1
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
2
|
Xiong D, Geng H, Lv X, Wang S, Jia L. Inflammatory Response and Anti-Inflammatory Treatment in Persistent Inflammation-Immunosuppression-Catabolism Syndrome (PICS). J Inflamm Res 2025; 18:2267-2281. [PMID: 39968098 PMCID: PMC11834740 DOI: 10.2147/jir.s504694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness (CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 100,000 in individuals aged 75-79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss current therapies about inflammation and offer recommendations for managing patients with PICS.
Collapse
Affiliation(s)
- Dacheng Xiong
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huixian Geng
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xuechun Lv
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lijing Jia
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Kuratani A, Okamoto M, Kishida K, Okuzaki D, Sasai M, Sakaguchi S, Arase H, Yamamoto M. Platelet factor 4-induced T H1-T reg polarization suppresses antitumor immunity. Science 2024; 386:eadn8608. [PMID: 39571033 DOI: 10.1126/science.adn8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/08/2024] [Indexed: 11/24/2024]
Abstract
The tumor microenvironment (TME) contains a number of immune-suppressive cells such as T helper 1-polarized regulatory T cells (TH1-Treg cells). However, little is known about the mechanism behind the abundant presence of TH1-Treg cells in the TME. We demonstrate that selective depletion of arginase I (Arg1)-expressing tumor-associated macrophages (Arg1+ TAMs) inhibits tumor growth and concurrently reduces the ratio of TH1-Treg cells in the TME. Arg1+ TAMs secrete the chemokine platelet factor 4 (PF4), which reinforces interferon-γ (IFN-γ)-induced Treg cell polarization into TH1-Treg cells in a manner dependent on CXCR3 and the IFN-γ receptor. Both genetic PF4 inactivation and PF4 neutralization hinder TH1-Treg cell accumulation in the TME and reduce tumor growth. Collectively, our study highlights the importance of Arg1+ TAM-produced PF4 for high TH1-Treg cell levels in the TME to suppress antitumor immunity.
Collapse
Affiliation(s)
- Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
- Department of Immunochemistry, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Pereira Vasconcelos D, Leite Pereira C, Couto M, Neto E, Ribeiro B, Albuquerque F, Freitas A, Alves CJ, Klinkenberg G, McDonagh BH, Schmid RB, Seitz AM, de Roy L, Ignatius A, Haaparanta A, Muhonen V, Sarmento B, Lamghari M. Nanoenabled Immunomodulatory Scaffolds for Cartilage Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage regeneration is a challenge in tissue engineering. Although diverse materials have been developed for this purpose, cartilage regeneration remains suboptimal. The integration of nanomaterials into 3D network materials holds great potential in the improvement of key mechanical properties, particularly important for osteochondral replacement scaffolds and even to function as carriers for disease‐modifying drugs or other regulatory signals. In this study, a simple yet effective cell‐free nanoenabled Col‐PLA scaffold specially designed to enhance cartilage regeneration and modulate inflammatory response is proposed, by incorporating poly(lactic‐co‐glycolic acid) (PLGA) ibuprofen nanoparticles (NPs) into a collagen/polylactide (Col‐PLA) matrix. The developed nanoenabled scaffold successfully decreases IL‐1β release and leads to primary human chondrocytes survival, ultimately restoring extracellular matrix (ECM) production under inflammatory conditions. The nanoenabled Col‐PLA scaffolds secretome effectively decreases macrophage invasion in vitro, as well as neutrophil infiltration and inflammatory mediators’, namely the complement component C5/C5a, C‐reactive protein, IL‐1β, MMP9, CCL20, and CXCL1/KC production in vivo in a rodent air‐pouch model. Overall, the established nanoenabled scaffold has the potential to support chondrogenesis as well as modulate inflammatory response, overcoming the limitations of traditional tissue engineering strategies.
Collapse
Affiliation(s)
- Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Marina Couto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Beatriz Ribeiro
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Filipe Albuquerque
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Alexandra Freitas
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Cecília J. Alves
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Geir Klinkenberg
- SINTEF Industry Department of Biotechnology and Nanomedicine Trondheim 7034 Norway
| | | | | | - Andreas M. Seitz
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Luisa de Roy
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | | | - Virpi Muhonen
- Askel Healthcare Ltd Siltasaarenkatu 8‐10 Helsinki 00530 Finland
| | - Bruno Sarmento
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Gandra 4585‐116 Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| |
Collapse
|
5
|
Kim JE, Han D, Kim KH, Seo A, Moon JJ, Jeong JS, Kim JH, Kang E, Bae E, Kim YC, Lee JW, Cha RH, Kim DK, Oh KH, Kim YS, Jung HY, Yang SH. Protective effect of Cyclo(His-Pro) on peritoneal fibrosis through regulation of HDAC3 expression. FASEB J 2024; 38:e23819. [PMID: 38984942 DOI: 10.1096/fj.202400854r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Peritoneal dialysis is a common treatment for end-stage renal disease, but complications often force its discontinuation. Preventive treatments for peritoneal inflammation and fibrosis are currently lacking. Cyclo(His-Pro) (CHP), a naturally occurring cyclic dipeptide, has demonstrated protective effects in various fibrotic diseases, yet its potential role in peritoneal fibrosis (PF) remains uncertain. In a mouse model of induced PF, CHP was administered, and quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry was employed to identify PF-related protein signaling pathways. The results were further validated using human primary cultured mesothelial cells. This analysis revealed the involvement of histone deacetylase 3 (HDAC3) in the PF signaling pathway. CHP administration effectively mitigated PF in both peritoneal tissue and human primary cultured mesothelial cells, concurrently regulating fibrosis-related markers and HDAC3 expression. Moreover, CHP enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) while suppressing forkhead box protein M1 (FOXM1), known to inhibit Nrf2 transcription through its interaction with HDAC3. CHP also displayed an impact on spleen myeloid-derived suppressor cells, suggesting an immunomodulatory effect. Notably, CHP improved mitochondrial function in peritoneal tissue, resulting in increased mitochondrial membrane potential and adenosine triphosphate production. This study suggests that CHP can significantly prevent PF in peritoneal dialysis patients by modulating HDAC3 expression and associated signaling pathways, reducing fibrosis and inflammation markers, and improving mitochondrial function.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Areum Seo
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong Joo Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Seon Jeong
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Ji Hye Kim
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Korea
| | - Ran-Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd, Pohang, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Martin ND, Schott LL, Miranowski MK, Desai AM, Lowen CC, Cao Z, Araujo Torres K. Exploring the impact of arginine-supplemented immunonutrition on length of stay in the intensive care unit: A retrospective cross-sectional analysis. PLoS One 2024; 19:e0302074. [PMID: 38669262 PMCID: PMC11051586 DOI: 10.1371/journal.pone.0302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Arginine-supplemented enteral immunonutrition has been designed to optimize outcomes in critical care patients. Existing formulas may be isocaloric and isoproteic, yet differ in L-arginine content, energy distribution, and in source and amount of many other specialized ingredients. The individual contributions of each may be difficult to pinpoint; however, all cumulate in the body's response to illness and injury. The study objective was to compare health outcomes between different immunonutrition formulas. METHODS Real-world data from October 2015 -February 2019 in the PINC AI™ Healthcare Database (formerly the Premier Healthcare Database) was reviewed for patients with an intensive care unit (ICU) stay and ≥3 days exclusive use of either higher L-arginine formula (HAF), or lower L-arginine formula (LAF). Multivariable generalized linear model regression was used to check associations between formulas and ICU length of stay. RESULTS 3,284 patients (74.5% surgical) were included from 21 hospitals, with 2,525 receiving HAF and 759 LAF. Inpatient mortality (19.4%) and surgical site infections (6.2%) were similar across groups. Median hospital stay of 17 days (IQR: 16) did not differ by immunonutrition formula. Median ICU stay was shorter for patients receiving HAF compared to LAF (10 vs 12 days; P<0.001). After adjusting for demographics, visit, severity of illness, and other clinical characteristics, associated regression-adjusted ICU length of stay for patients in the HAF group was 11% shorter [0.89 (95% CI: 0.84, 0.94; P<0.001)] compared to patients in the LAF group. Estimated adjusted mean ICU length of stay was 9.4 days (95% CI: 8.9, 10.0 days) for the HAF group compared to 10.6 days (95% CI: 9.9, 11.3 days) for the LAF group (P<0.001). CONCLUSIONS Despite formulas being isocaloric and isoproteic, HAF use was associated with significantly reduced ICU length of stay, compared to LAF. Higher arginine immunonutrition formula may play a role in improving health outcomes in primarily surgical critically ill patients.
