1
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025; 5:588-606. [PMID: 39972173 PMCID: PMC12003089 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Hübscher T, Lorenzo-Martín LF, Barthlott T, Tillard L, Langer JJ, Rouse P, Blackburn CC, Holländer G, Lutolf MP. Thymic epithelial organoids mediate T-cell development. Development 2024; 151:dev202853. [PMID: 39036995 PMCID: PMC11441983 DOI: 10.1242/dev.202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Although the advent of organoids has opened unprecedented perspectives for basic and translational research, immune system-related organoids remain largely underdeveloped. Here, we established organoids from the thymus, the lymphoid organ responsible for T-cell development. We identified conditions enabling mouse thymic epithelial progenitor cell proliferation and development into organoids with diverse cell populations and transcriptional profiles resembling in vivo thymic epithelial cells (TECs) more closely than traditional TEC cultures. In contrast to these two-dimensional cultures, thymic epithelial organoids maintained thymus functionality in vitro and mediated physiological T-cell development upon reaggregation with T-cell progenitors. The reaggregates showed in vivo-like epithelial diversity and the ability to attract T-cell progenitors. Thymic epithelial organoids are the first organoids originating from the stromal compartment of a lymphoid organ. They provide new opportunities to study TEC biology and T-cell development in vitro, paving the way for future thymic regeneration strategies in ageing or acute injuries.
Collapse
Affiliation(s)
- Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - L. Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Barthlott
- Pediatric Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Lucie Tillard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jakob J. Langer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paul Rouse
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - C. Clare Blackburn
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Georg Holländer
- Pediatric Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, OX3 7TY, UK
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), 4056 Basel, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Human Biology (IHB), Pharma Research and Early Development, Roche Innovation Center Basel, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Mathew JM, Sanders JM, Cirocco R, Miller J, Leventhal JR. Differentiation of regulatory myeloid and T-cells from adult human hematopoietic stem cells after allogeneic stimulation. Front Immunol 2024; 15:1366972. [PMID: 38455047 PMCID: PMC10918006 DOI: 10.3389/fimmu.2024.1366972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Donor hematopoietic stem cell (DHSC) infusions are increasingly being studied in transplant patients for tolerance induction. Methods To analyze the fate of infused DHSCs in patients, we developed an in vitro culture system utilizing CD34+DHSCs stimulated with irradiated allogeneic cells in cytokine supplemented medium long-term. Results Flow cytometric analyses revealed loss of the CD34 marker and an increase in CD33+ myeloid and CD3+ T-cell proportion by 10.4% and 72.7%, respectively, after 21 days in culture. T-cells primarily expressed TcR-αβ and were of both CD4+ and CD8+ subsets. Approximately 80% of CD3+ T cells lacked expression of the co-stimulatory receptor CD28. The CD4+ compartment was predominated by CD4+CD25+CD127-FOXP3+ Tregs (>50% CD4+CD127- compartment) with <1% of all leukocytes exhibiting a CD4+CD127+ phenotype. Molecular analyses for T-cell receptor excision circles showed recent and increased numbers of TcR rearrangements in generated T cells over time suggesting de novo differentiation from DHSCs. CD33+ myeloid cells mostly expressed HLA-DR, but lacked expression of co-stimulatory receptors CD80 and CD83. When studied as modulators in primary mixed lymphocyte reactions where the cells used to stimulate the DHSC were used as responders, the DHSC-lines and their purified CD8+, CD4+, CD33+ and linage negative subsets inhibited the responses in a dose-dependent and non-specific fashion. The CD8+ cell-mediated inhibition was due to direct lysis of responder cells. Discussion Extrapolation of these results into the clinical situation would suggest that DHSC infusions into transplant recipients may generate multiple subsets of donor "chimeric" cells and promote recipient Treg development that could regulate the anti-donor immune response in the periphery. These studies have also indicated that T cell maturation can occur in vitro in response to allogeneic stimulation without the pre-requisite of a thymic-like environment or NOTCH signaling stimulatory cell line.
Collapse
Affiliation(s)
- James M. Mathew
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jes M. Sanders
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robert Cirocco
- HLA Laboratory, LeHigh Valley Health Network, Allentown, PA, United States
| | - Joshua Miller
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Silva CS, Kundu B, Gomes JM, Fernandes EM, Reis RL, Kundu SC, Martins A, Neves NM. Development of bilayered porous silk scaffolds for thymus bioengineering. BIOMATERIALS ADVANCES 2023; 147:213320. [PMID: 36739783 DOI: 10.1016/j.bioadv.2023.213320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
The thymus coordinates the development and selection of T cells. It is structured into two main compartments: the cortex and the medulla. The replication of such complex 3D environment has been challenged by bioengineering approaches. Nevertheless, the effect of the scaffold microstructure on thymic epithelial cell (TEC) cultures has not been deeply investigated. Here, we developed bilayered porous silk fibroin scaffolds and tested their effect on TEC co-cultures. The small and large pore scaffolds presented a mean pore size of 84.33 ± 21.51 μm and 194.90 ± 61.38 μm, respectively. The highly porous bilayered scaffolds presented a high water absorption and water content (> 94 %), together with mechanical properties in the range of the native tissue. TEC (i.e., medullary (mTEC) and cortical (cTEC) cell lines) proliferation is increased in scaffolds with larger pores. The co-culture of both TEC lines in the bilayered porous silk scaffolds presents enhanced cell proliferation and metabolic activity when compared with mTEC in single culture. Also, when the co-culture occurred with cTEC in the small pores layer and mTEC in the large pores layer, a 9.2- and 18.9-fold increase in Foxn1 and Icam1 gene expression in cTEC is evident. These results suggest that scaffold microstructure and the co-culture influence TEC's behaviour. Bilayered silk scaffolds with adjusted microstructure are a valid alternative for TEC culture, having possible applications in advanced thymus bioengineering strategies.
Collapse
Affiliation(s)
- Catarina S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana M Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Albino Martins
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Leavens KF, Alvarez-Dominguez JR, Vo LT, Russ HA, Parent AV. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol Metab 2022; 66:101610. [PMID: 36209784 PMCID: PMC9587366 DOI: 10.1016/j.molmet.2022.101610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing β cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived β cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Linda T Vo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Semwal MK, Hester AK, Xiao Y, Udeaja C, Cepeda S, Verschelde JS, Jones N, Wedemeyer SA, Emtage S, Wimberly K, Griffith AV. Redox status regulates autophagy in thymic stromal cells and promotes T cell tolerance. Proc Natl Acad Sci U S A 2022; 119:e2204296119. [PMID: 36161925 PMCID: PMC9549397 DOI: 10.1073/pnas.2204296119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Thymic stromal cells (TSCs) are critical regulators of T cell tolerance, but their basic biology has remained under-characterized because they are relatively rare and difficult to isolate. Recent work has revealed that constitutive autophagy in TSCs is required for self-antigen presentation and central T cell tolerance induction; however, the mechanisms regulating constitutive autophagy in TSCs are not well understood. Hydrogen peroxide has been shown to increase autophagy flux in other tissues, and we previously identified conspicuously low expression of the hydrogen peroxide-quenching enzyme catalase in TSCs. We investigated whether the redox status of TSCs established by low catalase expression regulates their basal autophagy levels and their capacity to impose central T cell tolerance. Transgenic overexpression of catalase diminished autophagy in TSCs and impaired thymocyte clonal deletion, concomitant with increased frequencies of spontaneous lymphocytic infiltrates in lung and liver and of serum antinuclear antigen reactivity. Effects on clonal deletion and autoimmune indicators were diminished in catalase transgenic mice when autophagy was rescued by expression of the Becn1F121A/F121A knock-in allele. These results suggest a metabolic mechanism by which the redox status of TSCs may regulate central T cell tolerance.
