1
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
2
|
Harsha Krovi S, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, Scott-Browne J, Gapin L. Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nat Commun 2020; 11:6238. [PMID: 33288744 PMCID: PMC7721697 DOI: 10.1038/s41467-020-20073-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Most T lymphocytes leave the thymus as naïve cells with limited functionality. However, unique populations of innate-like T cells differentiate into functionally distinct effector subsets during their development in the thymus. Here, we profiled >10,000 differentiating thymic invariant natural killer T (iNKT) cells using single-cell RNA sequencing to produce a comprehensive transcriptional landscape that highlights their maturation, function, and fate decisions at homeostasis. Our results reveal transcriptional profiles that are broadly shared between iNKT and mucosal-associated invariant T (MAIT) cells, illustrating a common core developmental program. We further unmask a mutual requirement for Hivep3, a zinc finger transcription factor and adapter protein. Hivep3 is expressed in early precursors and regulates the post-selection proliferative burst, differentiation and functions of iNKT cells. Altogether, our results highlight the common requirements for the development of innate-like T cells with a focus on how Hivep3 impacts the maturation of these lymphocytes.
Collapse
Affiliation(s)
- S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Evergrande Center for Immunologic diseases at Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Stanford Health Care, Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James Scott-Browne
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
3
|
Dendritic Cells in Subcutaneous and Epicardial Adipose Tissue of Subjects with Type 2 Diabetes, Obesity, and Coronary Artery Disease. Mediators Inflamm 2019; 2019:5481725. [PMID: 31210749 PMCID: PMC6532274 DOI: 10.1155/2019/5481725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells contributing to regulation of lymphocyte immune response. DCs are divided into two subtypes: CD11c-positive conventional or myeloid (cDCs) and CD123-positive plasmacytoid (pDCs) DCs. The aim of the study was to assess DCs (HLA-DR+ lineage-) and their subtypes by flow cytometry in peripheral blood and subcutaneous (SAT) and epicardial (EAT) adipose tissue in subjects with (T2DM, n = 12) and without (non-T2DM, n = 17) type 2 diabetes mellitus undergoing elective cardiac surgery. Subjects with T2DM had higher fasting glycemia (8.6 ± 0.7 vs. 5.8 ± 0.2 mmol/l, p < 0.001) and glycated hemoglobin (52.0 ± 3.4 vs. 36.9 ± 1.0 mmol/mol, p < 0.001) and tended to have more pronounced inflammation (hsCRP: 9.8 ± 3.1 vs. 5.1 ± 1.9 mg/ml, p = 0.177) compared with subjects without T2DM. T2DM was associated with reduced total DCs in SAT (1.57 ± 0.65 vs. 4.45 ± 1.56% for T2DM vs. non-T2DM, p = 0.041) with a similar, albeit insignificant, trend in EAT (0.996 ± 0.33 vs. 2.46 ± 0.78% for T2DM vs. non-T2DM, p = 0.171). When analyzing DC subsets, no difference in cDCs was seen between any of the studied groups or adipose tissue pools. In contrast, pDCs were increased in both SAT (13.5 ± 2.0 vs. 4.6 ± 1.9% of DC cells, p = 0.005) and EAT (29.1 ± 8.7 vs. 8.4 ± 2.4% of DC, p = 0.045) of T2DM relative to non-T2DM subjects as well as in EAT of the T2DM group compared with corresponding SAT (29.1 ± 8.7 vs. 13.5 ± 2.0% of DC, p = 0.020). Neither obesity nor coronary artery disease (CAD) significantly influenced the number of total, cDC, or pDC in SAT or EAT according to multiple regression analysis. In summary, T2DM decreased the amount of total dendritic cells in subcutaneous adipose tissue and increased plasmacytoid dendritic cells in subcutaneous and even more in epicardial adipose tissue. These findings suggest a potential role of pDCs in the development of T2DM-associated adipose tissue low-grade inflammation.
Collapse
|
4
|
Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, David CN, McGee CE, Sempowski GD, Shterev I, McKinnon K, Bachelder EM, Ainslie KM, Ting JPY. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release 2018; 270:1-13. [PMID: 29170142 PMCID: PMC5808851 DOI: 10.1016/j.jconrel.2017.11.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 01/06/2023]
Abstract
Most FDA-approved adjuvants for infectious agents boost humoral but not cellular immunity, and have poorly-understood mechanisms. Stimulator of interferon genes (STING, also known as MITA, MPYS, or ERIS) is an exciting adjuvant target due to its role in cyclic dinucleotide (CDN)-driven anti-viral immunity; however, a major hindrance is STING's cytosolic localization which requires intracellular delivery of its agonists. As a result, STING agonists administered in a soluble form have elicited suboptimal immune responses. Delivery of STING agonists via particle platforms has proven a more successful strategy, but the opportunity for improved formulations and bioactivity remains. In this study we evaluated the adjuvant activity of the potent STING agonist, CDN 3'3'-cGAMP (cGAMP), encapsulated in acid-sensitive acetalated dextran (Ace-DEX) polymeric microparticles (MPs) which passively target antigen-presenting cells for intracellular release. This formulation was superior to all particle delivery systems evaluated and maintained its bioactivity following a sterilizing dose of gamma irradiation. Compared to soluble cGAMP, the Ace-DEX cGAMP MPs enhanced type-I interferon responses nearly 1000-fold in vitro and 50-fold in vivo, caused up to a 104-fold boost in antibody titers, increased Th1-associated responses, and expanded germinal center B cells and memory T cells. Furthermore, the encapsulated cGAMP elicited no observable toxicity in animals and achieved protective immunity against a lethal influenza challenge seven months post-immunization when using CDN adjuvant doses up to 100-fold lower than previous reports. For these reasons, Ace-DEX MP-encapsulated cGAMP represents a potent vaccine adjuvant of humoral and cellular immunity.
Collapse
Affiliation(s)
- Robert D Junkins
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew D Gallovic
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brandon M Johnson
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A Collier
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebekah Watkins-Schulz
- Curriculum of Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ning Cheng
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral Biology Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clément N David
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles E McGee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ivo Shterev
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Karen McKinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Prasad S, Hu S, Sheng WS, Chauhan P, Singh A, Lokensgard JR. The PD-1: PD-L1 pathway promotes development of brain-resident memory T cells following acute viral encephalitis. J Neuroinflammation 2017; 14:82. [PMID: 28407741 PMCID: PMC5390367 DOI: 10.1186/s12974-017-0860-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022] Open
Abstract
Background Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bTRM) following murine cytomegalovirus (MCMV) infection. Methods Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8+ T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bTRMs. Results In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8+ T cell populations from KLRG1+ CD127− (SLEC) to KLRG1− CD127+ (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8+ T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8+ T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8+ T cells was phenotyped as CD103+ CD69+, markers of bTRM, and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103+ bTRM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. Conclusions Taken together, our results indicate that bTRMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujata Prasad
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA
| | - Shuxian Hu
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA
| | - Wen S Sheng
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA
| | - Priyanka Chauhan
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA
| | - Amar Singh
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA
| | - James R Lokensgard
- Department of Medicine, Neurovirology Laboratory, University of Minnesota, 3-107 Microbiology Research Facility, 689 23rd Avenue S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Chan J, Babb R, David SC, McColl SR, Alsharifi M. Vaccine-Induced Antibody Responses Prevent the Induction of Interferon Type I Responses Upon a Homotypic Live Virus Challenge. Scand J Immunol 2016; 83:165-73. [DOI: 10.1111/sji.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Affiliation(s)
- J. Chan
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - R. Babb
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. C. David
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. R. McColl
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - M. Alsharifi
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
7
|
Tian J, Zhang X, Wu H, Liu C, Liu J, Hu X, Qu L. Assessment of the IFN-β response to four feline caliciviruses: Infection in CRFK cells. INFECTION GENETICS AND EVOLUTION 2015; 34:352-60. [PMID: 26051884 DOI: 10.1016/j.meegid.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
Feline calicivirus (FCV) is a highly contagious pathogen with a widespread distribution. Although the cat genome has been sequenced, little is known about innate immunity in cats, which limits the understanding of FCV pathogenesis. To investigate the IFN-β response during FCV infection in CRFK cells, we first cloned and identified the feline IFN-β promoter sequence and the positive regulatory domain (PRD) motifs, which shared a high similarity with human and porcine IFN-β promoters. Next, we found that infections with FCV strains F9, Bolin and HRB-SS at the 100 or 1000 TCID50 doses could not activate the IFN-β promoter at 12 and 24h post-infection. Only strain 2280 infection at a 1000 TCID50 dose could induce the IFN-β promoter mainly through IRF3 and partially through NF-κB, at 24h post-infection. However, the IFN response occurred much later and was smaller in magnitude compared with that following Sendai virus (SeV) infection. Further, we found that induction of the IFN-β promoter by FCV 2280 infection depended on dsRNA and not on viral proteins. Finally, we examined whether the IFN-β response had an antiviral effect against FCV replication. The over-expression of IFN-β before exposure to the virus reduced viral yields by a range of 2.2-3.2 log10TCID50, but its over-expression at 12h post-infection did not inhibit FCV replication. Our results indicate that some FCV strains cannot induce IFN-β expression in vitro, which may be a potential factor for FCV survival in cats. Whether this is important in evading the host interferon response in vivo must be investigated.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaozhan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Chunguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaoliang Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
8
|
Melero I, Quetglas JI, Reboredo M, Dubrot J, Rodriguez-Madoz JR, Mancheño U, Casales E, Riezu-Boj JI, Ruiz-Guillen M, Ochoa MC, Sanmamed MF, Thieblemont N, Smerdou C, Hervas-Stubbs S. Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res 2014; 75:497-507. [PMID: 25527611 DOI: 10.1158/0008-5472.can-13-3356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host responses are increasingly considered important for the efficacious response to experimental cancer therapies that employ viral vectors, but little is known about the specific nature of host responses required. In this study, we investigated the role of host type I interferons (IFN-I) in the efficacy of virally delivered therapeutic genes. Specifically, we used a Semliki Forest virus encoding IL12 (SFV-IL12) based on its promise as an RNA viral vector for cancer treatment. Intratumoral injection of SFV-IL12 induced production of IFN-I as detected in serum. IFN-I production was abolished in mice deficient for the IFNβ transcriptional regulator IPS-1 and partially attenuated in mice deficient for the IFNβ signaling protein TRIF. Use of bone marrow chimeric hosts established that both hematopoietic and stromal cells were involved in IFN-I production. Macrophages, plasmacytoid, and conventional dendritic cells were each implicated based on cell depletion experiments. Further, mice deficient in the IFN-I receptor (IFNAR) abolished the therapeutic activity of SFV-IL12, as did a specific antibody-mediated blockade of IFNAR signaling. Reduced efficacy was not caused by an impairment in IL12 expression, because IFNAR-deficient mice expressed the viral IL12 transgene even more strongly than wild-type (WT) hosts. Chimeric host analysis for the IFNAR involvement established a strict requirement in hematopoietic cells. Notably, although tumor-specific CD8 T lymphocytes expanded robustly after intratumoral injection of WT mice with SFV-IL12, this did not occur in mice where IFNAR was inactivated genetically or pharmacologically. Overall, our results argued that the antitumor efficacy of a virally based transgene therapeutic relied strongly on a vector-induced IFN-I response, revealing an unexpected mechanism of action that is relevant to a broad array of current translational products in cancer research.
Collapse
Affiliation(s)
- Ignacio Melero
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain.
| | - Jose I Quetglas
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Mercedes Reboredo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Juan Dubrot
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Juan R Rodriguez-Madoz
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Uxua Mancheño
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Erkuden Casales
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Jose I Riezu-Boj
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Marta Ruiz-Guillen
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Maria C Ochoa
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Miguel F Sanmamed
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Nathalie Thieblemont
- Centre National de la Recherche Scientifique (CNRS-UMR 8147), Université René Descartes Paris V, Paris, France
| | - Cristian Smerdou
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain
| | - Sandra Hervas-Stubbs
- Center for Applied Medical Research (CIMA) and Clínica Universidad de Navarra, University of Navarra, Navarra, Spain.
| |
Collapse
|
9
|
Wijesundara DK, Xi Y, Ranasinghe C. Unraveling the convoluted biological roles of type I interferons in infection and immunity: a way forward for therapeutics and vaccine design. Front Immunol 2014; 5:412. [PMID: 25221557 PMCID: PMC4148647 DOI: 10.3389/fimmu.2014.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
It has been well-established that type I interferons (IFN-Is) have pleiotropic effects and play an early central role in the control of many acute viral infections. However, their pleiotropic effects are not always beneficial to the host and in fact several reports suggest that the induction of IFN-Is exacerbate disease outcomes against some bacterial and chronic viral infections. In this brief review, we probe into this mystery and try to develop answers based on past and recent studies evaluating the roles of IFN-Is in infection and immunity as this is vital for developing effective IFN-Is based therapeutics and vaccines. We also discuss the biological roles of an emerging IFN-I, namely IFN-ε, and discuss its potential use as a mucosal therapeutic and/or vaccine adjuvant. Overall, we anticipate the discussions generated in this review will provide new insights for better exploiting the biological functions of IFN-Is in developing efficacious therapeutics and vaccines in the future.
Collapse
Affiliation(s)
- Danushka Kumara Wijesundara
- Virology Laboratory, Department of Surgery, Basil Hetzel Institute, University of Adelaide , Adelaide, SA , Australia ; Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Translational Research Institute, UQ School of Medicine, The University of Queensland , Woolloongabba, QLD , Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University , Canberra, ACT , Australia
| |
Collapse
|
10
|
Shahrakyvahed A, Sanchooli J, Sanadgol N, Arababadi MK, Kennedy D. TLR9: an important molecule in the fight against hepatitis B virus. Postgrad Med J 2014; 90:396-401. [PMID: 24942353 DOI: 10.1136/postgradmedj-2013-132309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is the most prevalent infectious agent that can induce severe liver disease. Patients infected with long-term HBV, including chronic, asymptomatic and occult forms, cannot clear HBV from infected hepatocytes completely. It is not clear why some people can clear the infection while others cannot. Furthermore, the main mechanisms responsible for progression of the infections are not fully understood. It has been hypothesised that differences in genetic and immunological parameters between patients and subjects who successfully clear HBV infections are responsible for inducing the long-term forms of the infection. Previous investigations showed that Toll-like receptors (TLRs) play important roles in immune responses, especially innate immunity, against viral infections, including hepatitis B. TLR9 detects intracellular viral dsDNA, which results in the activation of an immune response against HBV. However, defects in this system may result in an attenuated response ultimately leading to long-term HBV infections. Targeting the defects in TLR9 or reactivating the downstream pathways that are normally switched on by TLR9 in response to HBV infection is a new approach to the treatment of long-term HBV infection. However, the pathways and defects seen in patients with long-term HBV need to be thoroughly explored before therapeutics can be applied in the clinical setting. Furthermore, the apparently multigenic nature of long-term HBV infection suggests that treatment of patients may need to be personalised.
Collapse
Affiliation(s)
- Aziz Shahrakyvahed
- Department of Nursing, Faculty of Nursing and Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | - Javad Sanchooli
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran Faculty of Pharmacy and Pharmaceutical Science Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University Nathan, Queensland, Australia
| |
Collapse
|
11
|
Babb R, Chan J, Khairat JE, Furuya Y, Alsharifi M. Gamma-Irradiated Influenza A Virus Provides Adjuvant Activity to a Co-Administered Poorly Immunogenic SFV Vaccine in Mice. Front Immunol 2014; 5:267. [PMID: 24959166 PMCID: PMC4050334 DOI: 10.3389/fimmu.2014.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022] Open
Abstract
Many currently available inactivated vaccines require “adjuvants” to maximize the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU) have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent interferon type-I (IFN-I) responses and the IFN-I-associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest virus (γ-SFV) as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titers by sixfold and greater neutralization efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.
Collapse
Affiliation(s)
- Rachelle Babb
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jennifer Chan
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Jasmine E Khairat
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| | - Yoichi Furuya
- Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Mohammed Alsharifi
- Vaccine Research Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide , Adelaide, SA , Australia
| |
Collapse
|
12
|
TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep 2014; 41:3279-86. [DOI: 10.1007/s11033-014-3190-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
|
13
|
Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung. PLoS Pathog 2013; 9:e1003727. [PMID: 24244159 PMCID: PMC3820719 DOI: 10.1371/journal.ppat.1003727] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I), whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood. Mice that lack the type I interferon receptor (Ifnar1−/−) or mice that were treated with a neutralizing antibody against the type I interferon receptor, exhibited enhanced development of bacteremia following intranasal pneumococcal infection, while maintaining comparable bacterial numbers in the lung. In turn, treatment of mice with IFNβ or IFN-I-inducing synthetic double stranded RNA (poly(I:C)), dramatically reduced the development of bacteremia following intranasal infection with S. pneumoniae. IFNβ treatment led to upregulation of tight junction proteins and downregulation of the pneumococcal uptake receptor, platelet activating factor receptor (PAF receptor). In accordance with these findings, IFN-I reduced pneumococcal cell invasion and transmigration across epithelial and endothelial layers, and Ifnar1−/− mice showed overall enhanced lung permeability. As such, our data identify IFN-I as an important component of the host immune defense that regulates two possible mechanisms involved in pneumococcal invasion, i.e. PAF receptor-mediated transcytosis and tight junction-dependent pericellular migration, ultimately limiting progression from a site-restricted lung infection to invasive, lethal disease. Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia and invasive diseases such as sepsis and meningitis, which are associated with high morbidity and mortality. Here we identified type I Interferons (IFN-I) as critical mediators that prevent the progression of a local lung infection with S. pneumoniae to invasive disease. We found that mice lacking the receptor for IFN-I, or which received antibodies that interfere with receptor activation, showed increased development of bacteremia upon lung infection with S. pneumoniae. Treating mice, or cell lines, with IFN-I protected against bacterial migration across epithelial and endothelial cell barriers, correlating with increased expression of tight junction proteins, which enhance the lung's barrier function, and reduced surface expression levels of platelet activating factor receptor, a host receptor known to be hijacked by bacteria for migration across the lung/blood and blood/brain barriers. Together, our results identify IFN-I as an important component of the host immune defense against invasion from a gram-positive, extracellular bacterium, possibly reflecting a general mechanism for the regulation of epithelial and endothelial barrier function that is critical for protection from pathogen invasion.
Collapse
|
14
|
Furuya Y, Müllbacher A. Type I IFN exhaustion is a host defence protecting against secondary bacterial infections. Scand J Immunol 2013; 78:395-400. [PMID: 24006947 PMCID: PMC7169485 DOI: 10.1111/sji.12107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/28/2013] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFN-I) have been known for decades for their indispensable role in curtailing viral infections. It is, however, now also increasingly recognized that IFN-I is detrimental to the host in combating a number of bacterial infections. We have previously reported that viral infections induce partial lymphocyte activation, characterized by significant increases in the cell surface expression of CD69 and CD86, but not CD25. This systemic partial activation of lymphocytes, mediated by IFN-I, is rapid and is followed by a period of IFN-I unresponsiveness. Here we propose that IFN-I exhaustion that occurs soon after a primary viral infection may be a host response protecting it from secondary bacterial infections.
Collapse
Affiliation(s)
- Y. Furuya
- Department of Emerging Pathogens and VaccinesJohn Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - A. Müllbacher
- Department of ImmunologyJohn Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
15
|
Maruggi G, Shaw CA, Otten GR, Mason PW, Beard CW. Engineered alphavirus replicon vaccines based on known attenuated viral mutants show limited effects on immunogenicity. Virology 2013; 447:254-64. [PMID: 24210122 DOI: 10.1016/j.virol.2013.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022]
Abstract
The immunogenicity of alphavirus replicon vaccines is determined by many factors including the level of antigen expression and induction of innate immune responses. Characterized attenuated alphavirus mutants contain changes to the genomic 5' UTR and mutations that result in altered non-structural protein cleavage timing leading to altered levels of antigen expression and interferon (IFN) induction. In an attempt to create more potent replicon vaccines, we engineered a panel of Venezuelan equine encephalitis-Sindbis virus chimeric replicons that contained these attenuating mutations. Modified replicons were ranked for antigen expression and IFN induction levels in cell culture and then evaluated in mice. The results of these studies showed that differences in antigen production and IFN induction in vitro did not correlate with large changes in immunogenicity in vivo. These findings indicate that the complex interactions between innate immune response and the replicon's ability to express antigen complicate rational design of more potent alphavirus replicons.
Collapse
Affiliation(s)
- Giulietta Maruggi
- Novartis Vaccines and Diagnostics Inc., 350 Massachusetts Avenue, Cambridge, MA 02139, United States
| | | | | | | | | |
Collapse
|
16
|
Alsharifi M, Koskinen A, Wijesundara DK, Bettadapura J, Müllbacher A. MHC class II-alpha chain knockout mice support increased viral replication that is independent of their lack of MHC class II cell surface expression and associated immune function deficiencies. PLoS One 2013; 8:e68458. [PMID: 23840854 PMCID: PMC3695910 DOI: 10.1371/journal.pone.0068458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/03/2013] [Indexed: 01/14/2023] Open
Abstract
MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα-/- (I-Aα-/-), MHC-IIAβ-/- (I-β-/-) and the double knockout (I-Aαxβ-/-). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα-/-, but not in I-β-/- or I-Aαxβ-/-, mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα-/- mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα-/- bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα-/- mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα-/- compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα-/- mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (MA); (AM)
| | - Aulikki Koskinen
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Danushka K. Wijesundara
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jayaram Bettadapura
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arno Müllbacher
- Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (MA); (AM)
| |
Collapse
|
17
|
Ato M, Takahashi Y, Fujii H, Hashimoto SI, Kaji T, Itamura S, Horiuchi Y, Arakawa Y, Tashiro M, Takemori T. Influenza A whole virion vaccine induces a rapid reduction of peripheral blood leukocytes via interferon-α-dependent apoptosis. Vaccine 2013; 31:2184-90. [DOI: 10.1016/j.vaccine.2013.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/24/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
18
|
Hughes B, Hayden F, Perikov Y, Hombach J, Tam JS. Report of the 5th meeting on influenza vaccines that induce broad spectrum and long-lasting immune responses, World Health Organization, Geneva, 16-17 November 2011. Vaccine 2012; 30:6612-22. [PMID: 22981850 DOI: 10.1016/j.vaccine.2012.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022]
Abstract
On 16-17 November 2011, the Initiative for Vaccine Research of the World Health Organization convened jointly with the Wellcome Trust the fifth meeting on 'Influenza vaccines that induce broad spectrum and long-lasting immune responses'. The goals of the meeting were to examine new influenza vaccine research developments related to increased duration and breadth of protection, including immune responses against novel strains that may present zoonotic and pandemic threats; improved delivery and administration; and safety issues related to novel vaccine approaches. A number of investigational vaccines based on unique antigens, adjuvants, and/or modes of delivery were presented. The challenges for feasible regulatory pathways to approval of such vaccines were discussed.
Collapse
Affiliation(s)
- Bethan Hughes
- The Wellcome Trust, 215 Euston Road, London, NW1 2BE, UK.
| | | | | | | | | |
Collapse
|
19
|
Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2012; 10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of poxviruses pioneered the field of vaccinology after Jenner's remarkable discovery that 'vaccination' with the phylogenetically related cowpox virus conferred immunity to the devastating disease of smallpox. The study of poxviruses continues to enrich the field of virology because the global eradication of smallpox provides a unique example of the potency of effective immunization. Other poxviruses have since been developed as vaccine vectors for clinical and veterinary applications and include modified vaccinia virus strains such as modified vaccinia Ankara and NYVAC as well as the avipox viruses, fowlpox virus and canarypox virus. Despite the empirical development of poxvirus-based vectored vaccines, it is only now becoming apparent that we need to better understand how the innate arm of the immune system drives adaptive immunity to poxviruses, and how this information is relevant to vaccine design strategies, which are the topics addressed in this article.
Collapse
Affiliation(s)
- Erin L Lousberg
- Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | | | | | | |
Collapse
|
20
|
Furuya Y, Chan J, Wan EC, Koskinen A, Diener KR, Hayball JD, Regner M, Müllbacher A, Alsharifi M. Gamma-irradiated influenza virus uniquely induces IFN-I mediated lymphocyte activation independent of the TLR7/MyD88 pathway. PLoS One 2011; 6:e25765. [PMID: 21998693 PMCID: PMC3187801 DOI: 10.1371/journal.pone.0025765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022] Open
Abstract
Background We have shown previously in mice, that infection with live viruses, including influenza/A and Semliki Forest virus (SFV), induces systemic partial activation of lymphocytes, characterized by cell surface expression of CD69 and CD86, but not CD25. This partial lymphocytes activation is mediated by type-I interferons (IFN-I). Importantly, we have shown that γ-irradiated SFV does not induce IFN-I and the associated lymphocyte activation. Principal Findings Here we report that, in contrast to SFV, γ-irradiated influenza A virus elicits partial lymphocyte activation in vivo. Furthermore, we show that when using influenza viruses inactivated by a variety of methods (UV, ionising radiation and formalin treatment), as well as commercially available influenza vaccines, only γ-irradiated influenza virus is able to trigger IFN-I-dependent partial lymphocyte activation in the absence of the TLR7/MyD88 signalling pathways. Conclusions Our data suggest an important mechanism for the recognition of γ-irradiated influenza vaccine by cytosolic receptors, which correspond with the ability of γ-irradiated influenza virus to induce cross-reactive and cross-protective cytotoxic T cell responses.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Dogs
- Female
- Gamma Rays
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H1N1 Subtype/radiation effects
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/radiation effects
- Interferon Type I/biosynthesis
- Interferon Type I/metabolism
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Lymphocytes/virology
- Membrane Glycoproteins/metabolism
- Mice
- Myeloid Differentiation Factor 88/metabolism
- Neuraminidase/metabolism
- Signal Transduction
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Toll-Like Receptor 7/metabolism
- Virus Activation/radiation effects
Collapse
Affiliation(s)
- Yoichi Furuya
- Department of Emerging Pathogens and Vaccines, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jennifer Chan
- Department of Microbiology and Immunology, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - En-Chi Wan
- Department of Microbiology and Immunology, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Aulikki Koskinen
- Department of Emerging Pathogens and Vaccines, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kerrilyn R. Diener
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Sansom Institute, The University of South Australia, Adelaide, South Australia, Australia
| | - John D. Hayball
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Sansom Institute, The University of South Australia, Adelaide, South Australia, Australia
- Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Vaccines, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arno Müllbacher
- Department of Emerging Pathogens and Vaccines, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mohammed Alsharifi
- Department of Emerging Pathogens and Vaccines, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Microbiology and Immunology, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
21
|
In vivo elimination of MHC-I-deficient lymphocytes by activated natural killer cells is independent of granzymes A and B. PLoS One 2011; 6:e23252. [PMID: 21853094 PMCID: PMC3154924 DOI: 10.1371/journal.pone.0023252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
NK cells kill target cells mainly via exocytosis of granules containing perforin (perf) and granzymes (gzm). In vitro, gzm delivery into the target cell cytosol results in apoptosis, and induction of apoptosis is severely impaired in the absence of gzm A and B. However, their importance for in vivo cytotoxicity by cytotoxic T cells has been questioned. We used an in vivo NK cytotoxicity assay, in which splenocytes from wild-type and β(2)microglobulin-deficient (MHC-I(neg)) mice are co-injected into recipients whose NK cells were activated by virus infection or synthetic Toll-like receptor ligands. Elimination of adoptively transferred MHC-I(neg) splenocytes was unimpaired in the absence of gzmA and gzmB, but dependent on perforin. This target cell rejection was NK cell dependent, since NK cell depletion abrogated it. Furthermore, target cell elimination in vivo was equally rapid in both wild-type and gzmAxB-deficient recipients, with the majority of specific target cells lost from lymphoid tissue within less than one to two hours after transfer. Thus, similar to T cell cytotoxicity, the contribution of gzmA and B to in vivo target cell elimination remains unresolved.
Collapse
|
22
|
Pannetier D, Reynard S, Russier M, Journeaux A, Tordo N, Deubel V, Baize S. Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol 2011; 85:8293-306. [PMID: 21632749 PMCID: PMC3147965 DOI: 10.1128/jvi.02120-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 05/23/2011] [Indexed: 12/14/2022] Open
Abstract
The events leading to death in severe cases of Lassa fever (LF) are unknown. Fatality seems to be linked to high viremia and immunosuppression, and cellular immunity, rather than neutralizing antibodies, appears to be essential for survival. We previously compared Lassa virus (LV) with its genetically close but nonpathogenic homolog Mopeia virus (MV), which was used to model nonfatal LF. We showed that strong and early activation of antigen-presenting cells (APC) may play a crucial role in controlling infection. Here we developed an in vitro model of dendritic-cell (DC)-T-cell coculture in order to characterize human T-cell responses induced by MV- or LV-infected DCs. Our results show very different responses to infection with LV and MV. MV strongly and durably stimulated CD8(+) and CD4(+) T cells, showing early and high activation, a strong proliferative response, and acquisition of effector and memory phenotypes. Furthermore, robust and functional CD4(+) and CD8(+) cytotoxic T lymphocytes (CTL) were generated. LV, however, induced only weak memory responses. Thus, this study allows an improved understanding of the pathogenesis and immune mechanisms involved in the control of human LV.
Collapse
Affiliation(s)
- Delphine Pannetier
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon Cedex 07, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
López CB, Hermesh T. Systemic responses during local viral infections: type I IFNs sound the alarm. Curr Opin Immunol 2011; 23:495-9. [PMID: 21752617 PMCID: PMC3163724 DOI: 10.1016/j.coi.2011.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/24/2022]
Abstract
Type I IFNs are well known for their role in controlling virus replication and spread. Type I IFNs produced by the infected tissue also signal beyond the boundaries of the infection to regulate different elements of the anti-viral immune response. Recent reports show that type I IFNs directly condition naive monocytes residing in the distal bone marrow (BM) and induce the expression of effector molecules in memory T cells, before their recruitment to the infected site. In addition, hematopoietic stem cells (HSCs) were shown to enter the cell cycle in response to systemically distributed type I IFNs. These discoveries expand our understanding of the pleiotropic effects of type I IFNs during infection and highlight the critical role of systemic signals in the development of an effective response to a localized viral infection.
Collapse
Affiliation(s)
- Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
24
|
Wijesundara DK, Kumar S, Alsharifi M, Müllbacher A, Regner M. Antigen-specific activation thresholds of CD8+ T cells are independent of IFN-I-mediated partial lymphocyte activation. Int Immunol 2010; 22:757-67. [PMID: 20682547 DOI: 10.1093/intimm/dxq064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type-I IFN (IFN-I) are highly pleiotropic cytokines known to modulate immune responses and play an early central role in mediating antiviral defenses. We have shown that IFN-I mediate transient up-regulation of a distinct subset of lymphocyte surface activation markers on both B and T cells in vivo independent of cognate antigen: a state referred to as 'partial lymphocyte activation'. Here we investigated in vitro the possibility that partial lymphocyte activation may serve to lower the antigen-specific activation thresholds for T cells. We found that the kinetics of Ca(2+) flux in T cells responding to TCR cross-linking was not enhanced in partially activated T cells. Furthermore, following TCR stimulation with anti-cluster of differentiation (CD) 3 epsilon, a lower proportion of partially activated than naive T cells proliferated. In contrast, the proliferation of partially activated and naive ovalbumin peptide (OVAp, SIINFEKL) specific CD8(+) T cells (OT-I CD8(+) T cells) was similar when stimulated with OVAp. Surprisingly, using an enzyme-linked immunospot (ELISPOT) assay for IFN-gamma secretion, we found that a higher number of partially activated OT-I CD8(+) T cells expressed effector functions than did naive OT-I CD8(+) T cells. This is most readily explained by an increased survival of activated antigen-specific CD8(+) T cells from a pool of partially activated T cells than naive T cells. Overall, when examining the effects of early (Ca(2+) flux), intermediate (proliferation) or late events (IFN-gamma secretion) of T-cell activation, we found that partial activation promotes the survival but does not alter the antigen-specific activation thresholds of CD8(+) T cells.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- Viral Immunology, Emerging Pathogens and Vaccines Program, John Curtin School of Medical Research, Acton, ACT 0200, Canberra, Australia.
| | | | | | | | | |
Collapse
|
25
|
Golding A, Rosen A, Petri M, Akhter E, Andrade F. Interferon-alpha regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology 2010; 131:107-17. [PMID: 20465564 DOI: 10.1111/j.1365-2567.2010.03280.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An adequate effector response against pathogens and its subsequent inactivation after pathogen clearance are critical for the maintenance of immune homeostasis. This process involves an initial phase of T-cell effector (Teff) activation followed by the expansion of regulatory T cells (Tregs), a unique cell population that limits Teff functions. However, significant questions remain unanswered about the mechanisms that regulate the balance between these cell populations. Using an in vitro system to mimic T-cell activation in human peripheral blood mononuclear cells (PBMC), we analysed the patterns of Treg and Teff activation, with special attention to the role of type I interferon (IFN-I). Interestingly, we found that IFN-alpha, either exogenously added or endogenously induced, suppressed the generation of CD4(+) FoxP3(HI )IFN-gamma(Neg) activated Tregs (aTregs) while simultaneously promoting propagation of CD4(+) FoxP3(Low/Neg )IFN-gamma(Pos) activated Teffs (aTeffs). We also showed that IFN-alpha-mediated inhibition of interleukin (IL)-2 production may play an essential role in IFN-alpha-induced suppression of aTregs. In order to test our findings in a disease state with chronically elevated IFN-alpha, we investigated systemic lupus erythematosus (SLE). Plasma from patients with SLE was found to contain IFN-I activity that suppressed aTreg generation. Furthermore, anti-CD3 activated SLE PBMCs exhibited preferential expansion of aTeffs with a very limited increase in aTreg numbers. Together, these observations support a model whereby a transient production of IFN-alpha (such as is seen in an early antiviral response) may promote CD4 effector functions by delaying aTreg generation, but a chronic elevation of IFN-alpha may tip the aTeff:aTreg balance towards aTeffs and autoimmunity.
Collapse
Affiliation(s)
- Amit Golding
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
26
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 2009; 10:112. [PMID: 19922665 PMCID: PMC2785782 DOI: 10.1186/1465-9921-10-112] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/18/2009] [Indexed: 12/20/2022] Open
Abstract
Background Each year, influenza virus infection causes severe morbidity and mortality, particularly in the most susceptible groups including children, the elderly (>65 years-old) and people with chronic respiratory diseases. Among the several factors that contribute to the increased susceptibility in elderly populations are the higher prevalence of chronic diseases (e.g. diabetes) and the senescence of the immune system. Methods In this study, aged and adult mice were infected with sublethal doses of influenza virus (A/Puerto Rico/8/1934). Differences in weight loss, morbidity, virus titer and the kinetics of lung infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the main cytokines and chemokines produced by these cells were also assayed. Results Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells and conventional dendritic cells (cDCs), but not macrophages in the lungs of aged mice compared to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration in their activation (CD40 expression), which also correlated with a delayed detection of cytokines and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural killer (NK), CD4+ and CD8+ T-cells. Furthermore, the percentage of activated (CD69+) influenza-specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones. Additionally, activation (CD69+) of adult B-cells was earlier and correlated with a quicker development of neutralizing antibodies in adult animals. Conclusion Overall, alterations in APC priming and activation lead to delayed production of cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells following influenza infection. This resulted in delayed activation of the adaptive immune response and subsequent delay in clearance of virus and prolonged illness in aged animals. Since the elderly are the fastest growing segment of the population in developed countries, a better understanding of the changes that occur in the immune system during the aging process is a priority for the development of new vaccines and adjuvants to improve the immune responses in this population.
Collapse
|
28
|
Ammann CG, Messer RJ, Peterson KE, Hasenkrug KJ. Lactate dehydrogenase-elevating virus induces systemic lymphocyte activation via TLR7-dependent IFNalpha responses by plasmacytoid dendritic cells. PLoS One 2009; 4:e6105. [PMID: 19568424 PMCID: PMC2699471 DOI: 10.1371/journal.pone.0006105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/25/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactate dehydrogenase-elevating virus (LDV) is a natural infectious agent of mice. Like several other viruses, LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood. The mechanism of this activation has not been fully described and is the focus of the current studies. PRINCIPAL FINDINGS A known inducer of early lymphocyte activation is IFNalpha, a cytokine strongly induced by LDV infection. Neutralization of IFNalpha in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary source of virus-induced IFNalpha in vivo is often plasmacytoid dendritic cells (pDC's), we depleted these cells prior to LDV infection and tested for lymphocyte activation. Depletion of pDC's in vivo eradicated both the LDV-induced IFNalpha response and lymphocyte activation. A primary receptor in pDC's for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7) pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNalpha response and lymphocyte activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNalpha response. CONCLUSION Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7 pattern recognition receptors in pDC's that respond with a lymphocyte-inducing IFNalpha response.
Collapse
Affiliation(s)
- Christoph G. Ammann
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
29
|
Alsharifi M, Furuya Y, Bowden TR, Lobigs M, Koskinen A, Regner M, Trinidad L, Boyle DB, Müllbacher A. Intranasal flu vaccine protective against seasonal and H5N1 avian influenza infections. PLoS One 2009; 4:e5336. [PMID: 19401775 PMCID: PMC2671162 DOI: 10.1371/journal.pone.0005336] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/01/2009] [Indexed: 11/18/2022] Open
Abstract
Background Influenza A (flu) virus causes significant morbidity and mortality worldwide, and current vaccines require annual updating to protect against the rapidly arising antigenic variations due to antigenic shift and drift. In fact, current subunit or split flu vaccines rely exclusively on antibody responses for protection and do not induce cytotoxic T (Tc) cell responses, which are broadly cross-reactive between virus strains. We have previously reported that γ-ray inactivated flu virus can induce cross-reactive Tc cell responses. Methodology/Principal Finding Here, we report that intranasal administration of purified γ-ray inactivated human influenza A virus preparations (γ-Flu) effectively induces heterotypic and cross-protective immunity. A single intranasal administration of γ-A/PR8[H1N1] protects mice against lethal H5N1 and other heterotypic infections. Conclusions/Significance Intranasal γ-Flu represents a unique approach for a cross-protective vaccine against both seasonal as well as possible future pandemic influenza A virus infections.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cross Reactions
- Female
- Gamma Rays
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- RNA, Viral/analysis
- RNA, Viral/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination/methods
- Vaccines, Inactivated/administration & dosage
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia
- * E-mail: (MA); (AM)
| | - Yoichi Furuya
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy R. Bowden
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Mario Lobigs
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aulikki Koskinen
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthias Regner
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lee Trinidad
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - David B. Boyle
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Arno Müllbacher
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (MA); (AM)
| |
Collapse
|
30
|
Thompson JM, Whitmore AC, Staats HF, Johnston R. The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines. Vaccine 2008; 26:4998-5003. [PMID: 18656518 PMCID: PMC3595171 DOI: 10.1016/j.vaccine.2008.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 05/28/2008] [Accepted: 07/08/2008] [Indexed: 11/19/2022]
Abstract
The type I interferon (IFN) system is critical for protecting the mammalian host from numerous virus infections and plays a key role in shaping the antiviral adaptive immune response. In this report, the importance of type I IFN signaling was assessed in a mouse model of alphavirus-induced humoral immune induction. Venezuelan equine encephalitis virus replicon particles (VRP) expressing the hemagglutinin (HA) gene from influenza virus (HA-VRP) were used to vaccinate both wildtype (wt) and IFN alpha/beta receptor knockout (RKO) mice. HA-VRP vaccination induced equivalent levels of flu-specific systemic IgG, mucosal IgG, and systemic IgA antibodies in both wt and IFN RKO mice. In contrast, HA-VRP vaccination of IFN RKO mice failed to induce significant levels of flu-specific mucosal IgA antibodies at multiple mucosal surfaces. In the VRP adjuvant system, co-delivery of null VRP with ovalbumin (OVA) protein significantly increased the levels of OVA-specific serum IgG, fecal IgG, and fecal IgA antibodies in both wt and RKO mice, suggesting that type I IFN signaling plays a less significant role in the VRP adjuvant effect. Taken together, these results suggest that (1) at least in regard to IFN signaling, the mechanisms which regulate alphavirus-induced immunity differ when VRP are utilized as expression vectors as opposed to adjuvants, and (2) type I IFN signaling is required for the induction of mucosal IgA antibodies directed against VRP-expressed antigen. These results shed new light on the regulatory networks which promote immune induction, and specifically mucosal immune induction, with alphavirus vaccine vectors.
Collapse
Affiliation(s)
- Joseph M. Thompson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill NC 27599
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| | - Alan C. Whitmore
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| | - Herman F. Staats
- Department of Pathology, and Human Vaccine Institute, Duke University Medical Center, Durham NC 27710
| | - Robert Johnston
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill NC 27599
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill NC 27599
| |
Collapse
|
31
|
Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J Virol 2008; 82:10964-74. [PMID: 18786989 DOI: 10.1128/jvi.01646-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B-cell response against West Nile virus (WNV), an encephalitic Flavivirus of global concern, is critical to controlling central nervous system dissemination and neurological sequelae, including death. Here, using a well-characterized mouse model of WNV infection, we examine the factors that govern early B-cell activation. Subcutaneous inoculation with a low dose of replicating WNV results in extensive B-cell activation in the draining lymph node (LN) within days of infection as judged by upregulation of the surface markers CD69, class II major histocompatibility complex, and CD86 on CD19(+) cells. B-cell activation in the LN but not the spleen was dependent on signals through the type I alpha/beta interferon (IFN-alpha/beta) receptor. Despite significant activation in the draining LN at day 3 after infection, WNV-specific B cells were not detected by immunoglobulin M enzyme-linked immunospot analysis until day 7. Liposome depletion experiments demonstrate that B-cell activation after WNV infection was not affected by the loss of F4/80(+) or CD169(+) subcapsular macrophages. Nonetheless, LN myeloid cells were essential for control of viral replication and survival from infection. Overall, our data suggest that the massive, early polyclonal B-cell activation occurring in the draining LN after WNV infection is immunoglobulin receptor and macrophage independent but requires sustained signals through the type I IFN-alpha/beta receptor.
Collapse
|
32
|
Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 2008; 29:101-13. [PMID: 18617426 PMCID: PMC2519120 DOI: 10.1016/j.immuni.2008.05.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/24/2008] [Accepted: 05/01/2008] [Indexed: 11/18/2022]
Abstract
Innate recognition of invading pathogens in peripheral tissues results in the recruitment of circulating memory CD8(+) T cells to sites of localized inflammation during the early phase of a recall response. However, the mechanisms that control the rapid recruitment of these cells to peripheral sites are poorly understood, particularly in relation to influenza and parainfluenza infections of the respiratory tract. In this study, we demonstrate a crucial role for C-C chemokine receptor 5 (CCR5) in the accelerated recruitment of memory CD8(+) T cells to the lung airways during virus challenge. Most importantly, CCR5 deficiency resulted in decreased recruitment of memory T cells expressing key effector molecules and impaired control of virus replication during the initial stages of a secondary response. These data highlight the critical importance of early memory T cell recruitment for the efficacy of cellular immunity in the lung.
Collapse
|
33
|
Day SL, Ramshaw IA, Ramsay AJ, Ranasinghe C. Differential effects of the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy. THE JOURNAL OF IMMUNOLOGY 2008; 180:7158-66. [PMID: 18490714 DOI: 10.4049/jimmunol.180.11.7158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The type I IFNs exert a range of activities that include antiviral, antiproliferative, and immunomodulatory effects. To study this further, we have constructed recombinant vaccinia viruses expressing HIV or hemagglutinin (HA) Ags along with murine type I IFNs, IFN-alpha(4) (HA-VV-IFN-alpha(4)), IFN-beta (HA-VV-IFN-beta), or IFN-epsilon (HIV-VV-IFN-epsilon), a recently discovered member of this family. Our aims were to characterize IFN-epsilon functionality as a type I IFN and also to study the biological properties of these factors toward the development of safer and more effective vector-based vaccines. HIV-VV-IFN-epsilon and HA-VV-IFN-beta grew to lower titers than did their parental controls in murine cell lines. In vivo, however, HIV-VV-IFN-epsilon growth was not attenuated, while IFN-beta demonstrated potent local antiviral activity with no replication of HA-VV-IFN-beta detected. Flow cytofluorometric analysis of B lymphocytes incubated with virally encoded IFN-epsilon showed up-regulation of activation markers CD69 and CD86, while RT-PCR of IFN-epsilon-treated cells revealed that gene expression levels of antiviral proteins were elevated, indicating the induction of an antiviral state. The use of these constructs in a poxvirus prime-boost immunization regime led to robust humoral and cellular immune responses against the encoded Ags, despite the lack of replication in the case of HA-VV-IFN-beta. Thus, coexpression of these factors may be beneficial in the design of safer vector-based vaccines. Our data also indicate that while IFN-epsilon exhibits certain biological traits similar to other type I IFNs, it may also have a specific role in mucosal immune regulation that is quite distinct.
Collapse
Affiliation(s)
- Stephanie L Day
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | |
Collapse
|
34
|
Maruyama S, Shen H, Kanoh M, Matsumoto A, Asano Y. Differential effect of Listeria monocytogenes infection on cytokine production and cytotoxicity of CD8 T cells. Microbiol Immunol 2008; 51:893-901. [PMID: 17895607 DOI: 10.1111/j.1348-0421.2007.tb03972.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial infection induces a shift to type 1 CD4 T cell subset in an infected host and this shift is important for protection of the host from disease development. Many researchers think that the shift is antigen-dependent, but we previously demonstrated an initial induction step for CD4 T cell subsets during Listeria monocytogenes (Lm) infection is antigen-independent. Although Listeria is a TLR2 ligand, the immune system of the Lm-infected host responded to the pathogen to induce expression of CD69 but not CD25 on CD4 T cells, CD8 T cells and B cells even in the absence of TLR2 or MyD88. The antigen-independent activation of type 1 CD4 T cells accelerate the clearance of pathogens by activating innate immune cells with type 1 cytokines. Type 1 CD4 T cells and CD8 T cells also collaborate to protect the host from intracellular Lm infection. Since CD8 T cells function mainly as cytotoxic T cells and CD69-positive CD8 T cells increase during Lm-infection, cytotoxic activity of CD8 T cells was evaluated during Lm-infection. Although CD8 T cells were activated to produce IFN-gamma, the cytotoxic function of CD8 T cells in Lymphocytic choriomeningitis virus (LCMV) p14 TCR-transgenic mouse was not augmented by Lm-infection. Therefore, Lm-infection differentially influences on cytokine production and cytotoxicity of CD8 T cells.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Interferon-gamma/metabolism
- Lectins, C-Type
- Listeria monocytogenes
- Listeriosis/immunology
- Lymphocyte Activation
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Saho Maruyama
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | | | | | | |
Collapse
|
35
|
Alsharifi M, Müllbacher A, Regner M. Interferon type I responses in primary and secondary infections. Immunol Cell Biol 2008; 86:239-45. [PMID: 18180794 DOI: 10.1038/sj.icb.7100159] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
36
|
Liebhart J, Cembrzynska-Nowak M, Kulczak A, Siemieniec I. Diverse production of interferons alpha, beta, and gamma by airway leukocytes of asthmatics with regard to cigarette smoking and corticosteroid treatment. J Interferon Cytokine Res 2007; 27:463-70. [PMID: 17572010 DOI: 10.1089/jir.2007.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The production of interferon-alpha(IFN-alpha), IFN-beta, and IFN-gamma by airway leukocytes from induced sputa (IS) of asthmatics was investigated. The groups consisted of 32 corticosteroid-free asthmatics (A), with 13 nonsmokers (nS) and 19 smokers (S), and 30 inhaled corticosteroid-treated asthmatics (cA) with 14 nS and 16 S. The control healthy group (H) comprised 11 nS and 15 S. The levels of IFNs in media from cultures of IS leukocytes were assessed by ELISA. The cells of the smokers produced lower amounts of IFN-alpha than those of nonsmokers in groups H, A, and cA (p = 0.0417, 0.0002, 0.0495, respectively) and significantly higher amounts of IFNbeta than nonsmokers in groups H (p = 0.0044) and cA (p = 0.0007). No differences in the levels of IFN-gamma were observed between S and nS in groups H (p = 0.8148), A (p = 0.8339), and cA (p = 0.0722). In the entire group of smokers, smoking indices correlated negatively with IFN-alpha (R(S) = -0.4374, p = 0.0006), and positively with IFN-beta (R(S) = 0.4239, p = 0.0009). There was no correlation with IFN-gamma (R(S) = 0.0471, p = 0.7004). The results suggest that production of IFNs by the airway leukocytes of cA may be modified by cigarette smoking toward deficient production of IFN-alpha and excess production of IFN-beta, which may have implications in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Jerzy Liebhart
- Department of Internal Medicine and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | |
Collapse
|
37
|
Yoon H, Legge KL, Sung SSJ, Braciale TJ. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:391-9. [PMID: 17579060 DOI: 10.4049/jimmunol.179.1.391] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have used a TCR-transgenic CD8+ T cell adoptive transfer model to examine the tempo of T cell activation and proliferation in the draining lymph nodes (DLN) in response to respiratory virus infection. The T cell response in the DLN differed for mice infected with different type A influenza strains with the onset of T cell activation/proliferation to the A/JAPAN virus infection preceding the A/PR8 response by 12-24 h. This difference in T cell activation/proliferation correlated with the tempo of accelerated respiratory DC (RDC) migration from the infected lungs to the DLN in response to influenza virus infection, with the migrant RDC responding to the A/JAPAN infection exhibiting a more rapid accumulation in the lymph nodes (i.e., peak migration for A/JAPAN at 18 h, A/PR8 at 24-36 h). Furthermore, in vivo administration of blocking anti-CD62L Ab at various time points before/after infection revealed that the virus-specific CD8+ T cells entered the DLN and activated in a sequential "conveyor belt"-like fashion. These results indicate that the tempo of CD8+ T cell activation/proliferation after viral infection is dependent on the tempo of RDC migration to the DLN and that T cell activation occurs in an ordered sequential fashion.
Collapse
Affiliation(s)
- Heesik Yoon
- Carter Immunology Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
38
|
Kohlmeier JE, Miller SC, Woodland DL. Cutting edge: Antigen is not required for the activation and maintenance of virus-specific memory CD8+ T cells in the lung airways. THE JOURNAL OF IMMUNOLOGY 2007; 178:4721-5. [PMID: 17404250 DOI: 10.4049/jimmunol.178.8.4721] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiratory virus infections establish a population of memory CD8(+) T cells in the lung airways that persist for months after infection. However, the relationship between Ag-specific memory T cells in the lung airways and the systemic memory T cell pool is not well understood. The majority of lung airway memory T cells express a highly activated phenotype (CD69(+)/CD127(-)), suggesting that recent Ag stimulation is required to drive T cell activation and recruitment to the lung airways. In this study, we demonstrate that the lung airway environment itself in the absence of cognate Ag alters the expression of acute activation markers such as CD69 and CD127 on memory CD8(+) T cells. Furthermore, the steady-state recruitment of virus-specific memory CD8(+) T cells to the lung airways from the circulation can occur without recent Ag stimulation. These findings alter the current perceptions concerning the contribution of Ag to the maintenance of peripheral T cell memory.
Collapse
|
39
|
Alsharifi M, Regner M, Blanden R, Lobigs M, Lee E, Koskinen A, Müllbacher A. Exhaustion of type I interferon response following an acute viral infection. THE JOURNAL OF IMMUNOLOGY 2006; 177:3235-41. [PMID: 16920963 DOI: 10.4049/jimmunol.177.5.3235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Viral infections often cause a period of heightened susceptibility to a secondary infection but the cause of this phenomenon is unknown. We found that a primary viral infection in mice rapidly triggers an IFN-I-dependent partial activation state in the majority of B and T lymphocytes, which reverts to a resting phenotype within 5 days. When a secondary infection with an unrelated virus occurred 5 to 9 days after the primary infection, no recurrence of marked activation of lymphocytes was observed. This was not due to an inherent inability of the previously activated cells to undergo renewed partial activation, because they responded when challenged with virus after transfer into "naive" recipients. Instead, the failure to respond optimally resided in the original host's incapacity to mount an IFN-I response to the secondary infection during this time period. Thus, transient immunosuppression through exhaustion of IFN-I production during an acute viral infection creates a time period of enhanced susceptibility to secondary infection.
Collapse
Affiliation(s)
- Mohammed Alsharifi
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Hidmark AS, Nordström EKL, Dosenovic P, Forsell MNE, Liljeström P, Karlsson Hedestam GB. Humoral responses against coimmunized protein antigen but not against alphavirus-encoded antigens require alpha/beta interferon signaling. J Virol 2006; 80:7100-10. [PMID: 16809315 PMCID: PMC1489049 DOI: 10.1128/jvi.02579-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses typically elicit potent adaptive immune responses, and live-virus-based vaccines are among the most efficient human vaccines known. The mechanisms by which viruses stimulate adaptive immune responses are not fully understood, but activation of innate immune signaling pathways in the early phase of the infection may be of importance. In addition to stimulating immune responses to viral antigens expressed in infected cells, viruses can also provide adjuvant signals to coimmunized protein antigens. Using recombinant Semliki Forest virus (rSFV)-based vaccines, we show that rSFV potently enhanced antibody responses against coimmunized protein antigens in the absence of other exogenously added adjuvants. Elicitation of antibody responses against both virus-encoded antigens and coimmunized protein antigens was independent of the signaling via Toll-like receptors (TLRs) previously implicated in antiviral responses. In contrast, the adjuvant effect of rSFV on coimmunized protein was completely abolished in mice lacking the alpha/beta interferon (IFN-alpha/beta) receptor (IFN-AR1), demonstrating that IFN-alpha/beta signaling was critical for mediating this effect. Antibody responses directed against virus-encoded antigens were intact in IFN-AR1(-/-) mice, suggesting that other signals are sufficient to drive immune responses against virally encoded antigens. These data provide a basis for the adjuvant effect of rSFV and show that different signals are required to stimulate antibody responses to virally encoded antigens and to antigens administered as purified protein vaccines, together with viral particles.
Collapse
Affiliation(s)
- Asa S Hidmark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|