1
|
Gdowicz-Kłosok A, Krześniak M, Łasut-Szyszka B, Butkiewicz D, Rusin M. Antibacterial Activity of the p53 Tumor Suppressor Protein-How Strong Is the Evidence? Int J Mol Sci 2025; 26:4416. [PMID: 40362653 PMCID: PMC12072856 DOI: 10.3390/ijms26094416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The p53 tumor suppressor is best known for controlling the cell cycle, apoptosis, DNA repair, and metabolism, but it also regulates immunity and is able to impede the live cycle of viruses. For this reason, these infectious agents encode proteins which inactivate p53. However, what is less known is that p53 can also be inactivated by human pathogenic bacteria. It is probably not due to collateral damage, but specific targeting, because p53 could interfere with their multiplication. The mechanisms of the antibacterial activity of p53 are poorly known. However, they can be inferred from the results of high-throughput studies, which have identified more than a thousand p53-activated genes. As it turns out, many of these genes code proteins which have proven or plausible antibacterial functions like the efficient detection of bacteria by pattern recognition receptors, the induction of pro-inflammatory pyroptosis, the recruitment of immune cells, direct bactericidal activity, and the presentation of bacterial metabolites to lymphocytes. Probably there are more antibacterial, p53-regulated functions which were overlooked because laboratory animals are kept in sterile conditions. In this review, we present the outlines of some intriguing antibacterial mechanisms of p53 which await further exploration. Definitely, this area of research deserves more attention, especially in light of the appearance of antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (A.G.-K.); (M.K.); (B.Ł.-S.); (D.B.)
| |
Collapse
|
2
|
Nguyen DH, Tian J, Shanahan SL, Wang CK, Jacks T, Wang X, Li P. A tissue-scale strategy for sensing threats in barrier organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644134. [PMID: 40166266 PMCID: PMC11957033 DOI: 10.1101/2025.03.19.644134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Barrier organs rely on a limited set of pattern recognition receptors (PRRs) to detect diverse immunogenic challenges. How organs assess threats and adjust immune responses to balance host protection with collateral tissue damage remains unclear. Here, by analyzing influenza infection in the lung using single-molecule imaging and spatial transcriptomics, we discovered a tiered threat-sensing strategy at the tissue scale, where the probability of detecting and responding to infection is lowest in the outermost epithelia and highest in the inner stroma. This strategy emerges from spatially graded PRR expression that results in cell-type-specific probabilities of threat-sensing across the tissue, a design broadly adopted by barrier organs. Selectively increasing PRR expression in lung epithelia in vivo exacerbated tissue damage upon inflammatory challenge. These results reveal a spatially tiered strategy to tolerate threats restricted within the epithelia, and yet enable progressively potent immune responses as threats invade deeper into the tissue.
Collapse
|
3
|
Hsieh ML, Nishizaki D, Adashek JJ, Kato S, Kurzrock R. Toll-like receptor 3: a double-edged sword. Biomark Res 2025; 13:32. [PMID: 39988665 PMCID: PMC11849352 DOI: 10.1186/s40364-025-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of Toll-like receptors (TLRs) and their role in dendritic cells earned the Nobel Prize for 2011 because TLRs profoundly enhanced our understanding of the immune system. Specifically, TLR3 is located within the endosomal compartments of dendritic cells and plays a crucial role in the immune response by acting as a pattern recognition receptor that detects both exogenous (viral) and endogenous (mammalian) double-stranded RNA. However, TLR3 activation is a double-edged sword in various immune-mediated diseases. On one hand, it can enhance anti-viral defenses and promote pathogen clearance, contributing to host protection. On the other hand, excessive or dysregulated TLR3 signaling can lead to chronic inflammation and tissue damage, exacerbating conditions such as autoimmune diseases, chronic viral infections, and cancer. In cancer, TLR3 expression has been linked to both favorable and poor prognoses, though the underlying mechanisms remain unclear. Recent clinical and preclinical advances have explored the use of TLR3 agonists in cancer immunotherapy, attempting to capitalize on their potential to enhance anti-tumor responses. The dual role of TLR3 highlights its complexity as a therapeutic target, necessitating careful modulation to maximize its protective effects while minimizing potential pathological consequences. In this review, we explore the intricate roles of TLR3 in immune responses across different disease contexts, including cancer, infections, autoimmune disorders, and allergies, highlighting both its protective and detrimental effects in these disorders, as well as progress in developing TLR3 agonists as part of the immunotherapy landscape.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shumei Kato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA.
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Rastfeld F, Hoffmann M, Krüger S, Bohn P, Gribling-Burrer AS, Wagner L, Hersch N, Stegmayr C, Lövenich L, Gerlach S, Köninger D, Hoffmann C, Walter HL, Wiedermann D, Manoharan H, Fink GR, Merkel R, Bohlen H, Smyth RP, Rueger MA, Hoffmann B. Selectively expressed RNA molecules as a versatile tool for functionalized cell targeting. Nat Commun 2025; 16:420. [PMID: 39762287 PMCID: PMC11704337 DOI: 10.1038/s41467-024-55547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering. The specific combination of the molecular properties of antisense technology and mRNA therapy with functional RNA secondary structures allowed us to develop selectively expressed RNA molecules for medical applications. These seRNAs remain inactive in non-target cells and induce translation by partial degradation only in preselected cell types of interest. Cell specificity and type of functionalization are easily adaptable based on a modular system. In proof-of-concept studies we use seRNAs as platform technology for highly selective cell targeting. We effectively treat breast tumor cell clusters in mixed cell systems and shrink early U87 glioblastoma cell clusters in the brain of male mice without detectable side effects. Our data open up potential avenues for various therapeutic applications.