Collapse
Affiliation(s)
- Manpreet K. Semwal
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229
| | - Allison K. Hester
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
- Department of Medicine, Blood and Marrow Transplantation Division, Stanford University, Stanford, CA 94305
| | - Yangming Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Chioma Udeaja
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Sergio Cepeda
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John S. Verschelde
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Nicholas Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Sarah A. Wedemeyer
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Simon Emtage
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Kymberly Wimberly
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Ann V. Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| |
Collapse
|
7
|
Rothenberg EV. The Heart of the Machine: Construction of T Cell Identity, Made Accessible. THE JOURNAL OF IMMUNOLOGY 2022; 209:1235-1236. [DOI: 10.4049/jimmunol.2200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro,” a pivotal article written by T.M. Schmitt and J.C. Zúñiga-Pflücker, and published in Immunity, in 2002.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
8
|
Silva CS, Cerqueira MT, Reis RL, Martins A, Neves NM. Laminin-2 immobilized on a 3D fibrous structure impacts cortical thymic epithelial cells behaviour and their interaction with thymocytes. Int J Biol Macromol 2022; 222:3168-3177. [DOI: 10.1016/j.ijbiomac.2022.10.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
9
|
Li Y, Chen X. Progress on methods of T lymphocyte development in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:491-499. [PMID: 37202105 PMCID: PMC10265001 DOI: 10.3724/zdxbyxb-2021-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 05/20/2023]
Abstract
T lymphocytes (T cells) play an important role in adoptive cellular immunotherapy (ACT). T cells can be stably derived and easily obtained by various methods of T cell development in vitro, which have more advantages than traditional methods of T cells isolated from autologous or allogeneic tissues. At present, there are mainly three methods for T cell development in vitro: fetal thymus organ culture, recombinant thymus organ culture and two-dimensional culture driven by Notch signal. Fetal thymus organ culture is easy to operate, the isolated thymus can support T cell differentiation and development to maturity in vitro, but the intact thymus has problems of limited maintenance time and difficulty in cell harvesting. In recombinant thymic organ culture, various thymic stromal cells are dispersed and recombined to construct a three-dimensional culture environment, which can support T cell maturation in vitro and in vivo; however, biomaterials and three-dimensional environment may lead to limited culture maintenance time and cell yield. Two-dimensional culture method uses artificial presentation of Notch signaling pathway ligands to drive T cell differentiation and development; the culture architecture is simple and stable, but it can only support T cell development to the early immature stage. This article reviews the research progress of various culture methods of T cell development in vitro, and discusses the existing problems and the future development to facilitate the application of ACT.
Collapse
|
10
|
Mutabaruka MS, Pata M, Vacher J. A Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis is a critical mediator of Ostm1 regulatory network in T lymphopoiesis. iScience 2022; 25:104160. [PMID: 35434560 PMCID: PMC9010627 DOI: 10.1016/j.isci.2022.104160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ostm1 mutations cause the severe form of osteopetrosis with bone marrow deficiency in humans and mice, yet a role in T cell ontogeny remains to be determined. Herein, we show that thymi of the Ostm1-null mice (gl/gl) from P8-to-P15 become markedly hypocellular with disturbed architecture. Analysis of gl/gl early T cell program determined a major decrease of 3-fold in bone marrow common lymphoid precursors (CLP), 35-fold in early thymic precursors (ETPs) and 100-fold in T cell double positive subpopulations. Ostm1 ablation in T cell double negative (DN) also appears to induce fast-paced differentiation kinetics with a transitory intermediate CD44+CD25int subpopulation. Transgenic targeting Ostm1 expression from the gl/gl DN1 population partially rescued T cell subpopulations from ETP onwards and normalized the accelerated DN differentiation, indicating a cell-autonomous role for Ostm1. Transcriptome of early DN1 population identified an Ostm1 crosstalk with a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis. Our findings establish that Ostm1 is an essential regulator of T cell ontogeny. Loss of Ostm1 causes severe thymus hypocellularity Ostm1 is a modulator of the T cell differentiation program from the CLPs onwards Targeted CD2-Ostm1 in Ostm1 null mice leads to partial rescue of DN differentiation Ostm1 null DN1 transcriptome identifies a Foxo1-Klf2-S1pr1-Gnai1-Rac1 signaling axis
Collapse
Affiliation(s)
- Marie S Mutabaruka
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| | - Monica Pata
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada
| | - Jean Vacher
- Institut de Recherches Cliniques de Montréal, 110 West Pins Avenue, Montréal, QC H2W 1R7, Canada.,Département de Médecine, Université de Montréal, Montréal, QC H3T 3J7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
11
|
Hirano KI, Hosokawa H, Yahata T, Ando K, Tanaka M, Imai J, Yazawa M, Ohtsuka M, Negishi N, Habu S, Sato T, Hozumi K. Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Front Immunol 2022; 13:852427. [PMID: 35371023 PMCID: PMC8968733 DOI: 10.3389/fimmu.2022.852427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4-floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4-deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1- or Notch2-deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution.
Collapse
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takashi Yahata
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Divison of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masato Ohtsuka
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Naoko Negishi
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Katsuto Hozumi,
| |
Collapse
|
12
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
13
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
14
|
Asnaghi MA, Barthlott T, Gullotta F, Strusi V, Amovilli A, Hafen K, Srivastava G, Oertle P, Toni R, Wendt D, Holländer GA, Martin I. Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010747. [PMID: 34539304 PMCID: PMC8436951 DOI: 10.1002/adfm.202010747] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Indexed: 05/10/2023]
Abstract
The thymus provides the physiological microenvironment critical for the development of T lymphocytes, the cells that orchestrate the adaptive immune system to generate an antigen-specific response. A diverse population of stroma cells provides surface-bound and soluble molecules that orchestrate the intrathymic maturation and selection of developing T cells. Forming an intricate 3D architecture, thymic epithelial cells (TEC) represent the most abundant and important constituent of the thymic stroma. Effective models for in and ex vivo use of adult TEC are still wanting, limiting the engineering of functional thymic organoids and the understanding of the development of a competent immune system. Here a 3D scaffold is developed based on decellularized thymic tissue capable of supporting in vitro and in vivo thymopoiesis by both fetal and adult TEC. For the first time, direct evidences of feasibility for sustained graft-resident T-cell development using adult TEC as input are provided. Moreover, the scaffold supports prolonged in vitro culture of adult TEC, with a retained expression of the master regulator Foxn1. The success of engineering a thymic scaffold that sustains adult TEC function provides unprecedented opportunities to investigate thymus development and physiology and to design and implement novel strategies for thymus replacement therapies.
Collapse
Affiliation(s)
- M. Adelaide Asnaghi
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Thomas Barthlott
- Department of BiomedicineUniversity Children's Hospital University of BaselBasel4058Switzerland
| | - Fabiana Gullotta
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Valentina Strusi
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Anna Amovilli
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Katrin Hafen
- Department of BiomedicineUniversity Children's Hospital University of BaselBasel4058Switzerland
| | | | - Philipp Oertle
- ARTIDIS AGBasel4057Switzerland
- Biozentrum and the Swiss Nanoscience InstituteUniversity of BaselBasel4056Switzerland
| | - Roberto Toni
- Department of Medicine and Surgery – DIMEC, Unit of BiomedicalBiotechnological and Translational Sciences (S.BI.BI.T.)Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.)University of ParmaParma43121Italy
- Division of Endocrinology Diabetes, and MetabolismTufts Medical Center – Tufts University School of MedicineBostonMA02111USA
| | - David Wendt
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
| | - Georg A. Holländer
- Department of BiomedicineUniversity Children's Hospital University of BaselBasel4058Switzerland
- Developmental ImmunologyDepartment of Paediatrics and Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Ivan Martin
- Department of BiomedicineUniversity Hospital BaselUniversity of BaselBasel4031Switzerland
- Department of Biomedical EngineeringUniversity Hospital BaselUniversity of BaselAllschwil4123Switzerland
| |
Collapse
|
15
|
Han J, Zúñiga-Pflücker JC. High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis. Front Immunol 2021; 12:652665. [PMID: 33859647 PMCID: PMC8043069 DOI: 10.3389/fimmu.2021.652665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
T cell development is effectively supported in fetal thymus organ cultures (FTOCs), which places thymus lobes atop an air-liquid interface (ALI) culture system. The direct exposure to air is critical for its success, as fetal thymus lobes placed in low oxygen submersion (LOS)-FTOCs fail to support thymocyte development. However, submersion cultures performed in the presence of high concentration of ambient oxygen (60~80%) allow for normal thymocyte development, but the underlying mechanism for this rescue has remained elusive. Here, we show that FOXN1 expression in thymic epithelial cells (TECs) from LOS-FTOCs was greatly reduced compared to conventional ALI-FTOCs. Consequently, the expression of important FOXN1 target genes, including Dll4 and Ccl25, in TECs was extinguished. The loss of DLL4 and CCL25 interrupted thymocyte differentiation and led to CD4+CD8+ cells exiting the lobes, respectively. High oxygen submersion (HOS)-FTOCs restored the expression of FOXN1 and its target genes, as well as maintained high levels of MHCII expression in TECs. In addition, HOS-FTOCs promoted the self-renewal of CD4−CD8−CD44−CD25+ cells, allowing for the continuous generation of later stage thymocytes. Forced FOXN1 expression in TECs rescued thymocyte developmental progression, but not cellularity, in LOS-FTOCs. Given that oxidative stress has been reported to accelerate the onset of age-associated thymic involution, we postulate that regulation of FOXN1 by oxygen and antioxidants may underpin this biological process.
Collapse
Affiliation(s)
- Jianxun Han
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Pievani A, Savoldelli R, Poelchen J, Mattioli E, Anselmi G, Girardot A, Utikal J, Bourdely P, Serafini M, Guermonprez P. Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Front Immunol 2021; 12:631279. [PMID: 33790904 PMCID: PMC8006008 DOI: 10.3389/fimmu.2021.631279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Pievani
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Roberto Savoldelli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Elisa Mattioli
- The Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Cancer Research UK King's Health Partner Cancer Centre, King's College London, London, United Kingdom
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, Radcliffe Department of Medicine, Medical Research Council, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Girardot
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Pierre Bourdely
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| | - Marta Serafini
- Department of Pediatrics, M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Pierre Guermonprez
- Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Hopital Bichat, Université de Paris, Paris, France
| |
Collapse
|
17
|
Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C. AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 2021; 14:dmm046359. [PMID: 33729987 PMCID: PMC7875492 DOI: 10.1242/dmm.046359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare life-threatening autoimmune disease that attacks multiple organs and has its onset in childhood. It is an inherited condition caused by a variety of mutations in the autoimmune regulator (AIRE) gene that encodes a protein whose function has been uncovered by the generation and study of Aire-KO mice. These provided invaluable insights into the link between AIRE expression in medullary thymic epithelial cells (mTECs), and the broad spectrum of self-antigens that these cells express and present to the developing thymocytes. However, these murine models poorly recapitulate all phenotypic aspects of human APECED. Unlike Aire-KO mice, the recently generated Aire-KO rat model presents visual features, organ lymphocytic infiltrations and production of autoantibodies that resemble those observed in APECED patients, making the rat model a main research asset. In addition, ex vivo models of AIRE-dependent self-antigen expression in primary mTECs have been successfully set up. Thymus organoids based on pluripotent stem cell-derived TECs from APECED patients are also emerging, and constitute a promising tool to engineer AIRE-corrected mTECs and restore the generation of regulatory T cells. Eventually, these new models will undoubtedly lead to main advances in the identification and assessment of specific and efficient new therapeutic strategies aiming to restore immunological tolerance in APECED patients.
Collapse
Affiliation(s)
- Marine Besnard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Francine Padonou
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Nathan Provin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Matthieu Giraud
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carole Guillonneau
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
18
|
Silva CS, Pinto RD, Amorim S, Pires RA, Correia-Neves M, Reis RL, Alves NL, Martins A, Neves NM. Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules 2020; 21:4771-4780. [PMID: 33238090 DOI: 10.1021/acs.biomac.0c00933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic epithelial cells (TECs) are the main regulators of T lymphocyte development and selection, requiring a three-dimensional (3D) environment to properly perform these biological functions. The aim of this work was to develop a 3D culture substrate that allows the survival and proliferation of TECs. Thus, electrospun fibrous meshes (eFMs) were functionalized with fibronectin, one of the major extracellular matrix (ECM) proteins of the thymus. For that, highly porous eFMs were activated using oxygen plasma treatment followed by amine insertion, which allows the immobilization of fibronectin through EDC/NHS chemistry. The medullary TECs presented increased proliferation, viability, and protein synthesis when cultured on fibronectin-functionalized eFMs (FN-eFMs). These cells showed a spread morphology, with increased migration toward the inner layers of FN-eFMs and the production of thymic ECM proteins, such as collagen type IV and laminin. These results suggest that FN-eFMs are an effective substrate for supporting thymic cell cultures.
Collapse
Affiliation(s)
- Catarina S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rute D Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Margarida Correia-Neves
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of Minho, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
Giardino G, Borzacchiello C, De Luca M, Romano R, Prencipe R, Cirillo E, Pignata C. T-Cell Immunodeficiencies With Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features. Front Immunol 2020; 11:1837. [PMID: 32922396 PMCID: PMC7457079 DOI: 10.3389/fimmu.2020.01837] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Combined Immunodeficiencies (CID) are rare congenital disorders characterized by defective T-cell development that may be associated with B- and NK-cell deficiency. They are usually due to alterations in genes expressed in hematopoietic precursors but in few cases, they are caused by impaired thymic development. Athymia was classically associated with DiGeorge Syndrome due to TBX1 gene haploinsufficiency. Other genes, implicated in thymic organogenesis include FOXN1, associated with Nude SCID syndrome, PAX1, associated with Otofaciocervical Syndrome type 2, and CHD7, one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2 microdeletion, causing FOXI3 haploinsufficiency, has been identified in 5 families with impaired thymus development. In this review, we will summarize the main genetic, clinical, and immunological features related to the abovementioned gene mutations. We will also focus on different therapeutic approaches to treat SCID in these patients.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Carla Borzacchiello
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Martina De Luca
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
20
|
Tong QY, Zhang JC, Guo JL, Li Y, Yao LY, Wang X, Yang YG, Sun LG. Human Thymic Involution and Aging in Humanized Mice. Front Immunol 2020; 11:1399. [PMID: 32733465 PMCID: PMC7358581 DOI: 10.3389/fimmu.2020.01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Thymic involution is an important factor leading to the aging of the immune system. Most of what we know regarding thymic aging comes from mouse models, and the nature of the thymic aging process in humans remains largely unexplored due to the lack of a model system that permits longitudinal studies of human thymic involution. In this study, we sought to explore the potential to examine human thymic involution in humanized mice, constructed by transplantation of fetal human thymus and CD34+ hematopoietic stem/progenitor cells into immunodeficient mice. In these humanized mice, the human thymic graft first underwent acute recoverable involution caused presumably by transplantation stress, followed by an age-related chronic form of involution. Although both the early recoverable and later age-related thymic involution were associated with a decrease in thymic epithelial cells and recent thymic emigrants, only the latter was associated with an increase in adipose tissue mass in the thymus. Furthermore, human thymic grafts showed a dramatic reduction in FOXN1 and AIRE expression by 10 weeks post-transplantation. This study indicates that human thymus retains its intrinsic mechanisms of aging and susceptibility to stress-induced involution when transplanted into immunodeficient mice, offering a potentially useful in vivo model to study human thymic involution and to test therapeutic interventions.
Collapse
Affiliation(s)
- Qing-Yue Tong
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jue-Chao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jing-Long Guo
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yang Li
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Li-Yu Yao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Li-Guang Sun
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
21
|
Kim S, Shah SB, Graney PL, Singh A. Multiscale engineering of immune cells and lymphoid organs. NATURE REVIEWS. MATERIALS 2019; 4:355-378. [PMID: 31903226 PMCID: PMC6941786 DOI: 10.1038/s41578-019-0100-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Immunoengineering applies quantitative and materials-based approaches for the investigation of the immune system and for the development of therapeutic solutions for various diseases, such as infection, cancer, inflammatory diseases and age-related malfunctions. The design of immunomodulatory and cell therapies requires the precise understanding of immune cell formation and activation in primary, secondary and ectopic tertiary immune organs. However, the study of the immune system has long been limited to in vivo approaches, which often do not allow multidimensional control of intracellular and extracellular processes, and to 2D in vitro models, which lack physiological relevance. 3D models built with synthetic and natural materials enable the structural and functional recreation of immune tissues. These models are being explored for the investigation of immune function and dysfunction at the cell, tissue and organ levels. In this Review, we discuss 2D and 3D approaches for the engineering of primary, secondary and tertiary immune structures at multiple scales. We highlight important insights gained using these models and examine multiscale engineering strategies for the design and development of immunotherapies. Finally, dynamic 4D materials are investigated for their potential to provide stimuli-dependent and context-dependent scaffolds for the generation of immune organ models.
Collapse
Affiliation(s)
- Sungwoong Kim
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Shivem B. Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Pamela L. Graney
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally: Sungwoong Kim, Shivem B. Shah, Pamela L. Graney
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
22
|
Abstract
This review briefly describes the last decades of experimental work on the thymus. Given the histological complexity of this organ, the multiple embryological origins of its cellular components and its role in carefully regulating T lymphocyte maturation and function, methods to dissect and understand this complexity have been developed through the years. The possibility to study ex vivo the thymus organ function has been achieved by developing Fetal Thymus Organ Cultures (FTOC). Subsequently, the combination of organ disaggregation and reaggregation in vitro represented by Reaggregate Thymus Organ cultures (RTOC) allowed mixing cellular components from different genetic backgrounds. Moreover, RTOC allowed dissecting the different stromal and hematological components to study the interactions between Major Histocompatibility Complex (MHC) molecules and the T-cell receptors during thymocytes selection. In more recent years, prospective isolation of stromal cells and thymocytes at different stages of development made it possible to explore and elucidate the molecular and cellular players in both the developing and adult thymus. Finally, the appearance of novel cell sources such as embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells has opened new scenarios in modelling thymus development and regeneration strategies. Most of the work described was carried out in rodents and the current challenge is to develop equivalent or even more informative assays and tools in entirely human model systems.
Collapse
|
23
|
Majumdar S, Deobagkar-Lele M, Adiga V, Raghavan A, Wadhwa N, Ahmed SM, Rananaware SR, Chakraborty S, Joy O, Nandi D. Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma. Sci Rep 2017; 7:40793. [PMID: 28091621 PMCID: PMC5238503 DOI: 10.1038/srep40793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium (S. Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4-CD8- double negative (DN) thymocytes is observed. Second, CD4+CD8+ double positive (DP) thymocytes, mainly in the DP1 (CD5loCD3lo) and DP2 (CD5hiCD3int), but not DP3 (CD5intCD3hi), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24hiCD3hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) > DP1, DP2 > DN3, DN4 > DN2 > CD4+ > CD8+. Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ-/- mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mukta Deobagkar-Lele
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitin Wadhwa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Syed Moiz Ahmed
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Omana Joy
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Roh KH, Roy K. Engineering approaches for regeneration of T lymphopoiesis. Biomater Res 2016; 20:20. [PMID: 27358746 PMCID: PMC4926289 DOI: 10.1186/s40824-016-0067-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
T cells play a central role in immune-homeostasis; specifically in the induction of antigen-specific adaptive immunity against pathogens and mutated self with immunological memory. The thymus is the unique organ where T cells are generated. In this review, first the complex structures and functions of various thymic microcompartments are briefly discussed to identify critical engineering targets for regeneration of thymic functions in vitro and in vivo. Then the biomimetic regenerative engineering approaches are reviewed in three categories: 1) reconstruction of 3-D thymic architecture, 2) cellular engineering, and 3) biomaterials-based artificial presentation of critical biomolecules. For each engineering approach, remaining challenges and clinical opportunities are also identified and discussed.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive NW, Atlanta, GA 30332 USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive NW, Atlanta, GA 30332 USA
| |
Collapse
|
26
|
Tajima A, Liu W, Pradhan I, Bertera S, Lakomy RA, Rudert WA, Trucco M, Meng WS, Fan Y. Promoting 3-D Aggregation of FACS Purified Thymic Epithelial Cells with EAK 16-II/EAKIIH6 Self-assembling Hydrogel. J Vis Exp 2016. [PMID: 27404995 DOI: 10.3791/54062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thymus involution, associated with aging or pathological insults, results in diminished output of mature T-cells. Restoring the function of a failing thymus is crucial to maintain effective T cell-mediated acquired immune response against invading pathogens. However, thymus regeneration and revitalization proved to be challenging, largely due to the difficulties of reproducing the unique 3D microenvironment of the thymic stroma that is critical for the survival and function of thymic epithelial cells (TECs). We developed a novel hydrogel system to promote the formation of TEC aggregates, based on the self-assembling property of the amphiphilic EAK16-II oligopeptides and its histidinylated analogue EAKIIH6. TECs were enriched from isolated thymic cells with density-gradient, sorted with fluorescence-activated cell sorting (FACS), and labeled with anti-epithelial cell adhesion molecule (EpCAM) antibodies that were anchored, together with anti-His IgGs, on the protein A/G adaptor complexes. Formation of cell aggregates was promoted by incubating TECs with EAKIIH6 and EAK16-II oligopeptides, and then by increasing the ionic concentration of the medium to initiate gelation. TEC aggregates embedded in EAK hydrogel can effectively promote the development of functional T cells in vivo when transplanted into the athymic nude mice.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network
| | - Wen Liu
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network
| | - Robert A Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network
| | | | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network; Department of Biological Sciences, Carnegie Mellon University
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network; Department of Biological Sciences, Carnegie Mellon University;
| |
Collapse
|
27
|
Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016; 271:23-37. [PMID: 27088905 PMCID: PMC4982089 DOI: 10.1111/imr.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thymus is a primary lymphoid tissue that supports the generation of αβT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αβT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus.
Collapse
Affiliation(s)
- Beth Lucas
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Nicholas I. McCarthy
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Song Baik
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Emilie Cosway
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Kieran D. James
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - William E. Jenkinson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Graham Anderson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| |
Collapse
|
28
|
Constitutive expression of genes encoding notch receptors and ligands in developing lymphocytes, nTreg cells and dendritic cells in the human thymus. RESULTS IN IMMUNOLOGY 2016; 6:15-20. [PMID: 27504259 PMCID: PMC4969261 DOI: 10.1016/j.rinim.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022]
Abstract
The thymus is the site of T cell maturation. Notch receptors (Notch1-4) and ligands (DLL1-3 and Jagged1-2) constitute one of several pathways involved in this process. Our data revealed differential constitutive expression of Notch genes and ligands in T lymphocytes and thymic dendritic cells (tDCs), suggesting their participation in human thymocyte maturation. nTreg analyses indicated that the Notch components function in parallel to promote maturation in the thymus.
Collapse
|
29
|
Bredenkamp N, Jin X, Liu D, O'Neill KE, Manley NR, Blackburn CC. Construction of a functional thymic microenvironment from pluripotent stem cells for the induction of central tolerance. Regen Med 2016; 10:317-29. [PMID: 25933240 DOI: 10.2217/rme.15.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The thymus is required for generation of a self-tolerant, self-restricted T-cell repertoire. The capacity to manipulate or replace thymus function therapeutically would be beneficial in a variety of clinical settings, including for improving recovery following bone marrow transplantation, restoring immune system function in the elderly and promoting tolerance to transplanted organs or cells. An attractive strategy would be transplantation of thymus organoids generated from cells produced in vitro, for instance from pluripotent stem cells. Here, we review recent progress toward this goal, focusing on advances in directing differentiation of pluripotent stem cells to thymic epithelial cells, a key cell type of the thymic stroma, and related direct reprogramming strategies.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | | | | | | | | |
Collapse
|
30
|
Shin S, Ikram M, Subhan F, Kang HY, Lim Y, Lee R, Jin S, Jeong YH, Kwak JY, Na YJ, Yoon S. Alginate–marine collagen–agarose composite hydrogels as matrices for biomimetic 3D cell spheroid formation. RSC Adv 2016. [DOI: 10.1039/c6ra01937d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report a novel, customizable, transparent, biocompatible, functional, easy-to-produce, efficient and cost-effective AmCA scaffold for 3D cell culture.
Collapse
|
31
|
Mohtashami M, Zarin P, Zúñiga-Pflücker JC. Induction of T Cell Development In Vitro by Delta-Like (Dll)-Expressing Stromal Cells. Methods Mol Biol 2016; 1323:159-67. [PMID: 26294407 DOI: 10.1007/978-1-4939-2809-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recreating the thymic microenvironment in vitro poses a great challenge to immunologists. Until recently, the only approach was to utilize the thymic tissue in its three-dimensional form and to transfer the hematopoietic progenitors into this tissue to generate de novo T cells. With the advent of OP9-DL cells (bone marrow-derived cells that are transduced to express Notch ligand, Delta-like), hematopoietic stem cells (HSC) could be induced to differentiate into T cells in culture for the first time outside of the thymic tissue on a monolayer. We, as well as others, asked whether the ability to support T cell development in vitro in a monolayer is unique to BM-derived OP9 cells, and showed that provision of Delta-like expression to thymic epithelial cells and fibroblasts also allowed for T cell development. This provides the opportunity to design an autologous coculture system where the supportive stromal and the hematopoietic components are both derived from the same individual, which has obvious clinical implications. In this chapter, we describe methods for establishing a primary murine dermal fibroblast cell population that is transduced to express Delta-like 4, and describe the conditions for its coculture with HSCs to support T cell lineage initiation and expansion, while comparing it to the now classic OP9-DL coculture.
Collapse
Affiliation(s)
- Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5,
| | | | | |
Collapse
|
32
|
Truong VX, Hun ML, Li F, Chidgey AP, Forsythe JS. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomater Sci 2016; 4:1123-31. [DOI: 10.1039/c6bm00254d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In situ-forming gelatin based hydrogels, which are crosslinked using an efficient nitrile oxide-norbornene click reaction, provide a suitable 3D culture environment for thymic epithelial cells.
Collapse
Affiliation(s)
- Vinh X. Truong
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Australia
| | - Michael L. Hun
- Stem Cells and Immune Regeneration Laboratory
- Department of Anatomy and Developmental Biology
- Level 3
- 15 Innovation Walk
- Monash University
| | - Fanyi Li
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Australia
- CSIRO Manufacturing Flagship
| | - Ann P. Chidgey
- Stem Cells and Immune Regeneration Laboratory
- Department of Anatomy and Developmental Biology
- Level 3
- 15 Innovation Walk
- Monash University
| | - John S. Forsythe
- Department of Material Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Australia
| |
Collapse
|
33
|
Chung B, Montel-Hagen A, Ge S, Blumberg G, Kim K, Klein S, Zhu Y, Parekh C, Balamurugan A, Yang OO, Crooks GM. Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cells 2015; 32:2386-96. [PMID: 24801626 DOI: 10.1002/stem.1731] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
A system that allows manipulation of the human thymic microenvironment is needed both to elucidate the extrinsic mechanisms that control human thymopoiesis and to develop potential cell therapies for thymic insufficiency. In this report, we developed an implantable thymic microenvironment composed of two human thymic stroma populations critical for thymopoiesis; thymic epithelial cells (TECs) and thymic mesenchyme (TM). TECs and TM from postnatal human thymi were cultured in specific conditions, allowing cell expansion and manipulation of gene expression, before reaggregation into a functional thymic unit. Human CD34+ hematopoietic stem and progenitor cells (HSPC) differentiated into T cells in the aggregates in vitro and in vivo following inguinal implantation of aggregates in immune deficient mice. Cord blood HSPC previously engrafted into murine bone marrow (BM), migrated to implants, and differentiated into human T cells with a broad T cell receptor repertoire. Furthermore, lentiviral-mediated expression of vascular endothelial growth factor in TM enhanced implant size and function and significantly increased thymocyte production. These results demonstrate an in vivo system for the generation of T cells from human HSPC and represent the first model to allow manipulation of gene expression and cell composition in the microenvironment of the human thymus.
Collapse
Affiliation(s)
- Brile Chung
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Decline of FOXN1 gene expression in human thymus correlates with age: possible epigenetic regulation. IMMUNITY & AGEING 2015; 12:18. [PMID: 26516334 PMCID: PMC4625732 DOI: 10.1186/s12979-015-0045-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thymic involution is thought to be an important factor of age related immunodeficiency. Understanding the molecular mechanisms of human thymic senescence may lead to the discovery of novel therapeutic approaches aimed at the reestablishment of central and peripheral T cell repertoire. RESULTS As an initial approach, here we report that the decline of human thymic FOXN1 transcription correlates with age, while other genes, DLL1, DLL4 and WNT4, essential for thymopoiesis, are constitutively transcribed. Using a human thymic epithelial cell line (hTEC), we show that FOXN1 expression is refractory to signals that induce FOXN1 transcription in primary 3D culture conditions and by stimulation of the canonical WNT signaling pathway. Blockage of FOXN1 induceability in the hTEC line may be mediated by an epigenetic mechanism, the CpG methylation of the FOXN1 gene. CONCLUSION We showed a suppression of FOXN1 transcription both in cultured human thymic epithelial cells and in the aging thymus. We hypothesize that the underlying mechanism may be associated with changes of the DNA methylation state of the FOXN1 gene.
Collapse
|
35
|
Smith MJ, Webber BR, Mohtashami M, Stefanski HE, Zúñiga-Pflücker JC, Blazar BR. In Vitro T-Cell Generation From Adult, Embryonic, and Induced Pluripotent Stem Cells: Many Roads to One Destination. Stem Cells 2015; 33:3174-80. [PMID: 26227158 DOI: 10.1002/stem.2115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/14/2015] [Indexed: 11/12/2022]
Abstract
T lymphocytes are critical mediators of the adaptive immune system and have the capacity to serve as therapeutic agents in the areas of transplant and cancer immunotherapy. While T cells can be isolated and expanded from patients, T cells derived in vitro from both hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (hPSCs) offer great potential advantages in generating a self-renewing source of T cells that can be readily genetically modified. T-cell differentiation in vivo is a complex process requiring tightly regulated signals; providing the correct signals in vitro to induce T-cell lineage commitment followed by their development into mature, functional, single positive T cells, is similarly complex. In this review, we discuss current methods for the in vitro derivation of T cells from murine and human HSPCs and hPSCs that use feeder-cell and feeder-cell-free systems. Furthermore, we explore their potential for adoption for use in T-cell-based therapies.
Collapse
Affiliation(s)
- Michelle J Smith
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beau R Webber
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Heather E Stefanski
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency. Cell Rep 2015; 12:1071-9. [PMID: 26257169 PMCID: PMC4797338 DOI: 10.1016/j.celrep.2015.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 11/30/2022] Open
Abstract
T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability to respond to new pathogens or vaccines. Here, we show that accelerated and irreversible thymic atrophy results from stromal deficiency in the reducing enzyme catalase, leading to increased damage by hydrogen peroxide generated by aerobic metabolism. Genetic complementation of catalase in stromal cells diminished atrophy, as did chemical antioxidants, thus providing a mechanistic link between antioxidants, metabolism, and normal immune function. We propose that irreversible thymic atrophy represents a conventional aging process that is accelerated by stromal catalase deficiency in the context of an intensely anabolic (lymphoid) environment.
Collapse
|
37
|
Pinto S, Stark HJ, Martin I, Boukamp P, Kyewski B. 3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression. J Vis Exp 2015:e52614. [PMID: 26275017 DOI: 10.3791/52614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intra-thymic T cell development requires an intricate three-dimensional meshwork composed of various stromal cells, i.e., non-T cells. Thymocytes traverse this scaffold in a highly coordinated temporal and spatial order while sequentially passing obligatory check points, i.e., T cell lineage commitment, followed by T cell receptor repertoire generation and selection prior to their export into the periphery. The two major resident cell types forming this scaffold are cortical (cTECs) and medullary thymic epithelial cells (mTECs). A key feature of mTECs is the so-called promiscuous expression of numerous tissue-restricted antigens. These tissue-restricted antigens are presented to immature thymocytes directly or indirectly by mTECs or thymic dendritic cells, respectively resulting in self-tolerance. Suitable in vitro models emulating the developmental pathways and functions of cTECs and mTECs are currently lacking. This lack of adequate experimental models has for instance hampered the analysis of promiscuous gene expression, which is still poorly understood at the cellular and molecular level. We adapted a 3D organotypic co-culture model to culture ex vivo isolated mTECs. This model was originally devised to cultivate keratinocytes in such a way as to generate a skin equivalent in vitro. The 3D model preserved key functional features of mTEC biology: (i) proliferation and terminal differentiation of CD80(lo), Aire-negative into CD80(hi), Aire-positive mTECs, (ii) responsiveness to RANKL, and (iii) sustained expression of FoxN1, Aire and tissue-restricted genes in CD80(hi) mTECs.
Collapse
Affiliation(s)
- Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center (DKFZ);
| | - Hans-Jürgen Stark
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ);
| | - Iris Martin
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ)
| | - Petra Boukamp
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ)
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center (DKFZ)
| |
Collapse
|
38
|
Garabatos N, Blanco J, Fandos C, Lopez E, Santamaria P, Ruiz A, Perez-Vidakovics ML, Benveniste P, Galkin O, Zuñiga-Pflucker JC, Serra P. A monoclonal antibody against the extracellular domain of mouse and human epithelial V-like antigen 1 reveals a restricted expression pattern among CD4- CD8- thymocytes. Monoclon Antib Immunodiagn Immunother 2015; 33:305-11. [PMID: 25357997 DOI: 10.1089/mab.2014.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Expression of transcripts for the homotypic adhesion protein epithelial V-like antigen 1 (EVA1), also known as myelin protein zero like-2 (Mpzl2), is known to be present in thymic stromal cells. However, protein expression within different thymic subsets, stromal and/or lymphoid, has not been characterized due a lack of specific reagents. To address this, we generated a hybridoma (G9P3-1) secreting a monoclonal antibody (G9P3-1Mab), reactive against both human and mouse EVA1. The G9P3-1Mab was generated by immunizing Mpzl2-deficient gene-targeted mice with the extracellular domain of EVA1, followed by a conventional hybridoma fusion protocol, illustrating the feasibility of using gene-targeted mice to generate monoclonal antibodies with multiple species cross-reactivity. We confirmed expression of EVA1 on cortical and medullary epithelial cell subsets and revealed a restricted pattern of expression on CD4- CD8- double negative (DN) cell subsets, with the highest level of expression on DN3 (CD44(low)CD25(+)) thymocytes. G9P3-1MAb is a valuable reagent to study thymic T cell development and is likely useful for the analysis of pathological conditions affecting thymopoiesis, such as thymic involution caused by stress or aging.
Collapse
Affiliation(s)
- Nahir Garabatos
- 1 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The thymus is one of the cornerstones of an effective immune system. It produces new T-cells for the naïve T-cell pool, thus refreshing the peripheral repertoire. As we age, the thymus atrophies and there is a decrease in the area of active T-cell production. A decline in the output of the thymus eventually leads to changes in the peripheral T-cell pool which includes increases in the number of cells at or near their replicative limit and contraction of the repertoire. Debate about the age-associated changes in the thymus leading to functional decline centres on whether this is due to problems with the environment provided by the thymus or with defects in the progenitor cell compartment. In mice, the evidence points towards problems in the epithelial component of the thymus and the production of IL-7 (interleukin 7). But there are discussions about how appropriate mouse models are for human aging. We have developed a simple system that utilizes both human keratinocyte and fibroblast cell lines arrayed on a synthetic tantalum-coated matrix to provide a permissive environment for the maturation of human CD34+ haemopoietic progenitor cells into mature CD4+ or CD8+ T-lymphocytes. We have characterized the requirements for differentiation within these cultures and used this system to compare the ability of CD34+ cells derived from different sources to produce mature thymocytes. The TREC (T-cell receptor excision circle) assay was used as a means of identifying newly produced thymocytes.
Collapse
|
40
|
Huijskens MJAJ, Walczak M, Koller N, Briedé JJ, Senden-Gijsbers BLMG, Schnijderberg MC, Bos GMJ, Germeraad WTV. Technical advance: ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells. J Leukoc Biol 2014; 96:1165-75. [PMID: 25157026 DOI: 10.1189/jlb.1ta0214-121rr] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The efficacy of donor HSCT is partly reduced as a result of slow post-transplantation immune recovery. In particular, T cell regeneration is generally delayed, resulting in high infection-related mortality in the first years post-transplantation. Adoptive transfer of in vitro-generated human T cell progenitors seems a promising approach to accelerate T cell recovery in immunocompromised patients. AA may enhance T cell proliferation and differentiation in a controlled, feeder-free environment containing Notch ligands and defined growth factors. Our experiments show a pivotal role for AA during human in vitro T cell development. The blocking of NOS diminished this effect, indicating a role for the citrulline/NO cycle. AA promotes the transition of proT1 to proT2 cells and of preT to DP T cells. Furthermore, the addition of AA to feeder cocultures resulted in development of DP and SP T cells, whereas without AA, a preT cell-stage arrest occurred. We conclude that neither DLL4-expressing feeder cells nor feeder cell conditioned media are required for generating DP T cells from CB and G-CSF-mobilized HSCs and that generation and proliferation of proT and DP T cells are greatly improved by AA. This technology could potentially be used to generate T cell progenitors for adoptive therapy.
Collapse
Affiliation(s)
- Mirelle J A J Huijskens
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Mateusz Walczak
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Nicole Koller
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Jacob J Briedé
- Department of Toxicogenomics, School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | | | - Melanie C Schnijderberg
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| | - Wilfred T V Germeraad
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, and
| |
Collapse
|
41
|
Schutte SC, James CO, Sidell N, Taylor RN. Tissue-engineered endometrial model for the study of cell-cell interactions. Reprod Sci 2014; 22:308-15. [PMID: 25031317 DOI: 10.1177/1933719114542008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endometrial stromal and epithelial cell cross talk is known to influence many of the dynamic changes that occur during the menstrual cycle. We modified our previous model and embedded telomerase-immortalized human endometrial stromal cells and Ishikawa adenocarcinoma epithelial cells in a collagen-Matrigel hydrogel to create a tissue-engineered model of the endometrium. Comparisons of single and cocultured cells examined communication between endometrial stromal and epithelial cells, which were cultured with 0 or 10 nmol/L 17β estradiol; conditioned medium was used to look at the production of paracrine factors. Using this model, we were able to identify the changes in interleukin 6 (IL-6) and active matrix metalloproteinase 2, which appear to be due to paracrine signaling and differences in transforming growth factor β1 (TGF-β1) that do not appear to be due to paracrine signaling. Moreover, IL-6, TGF-β1, and DNA content were also affected by the presence of estradiol in many of the tissues. These results indicate that paracrine and endocrine signaling are involved in human endometrial responses and support the use of coculture models to further investigate cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Stacey C Schutte
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher O James
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
42
|
Zook EC, Zhang S, Gerstein RM, Witte PL, Le PT. Enhancing T lineage production in aged mice: a novel function of Foxn1 in the bone marrow niche. THE JOURNAL OF IMMUNOLOGY 2013; 191:5583-93. [PMID: 24184560 DOI: 10.4049/jimmunol.1202278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foxn1 is essential for thymic organogenesis and T lymphopoiesis. Whereas reduced Foxn1 expression results in a decline in T lymphopoiesis, overexpression of Foxn1 in the thymus of a transgenic mouse model (Foxn1Tg) attenuates the age-associated decline in T lymphopoiesis. T lymphopoiesis begins with early T cell progenitors (ETP), derived from multipotent progenitors (MPP) in the bone marrow (BM). A decline in MPP and ETP numbers with age is thought to contribute to reduced T lymphopoiesis. Previously, we showed that reduced ETP number with age is attenuated in Foxn1 transgenic (Tg); whether the effect is initiated in the BM with MPP is not known. In this study, we report that Foxn1 is expressed in wild-type BM and overexpressed in Foxn1Tg. With age, the number of MPP in Foxn1Tg was not reduced, and Foxn1Tg also have a larger pool of hematopoietic stem cells. Furthermore, the Foxn1Tg BM is more efficient in generating MPP. In contrast to MPP, common lymphoid progenitors and B lineage cell numbers were significantly lower in both young and aged Foxn1Tg compared with wild type. We identified a novel population of lineage(neg/low), CD45(pos) EpCAM(pos), SCA1(pos), CD117(neg), CD138(neg), MHCII(neg) cells as Foxn1-expressing BM cells that also express Delta-like 4. Thus, Foxn1 affects both T lymphopoiesis and hematopoiesis, and the Foxn1 BM niche may function in skewing MPP development toward T lineage progenitors.
Collapse
Affiliation(s)
- Erin C Zook
- Cell Biology, Neurobiology, and Anatomy Graduate Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | | | | | | | | |
Collapse
|
43
|
Palamaro L, Guarino V, Scalia G, Antonini D, De Falco L, Bianchino G, Fusco A, Romano R, Grieco V, Missero C, Del Vecchio L, Ambrosio L, Pignata C. Human skin-derived keratinocytes and fibroblasts co-cultured on 3D poly ε-caprolactone scaffold support in vitro HSC differentiation into T-lineage committed cells. Int Immunol 2013; 25:703-14. [DOI: 10.1093/intimm/dxt035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Mohtashami M, Shah DK, Kianizad K, Awong G, Zúñiga-Pflücker JC. Induction of T-cell development by Delta-like 4-expressing fibroblasts. Int Immunol 2013; 25:601-11. [PMID: 23988616 DOI: 10.1093/intimm/dxt027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thymus provides a unique environment for the induction of T-cell lineage commitment and differentiation, which is predicted by specific Notch ligand-receptor interactions on epithelial cells and lymphoid progenitors, respectively. Accordingly, a bone marrow-derived stromal cell line (OP9) ectopically expressing the Notch ligand Delta-like 1 (Dll1) or Dll4 (OP9-DL1 and OP9-DL4, respectively) gains the ability to recapitulate thymus-like function, supporting T-cell differentiation of both mouse and human progenitors. In this study, we extend these findings by demonstrating that, unlike the NIH3T3 cell line, mouse primary fibroblasts made to express Dll4 (mFibro-DL4) acquire the capacity to promote and support T-cell development from hematopoietic stem cells (HSCs) into TCRαβ(+), CD4(+) and CD8(+) T-lineage cells. However, mFibro-DL4 cells showed a lower efficiency of T-cell generation than OP9-DL4 cells did. Nevertheless, progenitor T-cells (CD117(+) CD44(+) CD25(+)) generated in HSC/mFibro-DL4 co-cultures, when intravenously transferred into immunodeficient (Rag2(-/-) γc(-/-)) mice, home to the thymus, undergo differentiation, and give rise to mature T-cells that go on to populate the periphery. Surprisingly, primary human fibroblast cells expressing Dll4 showed very low efficiency in supporting human T-lineage differentiation, which could not be improved by blocking myelopoiesis. Nevertheless, mFibro-DL4 cells could support human T-cell lineage differentiation. Our results provide a functional framework for the induction of T-cell development using easily accessible fibroblasts made to express Dll4. These cells, which are amenable for in vitro applications, can be further utilized in the design of individualized systems for T-cell production, with implications for the treatment of immunodeficiencies.
Collapse
Affiliation(s)
- Mahmood Mohtashami
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, M4N 3M5 Canada
| | | | | | | | | |
Collapse
|
45
|
A simple model system enabling human CD34(+) cells to undertake differentiation towards T cells. PLoS One 2013; 8:e69572. [PMID: 23894504 PMCID: PMC3720953 DOI: 10.1371/journal.pone.0069572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
Background Channelling the development of haematopoietic progenitor cells into T lymphocytes is dependent upon a series of extrinsic prompts whose temporal and spatial sequence is critical for a productive outcome. Simple models of human progenitor cells development depend in the main on the use of xenogeneic systems which may provide some limitations to development. Methods and Findings Here we provide evidence that a simple model system which utilises both human keratinocyte and fibroblast cell lines arrayed on a synthetic tantalum coated matrix provides a permissive environment for the development of human CD34⁺ haematopoietic cells into mature CD4⁺ or CD8⁺ T lymphocytes in the presence of Interleukin 7 (IL-7), Interleukin 15 (IL-15) and the Fms-like tyrosine kinase 3 ligand (Flt-3L). This system was used to compare the ability of CD34+ cells to produce mature thymocytes and showed that whilst these cells derived from cord blood were able to productively differentiate into thymocytes the system was not permissive for the development of CD34+ cells from adult peripheral blood. Conclusions/Significance Our study provides direct evidence for the capacity of human cord blood CD34+ cells to differentiate along the T lineage in a simple human model system. Productive commitment of the CD34⁺ cells to generate T cells was found to be dependent on a three-dimensional matrix which induced the up-regulation of the Notch delta-like ligand 4 (Dll-4) by epithelial cells.
Collapse
|
46
|
Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C. FOXN1: A Master Regulator Gene of Thymic Epithelial Development Program. Front Immunol 2013; 4:187. [PMID: 23874334 PMCID: PMC3709140 DOI: 10.3389/fimmu.2013.00187] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
T cell ontogeny is a sophisticated process, which takes place within the thymus through a series of well-defined discrete stages. The process requires a proper lympho-stromal interaction. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs) drive T cell differentiation, education, and selection processes, while the thymocyte-dependent signals allow thymic epithelial cells (TECs) to maturate and provide an appropriate thymic microenvironment. Alterations in genes implicated in thymus organogenesis, including Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1, and Six1, affect this well-orchestrated process, leading to disruption of thymic architecture. Of note, in both human and mice, the primordial TECs are yet unable to fully support T cell development and only after the transcriptional activation of the Forkhead-box n1 (FOXN1) gene in the thymic epithelium this essential function is acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis in the post-natal thymus. An inborn null mutation in FOXN1 leads to Nude/severe combined immunodeficiency (SCID) phenotype in mouse, rat, and humans. In Foxn1−/− nude animals, initial formation of the primordial organ is arrested and the primordium is not colonized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp, eyebrows, and eyelashes, nail dystrophy, and a severe T cell immunodeficiency, inherited as an autosomal recessive disorder. Aim of this review is to summarize all the scientific information so far available to better characterize the pivotal role of the master regulator FOXN1 transcription factor in the TEC lineage specifications and functionality.
Collapse
Affiliation(s)
- Rosa Romano
- Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Pinto S, Schmidt K, Egle S, Stark HJ, Boukamp P, Kyewski B. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1085-93. [PMID: 23269248 DOI: 10.4049/jimmunol.1201843] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Understanding intrathymic T cell differentiation has been greatly aided by the development of various reductionist in vitro models that mimic certain steps/microenvironments of this complex process. Most models focused on the faithful in vitro restoration of T cell differentiation and selection. In contrast, suitable in vitro models emulating the developmental pathways of the two major thymic epithelial cell lineages--cortical thymic epithelial cells and medullary thymic epithelial cells (mTECs)--are yet to be developed. In this regard, lack of an in vitro model mimicking the developmental biology of the mTEC lineage has hampered the molecular analysis of the so-called "promiscuous expression" of tissue-restricted genes, a key property of terminally differentiated mTECs. Based on the close biological relationship between the skin and thymus epithelial cell compartments, we adapted a three-dimensional organotypic coculture model, originally developed to provide a bona fide in vitro dermal equivalent, for the culture of isolated mTECs. This three-dimensional model preserves key features of mTECs: proliferation and terminal differentiation of CD80(lo), Aire(-) mTECs into CD80(hi), Aire(+) mTECs; responsiveness to RANKL; and sustained expression of FoxN1, Aire, and tissue-restricted genes in CD80(hi) mTECs. This in vitro culture model should facilitate the identification of molecular components and pathways involved in mTEC differentiation in general and in promiscuous gene expression in particular.
Collapse
Affiliation(s)
- Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Shah DK, Mohtashami M, Zúñiga-Pflücker JC. Role of recycling, Mindbomb1 association, and exclusion from lipid rafts of δ-like 4 for effective Notch signaling to drive T cell development. THE JOURNAL OF IMMUNOLOGY 2012; 189:5797-808. [PMID: 23162128 DOI: 10.4049/jimmunol.1202469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development is predicated on the Notch1 ligand Delta-like (Dll) 4. However, both Dll4 and Dll1 can support T cell development in vitro. Endocytosis of Dll1 is important for Notch activation, whereas currently there is no evidence for the role of Dll4 endocytosis in T cell development. To elucidate this, we generated Dll4 constructs that modify or inhibit endocytosis. Our results show that targeting the intracellular domain affects Dll4's ability to induce Notch target gene expression, support efficient T cell development, and inhibit B cell development. Dll4 function relies on a combination of factors, which include strong Mindbomb1 (Mib1) association, ubiquitination, and internalization and recycling back to the cell surface, to engage Notch1 effectively. Distinct membrane localization and the Delta/Serrate/Lag2 (DSL) domain were important for Dll4 function. These features are consistent with a "recycling" model, but not in opposition to a "mechano-transduction" model, whereby Dll4 is able to engage Notch and create a pulling force required to activate signaling, leading to the induction of T-lineage development. Taken together, in contrast to Dll1, Dll4 does not localize to lipid rafts and shows stronger association with Mib1 and increased Notch1 uptake, which likely account for its superior ability to induce T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
49
|
Zhang Z, Burnley P, Coder B, Su DM. Insights on FoxN1 biological significance and usages of the "nude" mouse in studies of T-lymphopoiesis. Int J Biol Sci 2012; 8:1156-67. [PMID: 23091413 PMCID: PMC3477685 DOI: 10.7150/ijbs.5033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 11/24/2022] Open
Abstract
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1's role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1's roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
50
|
Beaudette-Zlatanova BC, Knight KL, Zhang S, Stiff PJ, Zúñiga-Pflücker JC, Le PT. A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells. Exp Hematol 2011; 39:570-9. [PMID: 21296124 PMCID: PMC3402177 DOI: 10.1016/j.exphem.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/07/2011] [Accepted: 01/30/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A human thymic epithelial cell (TEC) line expressing human leukocyte antigen-ABC and human leukocyte antigen-DR was engineered to overexpress murine Delta-like 1 (TEC-Dl1) for the purpose of establishing a human culture system that supports T lymphopoiesis from hematopoietic progenitor cells (HPCs). MATERIALS AND METHODS Cord blood or bone marrow HPCs were co-cultured with either the parental TEC line expressing low levels of the Notch ligands, Delta-like 1 and Delta-like 4, or with TEC-Dl1 to determine if these cell lines support human lymphopoiesis. RESULTS In co-cultures with cord blood or bone marrow HPCs, TEC-Dl1 cells promote de novo generation of CD7(pos)CD1a(pos) T-lineage committed cells. Most CD7(pos)CD1a(hi) cells are CD4(pos)CD8(pos) double-positive (DP). We found that TEC-Dl1 cells are insufficient to generate mature CD3(hi) CD4(pos) or CD3(hi) CD8(pos) single-positive (SP) T cells from the CD4(pos)CD8(pos) DP T cells; however, we detected CD3(lo) cells within the DP and SP CD4 and CD8 populations. The CD3(lo) SP cells expressed lower levels of interleukin-2Rα and interleukin-7Rα compared to CD3(lo) DP cells. In contrast to the TEC-Dl1 line, the parental TEC-84 line expressing low levels of human Notch ligands permits HPC differentiation to the B-cell lineage. CONCLUSIONS We report for the first time a human TEC line that supports lymphopoiesis from cord blood and bone marrow HPC. The TEC cell lines described herein provide a novel human thymic stroma model to study the contribution of human leukocyte antigen molecules and Notch ligands to T-cell commitment and maturation and could be utilized to promote lymphopoiesis for immune cell therapy.
Collapse
Affiliation(s)
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Shubin Zhang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Patrick J. Stiff
- Department of Medicine, Division of Hematology/Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | | | - Phong T. Le
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|