Collapse
Affiliation(s)
- Niels D. Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura L. Schott
- PINC AI Applied Sciences, Applied Research, Premier Inc., Charlotte, North Carolina, United States of America
| | - Mary K. Miranowski
- Regulatory and Medical Affairs, Research and Development, Active and Medical Nutrition, Nestlé Health Science, Bridgewater Township, New Jersey, United States of America
| | - Amarsinh M. Desai
- Market Access, Active and Medical Nutrition, Nestlé Health Science, Bridgewater Township, New Jersey, United States of America
| | - Cynthia C. Lowen
- Regulatory and Medical Affairs, Research and Development, Active and Medical Nutrition, Nestlé Health Science, Bridgewater Township, New Jersey, United States of America
| | - Zhun Cao
- PINC AI Applied Sciences, Applied Research, Premier Inc., Charlotte, North Carolina, United States of America
| | - Krysmaru Araujo Torres
- Regulatory and Medical Affairs, Research and Development, Nestlé Health Science, Bridgewater Township, New Jersey, United States of America
| |
Collapse
|
7
|
Villagomez FR, Lang J, Webb P, Neville M, Woodruff ER, Bitler BG. Claudin-4 modulates autophagy via SLC1A5/LAT1 as a tolerance mechanism for genomic instability in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576263. [PMID: 38293054 PMCID: PMC10827183 DOI: 10.1101/2024.01.18.576263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Genome instability is key for tumor heterogeneity and derives from defects in cell division and DNA damage repair. Tumors show tolerance for this characteristic, but its accumulation is regulated somehow to avoid catastrophic chromosomal alterations and cell death. Claudin-4 is upregulated and closely associated with genome instability and worse patient outcome in ovarian cancer. This protein is commonly described as a junctional protein participating in processes such as cell proliferation and DNA repair. However, its biological association with genomic instability is still poorly-understood. Here, we used CRISPRi and a claudin mimic peptide (CMP) to modulate the cladudin-4 expression and its function, respectively in in-vitro (high-grade serous carcinoma cells) and in-vivo (patient-derived xenograft in a humanized-mice model) systems. We found that claudin-4 promotes a protective cellular-mechanism that links cell-cell junctions to genome integrity. Disruption of this axis leads to irregular cellular connections and cell cycle that results in chromosomal alterations, a phenomenon associated with a novel functional link between claudin-4 and SLC1A5/LAT1 in regulating autophagy. Consequently, claudin-4's disruption increased autophagy and associated with engulfment of cytoplasm-localized DNA. Furthermore, the claudin-4/SLC1A5/LAT1 biological axis correlates with decrease ovarian cancer patient survival and targeting claudin-4 in-vivo with CMP resulted in increased niraparib (PARPi) efficacy, correlating with increased tumoral infiltration of T CD8+ lymphocytes. Our results show that the upregulation of claudin-4 enables a mechanism that promotes tolerance to genomic instability and immune evasion in ovarian cancer; thus, suggesting the potential of claudin-4 as a translational target for enhancing ovarian cancer treatment.
Collapse
|
8
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
9
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
10
|
Cardenas D, Ochoa JB. A paradigm shift in clinical nutrition. Clin Nutr 2023; 42:380-383. [PMID: 36739757 DOI: 10.1016/j.clnu.2023.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
The current clinical nutrition paradigm is that decreased caloric intake, resulting in a caloric deficit, is central to the development disease-related malnutrition (DRM). In following with this paradigm, one should assume that nutrition interventions with artificially administered nutrition (food substitution paradigm) aimed at preventing a caloric deficit should result in the prevention and/or successful treatment of DRM. However, clear evidence demonstrates that the DRM observed in diverse illnesses is at least partially resistant to nutrition interventions aimed at preventing the development of a caloric deficit. Simply put, DRM cannot be prevented nor resolved through a nutrition intervention aimed solely on replacing what the person cannot or will not eat. It is time to stop oversimplifying nutrition therapy in clinical nutrition interventions as a food substitution issue, focusing instead on developing and testing innovative hypotheses aimed at a mechanistic understanding of how DRM develops. Through this effort, new paradigms should evolve. The aim of this opinion paper is to provide an overview of why we need a shift in the current paradigm.
Collapse
Affiliation(s)
- Diana Cardenas
- Nutrition Unit, Institut Gustave Roussy, Villejuif, France.
| | - Juan B Ochoa
- Intensive Care Medicine, Hunterdon Medical Center, New Jersey, USA
| |
Collapse
|
11
|
Differential Expression Genes of the Head Kidney and Spleen in Streptococcus iniae-Infected East Asian Fourfinger Threadfin Fish ( Eleutheronema tetradactylum). Int J Mol Sci 2023; 24:ijms24043832. [PMID: 36835242 PMCID: PMC9958670 DOI: 10.3390/ijms24043832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium and is considered a harmful aquaculture pathogen worldwide. In this study, S. iniae strains were isolated from East Asian fourfinger threadfin fish (Eleutheronema tetradactylum) reared on a farm in Taiwan. A transcriptome analysis of the head kidney and spleen was performed in the fourfinger threadfin fish 1 day after infection using the Illumina HiSeq™ 4000 platform for RNA-seq to demonstrate the host immune mechanism against S. iniae. A total of 7333 genes based on the KEGG database were obtained after the de novo assembly of transcripts and functional annotations. Differentially expressed genes (DEGs) (2-fold difference) were calculated by comparing the S. iniae infection and phosphate-buffered saline control group gene expression levels in each tissue sample. We identified 1584 and 1981 differentially expressed genes in the head kidney and spleen, respectively. Based on Venn diagrams, 769 DEGs were commonly identified in both the head kidney and spleen, and 815 and 1212 DEGs were specific to the head kidney and spleen, respectively. The head-kidney-specific DEGs were enriched in ribosome biogenesis. The spleen-specific and common DEGs were found to be significantly enriched in immune-related pathways such as phagosome, Th1, and Th2 cell differentiation; complement and coagulation cascades; hematopoietic cell lineage; antigen processing and presentation; and cytokine-cytokine receptor interactions, based on the KEGG database. These pathways contribute to immune responses against S. iniae infection. Inflammatory cytokines (IL-1β, IL-6, IL-11, IL-12, IL-35, and TNF) and chemokines (CXCL8 and CXCL13) were upregulated in the head kidney and spleen. Neutrophil-related genes, including phagosomes, were upregulated post-infection in the spleen. Our results could offer a strategy for the treatment and prevention of S. iniae infection in fourfinger threadfin fish.
Collapse
|
12
|
Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother 2023; 158:114207. [PMID: 36916432 DOI: 10.1016/j.biopha.2022.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatic disorders are considered major health problems, due to their high incidence, increased risk of chronicling or death and the costs involved in therapies. A large number of patients with chronic liver diseases use herbal medicines and dietary supplements in parallel with allopathic treatment. The current review provides a thorough analysis of the studies conducted on the most important species of medicinal plants used in this disease, bioactive compounds and on the activity of herbal medicines in the evolution of chronic liver diseases. However, a negative aspect is that there is frequently a lack of comprehensive data on the progression of the illness and the living standards of patients who are affected when evaluating the effects of these phytocomponents on the evolution of chronic liver disease, the patients' health, and their quality of life. It is essential to take this impairment into account when evaluating the long-term effects of herbal treatments on the health of individuals who suffer from liver illness. Bioactive phytocomponents may be a suitable source for the development of novel medications due to the correlation between traditional uses and medical advances. Additional high-quality preclinical examinations utilizing cutting-edge approaches are needed to assess safety and effectiveness and to detect, categorize, and standardize the active substances and their formulations for the most suitable therapeutic management of liver illnesses.
Collapse
|
13
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
14
|
Vanzant E, Frayman R, Hensley S, Rosenthal M. Should Anabolic Agents be Used for Resolving Catabolism in Post-ICU Recovery? CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Zou L, Jiang W, Wang Z, Zhu S, Chen J. Effect of Advanced Oxidation Protein Products (AOPPs) and aging on the osteoclast differentiation of Myeloid-Derived Suppressor Cells (MDSCs) and its preliminary mechanism. Biochem Biophys Res Commun 2022; 636:87-96. [DOI: 10.1016/j.bbrc.2022.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
16
|
Inflammatory Response, Immunosuppression and Arginase Activity after Cardiac Surgery Using Cardiopulmonary Bypass. J Clin Med 2022; 11:jcm11144187. [PMID: 35887950 PMCID: PMC9324329 DOI: 10.3390/jcm11144187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Major surgeries suppress patients’ cellular immunity for several days, but the mechanisms underlying this T-cell dysfunction are not well understood. A decreased L-Arginine (L-Arg) level may inhibit T-cell function. Arginase 1 (Arg 1) is induced after traumatic injury, leading to molecular changes in T cells, including decreased expression of cell surface T-cell receptors (TCRs) and a loss in CD3ζ chain expression. In this study, we examined the temporal patterns of CD3ζ expression and Arg 1 activity in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Methods: We determined the CD3ζ chain expression; the Arg 1 activity; and the leukocyte, neutrophil and lymphocyte levels of patients on the day before surgery and at 24, 48 and 72 h after surgery. Results: Fifty adult patients scheduled for elective cardiac surgery with CPB were eligible for enrolment. Arginase activity was significantly increased between the day before surgery and at 24, 48 and 72 h after surgery (p < 0.01), and CD3ζ expression was significantly decreased between the day before surgery and at 24, 48 and 72 h after surgery (p < 0.001). We observed significant leukocytosis, neutrophilia and lymphopenia after surgery. Conclusions: The decreased CD3ζ chain expression could be due to the increased Arg 1 activity secondary to the activation of neutrophils in cardiac surgery under CPB. These findings could explain the limited immune-system-mediated organ damage resulting from systemic inflammatory response to major cardiac surgery with CPB.
Collapse
|
17
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
18
|
Kustermann M, Dasari P, Knape I, Keltsch E, Liu J, Pflüger S, Osen W, Holzmann K, Huber-Lang M, Debatin KM, Strauss G. Adoptively Transferred in vitro-Generated Myeloid-Derived Suppressor Cells Improve T-Cell Function and Antigen-Specific Immunity after Traumatic Lung Injury. J Innate Immun 2022; 15:78-95. [PMID: 35691281 PMCID: PMC10643914 DOI: 10.1159/000525088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
Immune reactions after trauma are characterized by immediate activation of innate immunity and simultaneously downregulation of adaptive immunity leading to a misbalanced immunohomeostasis and immunosuppression of the injured host. Therefore, the susceptibility to secondary infections is strongly increased after trauma. Immune responses are regulated by a network of immune cells influencing each other and at the same time modifying their functions dependent on the inflammatory environment. Although myeloid-derived suppressor cells (MDSCs) are initially described as T-cell suppressors, their immunomodulatory capacity after trauma is mostly undefined. Therefore, in vitro-generated MDSCs were adoptively transferred into mice after blunt chest trauma (TxT). A single MDSC treatment-induced splenic T-cell expansion decreased apoptosis sensitivity and improved proliferation in the absence of T-cell exhaustion until 2 weeks after trauma. MDSC treatment had a long-lasting effect on the genomic landscape of CD4+ T cells by upregulating primarily Th2-associated genes. Remarkably, immune-activating functions of MDSCs supported the ability of TxT mice to respond to post-traumatic secondary antigen challenge. Secondary insults were mimicked by immunizing MDSC-treated TxT mice with ovalbumin (OVA), followed by OVA restimulation in vitro. MDSC treatment significantly increased the frequency of OVA-specific T cells, enhanced their Th1/Th2 cytokine expression, and induced upregulation of cytolytic molecules finally improving OVA-specific cytotoxicity. Overall, we could show that therapeutic MDSC treatment after TxT improves post-traumatic T-cell functions, which might enable the traumatic host to counterbalance trauma-induced immunoparalysis.
Collapse
Affiliation(s)
- Monika Kustermann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Prasad Dasari
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Ingrid Knape
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Emma Keltsch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jianing Liu
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Silvia Pflüger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy, German Cancer Research Center, Heidelberg, Germany
| | | | - Markus Huber-Lang
- Institute of Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
19
|
Du J, Li XK, Peng XF, Xu W, Zhang XA, Li H, Yang T, Yuan C, Chen WW, Li C, Lu QB, Liu W. Expansion of granulocytic myeloid-derived suppressor cells in patients with severe fever with thrombocytopenia syndrome. J Med Virol 2022; 94:4329-4337. [PMID: 35562326 DOI: 10.1002/jmv.27854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS), caused by novel bunyavirus (SFTSV) is a hemorrhagic fever with a high mortality rate of over 10%. We have previously shown that granulocytic myeloid-derived suppressor cell (gMDSC) might affect arginine metabolism which was associated with decreased platelet count and T lymphocyte dysfunction in this disease. OBJECTIVES The study was designed to investigate the expression of the gMDSCs subsets in SFTS patients, and to evaluate its association with disease severity. METHODS A prospective study was performed on 166 confirmed SFTSV infected patients. Sequential blood samples were collected during hospitalization and after recovery. SFTSV RNA was quantified by real-time RT-PCR. The gMDSCs and NK cells were determined by Flow cytometry analysis, which were associated with disease severity. RESULTS Elevation of the activated gMDSC was observed in SFTS patients at acute phase, with a significantly higher level of gMDSC attained in 79 severe and 29 fatal SFTS patients than in the mild patients. The NK cells were depleted at the early infection and not restored to normal level until four months after disease. The expansion of gMDSC was accompanied by the elevated expressions of CD3-ζ of NK and Arginase-1, in contrast with the decreased ROS in gMDSC. The levels of NK, CD3-ζ of NK, viral load and platelet count were significantly associated with the level of gMDSC. CONCLUSIONS Expansion of gMDSC was demonstrated in SFTS, which was associated with severe disease and suppressed antiviral NK cell via other mechanism than Arginase-1 or ROS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Wen Xu
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China
| | - Chun Yuan
- The 990th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Xinyang, Henan province, P. R. China
| | - Wei-Wei Chen
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, P. R. China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Chuangchun, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology, and Epidemiology, Beijing, P. R. China.,School of Public Health, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
20
|
Dietary modification of myeloid-derived suppressor cells (MDSC) activity in sepsis. Proc Natl Acad Sci U S A 2022; 119:e2201396119. [PMID: 35290112 PMCID: PMC8944247 DOI: 10.1073/pnas.2201396119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Mahmud Z, Rahman A, Mishu ID, Kabir Y. Mechanistic insights into the interplays between neutrophils and other immune cells in cancer development and progression. Cancer Metastasis Rev 2022; 41:405-432. [PMID: 35314951 DOI: 10.1007/s10555-022-10024-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cancer is considered a major public health concern worldwide and is characterized by an uncontrolled division of abnormal cells. The human immune system recognizes cancerous cells and induces innate immunity to destroy those cells. However, sustained tumors may protect themselves by developing immune escape mechanisms through multiple soluble and cellular mediators. Neutrophils are the most plenteous leukocytes in the human blood and are crucial for immune defense in infection and inflammation. Besides, neutrophils emancipate the antimicrobial contents, secrete different cytokines or chemokines, and interact with other immune cells to combat and successfully kill cancerous cells. Conversely, many clinical and experimental studies signpost that being a polarized and heterogeneous population with plasticity, neutrophils, particularly their subpopulations, act as a modulator of cancer development by promoting tumor metastasis, angiogenesis, and immunosuppression. Studies also suggest that tumor infiltrating macrophages, neutrophils, and other innate immune cells support tumor growth and survival. Additionally, neutrophils promote tumor cell invasion, migration and intravasation, epithelial to mesenchymal transition, survival of cancer cells in the circulation, seeding, and extravasation of tumor cells, and advanced growth and development of cancer cells to form metastases. In this manuscript, we describe and review recent studies on the mechanisms for neutrophil recruitment, activation, and their interplay with different immune cells to promote their pro-tumorigenic functions. Understanding the detailed mechanisms of neutrophil-tumor cell interactions and the concomitant roles of other immune cells will substantially improve the clinical utility of neutrophils in cancer and eventually may aid in the identification of biomarkers for cancer prognosis and the development of novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
22
|
Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N. The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 2021; 22:65-81. [PMID: 34821533 DOI: 10.1080/14737140.2022.2011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is the deadliest cancer in both sexes combined globally due to significant delays in diagnosis and poor survival. Despite advances in the treatment of lung cancer, the overall outcomes remain poor and traditional chemotherapy fails to provide long-term benefits for many patients. Therefore, new treatment strategies are needed to increase overall survival. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells taking part in lung cancer, as has been described in other types of tumors. MDSCs immunosuppressive activity is mediated by arginases (ARG-1 and ARG-2), nitric oxide (NO), reactive oxygen species (ROS), peroxynitrite, PD-1/PD-L1 axis, and different cytokines. MDSCs can be a target for lung cancer immunotherapy by inducing their differentiation into mature myeloid cells, elimination, attenuation of their function, and inhibition of their accumulation. AREAS COVERED In this review, the immunosuppressive function of MDSCs, their role in lung cancer, and strategies to target them, which could result in increased efficacy of immunotherapy in patients with lung cancer, are discussed. EXPERT OPINION Identification of important mechanisms and upstream pathways involved in MDSCs functions paves the way for further preclinical and clinical lung cancer research, which could lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fateme Sheida
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
23
|
Harikrishnan R, Devi G, Van Doan H, Jawahar S, Balasundaram C, Saravanan K, Arockiaraj J, Soltani M, Jaturasitha S. Study on antioxidant potential, immunological response, and inflammatory cytokines induction of glycyrrhizic acid (GA) in silver carp against vibriosis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:193-208. [PMID: 34601139 DOI: 10.1016/j.fsi.2021.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Effect of dietary with 100, 200, and 300 mg kg-1 glycyrrhizic acid (GA) on growth enhancer, blood physiology, digestive-antioxidant enzyme ability, innate-adaptive defense, and inflammatory cytokines induction was studied in silver carp, Hypophthalmichthys molitrix against vibriosis caused by Vibrio alginolyticus. Significant weight gain (WG), specific growth rate (SGR), and 100% survival rate (SR) was attained non-infected health (NiH) fish fed in control or all GA diets on 30, 45, and 60 days. Both NiH and V. alginolyticus challenged (VaC) fish treated with 200 mg GA diet significantly (P < 0.05) exhibited an enhancement in leucocytes value on 30, 45, and 60 days. Albumin (AB) or total proteins (TP) levels were significantly (P < 0.05) better in both groups fed 200 GA on 45 and 60 days. Malondialdehyde (MDA) and superoxide dismutase (SOD) activities were also substantial (P < 0.05) in both groups fed 200 mg GA on days 30, 45, and 60; whereas glutathione peroxidase (GPx) and catalase (CAT) activities were significantly (P < 0.05) better in both groups received 200 mg GA on days 45 and 60. Phagocytic (PC) and lysozyme (Lyz) activities significantly enhanced in both groups fed 200 or 300 mg GA on 45 and 60 days. Respiratory burst (RB), reactive oxygen species (ROS) and immunoglobulin (Ig) production significantly (P < 0.05) increased in both groups administered 200 or 300 mg GA. Growth hormone (GH) mRNA was up regulated in 200 mg GA trial on 45 days and in 200 or 300 mg GA treatments on 60 days. The IL-8 cytokine mRNA expression was up-regulated in both groups 200 and 300 mg GA on days 45 and 60, whereas TNF-α mRNA expression was increased in 200 mg GA. In addition, IL-10 cytokine mRNA expression was up regulated in 200 mg GA on 45 days whereas it was increased in both 200 mg and 300 mg GA trial on 60 days. The present study revealed that feeding fish 200 mg GA per kg diet demonstrated a better growth, digestive-antioxidant activity, innate-adaptive defense, and inflammatory cytokines induction than lower or higher dosage of GA in H. molitrix against V. alginolyticus.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | | | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
24
|
Sayyadioskoie SR, Schwacha MG. Myeloid-Derived Suppressor Cells (MDSCs) and the Immunoinflammatory Response to Injury (Mini Review). Shock 2021; 56:658-666. [PMID: 33882515 DOI: 10.1097/shk.0000000000001795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells hallmarked by their potent immunosuppressive function in a vast array of pathologic conditions. MDSCs have recently been shown to exhibit marked expansion in acute inflammatory states including traumatic injury, burn, and sepsis. Although MDSCs have been well characterized in cancer, there are significant gaps in our knowledge of their functionality in trauma and sepsis, and their clinical significance remains unclear. It is suggested that MDSCs serve an important role in quelling profound inflammatory responses in the acute setting; however, MDSC accumulation may also predispose patients to developing persistent immune dysregulation with increased risk for nosocomial infections, sepsis, and multiorgan failure. Whether MDSCs may serve as the target for novel therapeutics or an important biomarker in trauma and sepsis is yet to be determined. In this review, we will discuss the current understanding of MDSCs within the context of specific traumatic injury types and sepsis. To improve delineation of their functional role, we propose a systemic approach to MDSC analysis including phenotypic standardization, longitudinal analysis, and expansion of clinical research.
Collapse
Affiliation(s)
| | - Martin G Schwacha
- Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
25
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
26
|
Li X, Liu J, Xing Z, Tang J, Sun H, Zhang X, Lv S, Chen Z, Shi M, Chen M, Zuo S, Lyu X, He Y. Polymorphonuclear myeloid-derived suppressor cells link inflammation and damage response after trauma. J Leukoc Biol 2021; 110:1143-1161. [PMID: 34636072 DOI: 10.1002/jlb.3ma0821-029r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Elimination of the posttraumatic inflammatory response and recovery of homeostasis are crucial for the positive prognosis of trauma patients. Myeloid-derived suppressor cells (MDSCs) are known to play a regulatory role in the posttraumatic immune response in mice, but their induction source and involved potential mechanism are poorly understood. Here, we report that polymorphonuclear MDSCs (PMN-MDSCs) are activated after trauma and are closely associated with the progression of the posttraumatic inflammatory response. In humans, lectin-type oxidized LDL receptor 1 (LOX1) was used to specifically characterize LOX1+ PMN-MDSCs. Trauma patients showed high intracellular reactive oxygen species (ROS) production, as well as activation of LOX1+ PMN-MDSCs. These MDSCs contribute to the anti-inflammatory immune response by regulating the Treg/Th17 and Th2/Th1 balances after trauma, increasing the levels of anti-inflammatory factors, and decreasing the levels of proinflammatory factors. The number of LOX1+ PMN-MDSCs was positively correlated with the positive clinical prognosis of trauma patients with infection. Activation of LOX1+ PMN-MDSCs is mediated by NF-κB signal, and TGF-β1 may be as an important inducer for LOX1+ PMN-MDSCs in the posttraumatic cytokine environment. In a pseudofracture trauma mouse model, we also observed the activation of PMN-MDSCs, accompanying high levels of intracellular ROS production, NF-κB phosphorylation, and changes in the inflammatory environment, in particularly by regulating the Treg/Th17 and Th2/Th1 balance. And more significantly, posttraumatic inflammation was alleviated in mice after transferring trauma-derived PMN-MDSCs, but aggravated after injecting with Gr1 agonistic antibody. These findings provide evidence for the specific role of PMN-MDSCs in the regulation of posttraumatic inflammation.
Collapse
Affiliation(s)
- Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengyu Shi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Gluba-Brzózka A, Franczyk B, Rysz-Górzyńska M, Rokicki R, Koziarska-Rościszewska M, Rysz J. Pathomechanisms of Immunological Disturbances in β-Thalassemia. Int J Mol Sci 2021; 22:ijms22189677. [PMID: 34575839 PMCID: PMC8469188 DOI: 10.3390/ijms22189677] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Thalassemia, a chronic disease with chronic anemia, is caused by mutations in the β-globin gene, leading to reduced levels or complete deficiency of β-globin chain synthesis. Patients with β-thalassemia display variable clinical severity which ranges from asymptomatic features to severe transfusion-dependent anemia and complications in multiple organs. They not only are at increased risk of blood-borne infections resulting from multiple transfusions, but they also show enhanced susceptibility to infections as a consequence of coexistent immune deficiency. Enhanced susceptibility to infections in β-thalassemia patients is associated with the interplay of several complex biological processes. β-thalassemia-related abnormalities of the innate immune system include decreased levels of complement, properdin, and lysozyme, reduced absorption and phagocytic ability of polymorphonuclear neutrophils, disturbed chemotaxis, and altered intracellular metabolism processes. According to available literature data, immunological abnormalities observed in patients with thalassemia can be caused by both the disease itself as well as therapies. The most important factors promoting such alterations involve iron overload, phenotypical and functional abnormalities of immune system cells resulting from chronic inflammation oxidative stress, multiple blood transfusion, iron chelation therapy, and splenectomy. Unravelling the mechanisms underlying immune deficiency in β-thalassemia patients may enable the designing of appropriate therapies for this group of patients.
Collapse
Affiliation(s)
- Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Małgorzata Koziarska-Rościszewska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (M.K.-R.); (J.R.)
| |
Collapse
|
28
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Chronic Critical Illness and PICS Nutritional Strategies. J Clin Med 2021; 10:jcm10112294. [PMID: 34070395 PMCID: PMC8197535 DOI: 10.3390/jcm10112294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
The nutritional hallmark of chronic critical illness (CCI) after sepsis is persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which results in global resistance to the anabolic effect of nutritional supplements. This ultimately leaves these patients in a downward phenotypic spiral characterized by cachexia with profound weakness, decreased capacity for rehabilitation, and immunosuppression with the propensity for sepsis recidivism. The persistent catabolism is driven by a pathologic low-grade inflammation with the inability to return to homeostasis and by ongoing increased energy expenditure. Better critical care support systems and advances in technology have led to increased intensive care unit (ICU) survival, but CCI due to PICS with poor long-term outcomes has emerged as a frequent phenotype among ICU sepsis survivors. Unfortunately, therapies to mitigate or reverse PICS-CCI are limited, and recent evidence supports that these patients fail to respond to early ICU evidence-based nutrition protocols. A lack of randomized controlled trials has limited strong recommendations for nutrition adjuncts in these patients. However, based on experience in other conditions characterized by a similar phenotype, immunonutrients aimed at counteracting inflammation, immunosuppression, and catabolism may be important for improving outcomes in PICS-CCI patients. This manuscript intends to review several immunonutrients as adjunctive therapies in treating PICS-CCI.
Collapse
|
30
|
De Zuani M, Hortová-Kohoutková M, Andrejčinová I, Tomášková V, Šrámek V, Helán M, Frič J. Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data. Eur J Immunol 2021; 51:1785-1791. [PMID: 33788255 PMCID: PMC8360154 DOI: 10.1002/eji.202049141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
Myeloid‐derived suppressor cells (MDSCs) are important regulators of immune processes during sepsis in mice. However, confirming these observations in humans has been challenging due to the lack of defined preparation protocols and phenotyping schemes for MDSC subsets. Thus, it remains unclear how MDSCs are involved in acute sepsis and whether they have a role in the long‐term complications seen in survivors. Here, we combined comprehensive flow cytometry phenotyping with unsupervised clustering using self‐organizing maps to identify the three recently defined human MDSC subsets in blood from severe sepsis patients, long‐term sepsis survivors, and age‐matched controls. We demonstrated the expansion of monocytic M‐MDSCs and polymorphonuclear PMN‐MDSCs, but not early‐stage (e)‐MDSCs during acute sepsis. High levels of PMN‐MDSCs were also present in long‐term survivors many months after discharge, suggesting a possible role in sepsis‐related complications. Altogether, by employing unsupervised clustering of flow cytometric data we have confirmed the likely involvement of human MDSC subsets in acute sepsis, and revealed their expansion in sepsis survivors at late time points. The application of this strategy in future studies and in the clinical/diagnostic context would enable rapid progress toward a full understanding of the roles of MDSC in sepsis and other inflammatory conditions.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | | | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Tomášková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Šrámek
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Helán
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
31
|
Invariant Natural Killer T Cells as Key Players in Host Resistance against Paracoccidioides brasiliensis. J Immunol Res 2021; 2021:6673722. [PMID: 33954206 PMCID: PMC8064773 DOI: 10.1155/2021/6673722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are key players in the immunity to several pathogens; however, their involvement in the resistance to Paracoccidioides brasiliensis infection remains unknown. Using splenocytes from CD1d (CD1d−/−) and iNKT-deficient (Jα18−/−) mice, we found that iNKT cells are the innate source of IFN-γ after P. brasiliensis infection and are required to potentiate macrophage oxidative burst and control fungal growth. To determine whether iNKT cells contribute in vivo to host resistance against P. brasiliensis infection, we infected intratracheally wild-type and Jα18−/− C57BL/6 mouse strains with the virulent Pb18 isolate. iNKT cell deficiency impaired the airway acute inflammatory response, resulting in decreased airway neutrophilia and reduced IFN-γ, KC, and nitric oxide (NO) production. The deficient innate immune response of Jα18−/− mice to Pb18 infection resulted in increased fungal burden in the lungs and spleen. Besides, the activation of iNKT cells in vivo by administration of the exogenous iNKT ligand α-galactosylceramide (α-GalCer) improved host resistance to P. brasiliensis infection. Although the mechanisms responsible for this phenomenon remain to be clarified, α-GalCer treatment boosted the local inflammatory response and reduced pulmonary fungal burden. In conclusion, our study is the first evidence that iNKT cells are important for the protective immunity to P. brasiliensis infection and their activation by an exogenous ligand is sufficient to improve the host resistance to this fungal infection.
Collapse
|
32
|
Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond) 2021; 41:442-471. [PMID: 33773092 PMCID: PMC8211353 DOI: 10.1002/cac2.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer encompasses a range of malignancies that originate in the digestive system, which together represent the most common form of cancer diagnosed worldwide. However, despite numerous advances in both diagnostics and treatment, the incidence and mortality rate of GI cancer are on the rise. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that increase in number under certain pathological conditions, such as infection and inflammation, and this expansion is of particular relevance to cancer. MDSCs are heavily involved in the regulation of the immune system and act to dampen its response to tumors, favoring the escape of tumor cells from immunosurveillance and increasing both metastasis and recurrence. Several recent studies have supported the use of MDSCs as a prognostic and predictive biomarker in patients with cancer, and potentially as a novel treatment target. In the present review, the mechanisms underlying the immunosuppressive functions of MDSCs are described, and recent researches concerning the involvement of MDSCs in the progression, prognosis, and therapies of GI cancer are reviewed. The aim of this work was to present the development of novel treatments targeting MDSCs in GI cancer in the hope of improving outcomes for patients with this condition.
Collapse
Affiliation(s)
- Cheng Cui
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Penglin Lan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
33
|
Teuben MPJ, Hollman A, Blokhuis T, Pfeifer R, Spijkerman R, Teuber H, Pape HC, Leenen LPH. Splenectomy is associated with altered leukocyte kinetics after severe trauma. Eur J Med Res 2021; 26:26. [PMID: 33722293 PMCID: PMC7958390 DOI: 10.1186/s40001-021-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inadequate activation of the innate immune system after trauma can lead to severe complications such as Acute Respiratory Distress Syndrome and Multiple Organ Dysfunction Syndrome. The spleen is thought to modulate the cellular immune system. Furthermore, splenectomy is associated with improved outcome in severely injured trauma patients. We hypothesized that a splenectomy alters the cellular immune response in polytrauma. METHODS All adult patients with an ISS ≥ 16 and suffering from splenic or hepatic injuries were selected from our prospective trauma database. Absolute leukocyte numbers in peripheral blood were measured. White blood cell kinetics during the first 14 days were compared between splenectomized patients, patients treated surgically for liver trauma and nonoperatively treated individuals. RESULTS A total of 129 patients with a mean ISS of 29 were included. Admission characteristics and leukocyte numbers were similar in all groups, except for slightly impaired hemodynamic status in patients with operatively treated liver injuries. On admission, leukocytosis occurred in all groups. During the first 24 h, leukopenia developed gradually, although significantly faster in the operatively treated patients. Thereafter, leukocyte levels normalized in all nonoperatively treated cases whereas leukocytosis persisted in operatively treated patients. This effect was significantly more prominent in splenectomized patients than all other conditions. CONCLUSIONS This study demonstrates that surgery for intra-abdominal injuries is associated with an early drop in leucocyte numbers in peripheral blood. Moreover, splenectomy in severely injured patients is associated with an altered cellular immune response reflected by a persistent state of prominent leukocytosis after trauma.
Collapse
Affiliation(s)
- Michel Paul Johan Teuben
- Department of Trauma, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. .,Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006, Zurich, Switzerland.
| | - Arne Hollman
- Department of Trauma, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Taco Blokhuis
- Department of Surgery, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Roman Pfeifer
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006, Zurich, Switzerland
| | - Roy Spijkerman
- Department of Trauma, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Henrik Teuber
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006, Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006, Zurich, Switzerland
| | | |
Collapse
|
34
|
Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-042120-105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immature myeloid cells at varied stages of differentiation, known as myeloid-derived suppressor cells (MDSC), are present in virtually all cancer patients. MDSC are profoundly immune-suppressive cells that impair adaptive and innate antitumor immunity and promote tumor progression through nonimmune mechanisms. Their widespread presence combined with their multitude of protumor activities makes MDSC a major obstacle to cancer immunotherapies. MDSC are derived from progenitor cells in the bone marrow and traffic through the blood to infiltrate solid tumors. Their accumulation and suppressive potency are driven by multiple tumor- and host-secreted proinflammatory factors and adrenergic signals that act via diverse but sometimes overlapping transcriptional pathways. MDSC also accumulate in response to the chronic inflammation and lipid deposition characteristic of obesity and contribute to the more rapid progression of cancers in obese individuals. This article summarizes the key aspects of tumor-induced MDSC with a focus on recent progress in the MDSC field.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute (HCI), University of Utah, Salt Lake City, Utah 84112, USA
- Emeritus at: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
35
|
Cheng A, Vantucci CE, Krishnan L, Ruehle MA, Kotanchek T, Wood LB, Roy K, Guldberg RE. Early systemic immune biomarkers predict bone regeneration after trauma. Proc Natl Acad Sci U S A 2021; 118:e2017889118. [PMID: 33597299 PMCID: PMC7923361 DOI: 10.1073/pnas.2017889118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Severe traumatic injuries are a widespread and challenging clinical problem, and yet the factors that drive successful healing and restoration of function are still not well understood. One recently identified risk factor for poor healing outcomes is a dysregulated immune response following injury. In a preclinical model of orthopedic trauma, we demonstrate that distinct systemic immune profiles are correlated with impaired bone regeneration. Most notably, elevated blood levels of myeloid-derived suppressor cells (MDSCs) and the immunosuppressive cytokine interleukin-10 (IL-10) are negatively correlated with functional bone regeneration as early as 1 wk posttreatment. Nonlinear multivariate regression also implicated these two factors as the most influential in predictive computational models. These results support a significant relationship between early systemic immune responses to trauma and subsequent local bone regeneration and indicate that elevated circulating levels of MDSCs and IL-10 may be predictive of poor functional healing outcomes and represent novel targets for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Albert Cheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Casey E Vantucci
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | | | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Krishnendu Roy
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| |
Collapse
|
36
|
Kawai H, Oo MW, Tsujigiwa H, Nakano K, Takabatake K, Sukegawa S, Nagatsuka H. Potential role of myeloid-derived suppressor cells in transition from reaction to repair phase of bone healing process. Int J Med Sci 2021; 18:1824-1830. [PMID: 33746599 PMCID: PMC7976590 DOI: 10.7150/ijms.51946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 11/07/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive functions; these cells play a key role in infection, immunization, chronic inflammation, and cancer. Recent studies have reported that immunosuppression plays an important role in the healing process of tissues and that Treg play an important role in fracture healing. MDSCs suppress active T cell proliferation and reduce the severity of arthritis in mice and humans. Together, these findings suggest that MDSCs play a role in bone biotransformation. In the present study, we examined the role of MDSCs in the bone healing process by creating a bone injury at the tibial epiphysis in mice. MDSCs were identified by CD11b and GR1 immunohistochemistry and their role in new bone formation was observed by detection of Runx2 and osteocalcin expression. Significant numbers of MDSCs were observed in transitional areas from the reactionary to repair stages. Interestingly, MDSCs exhibited Runx2 and osteocalcin expression in the transitional area but not in the reactionary area. And at the same area, cllagene-1 and ALP expression level increased in osteoblast progenitor cells. These data is suggesting that MDSCs emerge to suppress inflammation and support new bone formation. Here, we report, for the first time (to our knowledge), the role of MDSCs in the initiation of bone formation. MDSC appeared at the transition from inflammation to bone making and regulates bone healing by suppressing inflammation.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
37
|
Sanchez-Pino MD, Dean MJ, Ochoa AC. Myeloid-derived suppressor cells (MDSC): When good intentions go awry. Cell Immunol 2021; 362:104302. [PMID: 33592540 DOI: 10.1016/j.cellimm.2021.104302] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
MDSC are a heterogeneous population of immature myeloid cells that are released by biological stress such as tissue damage and inflammation. Conventionally, MDSC are known for their detrimental role in chronic inflammation and neoplastic conditions. However, their intrinsic functions in immunoregulation, wound healing, and angiogenesis are intended to protect from over-reactive immune responses, maintenance of immunotolerance, tissue repair, and homeostasis. Paradoxically, under certain conditions, MDSC can impair protective immune responses and exacerbate the disease. The transition from protective to harmful MDSC is most likely driven by environmental and epigenetic mechanisms induced by prolonged exposure to unresolved inflammatory triggers. Here, we review several examples of the dual impact of MDSC in conditions such as maternal-fetal tolerance, self-antigens immunotolerance, obesity-associated cancer, sepsis and trauma. Moreover, we also highlighted the evidence indicating that MDSC have a role in COVID-19 pathophysiology. Finally, we have summarized the evidence indicating epigenetic mechanisms associated with MDSC function.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA; Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA.
| | - Matthew J Dean
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA; Department of Pediatrics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
38
|
de Boniface J, Mao Y, Schmidt-Mende J, Kiessling R, Poschke I. Expression patterns of the immunomodulatory enzyme arginase 1 in blood, lymph nodes and tumor tissue of early-stage breast cancer patients. Oncoimmunology 2021; 1:1305-1312. [PMID: 23243594 PMCID: PMC3518503 DOI: 10.4161/onci.21678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arginase 1 (ARG1) is an important enzyme in amino acid metabolism that also exerts immunoregulatory function. High ARG1 expression, which is associated with cell cycle arrest and functional unresponsiveness in T cells, has been observed after trauma, infections and in cancer patients. We studied ARG1 expression in early-stage breast cancer patients (stage 1, n = 20; stage 2, n = 23) by multi-parametric flow cytometry and immunohistochemistry. Despite a low tumor burden, ARG1 expression was significantly increased in blood-derived myeloid cells of breast cancer patients compared with healthy controls. The ARG1hi myeloid population in the blood of cancer patients contained a high frequency of CD14+ cells and was, therefore, distinct from the granulocytic ARG1+ population observed in control individuals. Expression of ARG1 in patient blood cells correlated with tumor grade and was significantly reduced after surgical tumor removal. ARG1+ myeloid cells could also be detected in tumors and tumor-draining lymph nodes, where ARG1 expression levels exceeded those measured in the blood. We conclude that even patients with early-stage breast cancer exhibit tumor-related changes of ARG1 expression. The level of ARG1-mediated immunomodulation at this early stage remains to be determined. However, high ARG1 expression is likely to interfere with antitumor T-cell responses and immunotherapeutic interventions, making ARG1 or its downstream effector interesting therapeutic targets.
Collapse
Affiliation(s)
- Jana de Boniface
- Institution of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm, Sweden ; Department of Breast and Endocrine Surgery; Karolinska University Hospital; Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Eckert IN, Ribechini E, Jarick KJ, Strozniak S, Potter SJ, Beilhack A, Lutz MB. VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp. Front Immunol 2021; 11:616531. [PMID: 33584706 PMCID: PMC7873891 DOI: 10.3389/fimmu.2020.616531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1−/−) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4+ T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1−/− A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1−/− mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.
Collapse
Affiliation(s)
- Ina N Eckert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Katja J Jarick
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sandra Strozniak
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sarah J Potter
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Schimunek L, Lindberg H, Cohen M, Namas RA, Mi Q, Yin J, Barclay D, El-Dehaibi F, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Computational Derivation of Core, Dynamic Human Blunt Trauma Inflammatory Endotypes. Front Immunol 2021; 11:589304. [PMID: 33537029 PMCID: PMC7848165 DOI: 10.3389/fimmu.2020.589304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023] Open
Abstract
Systemic inflammation ensues following traumatic injury, driving immune dysregulation and multiple organ dysfunction (MOD). While a balanced immune/inflammatory response is ideal for promoting tissue regeneration, most trauma patients exhibit variable and either overly exuberant or overly damped responses that likely drive adverse clinical outcomes. We hypothesized that these inflammatory phenotypes occur in the context of severe injury, and therefore sought to define clinically distinct endotypes of trauma patients based on their systemic inflammatory responses. Using Patient-Specific Principal Component Analysis followed by unsupervised hierarchical clustering of circulating inflammatory mediators obtained in the first 24 h after injury, we segregated a cohort of 227 blunt trauma survivors into three core endotypes exhibiting significant differences in requirement for mechanical ventilation, duration of ventilation, and MOD over 7 days. Nine non-survivors co-segregated with survivors. Dynamic network inference, Fisher Score analysis, and correlations of IL-17A with GM-CSF, IL-10, and IL-22 in the three survivor sub-groups suggested a role for type 3 immunity, in part regulated by Th17 and γδ 17 cells, and related tissue-protective cytokines as a key feature of systemic inflammation following injury. These endotypes may represent archetypal adaptive, over-exuberant, and overly damped inflammatory responses.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley Lindberg
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Cohen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Timothy Robert Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regeneration Medicine, University of Pittsburgh, Pittsburgh, PA, United State
| |
Collapse
|
41
|
Haydar D, Gonzalez R, Garvy BA, Garneau-Tsodikova S, Thamban Chandrika N, Bocklage TJ, Feola DJ. Myeloid arginase-1 controls excessive inflammation and modulates T cell responses in Pseudomonas aeruginosa pneumonia. Immunobiology 2020; 226:152034. [PMID: 33278710 DOI: 10.1016/j.imbio.2020.152034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Regulatory properties of macrophages associated with alternative activation serve to limit the exaggerated inflammatory response during pneumonia caused by Pseudomonas aeruginosa infection. Arginase-1 is an important effector of these macrophages believed to play an essential role in decreasing injury and promoting repair. We investigated the role of arginase-1 in the control of inflammatory immune responses to P. aeruginosa pneumonia in mice that exhibit different immunologic phenotypes. C57BL/6 mice with conditional knockout of the arginase-1 (Arg1) gene from myeloid cells (Arg1ΔM) or BALB/c mice treated with small molecule inhibitors of arginase were infected intratracheally with P. aeruginosa. Weight loss, mortality, bacterial clearance, and lung injury were assessed and compared, as were the characterization of immune cell populations over time post-infection. Myeloid arginase-1 deletion resulted in greater morbidity along with more severe inflammatory responses compared to littermate control mice. Arg1ΔM mice had greater numbers of neutrophils, macrophages, and lymphocytes in their airways and lymph nodes compared to littermate controls. Additionally, Arg1ΔM mice recovered from inflammatory lung injury at a significantly slower rate. Conversely, treatment of BALB/c mice with the arginase inhibitor S-(2-boronoethyl)-l-cysteine hydrochloride (BEC) did not change morbidity as defined by weight loss, but mice at day 10 post-infection treated with BEC had gained significantly more weight back than controls. Neutrophil and macrophage infiltration were similar between groups in the lung parenchyma, and neutrophil migration into the airways was reduced by BEC treatment. Differences seem to lie in the impact on T cell subset disposition. Arg1ΔM mice had increased total CD4+ T cell expansion in the lymph nodes, and increased T cell activation, IFNγ production, and IL-17 production in the lymph nodes, lung interstitium, and airways, while treatment with BEC had no impact on T cell activation or IL-17 production, but reduced the number of T cells producing IFNγ in the lungs. Lung injury scores were increased in the Arg1ΔM mice, but no differences were observed in the mice treated with pharmacologic arginase inhibitors. Overall, myeloid arginase production was demonstrated to be essential for control of damaging inflammatory responses associated with P. aeruginosa pneumonia in C57BL/6 mice, in contrast to a protective effect in the Th2-dominant BALB/c mice when arginase activity is globally inhibited.
Collapse
Affiliation(s)
- Dalia Haydar
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Rene Gonzalez
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Beth A Garvy
- University of Kentucky, College of Medicine, Department of Microbiology, Immunology and Molecular Genetics, 800 Rose Street, Lexington, KY 40536, USA.
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Nishad Thamban Chandrika
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 789 S. Limestone Street, Lexington, KY 40536, USA.
| | - Therese J Bocklage
- University of Kentucky Healthcare, Pathology and Laboratory Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| | - David J Feola
- University of Kentucky, Department of Pharmacy Practice and Science, 789 S. Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
42
|
Zhang F, Liu F, Yu S, Zhang G, Li J, Sun X. Protective Effect of Curcumin on Bone Trauma in a Rat Model via Expansion of Myeloid Derived Suppressor Cells. Med Sci Monit 2020; 26:e924724. [PMID: 33184252 PMCID: PMC7670833 DOI: 10.12659/msm.924724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bone fracture, a common injury to bones leads to various biophysiological changes and pathological responses in the body. The current study investigated curcumin for treatment of bone fracture in a rat model of bone trauma, and evaluated the related mechanism. MATERIAL AND METHODS The rats were separated randomly into 3 groups; sham, model, and curcumin treatment groups. The fracture rat model was established by transverse osteotomy in the right femur bone at the mid-shaft. The osteoblast count was determined using hematoxylin and eosin staining. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) expression were measured by western blotting. RESULTS The rpS6-phosphorylation was suppressed and light chain 3 (LC3II) expression elevated in the curcumin treated group of the fracture rat model. In the curcumin-treated group, mineralization of fracture calluses was markedly higher on day 14 of fracture. The formation of osteoblasts was observed at a greater rate in the curcumin treated group compared to the model rat group. Treatment of rats with curcumin significantly (P<0.05) promoted expression of PCNA and VEGF. The decrease in CD11b+/Gr-1+ cell expansion in rats with bone trauma was alleviated significantly by curcumin treatment. A marked increase in arginase-1 expression in rats with bone trauma was caused by curcumin treatment. CONCLUSIONS In summary, curcumin activates autophagy and inhibits mTOR activation in bone tissues of rats with trauma. The curcumin promoted myeloid-derived suppressor cell (MDSC) proliferation and increased expansion of MDSCs in a rat model of trauma. Therefore, curcumin may have beneficial effect in patients with bone trauma and should be evaluated further for development of treatment.
Collapse
Affiliation(s)
- Futian Zhang
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Fu Liu
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Shaofen Yu
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Guihong Zhang
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Jie Li
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Xinjun Sun
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| |
Collapse
|
43
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
44
|
Wang K, Yong Y, Zhou J, Zhou WX, Guo J, Chen TY. Electroacupuncture Attenuates Surgical Stress-Induced Reduction of T Lymphocytes through Modulation of Peripheral Opioid System. Chin J Integr Med 2020; 27:98-105. [PMID: 32980931 DOI: 10.1007/s11655-020-3158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the action mechanisms of electroacupuncture (EA) on postoperative immunosuppression. METHODS Male C57BL/6 mice (5`-7 weeks old) were randomly divided into: the sham injury group, the surgical trauma stressed group, the EA group [surgery + 2/100 Hz EA at Neiguan (PC 6)], and the EA+ Nal (surgery + EA + intraperitoneal injection of naloxone). Abdominal surgical trauma stress mice model was established. EA was performed on bilateral PC 6 acupoints by an EA apparatus (2/100 Hz) for 20 min once a day for 3 days. The mRNA expressions of MOR, DOR, and KOR in thymus and L3`-L5 dorsal root ganglions (DRG) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and the protein expressions of MOR, DOR, and KOR in thymus were measured by Western blot. Flow cytometry assay was used to detect the levels of T lymphocyte subtypes in the peripheral blood. RESULTS Surgical trauma induced decreased the mRNA expression level of MOR in both thymus (P<0.01) and L3`-L5 DRGs (P<0.05). Moreover, EA treatment not only significantly attenuated the MOR protein and mRNA expression in the thymus (both P<0.05), but also markedly increased expression of DOR and KOR opioid receptor in thymus (P<0.01). However, the mRNA expressions of opioid receptors were not regulated by EA in the DRG (all P>0.05). Furthermore, T lymphocyte population of CD3+ and CD4+ was decreased in the peripheral blood after surgical trauma (both P<0.01). EA treatment can significantly elevate the population of CD3+ (P<0.01), CD4+ (P<0.05) and CD8+ T cells (P<0.01). Intraperitoneal injection of the non-selective opioid receptor antagonist naloxone blocked the up-regulation of T lymphocytes by EA. CONCLUSION EA may improve postoperative immunosuppression through the peripheral opioid system.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Zhou
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Xiong Zhou
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jun Guo
- Department of Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong-Yu Chen
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
45
|
Osei-Bordom D, Bozward AG, Oo YH. The hepatic microenvironment and regulatory T cells. Cell Immunol 2020; 357:104195. [PMID: 32861844 DOI: 10.1016/j.cellimm.2020.104195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The human liver is regarded as a lymphoid organ that contributes to both local and systemic immune response. Intrahepatic immune cells including regulatory T cells (Tregs) reside in the hepatic microenvironment which is enriched with proinflammatory cytokines, chemokines and metabolites. In addition, the hepatic microenvironment has the unique ability to establish and maintain immune tolerance despite the continuous influx of the gut derived microbial products via the portal vein. Regulatory T cells play a crucial role in maintaining the hepatic tolerogenic state; however, the phenotypic stability, function and survival of Tregs in the inflamed liver microenvironment is still poorly understood. Despite this, Tregs immunotherapy remains as an appealing therapeutic option in autoimmune and immune mediated liver diseases. In order to advance cell therapy, it is important for us to further our understanding of the hepatic microenvironment, with the aim of developing ways to modify the hostile, inflamed environment to one which is more favourable. By doing so, T cell stability and function would be enhanced, resulting in improved clinical outcomes.
