1
|
Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Mol Neurodegener 2022; 17:55. [PMID: 36002854 PMCID: PMC9404585 DOI: 10.1186/s13024-022-00552-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Psychiatry and the NIA-Designated Mount Sinai Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- James J Peters VA Medical Center, New York, Bronx NY 10468 USA
| |
Collapse
|
2
|
Okuzono Y, Sakuma H, Miyakawa S, Ifuku M, Lee J, Das D, Banerjee A, Zhao Y, Yamamoto K, Ando T, Sato S. Reduced TREM2 activation in microglia of patients with Alzheimer's disease. FEBS Open Bio 2021; 11:3063-3080. [PMID: 34523252 PMCID: PMC8564098 DOI: 10.1002/2211-5463.13300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). Differentially expressed genes (DEGs) following TREM2 activation were compared with the gene set extracted from microglial single nuclear RNA sequencing data of patients with AD, using gene set enrichment analysis. We isolated an anti-TREM2-specific agonistic antibody, Hyb87, from anti-human TREM2 antibodies generated using binding and agonism assays, which helped us identify 300 upregulated and 251 downregulated DEGs. Pathway enrichment analysis suggested that TREM2 activation may be associated with Th2-related pathways. TREM2 activation was lower in AD microglia than in microglia from healthy subjects or patients with mild cognitive impairment. TREM2 activation also showed a significant negative correlation with disease progression. Pathway enrichment analysis of DEGs controlled by TREM2 activity indicated that TREM2 activation in AD may lead to anti-apoptotic signaling, immune response, and cytoskeletal changes in the microglia. We showed that TREM2 activation decreases with AD progression, in support of a protective role of TREM2 activation in AD. In addition, the agonistic anti-TREM2 antibody can be used to identify TREM2 activation state in AD microglia.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Hiroyuki Sakuma
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuuichi Miyakawa
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Masataka Ifuku
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Jonghun Lee
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Debashree Das
- Early Target DiscoveryResearch, Takeda California, Inc.San DiegoCAUSA
| | - Antara Banerjee
- GI ImmunologyResearch, Takeda California, Inc.San DiegoCAUSA
| | - Yang Zhao
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Koji Yamamoto
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Tatsuya Ando
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuji Sato
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
3
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|
4
|
Viñas-Giménez L, Donadeu L, Alsina L, Rincón R, de la Campa EÁ, