism by which KSHV K3 E3 ligase inhibits the membrane trafficking pathway of the LTβ inflammatory ligand through glycosylation interference, potentially evading LTβR-mediated antiviral immunity.
Collapse
Grants
- U01 CA294881 NCI NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
- R01 AI181758 NIAID NIH HHS
- R01 DE023926 NIDCR NIH HHS
- R01 CA251275 NCI NIH HHS
- R01 AI152190 NIAID NIH HHS
- R01 DE028521 NIDCR NIH HHS
- This study was supported by grants from the US National Institutes of Health (NIH) CA251275, CA294881, AI152190, AI17120, AI181758, DE023926, DE028521, and U01 CA294881 (Jae U. Jung) and a gift from Sheikha Fatima bint Mubarak.
Collapse
Affiliation(s)
- Soowon Kang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Youn Jung Choi
- Department of Medicine, Division of Rheumatology, Kao Autoimmunity InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shaoyan Zhang
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jae U. Jung
- Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
3
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
4
|
Kwaśnik P, Giannopoulos K. Treatment-Free Remission-A New Aim in the Treatment of Chronic Myeloid Leukemia. J Pers Med 2021; 11:697. [PMID: 34442340 PMCID: PMC8399881 DOI: 10.3390/jpm11080697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
Tyrosine kinases inhibitors (TKIs) revolutionized chronic myeloid leukemia (CML) treatment for many years, prolonging patients' life expectancy to be comparable to age-matched healthy individuals. According to the latest the European LeukemiaNet (ELN) recommendations, CML treatment aims to achieve long-term remission without treatment (TFR), which is feasible in more than 40% of patients. Nearly all molecular relapses occur during the first 6 months after TKI withdrawal and do not progress to clinical relapse. The mechanisms that are responsible for CML relapses remain unexplained. It is suggested that maintaining TFR is not directly related to the total disposing of the gene transcript BCR-ABL1, but it might be a result of the restoration of the immune surveillance in CML. The importance of the involvement of immunocompetent cells in the period of TKI withdrawal is also emphasized by the presence of specific symptoms in some patients with "withdrawal syndrome". The goal of this review is to analyze data from studies regarding TFRs in order to characterize the elements of the immune system of patients that might prevent CML molecular relapse. The role of modern droplet digital polymerase chain reaction (ddPCR) and next-generation sequencing (NGS) in better identification of low levels of BCR-ABL1 transcripts was also taken into consideration for refining the eligibility criteria to stop TKI therapy.
Collapse
Affiliation(s)
- Paulina Kwaśnik
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Natural Killer Cell Line NK-92-Mediated Damage of Medically Important Fungi. J Fungi (Basel) 2021; 7:jof7020144. [PMID: 33671240 PMCID: PMC7922546 DOI: 10.3390/jof7020144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal disease (IFD) in hematopoietic stem cell transplantation is associated with high morbidity and mortality. As the antifungal host response determines risk and outcome of IFD, there is growing interest in adoptive immunotherapy using T cells or natural killer (NK) cells. Although the NK-92 cell line has been tested as anticancer therapy in clinical trials, data on the antifungal activity of NK-92 cells are lacking. Here, we show that the NK-92 cell line exhibits considerable fungal damage on all medically important fungi tested, such as different species of Aspergillus, Candida, mucormycetes, and Fusarium. The extent of fungal damage differs across various species of mucormycetes and Fusarium, whereas it is comparable across different species of Aspergillus and Candida. Interferon (IFN)-γ levels in the supernatant were lower when NK-92 cells are co-incubated with Aspergillus fumigatus, Candida albicans, or Rhizopus arrhizus compared to the levels when NK-92 cells are incubated alone. Different to primary human NK cells, no increase of perforin levels in the supernatant was observed when the fungi were added to NK-92 cells. Our in vitro data demonstrated that the NK-92 cell line could be a feasible tool for antifungal immunotherapy, but data of animal models are warranted prior to clinical trials.
Collapse
|
6
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
7
|
Becker J, Kinast V, Döring M, Lipps C, Duran V, Spanier J, Tegtmeyer PK, Wirth D, Cicin-Sain L, Alcamí A, Kalinke U. Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines. Virulence 2019; 9:1669-1684. [PMID: 30403913 PMCID: PMC7000197 DOI: 10.1080/21505594.2018.1535785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
Collapse
Affiliation(s)
- Jennifer Becker
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Volker Kinast
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Marius Döring
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Christoph Lipps
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Veronica Duran
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Julia Spanier
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Pia-Katharina Tegtmeyer
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Dagmar Wirth
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Luka Cicin-Sain
- c Department of Vaccinology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d German Center for Infection Research (DZIF) , Hannover-Braunschweig site , Germany.,e Institute for Virology , Hannover Medical School , Hannover , Germany
| | - Antonio Alcamí
- f Centro de Biología Molecular Severo Ochoa , Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid , Madrid , Spain
| | - Ulrich Kalinke
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| |
Collapse
|
8
|
Koroleva EP, Fu YX, Tumanov AV. Lymphotoxin in physiology of lymphoid tissues - Implication for antiviral defense. Cytokine 2016; 101:39-47. [PMID: 27623349 DOI: 10.1016/j.cyto.2016.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Lymphotoxin (LT) is a member of the tumor necrosis factor (TNF) superfamily of cytokines which serves multiple functions, including the control of lymphoid organ development and maintenance, as well as regulation of inflammation and autoimmunity. Although the role of LT in organogenesis and maintenance of lymphoid organs is well established, the contribution of LT pathway to homeostasis of lymphoid organs during the immune response to pathogens is less understood. In this review, we highlight recent advances on the role of LT pathway in antiviral immune responses. We discuss the role of LT signaling in lymphoid organ integrity, type I IFN production and regulation of protection and immunopathology during viral infections. We further discuss the potential of therapeutic targeting LT pathway for controlling immunopathology and antiviral protection.
Collapse
Affiliation(s)
- Ekaterina P Koroleva
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, TX, USA; Trudeau Institute, Saranac Lake, NY
| | - Yang-Xin Fu
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, TX, USA; Trudeau Institute, Saranac Lake, NY.
| |
Collapse
|
9
|
Ng D, Maître B, Cummings D, Lin A, Ward LA, Rahbar R, Mossman KL, Ohashi PS, Gommerman JL. A Lymphotoxin/Type I IFN Axis Programs CD8+T Cells To Infiltrate a Self-Tissue and Propagate Immunopathology. THE JOURNAL OF IMMUNOLOGY 2015; 195:4650-9. [DOI: 10.4049/jimmunol.1501053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
|
10
|
Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol 2015; 89:6435-41. [PMID: 25855747 DOI: 10.1128/jvi.00435-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4(+) T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV-namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity-but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. IMPORTANCE Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host's immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4(+) T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can help NK cells to act against HCMV infection.
Collapse
|
11
|
Natural killer cells can inhibit the transmission of human cytomegalovirus in cell culture by using mechanisms from innate and adaptive immune responses. J Virol 2014; 89:2906-17. [PMID: 25540381 DOI: 10.1128/jvi.03489-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) transmission within the host is important for the pathogenesis of HCMV diseases. Natural killer (NK) cells are well known to provide a first line of host defense against virus infections. However, the role of NK cells in the control of HCMV transmission is still unknown. Here, we provide the first experimental evidence that NK cells can efficiently control HCMV transmission in different cell types. NK cells engage different mechanisms to control the HCMV transmission both via soluble factors and by cell contact. NK cell-produced interferon gamma (IFN-γ) suppresses HCMV production and induces resistance of bystander cells to HCMV infection. The UL16 viral gene contributes to an immune evasion from the NK cell-mediated control of HCMV transmission. Furthermore, the efficacy of the antibody-dependent NK cell-mediated control of HCMV transmission is dependent on a CD16-158V/F polymorphism. Our findings indicate that NK cells may have a clinical relevance in HCMV infection and highlight the need to consider potential therapeutic strategies based on the manipulation of NK cells. IMPORTANCE Human cytomegalovirus (HCMV) infects 40% to 100% of the human population worldwide. After primary infection, mainly in childhood, the virus establishes a lifelong persistence with possible reactivations. Most infections remain asymptomatic; however, HCMV represents a major health problem since it is the most frequent cause of infection-induced birth defects and is responsible for high morbidity and mortality in immunocompromised patients. The immune system normally controls the infection by antibodies and immune effector cells. One type of effector cells are the natural killer (NK) cells, which provide a rapid response to virus-infected cells. NK cells participate in viral clearance by inducing the death of infected cells. NK cells also secrete antiviral cytokines as a consequence of the interaction with an infected cell. In this study, we investigated the mechanisms by which NK cells control HCMV transmission, from the perspectives of immune surveillance and immune evasion.
Collapse
|
12
|
Lam HY, Yusoff K, Yeap SK, Subramani T, Abd-Aziz S, Omar AR, Alitheen NB. Immunomodulatory effects of Newcastle disease virus AF2240 strain on human peripheral blood mononuclear cells. Int J Med Sci 2014; 11:1240-7. [PMID: 25317070 PMCID: PMC4196125 DOI: 10.7150/ijms.8170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/21/2014] [Indexed: 11/05/2022] Open
Abstract
Immunotherapy has raised the attention of many scientists because it hold promise to be an attractive therapeutic strategy to treat a number of disorders. In this study, the immunomodulatory effects of low titers of Newcastle disease virus (NDV) AF2240 on human peripheral blood mononuclear cells (PBMC) were analyzed. We evaluated cytokine secretion and PBMC activation by cell proliferation assay, immunophenotyping and enzyme linked immunosorbent assay. The proliferation of the human PBMC was measured to be 28.5% and 36.5% upon treatment with 8 hemaglutinin unit (HAU) and 2 HAU of NDV respectively. Interestingly, the percentage of cells with activating markers CD16 and CD56 were increased significantly. Furthermore, the intracellular perforin and granzyme levels were also increased upon virus infection. Human PBMC treated with NDV titer 8 HAU was found to stimulate the highest level of cytokine production including interferon-γ, interleukin-2 and interleukin-12. The release of these proteins contributes to the antitumor effect of PBMC against MCF-7 breast cancer cells. Based on the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, activated human PBMC showed high cytolytic efficiency towards human breast tumor cells. In summary, NDV was able to stimulate PBMC proliferation, cytokine secretion and cytolytic activity.
Collapse
Affiliation(s)
- Han Yuen Lam
- 1. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- 1. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- 2. Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tamilselvan Subramani
- 1. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suraini Abd-Aziz
- 1. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- 2. Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- 1. Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Hanley PJ, Bollard CM. Controlling cytomegalovirus: helping the immune system take the lead. Viruses 2014; 6:2242-58. [PMID: 24872114 PMCID: PMC4074926 DOI: 10.3390/v6062242] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus, of the Herpesviridae family, has evolved alongside humans for thousands of years with an intricate balance of latency, immune evasion, and transmission. While upwards of 70% of humans have evidence of CMV infection, the majority of healthy people show little to no clinical symptoms of primary infection and CMV disease is rarely observed during persistent infection in immunocompetent hosts. Despite the fact that the majority of infected individuals are asymptomatic, immunologically, CMV hijacks the immune system by infecting and remaining latent in antigen-presenting cells that occasionally reactivate subclinically and present antigen to T cells, eventually causing the inflation of CMV-specific T cells until they can compromise up to 10% of the entire T cell repertoire. Because of this impact on the immune system, as well as its importance in fields such as stem cell and organ transplant, the relationship between CMV and the immune response has been studied in depth. Here we provide a review of many of these studies and insights into how CMV-specific T cells are currently being used therapeutically.
Collapse
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
14
|
Gommerman JL, Browning JL, Ware CF. The Lymphotoxin Network: orchestrating a type I interferon response to optimize adaptive immunity. Cytokine Growth Factor Rev 2014; 25:139-45. [PMID: 24698108 DOI: 10.1016/j.cytogfr.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022]
Abstract
The Lymphotoxin (LT) pathway is best known for its role in orchestrating the development and homeostasis of lymph nodes and Peyer's patches through the regulation of homeostatic chemokines. More recently an appreciation of the LTβR pathway in the production of Type I interferons (IFN-I) during homeostasis and infection has emerged. LTβR signaling is essential in differentiating stromal cells and macrophages in lymphoid organs to rapidly produce IFN-I in response to virus infections independently of the conventional TLR signaling systems. In addition, LTβR signaling is required to produce homeostatic levels of IFN-I from dendritic cells in order to effectively cross-prime a CD8+ T cell response to protein antigen. Importantly, pharmacological inhibition of LTβR signaling in mice has a profound positive impact on a number of autoimmune disease models, although it remains unclear if this efficacy is linked to IFN-I production during chronic inflammation. In this review, we will provide a brief overview of how the "Lymphotoxin Network" is linked to the IFN-I response and its impact on the immune system.
Collapse
Affiliation(s)
| | - Jeffrey L Browning
- Department of Microbiology and Section of Rheumatology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Kim JH, Goulston C, Sanders S, Lampas M, Zangari M, Tricot G, Hanson KE. Cytomegalovirus reactivation following autologous peripheral blood stem cell transplantation for multiple myeloma in the era of novel chemotherapeutics and tandem transplantation. Biol Blood Marrow Transplant 2012; 18:1753-8. [PMID: 22728249 DOI: 10.1016/j.bbmt.2012.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
Abstract
Cytomegalovirus (CMV) is an important pathogen after allogeneic transplantation. However, few studies have examined CMV reactivation after autologous peripheral blood stem cell transplantation (APBSCT) to treat multiple myeloma (MM), especially in the setting of the newer chemotherapeutic agents and/or 2 sequential APBSCTs (ie, tandem transplantation). A retrospective chart review of patients with MM who underwent either single APBSCT or tandem transplantation was conducted to evaluate the incidence, risk factors, and outcomes of CMV infection at a single institution. A total of 104 patients with MM underwent transplantation during the study period, including 66 patients who received tandem transplantation. The majority of patients (66 of 104; 63.5%) were CMV-seropositive, and CMV viremia was frequently detected in this subgroup (32 of 66; 48.5%). No primary CMV infections were identified. CMV reactivation was more common in recipients of tandem transplantation than in recipients of single APBSCT (P < .001). In addition, patients who developed CMV viremia were more likely to have received conditioning therapy with melphalan, bortezomib, dexamethasone, and thalidomide compared with those without CMV reactivation (P = .015). However, on multiple logistic regression analysis, only receipt of tandem transplantation was significantly associated with CMV reactivation (odds ratio, 5.112; 95% confidence interval, 1.27-20.60; P = .022). Febrile episodes of CMV viremia were observed in 17 patients (17 of 32; 53.1%), and invasive CMV disease was diagnosed in 1 patient. Our data suggest that CMV reactivation after APBSCT for MM is relatively common, and that viremia is often associated with fever. CMV surveillance should be considered, especially when tandem transplantation is performed using combination chemotherapy with high-dose melphalan.
Collapse
Affiliation(s)
- Jong Hun Kim
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Feria-Romero IA, Chávez-Rueda K, Orozco-Suárez S, Blanco-Favela F, Calzada-Bermejo F, Chávez-Sánchez L, Manuel-Apolinar L, Hernández-González R, Aguilar-Setién A, Tesoro-Cruz E. Intranasal anti-rabies DNA immunization promotes a Th1-related cytokine stimulation associated with plasmid survival time. Arch Med Res 2011; 42:563-71. [PMID: 22056982 DOI: 10.1016/j.arcmed.2011.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/17/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS DNA vaccination has a great potential to decrease infectious diseases worldwide, such as rabies. Here we showed the effects of a single anti-rabies DNA vaccination applied intranasally (IN) on plasmid survival time, neutralizing antibody (NA) titers, G-protein expression and Th1/Th2-related cytokines. METHODS Only one 50-μg dose of an anti-rabies DNA vaccine was IN administered to 160 Balb/c mice. Twenty mice were used for the neutralizing antibody study, 35 for the proliferation assay, 35 for Th1/Th2-related cytokines, 35 for glycoprotein expression by immunocytochemistry, and 35 for pGQH detection and G-protein mRNA expression. RESULTS Th1-type related cytokines from spleen cells (IFN-γ, TNF-α, and IL-2) were detected. Rabies NA titers were ≥0.6 IUs from day 30 onward in the IN DNA-vaccinated group. The plasmid was identified in brains and lungs from days 3-15. The mRNA transcript was amplified in brains and lungs from days 3-30, and G-protein expression was observed in spleens, brains and lungs on days 3, 8, and 15. In all cases, a gradual decrease was observed on days 30 and 45 and absent on day 60. CONCLUSIONS We found that Th1-type related cytokines (IL-2, IFN-γ, and TNF-α) were stimulated during the first month after DNA vaccination, correlating with the proliferation assays. Also, it was associated with the plasmid survival time remaining in lungs and brains prior to its degradation.
Collapse
Affiliation(s)
- Iris Angélica Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Coordinación de Investigación del Instituto Mexicano del Seguro Social, México, D.F., Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Atkinson A, Barbier M, Afridi S, Fumoux F, Rihet P. Evidence for epistasis between hemoglobin C and immune genes in human P. falciparum malaria: a family study in Burkina Faso. Genes Immun 2011; 12:481-9. [PMID: 21451558 DOI: 10.1038/gene.2011.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hemoglobin C (HbC) has been recently associated with protection against Plasmodium falciparum malaria. It is thought that HbC influences the development of immune responses against malaria, suggesting that the variation at the HbC locus (rs33930165) may interact with polymorphic sites in immune genes. We investigated, in 198 individuals belonging to 34 families living in Burkina Faso, statistical interactions between HbC and 11 polymorphisms within interleukin-4 (IL4), IL12B, NCR3, tumor necrosis factor (TNF) and lymphotoxin-α (LTA), which have been previously associated with malaria-related phenotypes. We searched for multilocus interactions by using the pedigree-based generalized multifactor dimensionality reduction approach. We detected 29 multilocus interactions for mild malaria, maximum parasitemia or asymptomatic parasitemia after correcting for multiple tests. All the single-nucleotide polymorphisms studied are included in several multilocus models. Nevertheless, most of the significant multilocus models included IL12B 3' untranslated region, IL12Bpro or LTA+80, suggesting that those polymorphisms play a particular role in the interactions detected. Moreover, we identified six multilocus models involving NCR3 that encodes the activating natural killer (NK) receptor NKp30, suggesting an interaction between HbC and genes involved in the activation of NK cells. More generally, our findings suggest an interaction between HbC and genes influencing the activation of effector cells for phenotypes related to mild malaria.
Collapse
|
18
|
Verma S, Benedict CA. Sources and signals regulating type I interferon production: lessons learned from cytomegalovirus. J Interferon Cytokine Res 2011; 31:211-8. [PMID: 21226618 DOI: 10.1089/jir.2010.0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type I interferons (IFN-αβ) are pleiotropic cytokines critical for antiviral host defense, and the timing and magnitude of their production involve a complex interplay between host and pathogen factors. Mouse cytomegalovirus (a β-herpesvirus) is a persistent virus that induces a biphasic IFN-αβ response during the first days of infection. The cell types and molecular mechanisms governing these 2 phases are unique, with splenic stromal cells being a major source of initial IFN-αβ, requiring communication with B cells expressing lymphotoxin, a tumor necrosis factor family cytokine. Here we review the factors that regulate this lymphotoxin-IFN-αβ "axis" during cytomegalovirus infection, highlight how stroma-derived IFN-αβ contributes in other models, and discuss how deregulation of this axis can lead to pathology in some settings.
Collapse
Affiliation(s)
- Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | |
Collapse
|
19
|
Schmidt-Hieber M, Schwarck S, Stroux A, Ganepola S, Reinke P, Thiel E, Uharek L, Blau IW. Immune reconstitution and cytomegalovirus infection after allogeneic stem cell transplantation: the important impact of in vivo T cell depletion. Int J Hematol 2010; 91:877-85. [PMID: 20490728 DOI: 10.1007/s12185-010-0597-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
We analyzed cytomegalovirus (CMV) infection risk factors and immune reconstitution kinetics in 89 patients after allogeneic stem cell transplantation (allo-SCT). The use of alemtuzumab for in vivo T cell depletion (TCD) had, besides the donor/recipient CMV serostatus, the strongest influence on the CMV infection risk in univariate and multivariate analyses. In comparison to without use of in vivo TCD, the CMV infection risk [hazard ratio (HR)] was 4.82-fold after TCD with alemtuzumab, but only 1.40-fold after TCD with antithymocyte globulin (ATG). Alemtuzumab strongly depressed CD4(+) and CD8(+) T cell reconstitution, whereas ATG only delayed CD4(+) T cell reconstitution. Considering the reconstitution kinetics of CD4(+) and CD8(+) T cells, CMV-specific CD8(+) T cells, NK cells and the IgG concentration, only a low day +60 NK cell count (< or =161 versus >161/microl) was significantly associated with CMV infection development (HR 2.92, p = 0.034). CMV-specific CD8(+) T cells were detected in 57% of patients with a CMV-seropositive donor, but in none of the patients with a CMV-seronegative donor on day +30 (p = 0.01). Our data indicate that the type of in vivo TCD (alemtuzumab or ATG) differentially influences both the CMV infection risk and CD4(+)/CD8(+) T cell reconstitution kinetics in patients after allo-SCT.
Collapse
Affiliation(s)
- Martin Schmidt-Hieber
- Medical Department III (Hematology, Oncology and Transfusion Medicine), Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Human cytomegalovirus (HCMV) (HHV-5, a beta-herpesvirus) causes the vast majority of infection-related congenital birth defects, and can trigger severe disease in immune suppressed individuals. The high prevalence of societal infection, the establishment of lifelong persistence and the growing number of immune-related diseases where HCMV is touted as a potential promoter is slowly heightening public awareness to this virus. The millions of years of co-evolution between CMV and the immune system of its host provides for a unique opportunity to study immune defense strategies, and pathogen counterstrategies. Dissecting the timing of the cellular and molecular processes that regulate innate and adaptive immunity to this persistent virus has revealed a complex defense network that is shaped by CMV immune modulation, resulting in a finely tuned host-pathogen relationship.
Collapse
Affiliation(s)
- A Loewendorf
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Following allogeneic hematopoietic cell transplantation, donor-derived natural killer (NK) cells target recipient hematopoietic cells, resulting in an antileukemia effect and a lower incidence of graft rejection. NK cells do not mediate and may diminish graft versus host disease. Here we review the determinants of NK cell alloreactivity and their implications for adoptive NK cell therapy. RECENT FINDINGS NK cell alloreactivity has been defined by the absence of recipient MHC class I ligands for donor inhibitory killer immunoglobulin-like receptor (KIR) receptors, as predicted by a number of algorithms. Recently, the role of activating NK receptors and their cognate ligands has received more attention. The beneficial clinical effect of NK-cell alloreactivity has not been uniformly demonstrated, likely reflecting differences in conditioning regimens, graft components and posttransplant immune suppression. Investigations of NK cell phenotype and function after transplantation have helped demonstrate which NK cell subsets mediate the graft versus leukemia effect. These advances have proceeded in parallel with increasing facility in GMP-grade bulk purification and administration of NK cell preparations. SUMMARY NK cells are a heterogeneous population of lymphocytes with diverse patterns of target-cell recognition and effector function. Further clinical and functional correlations will help maximize their potential for clinical benefit.
Collapse
|
22
|
Tan DBA, Fernandez S, French M, Price P. Could natural killer cells compensate for impaired CD4+ T-cell responses to CMV in HIV patients responding to antiretroviral therapy? Clin Immunol 2009; 132:63-70. [DOI: 10.1016/j.clim.2009.03.518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/25/2022]
|
23
|
Iversen AC, Steinkjer B, Nilsen N, Bohnhorst J, Moen SH, Vik R, Stephens P, Thomas DW, Benedict CA, Espevik T. A proviral role for CpG in cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:5672-81. [PMID: 19380814 DOI: 10.4049/jimmunol.0801268] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR9-dependent signaling in plasmacytoid dendritic cells is a key contributor to innate immune defense to mouse CMV infection. We aimed to study the expression and potential contribution of TLR9 signaling in human CMV (HCMV) infection of primary fibroblasts. HCMV infection strongly induced TLR9 expression in two of three fibroblast types tested. Furthermore, the TLR9 ligand CpG-B induced a strong proviral effect when added shortly after HCMV infection, enhancing virus production and cell viability. However, not all CpG classes displayed proviral activity, and this correlated with their IFN-beta-inducing ability. The proviral effect of CpG-B correlated completely with concurrent viral up-regulation of TLR9 in fibroblasts. Importantly, the timing of CpG addition was a critical parameter; in striking contrast to the proviral effect, CpG addition at the time of infection blocked viral uptake and nearly abolished HCMV production. The contrasting and time-dependent effects of CpG on HCMV infectivity reveal a complex interplay between CpG, TLR9, and HCMV infection. Additionally, the data suggest a potentially harmful role for CpG in the promotion of HCMV infection.
Collapse
Affiliation(s)
- Ann-Charlotte Iversen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, Waldmann TA, McFarland HF, Martin R. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. ARCHIVES OF NEUROLOGY 2009; 66:483-9. [PMID: 19364933 PMCID: PMC2742781 DOI: 10.1001/archneurol.2009.50] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Several questions arise concerning the use of the anti-CD25 antibody daclizumab to treat multiple sclerosis (MS). OBJECTIVES To answer the following 3 questions related to the efficacy of daclizumab therapy in patients with MS: Is the therapeutic effect of daclizumab dependent on combination with interferon beta? Is a higher dosage of daclizumab more efficacious in patients with persistent disease activity? Can biomarkers predict full vs partial therapeutic response to daclizumab? DESIGN An open-label baseline vs treatment phase II clinical trial of daclizumab in patients having MS with inadequate response to interferon beta. Three months of interferon beta treatment at baseline were followed by 5.5 months of interferon beta-daclizumab combination therapy. If patients experienced more than 75% reduction of contrast-enhancing lesions (CELs) on brain magnetic resonance imaging at month 5.5 compared with baseline, daclizumab was continued as monotherapy for 10 months. Otherwise, the dosage of daclizumab was doubled. SETTING Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland. PATIENTS Fifteen patients with MS receiving standard preparations of interferon beta who experienced more than 1 MS exacerbation or whose clinical disability increased in the preceding 12 months and who had at least 2 CELs on baseline brain magnetic resonance images. INTERVENTION Daclizumab (1 mg/kg) as an intravenous infusion every 4 weeks in combination with interferon beta (months 0-5.5) and as monotherapy (months 6.5-15.5). MAIN OUTCOME MEASURES The primary outcome was the reduction of CELs among interferon beta monotherapy, interferon beta-daclizumab combination therapy, and daclizumab monotherapy. The secondary outcomes included immunologic biomarkers and changes in clinical disability. RESULTS Overall, 5 of 15 patients (33%) experienced adverse effects of therapy. Two patients developed systemic adverse effects, and daclizumab therapy was discontinued. Although daclizumab monotherapy was efficacious in 9 of 13 patients with MS, interferon beta-daclizumab combination therapy was necessary to stabilize disease activity in the other 4 patients. Daclizumab therapy led to 72% inhibition of new CELs and significant improvement in clinical disability. Pilot biomarkers (increase in CD56bright natural killer cells and decrease in CD8+ T cells) were identified that can differentiate between full and partial daclizumab responders. CONCLUSIONS Daclizumab monotherapy is effective in most patients who experienced persistent MS disease activity with interferon beta therapy. Interferon beta-daclizumab combination therapy or higher dosages of daclizumab may be necessary to achieve optimal therapeutic response in all patients. Biomarkers may identify patients with suboptimal response to daclizumab monotherapy. Administration among a large patient sample during a longer period is needed to fully define the safety and long-term efficacy of daclizumab as treatment for high-inflammatory MS. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00001934.
Collapse
Affiliation(s)
- Bibiana Bielekova
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 10, Room 5C103, 10 Center Dr, MSC 1400, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Zucchini N, Crozat K, Baranek T, Robbins SH, Altfeld M, Dalod M. Natural killer cells in immunodefense against infective agents. Expert Rev Anti Infect Ther 2008; 6:867-85. [PMID: 19053900 PMCID: PMC2676939 DOI: 10.1586/14787210.6.6.867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following the discovery of innate immune receptors, the topics of innate immunity and its role in defense against infective agents have recently blossomed into very active research fields, after several decades of neglect. Among innate immune cells, natural killer (NK) cells are endowed with the unique ability to recognize and kill cells infected with a variety of pathogens, irrespective of prior sensitization to these microbes. NK cells have a number of other functions, including cytokine production and immunoregulatory activities. Major advances have recently been made in the understanding of the role of NK cells in the physiopathology of infectious diseases. The cellular and molecular mechanisms regulating the acquisition of effector functions by NK cells and their triggering upon pathogenic encounters are being unraveled. The possibility that the power of NK cells could be harnessed for the design of innovative treatments against infections is a major incentive for biologists to further explore NK cell subset complexity and to identify the ligands that activate NK cell receptors.
Collapse
Affiliation(s)
- Nicolas Zucchini
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France and Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France and Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France, Tel.: +33 491 269 461, Fax: +33 491 269 430,
| | - Karine Crozat
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France and Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France and Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France, Tel.: +33 491 269 461, Fax: +33 491 269 430,
| | - Thomas Baranek
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France and Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France and Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France, Tel.: +33 491 269 461, Fax: +33 491 269 430,
| | - Scott H Robbins
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France and Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France and Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Marcus Altfeld
- Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MA, USA, Tel.: +1 617 724 2461, Fax: +1 617 724 8586,
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France and Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France and Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France, Tel.: +33 491 269 466, Fax: +33 491 269 430,
| |
Collapse
|
27
|
Abstract
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.
Collapse
Affiliation(s)
- John R Sedý
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 2008; 325:417-70. [PMID: 18637519 DOI: 10.1007/978-3-540-77349-8_23] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with human cytomegalovirus (HCMV) are a major cause of morbidity and mortality in humans with acquired or developmental deficits in innate and adaptive immunity. In the normal immunocompetent host, symptoms rarely accompany acute infections, although prolonged virus shedding is frequent. Virus persistence is established in all infected individuals and appears to be maintained by both a chronic productive infections as well as latency with restricted viral gene expression. The contributions of the each of these mechanisms to the persistence of this virus in the individual is unknown but frequent virus shedding into the saliva and genitourinary tract likely accounts for the near universal incidence of infection in most populations in the world. The pathogenesis of disease associated with acute HCMV infection is most readily attributable to lytic virus replication and end organ damage either secondary to virus replication and cell death or from host immunological responses that target virus-infected cells. Antiviral agents limit the severity of disease associated with acute HCMV infections, suggesting a requirement for virus replication in clinical syndromes associated with acute infection. End organ disease secondary to unchecked virus replication can be observed in infants infected in utero, allograft recipients receiving potent immunosuppressive agents, and patients with HIV infections that exhibit a loss of adaptive immune function. In contrast, diseases associated with chronic or persistent infections appear in normal individuals and in the allografts of the transplant recipient. The manifestations of these infections appear related to chronic inflammation, but it is unclear if poorly controlled virus replication is necessary for the different phenotypic expressions of disease that are reported in these patients. Although the relationship between HCMV infection and chronic allograft rejection is well known, the mechanisms that account for the role of this virus in graft loss are not well understood. However, the capacity of this virus to persist in the midst of intense inflammation suggests that its persistence could serve as a trigger for the induction of host-vs-graft responses or alternatively host responses to HCMV could contribute to the inflammatory milieu characteristic of chronic allograft rejection.
Collapse
Affiliation(s)
- W Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital, Harbor Bldg. 104, 1600 7th Ave. South Birmingham, AL 35233, USA.
| |
Collapse
|
29
|
Strowig T, Brilot F, Münz C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7785-91. [PMID: 18523242 PMCID: PMC2575662 DOI: 10.4049/jimmunol.180.12.7785] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer cells were named after their ability to mediate spontaneous cytotoxicity during innate immune responses. However, it has become clear in recent years that they play an equally important role in restricting infections and assisting the development of adaptive immune responses via their ability to produce cytokines. In humans, a dedicated NK cell subset primarily fulfills these later functions. In this review we discuss the noncytotoxic effector functions of NK cells and how they could be harnessed for immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Till Strowig
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, USA
| | | | - Christian Münz
- Laboratory of Viral Immunobiology and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, New York, USA
| |
Collapse
|
30
|
Davis AM, Hagan KA, Matthews LA, Bajwa G, Gill MA, Gale M, Farrar JD. Blockade of virus infection by human CD4+ T cells via a cytokine relay network. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6923-32. [PMID: 18453613 PMCID: PMC2387070 DOI: 10.4049/jimmunol.180.10.6923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.
Collapse
Affiliation(s)
- Ann M. Davis
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Kristan A. Hagan
- Department of Immunology, University of Washington, Seattle, Washington, 98195
| | - Loderick A. Matthews
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Gagan Bajwa
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michelle A. Gill
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, 98195
| | - J. David Farrar
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
31
|
Page KM, Chaudhary D, Goldman SJ, Kasaian MT. Natural killer cells from protein kinase C theta-/- mice stimulated with interleukin-12 are deficient in production of interferon-gamma. J Leukoc Biol 2008; 83:1267-76. [PMID: 18263766 DOI: 10.1189/jlb.1107745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein kinase C theta (PKCtheta) is expressed in NK cells, but its functional role has not been defined. Here, we demonstrate involvement of PKCtheta in IL-12-induced NK cell IFN-gamma production. NK cells from PKCtheta(-/-) mice produced less IFN-gamma in response to IL-12 than those from wild-type (WT) mice. IL-12-induced NK cell cytotoxicity was unaffected, and NK cells from PKCtheta(-/-) mice did not display reduced IFN-gamma production in response to IL-18, indicating a specific role for PKCtheta in IL-12-induced IFN-gamma production. Under the conditions tested, T cells did not produce IFN-gamma in response to IL-12 or affect the ability of NK cells to produce the cytokine. PKCtheta deficiency did not affect NK cell numbers, granularity, viability, or cytotoxic activity in response to polyinosinic:polycytydylic acid. NK cells from PKCtheta(-/-) mice exhibited normal expression of IL-12Rbeta1 and STAT4 proteins and normal induction of STAT4 phosphorylation in response to IL-12. Phosphorylation of threonine 538 within the catalytic domain of PKCtheta was detectable in NK cells from WT mice but was not enhanced by IL-12. Transcription of IFN-gamma increased similarly in NK cells from WT and PKCtheta(-/-) mice in response to IL-12, and there was no difference in IFN-gamma mRNA stability. Taken together, these findings indicate a role for PKCtheta in the post-transcriptional regulation of IL-12-induced IFN-gamma production.