Collapse
Affiliation(s)
- Daniel Osei-Bordom
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom
| | - Amber G Bozward
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom
| | - Ye Htun Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom.
| |
Collapse
|
46
|
Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). Cell Death Differ 2020; 27:3196-3207. [PMID: 32514047 PMCID: PMC7278239 DOI: 10.1038/s41418-020-0572-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
SARS-CoV-2 is associated with a 3.4% mortality rate in patients with severe disease. The pathogenesis of severe cases remains unknown. We performed an in-depth prospective analysis of immune and inflammation markers in two patients with severe COVID-19 disease from presentation to convalescence. Peripheral blood from 18 SARS-CoV-2-infected patients, 9 with severe and 9 with mild COVID-19 disease, was obtained at admission and analyzed for T-cell activation profile, myeloid-derived suppressor cells (MDSCs) and cytokine profiles. MDSC functionality was tested in vitro. In four severe and in four mild patients, a longitudinal analysis was performed daily from the day of admission to the early convalescent phase. Early after admission severe patients showed neutrophilia, lymphopenia, increase in effector T cells, a persisting higher expression of CD95 on T cells, higher serum concentration of IL-6 and TGF-β, and a cytotoxic profile of NK and T cells compared with mild patients, suggesting a highly engaged immune response. Massive expansion of MDSCs was observed, up to 90% of total circulating mononuclear cells in patients with severe disease, and up to 25% in the patients with mild disease; the frequency decreasing with recovery. MDSCs suppressed T-cell functions, dampening excessive immune response. MDSCs decline at convalescent phase was associated to a reduction in TGF-β and to an increase of inflammatory cytokines in plasma samples. Substantial expansion of suppressor cells is seen in patients with severe COVID-19. Further studies are required to define their roles in reducing the excessive activation/inflammation, protection, influencing disease progression, potential to serve as biomarkers of disease severity, and new targets for immune and host-directed therapeutic approaches.
Collapse
|
47
|
Saleh R, Toor SM, Taha RZ, Al-Ali D, Sasidharan Nair V, Elkord E. DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR - myeloid cells, compared with HLA-DR + antigen-presenting cells. Epigenetics 2020; 15:1275-1288. [PMID: 32419601 PMCID: PMC7678924 DOI: 10.1080/15592294.2020.1767373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myeloid cells, including antigen-presenting cells (APCs) and myeloid-derived suppressor cells (MDSCs) play opposing roles to orchestrate innate and adaptive immune responses during physiological and pathological conditions. We investigated the role of DNA methylation in regulating the transcription of inhibitory/suppressive molecules in myeloid suppressive cells (identified as CD33+HLA-DR-) in comparison to APCs. We selected a number of immune checkpoints (ICs), IC ligands, and immunosuppressive molecules that have been implicated in MDSC function, including PD-L1, TIM-3, VISTA, galectin-9, TGF-β, ARG1 and MMP9. We examined their mRNA expression levels, and investigated whether DNA methylation regulates their transcription in sorted myeloid cell subpopulations. We found that mRNA levels of PD-L1, TIM-3, TGF-β, ARG1 and MMP9 in CD33+HLA-DR- cells were higher than APCs. However, VISTA and galectin-9 mRNA levels were relatively similar in both myeloid subpopulations. CpG islands in the promoter regions of TGF-β1, TIM-3 and ARG1 were highly unmethylated in CD33+HLA-DR-cells, compared with APCs, suggesting that DNA methylation is one of the key mechanisms, which regulate their expression. However, we did not find differences in the methylation status of PD-L1 and MMP9 between CD33+HLA-DR- and APCs, suggesting that their transcription could be regulated via other genetic and epigenetic mechanisms. The promoter methylation status of VISTA was relatively similar in both myeloid subpopulations. This study provides novel insights into the epigenetic mechanisms, which control the expression of inhibitory/suppressive molecules in circulating CD33+HLA-DR- cells in a steady-state condition, possibly to maintain immune tolerance and haemostasis.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | | | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| |
Collapse
|
48
|
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020; 11:938. [PMID: 32499785 PMCID: PMC7242730 DOI: 10.3389/fimmu.2020.00938] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Matryba
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Neurobiology BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jasinski
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
49
|
Effects of Hypertonic Saline and Hydroxyethyl Starch on Myeloid-Derived Suppressor Cells in Hemorrhagic Shock Mice under Secondary Bacterial Attack. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5417201. [PMID: 32258126 PMCID: PMC7085872 DOI: 10.1155/2020/5417201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
Objectives The primary target is to reveal whether the resuscitation with hypertonic saline (HTS) or hydroxyethyl starch (HES) would have different effects on the myeloid-derived suppressor cell (MDSC) count and monocytic MDSC (M-MDSC)/granulocytic/neutrophilic MDSC (G-MDSC) rate in the peripheral blood, spleen, and bone marrow nucleated cells (BMNC) in a controlled hemorrhagic shock mouse model under secondary Escherichia coli bacterial infection attack, comparing to resuscitation with normal saline (NS) in 72 hours. Method After hemorrhagic shock with bacteremia, which is induced by Escherichia coli bacterial infection attack, comparing to resuscitation with normal saline (NS) in 72 hours. Method. After hemorrhagic shock with bacteremia, which is induced by Escherichia coli 35218 injection, the mice were distributed into control, NS, HTS, and HES groups. The peripheral blood nucleated cells (PBNC), spleen single-cell suspension, and bone marrow nucleated cells were collected. The flow cytometry was used to detect the MDSC, M-MDSC, and G-MDSC. Result In PBNC, after resuscitation with NS, the MDSC was continuously higher, while the rate of M-MDSC/G-MDSC were continuously lower (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05). In HTS, the MDSC varied, higher at 24 and 72 hours (P < 0.05), the M-MDSC/G-MDSC were continuously lower (P < 0.05). In the spleen, resuscitation with HTS, the M-MDSC/G-MDSC were continuously lower (P < 0.05). In BMNC, after resuscitation with HES, the M-MDSC/G-MDSC were lower at 24 and 72 hours (P < 0.05). Conclusion In mouse hemorrhagic shock model with bacterial infection, the resuscitation with NS, HTS, or HES induced difference changes in MDSC and M-MDSC/G-MDSC, which were time-dependent and organ-specific. Resuscitation with crystalloid, like NS or HTS, showed longer effects on the MDSC and M-MDSC/G-MDSC in peripheral blood; while HTS has a longer effect on M-MDSC/G-MDSC in the spleen, HES has a stronger impact on the differentiation regulation of MDSC to G-MDSC in the bone marrow.
Collapse
|
50
|
Suk Lee Y, Davila E, Zhang T, Milmoe HP, Vogel SN, Bromberg JS, Scalea JR. Myeloid-derived suppressor cells are bound and inhibited by anti-thymocyte globulin. Innate Immun 2019; 25:46-59. [PMID: 30782043 PMCID: PMC6830891 DOI: 10.1177/1753425918820427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) inhibit T cell responses and are
relevant to cancer, autoimmunity and transplant biology. Anti-thymocyte globulin
(ATG) is a commonly used T cell depletion agent, yet the effect of ATG on MDSCs
has not been investigated. MDSCs were generated in Lewis Lung Carcinoma 1
tumor-bearing mice. MDSC development and function were assessed in
vivo and in vitro with and without ATG
administration. T cell suppression assays, RT-PCR, flow cytometry and arginase
activity assays were used to assess MDSC phenotype and function. MDSCs increased
dramatically in tumor-bearing mice and the majority of splenic MDSCs were of the
polymorphonuclear subset. MDSCs potently suppressed T cell proliferation.
ATG-treated mice developed 50% fewer MDSCs and these MDSCs were significantly
less suppressive of T cell proliferation. In vitro, ATG
directly bound 99.6% of MDSCs. CCR7, L-selectin and LFA-1 were expressed by both
T cells and MDSCs, and binding of LFA-1 was inhibited by ATG pre-treatment.
Arg-1 and PD-L1 transcript expression were reduced 30–40% and arginase activity
decreased in ATG-pretreated MDSCs. MDSCs were bound and functionally inhibited
by ATG. T cells and MDSCs expressed common Ags which were also targets of ATG.
ATG may be helpful in tumor models seeking to suppress MDSCs. Alternatively, ATG
may inadvertently inhibit important T cell regulatory events in autoimmunity and
transplantation.
Collapse
Affiliation(s)
- Young Suk Lee
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Eduardo Davila
- 2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Tianshu Zhang
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Hugh P Milmoe
- 1 Department of Surgery, University of Maryland, Baltimore, USA
| | - Stefanie N Vogel
- 2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Jonathan S Bromberg
- 1 Department of Surgery, University of Maryland, Baltimore, USA.,2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| | - Joseph R Scalea
- 1 Department of Surgery, University of Maryland, Baltimore, USA.,2 Department of Microbiology and Immunology, University of Maryland, Baltimore, USA
| |
Collapse
|