Collapse
Affiliation(s)
- Frederik Rastfeld
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Marco Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Sylvie Krüger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Anne-Sophie Gribling-Burrer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Laura Wagner
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine, INM-4: Medical Imaging Physics, Research Centre Juelich, Juelich, Germany
| | - Lukas Lövenich
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Sven Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Daniel Köninger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Christina Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Helene L Walter
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Dirk Wiedermann
- Max Planck Institute for Metabolism Research, Multimodal Imaging Group, Cologne, Germany
| | - Hajaani Manoharan
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany
| | | | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Maria A Rueger
- Institute of Neuroscience and Medicine, INM-3: Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
- University of Cologne, Faculty of Medicine and University Hospital, Department of Neurology, Cologne, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany.
| |
Collapse
|
5
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
6
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
7
|
Liu T, Liu S, Rui X, Cao Y, Hecker J, Guo F, Zhang Y, Gong L, Zhou Y, Yu Y, Krishnamoorthyni N, Bates S, Chun S, Boyer N, Xu S, Park JA, Perrella MA, Levy BD, Weiss ST, Mou H, Raby BA, Zhou X. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. Eur Respir J 2024; 63:2301232. [PMID: 38514093 PMCID: PMC11063620 DOI: 10.1183/13993003.01232-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/31/2023] [Indexed: 03/23/2024]
Abstract
RATIONALE Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ye Cao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lu Gong
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nandini Krishnamoorthyni
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sung Chun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| |
Collapse
|
8
|
Parsons EL, Kim JS, Malloy AMW. Development of innate and adaptive immunity to RSV in young children. Cell Immunol 2024; 399-400:104824. [PMID: 38615612 DOI: 10.1016/j.cellimm.2024.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Infection of the respiratory tract with respiratory syncytial virus (RSV) is common and occurs repeatedly throughout life with most severe disease occurring at the extremes of age: in young infants and the elderly. Effective anti-viral therapeutics are not available and therefore prevention has been the primary strategy for reducing the disease burden. Our current understanding of respiratory mucosal cell biology and the immune response within the respiratory tract is inadequate to prevent infection caused by a pathogen like RSV that does not disseminate outside of this environment. Gaps in our understanding of the activation of innate and adaptive immunity in response to RSV and the role of age upon infection also limit improvements in the design of therapeutics and vaccines for young infants. However, advancements in structural biology have improved our ability to characterize antibodies against viral proteins and in 2023 the first vaccines for those over 60 years and pregnant women became available, potentially reducing the burden of disease. This review will examine our current understanding of the critical facets of anti-RSV immune responses in infants and young children as well as highlight areas where more research is needed.
Collapse
Affiliation(s)
| | - Jisung S Kim
- Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation, Bethesda, MD, USA
| | | |
Collapse
|
9
|
Su P, Jiang C, Zhang Y. The implication of infection with respiratory syncytial virus in pediatric recurrent wheezing and asthma: knowledge expanded post-COVID-19 era. Eur J Clin Microbiol Infect Dis 2024; 43:403-416. [PMID: 38153660 DOI: 10.1007/s10096-023-04744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection has been identified to serve as the primary cause of acute lower respiratory infectious diseases in children under the age of one and a significant risk factor for the emergence and development of pediatric recurrent wheezing and asthma, though the exact mechanism is still unknown. METHODS AND RESULTS In this study, we discuss the key routes that lead to recurrent wheezing and bronchial asthma following RSV infection. It is interesting to note that following the coronavirus disease 2019 (COVID-19) epidemic, the prevalence of RSV changes significantly. This presents us with a rare opportunity to better understand the associated mechanism for RSV infection, its effects on the respiratory system, and the immunological response to RSV following the COVID-19 epidemic. To better understand the associated mechanisms in the occurrence and progression of pediatric asthma, we thoroughly described how the RSV infection directly destroys the physical barrier of airway epithelial tissue, promotes inflammatory responses, enhances airway hyper-responsiveness, and ultimately causes the airway remodeling. More critically, extensive discussion was also conducted regarding the potential impact of RSV infection on host pulmonary immune response. CONCLUSION In conclusion, this study offers a comprehensive perspective to better understand how the RSV infection interacts in the control of the host's pulmonary immune system, causing recurrent wheezing and the development of asthma, and it sheds fresh light on potential avenues for pharmaceutical therapy in the future.
Collapse
Affiliation(s)
- Peipei Su
- Xi'an Medical University, Xi'an, 710068, Shaanxi, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Congshan Jiang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, National Regional Children's Medical Centre (Northwest), Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
- Department of Cardiology, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
10
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
11
|
Komai S, Ueta M, Nishigaki H, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Differences in gene regulation by TLR3 and IPS-1 signaling in murine corneal epithelial cells. Sci Rep 2023; 13:7925. [PMID: 37193897 DOI: 10.1038/s41598-023-35144-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/13/2023] [Indexed: 05/18/2023] Open
Abstract
Toll-like receptor 3 (TLR3) and interferon-beta promoter stimulator-1 (IPS-1) are associated with antiviral responses to double-stranded RNA viruses and contribute to innate immunity. We previously reported that conjunctival epithelial cell (CEC) TLR3 and IPS-1 pathways respond to the common ligand polyinosinic:polycytidylic acid (polyI:C) to regulate different gene expression patterns as well as CD11c + cell migration in murine-model corneas. However, the differences in the functions and the roles of TLR3 and IPS-1 remain unclear. In this study, we investigated the differences of TLR3 or IPS-1-induced gene expression in corneal epithelial cells (CECs) in response to polyI:C stimulation using cultured murine primary CECs (mPCECs) derived from TLR3 and IPS-1 knockout mice via comprehensive analysis. The genes associated with viral responses were upregulated in the wild-type mice mPCECs after polyI:C stimulation. Among these genes, Neurl3, Irg1, and LIPG were dominantly regulated by TLR3, while interleukin (IL)-6 and IL-15 were dominantly regulated by IPS-1. CCL5, CXCL10, OAS2, Slfn4, TRIM30α, and Gbp9 were complementarily regulated by both TLR3 and IPS-1. Our findings suggest that CECs may contribute to immune responses and that TLR3 and IPS-1 possibly have different functions in the corneal innate immune response.
Collapse
Affiliation(s)
- Seitaro Komai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan.
| | - Hiromi Nishigaki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| |
Collapse
|
12
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
13
|
Santiago-Olivares C, Martínez-Alvarado E, Rivera-Toledo E. Persistence of RNA Viruses in the Respiratory Tract: An Overview. Viral Immunol 2023; 36:3-12. [PMID: 36367976 DOI: 10.1089/vim.2022.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory RNA viruses are a major cause of acute lower respiratory tract infections and contribute substantially to hospitalization among infants, elderly, and immunocompromised. Complete viral clearance from acute infections is not always achieved, leading to persistence. Certain chronic respiratory diseases like asthma and chronic obstructive pulmonary disease have been associated with persistent infection by human respiratory syncytial virus and human rhinovirus, but it is still not clear whether RNA viruses really establish long-term infections as it has been recognized for DNA viruses as human bocavirus and adenoviruses. Herein, we summarize evidence of RNA virus persistence in the human respiratory tract, as well as in some animal models, to highlight how long-term infections might be related to development and/or maintenance of chronic respiratory symptoms.
Collapse
Affiliation(s)
- Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eber Martínez-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Conciliatory Anti-Allergic Decoction Attenuates Pyroptosis in RSV-Infected Asthmatic Mice and Lipopolysaccharide (LPS)-Induced 16HBE Cells by Inhibiting TLR3/NLRP3/NF-κB/IRF3 Signaling Pathway. J Immunol Res 2022; 2022:1800401. [PMID: 36213326 PMCID: PMC9537000 DOI: 10.1155/2022/1800401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can deteriorate asthma by inducing persistent airway inflammation. Increasing evidence elucidated that pyroptosis plays a pivotal role in asthma. Conciliatory anti-allergic decoction (CAD) exhibits an anti-inflammatory effect in ovalbumin (OVA)-induced asthma; however, the effects and mechanisms of CAD in RSV-infected asthmatic mice have not yet been elucidated. The RSV-infected asthmatic mice model and lipopolysaccharide (LPS)-induced 16HBE cell pyroptosis model were established, respectively. Pulmonary function, ELISA, and histopathologic analysis were performed to assess the airway inflammation and remodeling in mice with CAD treatment. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was conducted to identify the chemical compounds of high-dose CAD (30 g/kg). Cell viability and apoptosis of 16HBE cells were assessed by CCK-8 and flow cytometry assays, respectively. Finally, the expression levels of apoptosis-, pyroptosis-, and TLR3/NLRP3/NF-κB/IRF3 signaling-related genes were measured with qRT-PCR or western blotting, respectively. Pulmonary function tests showed that CAD significantly ameliorated respiratory dysfunction, airway hyperresponsiveness, inflammation cell recruitment in BALF, pulmonary inflammation, collagen deposition, and cell death in lung tissues. CAD significantly decreased the content of TNF-α, IL-13, IL-4, IL-1β and IL-5 in the bronchoalveolar lavage fluid (BALF), IL-17, IL-6, and OVA-specific IgE in serum and increased serum IFN-γ in asthma mice. The results of UPLC-Q-TOF/MS showed that high-dose CAD had 88 kinds of chemical components. In vitro, CAD-contained serum significantly suppressed LPS-induced 16HBE cell apoptosis. Additionally, CAD and CAD-contained serum attenuated the up-regulated expressions of Bax, Cleaved caspase-3, NLRP3, ASC, Cleaved caspase-1, GSDMD-N, IL-18, IL-1β, TLR3, p-P65, p-IκBα, and IRF3 but increased Bcl-1 and GSDMD levels in the asthma mice and LPS-induced 16HBE cells, respectively. These results illustrated that CAD may have a potential role in improving airway inflammation and pyroptosis through inhibition of the TLR3/NLRP3/NF-κB/IRF3 signaling pathway.
Collapse
|
15
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
17
|
Bivalirudin exerts antiviral activity against respiratory syncytial virus-induced lung infections in neonatal mice. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:415-425. [PMID: 36651544 DOI: 10.2478/acph-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5-7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg kg-1 day-1, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates.
Collapse
|
18
|
Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022; 14:v14050992. [PMID: 35632732 PMCID: PMC9147118 DOI: 10.3390/v14050992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs’ roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.
Collapse
|
19
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
20
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
22
|
Maghraby AS. Immunomodulatory Responses Of Toll Like Receptors Against 2019nCoV. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present review discusses the immune signals via toll like receptors (TLRs) against 2019nCoV. We researched using different database, up to June 18th, 2020. All the included articles were published in English language. The outcome of this review, that some TLRs agonists or antagonists are progressed as drugs to combat and down regulating TLRs immune signals respectively. TLRs 3 and 4 recognized 2019nCoV spike protein through immune and molecular signals that leading to immune stimulation of pro-inflammatory cytokines and even the immune fever. While the TLRs7 and 8 recognized single-stranded ribonucleic acids (ssRNAs) leading to elevation of the tumour necrosis factor α (TNF-α), interleukin (IL)-6 and -12 levels. TLRs agonists or antagonists utilized as immunotherapeutic targets against 2019nCoV via TLRs signals. Chloroquine and hydroxychloroquine; the approval compounds for 2019nCoV therapy can be inhibiting the class II major histocompatibility complex molecules expression and antigen presentation and even immune suppressions of the pro-inflammatory cytokines profile.
Collapse
|
23
|
Huang S, He Q, Zhou L. T cell responses in respiratory viral infections and chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:1522-1534. [PMID: 33655898 PMCID: PMC8280062 DOI: 10.1097/cm9.0000000000001388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT Respiratory viruses are major human pathogens that cause approximately 200 million pneumonia cases annually and induce various comorbidities with chronic obstructive pulmonary disease (COPD), resulting in significant health concerns and economic burdens. Clinical manifestations in respiratory viral infections and inflammations vary from asymptomatic, mild, to severe, depending on host immune cell responses to pathogens and interactions with airway epithelia. We critically review the activation, effector, and regulation of T cells in respiratory virus infections and chronic inflammations associated with COPD. Crosstalk among T cells, innate immune cells, and airway epithelial cells is discussed as essential parts of pathogenesis and protection in viral infections and COPD. We emphasize the specificity of peptide antigens and the functional heterogeneity of conventional CD4+ and CD8+ T cells to shed some light on potential cellular and molecular candidates for the future development of therapeutics and intervention against respiratory viral infections and inflammations.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Immunology Graduate Program, Cincinnati Children's Hospital, Cincinnati, OH 45249, USA
| | - Quan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
24
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell Surface Expression of Endosomal Toll-Like Receptors-A Necessity or a Superfluous Duplication? Front Immunol 2021; 11:620972. [PMID: 33597952 PMCID: PMC7882679 DOI: 10.3389/fimmu.2020.620972] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases-cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
25
|
Qiao Y, Zhu S, Deng S, Zou SS, Gao B, Zang G, Wu J, Jiang Y, Liu YJ, Chen J. Human Cancer Cells Sense Cytosolic Nucleic Acids Through the RIG-I-MAVS Pathway and cGAS-STING Pathway. Front Cell Dev Biol 2021; 8:606001. [PMID: 33490069 PMCID: PMC7820189 DOI: 10.3389/fcell.2020.606001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Pattern recognition receptors (PRRs) are germline-encoded host sensors of the innate immune system. Some human cancer cells have been reported to express PRRs. However, nucleic acid sensors in human cancers have not been studied in detail. Therefore, we systematically analyzed the expression, molecular cascade, and functions of TLR3, RIG-I, MDA5, LGP2, cGAS, and STING in human cancer cells. TLR3, TRIF, RIG-I, MDA5, LGP2, and MAVS were expressed in 22 cell lines. The majority of cell lines responded to only RIG-I ligands 5′-ppp-dsRNA, Poly(I:C)-HMW, Poly(I:C)-LMW, and/or Poly(dA:dT), as revealed by IRF3 phosphorylation and IFN-β secretion. IFN-β secretion was inhibited by RIG-I and MAVS knockdown. cGAS and STING were co-expressed in 10 of 22 cell lines, but IFN-β secretion was not induced by STING ligands ISD, HSV60, VACV70, Poly(dG:dC), and 3′3′-cGAMP in cGAS and STING intact cell lines. Further experiments revealed that the cGAS–STING pathway was activated, as revealed by TBK1 and IRF3 phosphorylation and IFN-β and ISG mRNA expression. These results suggest that human epithelial cancer cells respond to cytosolic RNA through the RIG-I–MAVS pathway but only sense cytosolic DNA through the cGAS–STING pathway. These findings are relevant for cancer immunotherapy approaches based on targeting nucleic acid receptors.
Collapse
Affiliation(s)
- Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shuanglin Deng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Zou
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Bao Gao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuxue Jiang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Asha K, Khanna M, Kumar B. Current Insights into the Host Immune Response to Respiratory Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:59-83. [PMID: 34661891 DOI: 10.1007/978-3-030-67452-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells. Immediately upon infection, a range of proinflammatory cytokines, chemokines and an interferon response is generated, thereby making the immune response a two edged sword, on one hand it is required to eliminate viral pathogens while on other hand it's prolonged response can lead to chronic infection and significant pulmonary damage. Since vaccines to all respiratory viruses are not available, a better understanding of the virus-host interactions, leading to the development of immune response, is critically needed to design effective therapies to limit the severity of inflammatory damage, enhance viral clearance and to compliment the current strategies targeting the virus. In this chapter, we discuss the host responses to common respiratory viral infections, the key players of adaptive and innate immunity and the fine balance that exists between the viral clearance and immune-mediated damage.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Madhu Khanna
- Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
27
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
28
|
Iqbal MS, Sardar N, Akmal W, Sultan R, Abdullah H, Qindeel M, Dhama K, Bilal M. ROLE OF TOLL-LIKE RECEPTORS IN CORONAVIRUS INFECTION AND IMMUNE RESPONSE. ACTA ACUST UNITED AC 2020. [DOI: 10.18006/2020.8(spl-1-sars-cov-2).s66.s78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of a novel coronavirus referred to as SARS-CoV-2 has become a global health apprehension due to rapid transmission tendency, severity, and wide geographical spread. This emergence was started from Wuhan, China in 2019 from the zoonotic source and spread worldwide, infecting almost half of the community on this earth. Many of the receptors are involved in proceeding with this infection in the organism's body. Toll-like receptors (TLRs) play essential and protective functions from a wide range of microbial pathogens. Small setup of TLR adaptor proteins leads to activate nuclear factor kappa B (NF-kB) and interferon-regulatory factor (IRF). Consequently, various advanced inflammatory cytokines, chemokines, and interferon reaction properties can be up-regulated. Similarly, TLR flagging works on autophagy in macrophages. Autophagy is a cell response to starvation that helps to eliminate damaged cytosol organelles and persistent proteins. It is also able to prevent the replication of intracellular pathogens. Several microbes subvert the autophagy pathways to sustain their viability. This review investigates how TLRs can modulate a macrophagic system and analyze the role of natural resistance autophagy.
Collapse
|
29
|
Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020; 11:699. [PMID: 32670091 PMCID: PMC7326040 DOI: 10.3389/fphys.2020.00699] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Viral respiratory infections are of major importance because of their capacity to cause of a high degree of morbidity and mortality in high-risk populations, and to rapidly spread between countries. Perhaps the best example of this global threat is the infectious disease caused by the new SARS-CoV-2 virus, which has infected more than 4 million people worldwide, causing the death of 287,000 persons according to the WHO's situation report on May 13, 2020. The availability of therapeutic tools that would be used massively to prevent or mitigate the detrimental effects of emerging respiratory viruses on human health is therefore mandatory. In this regard, research from the last decade has reported the impact of the intestinal microbiota on the respiratory immunity. It was conclusively demonstrated how the variations in the intestinal microbiota affect the responses of respiratory epithelial cells and antigen presenting cells against respiratory virus attack. Moreover, the selection of specific microbial strains (immunobiotics) with the ability to modulate immunity in distal mucosal sites made possible the generation of nutritional interventions to strengthen respiratory antiviral defenses. In this article, the most important characteristics of the limited information available regarding the immune response against SARS-CoV-2 virus are revised briefly. In addition, this review summarizes the knowledge on the cellular and molecular mechanisms involved in the improvement of respiratory antiviral defenses by beneficial immunobiotic microorganisms such as Lactobacillus rhamnosus CRL1505. The ability of beneficial microorganisms to enhance type I interferons and antiviral factors in the respiratory tract, stimulate Th1 response and antibodies production, and regulate inflammation and coagulation activation during the course of viral infections reducing tissue damage and preserving lung functionally, clearly indicate the potential of immunobiotics to favorably influence the immune response against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
31
|
The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment. J Immunol Res 2020; 2020:2140694. [PMID: 32185237 PMCID: PMC7060451 DOI: 10.1155/2020/2140694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are found mainly at the anatomical sites exposed to the external environment; thus, they are localized close to blood vessels, lymphatic vessels, and a multitude of immune cells. Moreover, those cells can recognize invading pathogens through a range of surface molecules known as pathogen recognition receptors (PRRs), mainly Toll-like receptors (TLRs). MCs are extensively engaged in the control and clearance of bacterial infections, but much less is known about their contribution to antiviral host response as well as pathomechanisms of virus-induced diseases. In the study, we employed in vivo differentiated mature tissue mast cells freshly isolated from rat peritoneal cavity. Here, we demonstrated that rat peritoneal mast cells (rPMCs) express viral dsRNA-specific TLR3 molecule (intracellularly and on the cell surface) as well as other proteins associated with cellular antiviral response: IRF3, type I and II IFN receptors, and MHC I. We found that exposure of rPMCs to viral dsRNA mimic, i.e., poly(I:C), induced transient upregulation of surface TLR3 (while temporarily decreased TLR3 intracellular expression), type II IFN receptor, and MHC I. TLR3 ligand-stimulated rPMCs did not degranulate but generated and/or released type I IFNs (IFN-α and IFNβ) as well as proinflammatory lipid mediators (cysLTs), cytokines (TNF, IL-1β), and chemokines (CCL3, CXCL8). We documented that rPMC priming with poly(I:C) did not affect FcεRI-dependent degranulation. However, their costimulation with TLR3 agonist and anti-IgE led to a significant increase in cysLT and TNF secretion. Our findings confirm that MCs may serve as active participants in the antiviral immune response. Presented data on modulated FcεRI-mediated MC secretion of mediators upon poly(I:C) treatment suggests that dsRNA-type virus infection could influence the severity of allergic reactions.
Collapse
|
32
|
Contribution of Dendritic Cells in Protective Immunity against Respiratory Syncytial Virus Infection. Viruses 2020; 12:v12010102. [PMID: 31952261 PMCID: PMC7020095 DOI: 10.3390/v12010102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. The socioeconomic burden of RSV infection is substantial because it leads to serious respiratory problems, subsequent hospitalization, and mortality. Despite its clinical significance, a safe and effective vaccine is not yet available to prevent RSV infection. Upon RSV infection, lung dendritic cells (DCs) detecting pathogens migrate to the lymph nodes and activate the adaptive immune response. Therefore, RSV has evolved various immunomodulatory strategies to inhibit DC function. Due to the capacity of RSV to modulate defense mechanisms in hosts, RSV infection results in inappropriate activation of immune responses resulting in immunopathology and frequent reinfection throughout life. This review discusses how DCs recognize invading RSV and induce adaptive immune responses, as well as the regulatory mechanisms mediated by RSV to disrupt DC functions and ultimately avoid host defenses.
Collapse
|
33
|
Michaeloudes C, Bhavsar PK, Mumby S, Xu B, Hui CKM, Chung KF, Adcock IM. Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases. J Innate Immun 2019; 12:31-46. [PMID: 31786568 DOI: 10.1159/000504344] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Lung innate immunity is the first line of defence against inhaled allergens, pathogens and environmental pollutants. Cellular metabolism plays a key role in innate immunity. Catabolic pathways, including glycolysis and fatty acid oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate immune cell activation and differentiation trigger extensive metabolic changes that are required to support their function. Pro-inflammatory polarisation of macrophages and activation of dendritic cells, mast cells and neutrophils are associated with increased glycolysis and a shift towards the pentose phosphate pathway and fatty acid synthesis. These changes provide the macromolecules required for proliferation and inflammatory mediator production and reactive oxygen species for anti-microbial effects. Conversely, anti-inflammatory macrophages use primarily FAO and oxidative phosphorylation to ensure efficient energy production and redox balance required for prolonged survival. Deregulation of metabolic reprogramming in lung diseases, such as asthma and chronic obstructive pulmonary disease, may contribute to impaired innate immune cell function. Understanding how innate immune cell metabolism is altered in lung disease may lead to identification of new therapeutic targets. This is important as drugs targeting a number of metabolic pathways are already in clinical development for the treatment of other diseases such as cancer.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom,
| | - Pankaj K Bhavsar
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Sharon Mumby
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Bingling Xu
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Christopher Kim Ming Hui
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kian Fan Chung
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
34
|
Warren KJ, Poole JA, Sweeter JM, DeVasure JM, Wyatt TA. An association between MMP-9 and impaired T cell migration in ethanol-fed BALB/c mice infected with respiratory syncytial virus-2A. Alcohol 2019; 80:25-32. [PMID: 30291948 DOI: 10.1016/j.alcohol.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases are important for proper airway matrix structure and wound healing. These enzymes are also implicated in many airway diseases. Previously, chronic ethanol consumption was shown to prolong inflammation and delay viral clearance in respiratory syncytial virus (RSV)-infected mice. We hypothesize that alcohol alters anti-viral immunity by disrupting immune cell chemotaxis in the lung. BALB/c mice were randomly selected to consume 18% alcohol ad libitum for 8 weeks prior to infection with RSV-2A. Bronchoalveolar lavage (BAL) cell populations were measured by flow cytometry, and chemokines were detected by Western blot or ELISA. MMP-9 levels were determined by polymerase chain reaction (PCR) in mouse lungs and in BAL fluid by ELISA. T cells were acquired from the spleens of water-fed, non-infected control mice (CTRL); alcohol-fed, non-infected (ETOH); water-fed, RSV-infected (RSV); or ethanol-fed, RSV-infected (ETOH-RSV) 4 days after RSV infection. T cells were placed in a transmigration system where chemokines had been treated with and without activated MMP-9. Lymphocyte recruitment was significantly reduced in the BAL 4 days after RSV infection in ETOH-RSV mice, whereas chemokine levels were the highest in this group at all experimental time points examined in comparison to RSV (p < 0.05). MMP-9 mRNA and protein were detected at high levels in ETOH-RSV mice compared to RSV. Using ex vivo transmigration to CCL2 and CXCL10, T cell migration was not impaired between any of the treatment groups, yet when CCL2 and CXCL10 were treated with activated MMP-9, significantly fewer T cells migrated across collagen-coated 5-μm membranes (p < 0.05). Immune cell recruitment is necessary for viral clearance. We show that immune cells are decreased in the lungs of ETOH-RSV mice. In contrast to decreased cell recruitment, key inflammatory chemokines were elevated in the lungs of ETOH-RSV mice. These proteins may be prematurely degraded by MMP-9 in the lung, leading to defective immunity and reduced viral clearance.
Collapse
Affiliation(s)
- Kristi J Warren
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jill A Poole
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jenea M Sweeter
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Jane M DeVasure
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States.
| | - Todd A Wyatt
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States; University of Nebraska Medical Center, Department of Environmental, Agricultural, & Occupational Health, Omaha, NE, 68198, United States.
| |
Collapse
|
35
|
Hu T, Yu H, Lu M, Yuan X, Wu X, Qiu H, Chen J, Huang S. TLR4 and nucleolin influence cell injury, apoptosis and inflammatory factor expression in respiratory syncytial virus-infected N2a neuronal cells. J Cell Biochem 2019; 120:16206-16218. [PMID: 31081244 DOI: 10.1002/jcb.28902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Respiratory syncytial virus (RSV) infection was recently reported to be associated with central nervous system (CNS) symptoms and neurological complications; however, related studies are very limited. Moreover, the molecular mechanism underlying RSV neuropathogenesis is still unclear. Our previous study revealed that toll-like receptor 4 (TLR4) and nucleolin (C23) could be modulated and that they played a role during RSV infection in mouse neuronal-2a (N2a) cells. In the present study, the effects of silencing of TLR4 and C23 on RSV propagation and N2a cellular responses were examined by using RNA interference technology. Four N2a cell treatment groups were established, namely, a normal control group, RSV control group, TLR4 siRNA + RSV group, and C23 siRNA + RSV group. Expression changes in NeuN protein and colocalization of C23 and TLR4 with RSV F protein were assessed using confocal microscopy. Changes in TLR4 and C23 mRNA expression, TLR4, C23, TLR3, TLR7, and p-NF-κB protein expression, and interleukin (IL)-8, IL-6, and tumor necrosis factor (TNF-α) cytokine secretion was measured using quantitative real-time reverse-transcription polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay, respectively. RSV titers and the apoptotic status of N2a cells were monitored using plaque formation assays and flow cytometry, respectively. The results indicated that TLR4 and C23 gene knockdown decreased the amount of F protein in RSV-infected N2a cells, inhibited RSV propagation, attenuated N2a neuronal injury, diminished cell apoptosis levels, downregulated TLR3 and TLR7 protein expression, and reduced inflammatory protein expression. Therefore, TLR4 and C23 knockdown influences cell injury, apoptosis and inflammatory protein expression in RSV-infected N2a cells.
Collapse
Affiliation(s)
- Tao Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Haiyang Yu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Min Lu
- Department of Laboratory, the first affiliated hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xiaoling Yuan
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Xuan Wu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Huan Qiu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Jason Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Shenghai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
36
|
Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent L. Airway Epithelial Derived Cytokines and Chemokines and Their Role in the Immune Response to Respiratory Syncytial Virus Infection. Pathogens 2019; 8:E106. [PMID: 31331089 PMCID: PMC6789711 DOI: 10.3390/pathogens8030106] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
The airway epithelium is the primary target of respiratory syncytial virus infection. It is an important component of the antiviral immune response. It contributes to the recruitment and activation of innate immune cells from the periphery through the secretion of cytokines and chemokines. This paper provides a broad review of the cytokines and chemokines secreted from human airway epithelial cell models during respiratory syncytial virus (RSV) infection based on a comprehensive literature review. Epithelium-derived chemokines constitute most inflammatory mediators secreted from the epithelium during RSV infection. This suggests chemo-attraction of peripheral immune cells, such as monocytes, neutrophils, eosinophils, and natural killer cells as a key function of the epithelium. The reports of epithelium-derived cytokines are limited. Recent research has started to identify novel cytokines, the functions of which remain largely unknown in the wider context of the RSV immune response. It is argued that the correct choice of in vitro models used for investigations of epithelial immune functions during RSV infection could facilitate greater progress in this field.
Collapse
Affiliation(s)
- Lena Glaser
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Patricia J Coulter
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- Department of Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast BT12 6BE, Northern Ireland, UK
| | - Michael Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- Department of Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast BT12 6BE, Northern Ireland, UK
| | - Olivier Touzelet
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
37
|
Veazey JM, Chapman TJ, Smyth TR, Hillman SE, Eliseeva SI, Georas SN. Distinct roles for MDA5 and TLR3 in the acute response to inhaled double-stranded RNA. PLoS One 2019; 14:e0216056. [PMID: 31067281 PMCID: PMC6505938 DOI: 10.1371/journal.pone.0216056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/14/2019] [Indexed: 11/22/2022] Open
Abstract
The airway epithelial barrier is critical for preventing pathogen invasion and translocation of inhaled particles into the lung. Epithelial cells also serve an important sentinel role after infection and release various pro-inflammatory mediators that recruit and activate immune cells. Airway epithelial barrier disruption has been implicated in a growing number of respiratory diseases including viral infections. It is thought that when a pathogen breaks the barrier and gains access to the host tissue, pro-inflammatory mediators increase, which further disrupts the barrier and initiates a vicious cycle of leak. However, it is difficult to study airway barrier integrity in vivo, and little is known about relationship between epithelial barrier function and airway inflammation. Current assays of pulmonary barrier integrity quantify the leak of macromolecules from the vasculature into the airspaces (or “inside/out” leak). However, it is also important to measure the ease with which inhaled particles, allergens, or pathogens can enter the subepithelial tissues (or “outside/in” leak). We challenged mice with inhaled double stranded RNA (dsRNA) and explored the relationship between inside/out and outside/in barrier function and airway inflammation. Using wild-type and gene-targeted mice, we studied the roles of the dsRNA sensors Toll Like Receptor 3 (TLR3) and Melanoma Differentiation-Associated protein 5 (MDA5). Here we report that after acute challenge with inhaled dsRNA, airway barrier dysfunction occurs in a TLR3-dependent manner, whereas leukocyte accumulation is largely MDA5-dependent. We conclude that airway barrier dysfunction and inflammation are regulated by different mechanisms at early time points after exposure to inhaled dsRNA.
Collapse
Affiliation(s)
- Janelle M. Veazey
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Timothy J. Chapman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York, United States of America
| | - Timothy R. Smyth
- Department of Environmental Medicine, University of Rochester, Rochester, New York, United States of America
| | - Sara E. Hillman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York, United States of America
| | - Sophia I. Eliseeva
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York, United States of America
| | - Steve N. Georas
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Linden D, Guo-Parke H, Coyle PV, Fairley D, McAuley DF, Taggart CC, Kidney J. Respiratory viral infection: a potential "missing link" in the pathogenesis of COPD. Eur Respir Rev 2019; 28:28/151/180063. [PMID: 30872396 DOI: 10.1183/16000617.0063-2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third most common cause of global mortality. Acute exacerbations of COPD frequently necessitate hospital admission to enable more intensive therapy, incurring significant healthcare costs. COPD exacerbations are also associated with accelerated lung function decline and increased risk of mortality. Until recently, bacterial pathogens were believed to be responsible for the majority of disease exacerbations. However, with the advent of culture-independent molecular diagnostic techniques it is now estimated that viruses are detected during half of all COPD exacerbations and are associated with poorer clinical outcomes. Human rhinovirus, respiratory syncytial virus and influenza are the most commonly detected viruses during exacerbation. The role of persistent viral infection (adenovirus) has also been postulated as a potential pathogenic mechanism in COPD. Viral pathogens may play an important role in driving COPD progression by acting as triggers for exacerbation and subsequent lung function decline whilst the role of chronic viral infection remains a plausible hypothesis that requires further evaluation. There are currently no effective antiviral strategies for patients with COPD. Herein, we focus on the current understanding of the cellular and molecular mechanisms of respiratory viral infection in COPD.
Collapse
Affiliation(s)
- Dermot Linden
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Peter V Coyle
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Derek Fairley
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Danny F McAuley
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Joe Kidney
- Dept of Respiratory Medicine, Mater Hospital Belfast, Belfast, UK
| |
Collapse
|
39
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
40
|
Chiang CLL, Kandalaft LE. In vivo cancer vaccination: Which dendritic cells to target and how? Cancer Treat Rev 2018; 71:88-101. [PMID: 30390423 DOI: 10.1016/j.ctrv.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
The field of cancer immunotherapy has been revolutionized with the use of immune checkpoint blockade antibodies such as anti-programmed cell death 1 protein (PD-1) and chimeric antigen receptor T cells. Significant clinical benefits are observed in different cancer types with these treatments. While considerable efforts are made in augmenting tumor-specific T cell responses with these therapies, other immunotherapies that actively stimulate endogenous anti-tumor T cells and generating long-term memory have received less attention. Given the high cost of cancer immunotherapies especially with chimeric antigen receptor T cells, not many patients will have access to such treatments. The next-generation of cancer immunotherapy could entail in vivo cancer vaccination to activate both the innate and adaptive anti-tumor responses. This could potentially be achieved via in vivo targeting of dendritic cells which are an indispensable link between the innate and adaptive immunities. Dendritic cells highly expressed toll-like receptors for recognizing and eliminating pathogens. Synthetic toll-like receptors agonists could be synthesized at a low cost and have shown promise in preclinical and clinical trials. As different subsets of human dendritic cells exist in the immune system, activation with different toll-like receptor agonists could exert profound effects on the quality and magnitude of anti-tumor T cell responses. Here, we reviewed the different subsets of human dendritic cells. Using published preclinical and clinical cancers studies available on PubMed, we discussed the use of clinically approved and emerging toll-like receptor agonists to activate dendritic cells in vivo for cancer immunotherapy. Finally, we searched www.clinicaltrials.gov and summarized the active cancer trials evaluating toll-like receptor agonists as an adjuvant.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania Medical Center, Smilow Translational Research Center 8th Floor, 186B, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Liu D, Chen Q, Zhu H, Gong L, Huang Y, Li S, Yue C, Wu K, Wu Y, Zhang W, Huang G, Zhang L, Pu S, Wang D. Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation 2018; 41:654-666. [PMID: 29264743 PMCID: PMC5874272 DOI: 10.1007/s10753-017-0720-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The objective of the study is to explore the role of respiratory syncytial virus Toll-like receptor 3 (TLR3)-mediated immune response in the pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A total of 20 AECOPD patients and 10 normal volunteers were studied. TLR3 was detected by RT-PCR, and respiratory syncytial virus (RSV) was detected by nested RT-PCR. Then, A549 cells were infected by RSV at different time points and at different viral titers. TLR3 mRNA was detected by RT-PCR, the protein of TLR3 and interferon regulatory factor 3 (IRF3) were detected by western blot, and IRF3 protein localization was detected by immunofluorescence. Interferon-β (IFN-β) and interleukin-6 (IL-6) were detected by ELISA. A total of 4 (20%) of the 20 AECOPD patients sampled were infected with RSV. The forced expiratory volume in 1 second (FEV1) percentage was lower in the AECOPD patients infected with RSV compared to those not infected (P = 0.03). The expression of IL-6 in the two groups was diametrically opposite (P = 0.04). The AECOPD group (n = 20) showed an increase in TLR3 mRNA compared with that of the control group (n = 10) (P = 0.02). The RSV-infected AECOPD group (n = 4) showed an obvious increase in TLR3 mRNA compared with that of the control group (P = 0.03). There was a significant correlation between severity of reduction in lung function at exacerbation and the increasing expression of TLR3 in AECOPD patients. The TLR3 signaling pathway was activated in lung epithelial cells. TLR3 mRNA/protein levels were increased in A549 infected with RSV compared with those of the control group. IRF3 protein also increased along with the occurrence of nuclear transfer in A549 infected with RSV. IFN-β and IL-6 were also increased in the RSV-infected A549 cells compared with those of the control (P = 0.00 and 0.00, respectively). Increased TLR3 expression in AECOPD patients is associated with declining lung function. TLR3 may be a risk factor for RSV-infected AECOPD patients.
Collapse
Affiliation(s)
- Daishun Liu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China.
| | - Qian Chen
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Honglan Zhu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Ling Gong
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Yi Huang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Shiguang Li
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Changwu Yue
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Kaifeng Wu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Yang Wu
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Wei Zhang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Guichuan Huang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Ling Zhang
- Department of Respiratory Medicine, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical College, Institute of Respiratory Diseases in Zunyi, Zunyi, Guizhou, 563002, China
| | - Shenglan Pu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Daoxin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
42
|
Zhang J, Chen J, Newton GK, Perrior TR, Robinson C. Allergen Delivery Inhibitors: A Rationale for Targeting Sentinel Innate Immune Signaling of Group 1 House Dust Mite Allergens through Structure-Based Protease Inhibitor Design. Mol Pharmacol 2018; 94:1007-1030. [PMID: 29976563 PMCID: PMC6064784 DOI: 10.1124/mol.118.112730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022] Open
Abstract
Diverse evidence from epidemiologic surveys and investigations into the molecular basis of allergenicity have revealed that a small cadre of "initiator" allergens promote the development of allergic diseases, such as asthma, allergic rhinitis, and atopic dermatitis. Pre-eminent among these initiators are the group 1 allergens from house dust mites (HDM). In mites, group 1 allergens function as cysteine peptidase digestive enzymes to which humans are exposed by inhalation of HDM fecal pellets. Their protease nature confers the ability to activate high gain signaling mechanisms which promote innate immune responses, leading to the persistence of allergic sensitization. An important feature of this process is that the initiator drives responses both to itself and to unrelated allergens lacking these properties through a process of collateral priming. The clinical significance of group 1 HDM allergens in disease, their serodominance as allergens, and their IgE-independent bioactivities in innate immunity make these allergens interesting therapeutic targets in the design of new small-molecule interventions in allergic disease. The attraction of this new approach is that it offers a powerful, root-cause-level intervention from which beneficial effects can be anticipated by interference in a wide range of effector pathways associated with these complex diseases. This review addresses the general background to HDM allergens and the validation of group 1 as putative targets. We then discuss structure-based drug design of the first-in-class representatives of allergen delivery inhibitors aimed at neutralizing the proteolytic effects of HDM group 1 allergens, which are essential to the development and maintenance of allergic diseases.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Jie Chen
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Gary K Newton
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Trevor R Perrior
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| | - Clive Robinson
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom (J.Z., J.C., C.R.); State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China (J.Z.); and Domainex Ltd., Chesterford Research Park, Saffron Walden, United Kingdom (G.K.N., T.R.P.)
| |
Collapse
|
43
|
Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW, Sun T, Qiu H, Huang SH. Oxidative stress modulates the expression of toll‑like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep 2018; 18:1867-1877. [PMID: 29845280 DOI: 10.3892/mmr.2018.9089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/11/2018] [Indexed: 11/05/2022] Open
Abstract
Toll‑like receptor 3 (TLR3) can react with double stranded RNA and is involved in the inflammatory response to respiratory syncytial virus (RSV) infection. Also, oxidative stress has been reported to be involved in RSV infection. However, the correlation between oxidative stress and TLR3 activation during RSV infection is unclear. Therefore, the present study investigated the association between TLR3 expression and oxidative stress modulation during RSV infection in A549 cells. For comparison, seven treatment groups were established, including RSV‑treated cells, N‑acetyl‑L‑cysteine (NAC)+RSV‑treated cells, oxidant hydrogen peroxide (H2O2)+RSV‑treated cells, normal cell control, inactivated RSV control, NAC control and H2O2 control. The mRNA expression changes of TLR3, interferon regulatory factor‑3 (IRF3), nuclear factor‑κB (NF‑κB) and superoxide dismutase 1 (SOD1) were measured using semi‑quantitative reverse transcription‑polymerase chain reaction, and the protein changes of TLR3 and phospho‑NF‑κB p65 were determined using western blot in A549 cells from the different treatment groups. The present study also evaluated the differences in hydroxyl free radical (·OH), nitric oxide (NO) and total SOD activity in the different treatment groups. The results demonstrated that RSV infection of A549 cells increased the levels of ·OH and NO, while decreasing the activity of total SOD. Pretreatment of A549 cells with H2O2 prior to RSV infection upregulated the mRNA and protein expression of TLR3 and NF‑κB, and downregulated the mRNA expression of IRF3 and SOD1, as well as the total SOD activity. When the infected cells were pretreated with NAC, the mRNA and protein expression of these genes were reversed. These variations in the TLR3‑mediated signaling pathway molecules suggested that oxidative stress may be a key regulator for TLR3 activation during RSV infection. RSV‑induced oxidative stress may potentially activate TLR3 and enhance TLR3‑mediated inflammation. These results may provide better understanding of the RSV‑induced inflammatory and immune pathways, and may also contribute to the drug development and prevention of human RSV diseases.
Collapse
Affiliation(s)
- Min-Min Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Lu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chuan-Long Zhang
- Department of Pediatrics, The People's Hospital of Lu'an City, Lu'an, Anhui 237005, P.R. China
| | - Xuan Wu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing-Xian Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Wei Lv
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Sun
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Qiu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng-Hai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
44
|
Abstract
Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.
Collapse
Affiliation(s)
- Kwan T Chow
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Michael Gale
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| | - Yueh-Ming Loo
- Center for Innate Immunity and Immune Disease and Department of Immunology, University of Washington, Seattle, Washington 98109, USA; , ,
| |
Collapse
|
45
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
47
|
Pickens JA, Tripp RA. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018; 10:E48. [PMID: 29361733 PMCID: PMC5795461 DOI: 10.3390/v10010048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Two primary causes of respiratory tract infections are respiratory syncytial virus (RSV) and influenza viruses, both of which remain major public health concerns. There are a limited number of antiviral drugs available for the treatment of RSV and influenza, each having limited effectiveness and each driving selective pressure for the emergence of drug-resistant viruses. Novel broad-spectrum antivirals are needed to circumvent problems with current disease intervention strategies, while improving the cytokine-induced immunopathology associated with RSV and influenza infections. In this review, we examine the use of Verdinexor (KPT-335, a novel orally bioavailable drug that functions as a selective inhibitor of nuclear export, SINE), as an antiviral with multifaceted therapeutic potential. KPT-335 works to (1) block CRM1 (i.e., Chromosome Region Maintenance 1; exportin 1 or XPO1) mediated export of viral proteins critical for RSV and influenza pathogenesis; and (2) repress nuclear factor κB (NF-κB) activation, thus reducing cytokine production and eliminating virus-associated immunopathology. The repurposing of SINE compounds as antivirals shows promise not only against RSV and influenza virus but also against other viruses that exploit the nucleus as part of their viral life cycle.
Collapse
Affiliation(s)
- Jennifer A Pickens
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
48
|
Ye L, Jiang Y, Yang G, Yang W, Hu J, Cui Y, Shi C, Liu J, Wang C. Murine bone marrow-derived DCs activated by porcine rotavirus stimulate the Th1 subtype response in vitro. Microb Pathog 2017; 110:325-334. [PMID: 28710013 DOI: 10.1016/j.micpath.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) infection causes acute, watery dehydrating diarrhea and even death in infants and other young animals, resulting in a severe economic burden; however, little is known about the innate immune mechanisms associated with RV infection. Dendritic cells (DCs), which are professional antigen-presenting cells (APCs), serve as a bridge connecting the innate and adaptive immune system. In this study, the interaction between murine bone marrow-derived DCs (BMDCs) and porcine rotavirus (PRV) was investigated in vitro. Upon stimulation, the expression levels of MHC-II, CD40, CD80, CD86 and CD83 in BMDCs increased in a time-dependent manner, indicating activation and maturation by PRV. In addition, up-regulated Toll-like receptor 2 (TLR2), TLR3 and NF-κB increased the production of interleukin-12 and interferon-γ. The PRV-stimulated BMDCs also showed increased stimulatory capacity in mixed lymphocyte reactions and promoted the Th1 subtype response.
Collapse
Affiliation(s)
- Liping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yulin Cui
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
49
|
Rezaee F, Harford TJ, Linfield DT, Altawallbeh G, Midura RJ, Ivanov AI, Piedimonte G. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption. PLoS One 2017; 12:e0181876. [PMID: 28759570 PMCID: PMC5536269 DOI: 10.1371/journal.pone.0181876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches.
Collapse
Affiliation(s)
- Fariba Rezaee
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Terri J. Harford
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Debra T. Linfield
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ghaith Altawallbeh
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ronald J. Midura
- Biomedical Engineering Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Andrei I. Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Giovanni Piedimonte
- Pediatric Research Center and Pediatric Institute, Cleveland Clinic Children’s, Cleveland, Ohio, United States of America
- Pathobiology Department, Lerner Research Institute, Cleveland, Ohio, United States of America
| |
Collapse
|
50
|
Thiriou D, Morianos I, Xanthou G, Samitas K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 2017; 48:43-54. [PMID: 28463786 DOI: 10.1016/j.intimp.2017.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/15/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues.
Collapse
Affiliation(s)
- Despoina Thiriou
- 2(nd) Respiratory Medicine Dept., Athens Chest Hospital "Sotiria", Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece; 7(th) Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece.
| |
Collapse
|