Collapse
Affiliation(s)
- Karen M Page
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
32
|
Harwani SC, Lurain NS, Zariffard MR, Spear GT. Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue. Virol J 2007; 4:133. [PMID: 18053251 PMCID: PMC2222636 DOI: 10.1186/1743-422x-4-133] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 12/05/2007] [Indexed: 01/25/2023] Open
Abstract
Human cytomegalovirus (HCMV) can be acquired sexually and is shed from the genital tract. Cross-sectional studies in women show that changes in genital tract microbial flora affect HCMV infection and/or shedding. Since genital microbial flora may affect HCMV infection or replication by stimulating cells through Toll-like receptors (TLR), we assessed the effects of defined TLR-ligands on HCMV replication in foreskin fibroblasts and ectocervical tissue. Poly I:C (a TLR3-ligand) and lipopolysaccharide (LPS, a TLR4-ligand) inhibited HCMV and induced secretion of IL-8 and Interferon-beta (IFNbeta) in both foreskin fibroblasts and ectocervical tissue. The anti-HCMV effect was reversed by antibody to IFNbeta. CpG (TLR9 ligand) and lipoteichoic acid (LTA, TLR2 ligand) also inhibited HCMV infection in ectocervical tissue and this anti-HCMV effect was also reversed by anti-IFNbeta antibody. In contrast, LTA and CpG did not inhibit HCMV infection in foreskin fibroblasts. This study shows that TLR ligands induce an HCMV-antiviral effect that is mediated by IFNbeta suggesting that changes in genital tract flora may affect HCMV infection or shedding by stimulating TLR. This study also contrasts the utility of two models that can be used for assessing the interaction of microbial flora with HCMV in the genital tract. Clear differences in the response to different TLR ligands suggests the explant model more closely reflects in vivo responses to genital infections.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Immunology/Microbiology, Rush University, Chicago, USA.
| | | | | | | |
Collapse
|
33
|
Raeiszadeh M, Kopycinski J, Paston SJ, Diss T, Lowdell M, Hardy GAD, Hislop AD, Workman S, Dodi A, Emery V, Webster AD. The T cell response to persistent herpes virus infections in common variable immunodeficiency. Clin Exp Immunol 2007; 146:234-42. [PMID: 17034575 PMCID: PMC1942048 DOI: 10.1111/j.1365-2249.2006.03209.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We show that at least half of patients with common variable immunodeficiency (CVID) have circulating CD8(+) T cells specific for epitopes derived from cytomegalovirus (CMV) and/or the Epstein-Barr virus (EBV). Compared to healthy age-matched subjects, more CD8(+) T cells in CVID patients were committed to CMV. Despite previous reports of defects in antigen presentation and cellular immunity in CVID, specific CD4(+) and CD8(+) T cells produced interferon (IFN)-gamma after stimulation with CMV peptides, and peripheral blood mononuclear cells secreted perforin in response to these antigens. In CVID patients we found an association between a high percentage of circulating CD8(+) CD57(+) T cells containing perforin, CMV infection and a low CD4/CD8 ratio, suggesting that CMV may have a major role in the T cell abnormalities described previously in this disease. We also show preliminary evidence that CMV contributes to the previously unexplained severe enteropathy that occurs in about 5% of patients.
Collapse
Affiliation(s)
- M Raeiszadeh
- Centre for Immunology, Hampstead Campus, Royal Free and University College Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lodoen MB, Lanier LL. Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 2006; 18:391-8. [PMID: 16765573 PMCID: PMC7127478 DOI: 10.1016/j.coi.2006.05.002] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/26/2006] [Indexed: 11/03/2022]
Abstract
Natural killer (NK) cells serve as a crucial first line of defense against tumors and a diverse range of pathogens. Recognition of infection by NK cells is accomplished by the activation of receptors on the NK cell surface, which initiate NK cell effector functions. Many of the receptors and ligands involved in NK cell antimicrobial activity have been identified, and we are beginning to appreciate how they function during infection. In addition, NK cells are activated by cytokines (e.g. interleukin 12 and type I interferons), which are products of activated macrophages and dendritic cells. In response to these activating stimuli, NK cells secrete cytokines and chemokines and lyse target cells. Recent studies have focused on the mechanisms by which NK cells recognize and respond to viruses, parasites and bacteria, and on the unique role of NK cells in innate immunity to infection.
Collapse
Affiliation(s)
- Melissa B Lodoen
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, 94143-0414, USA
| | | |
Collapse
|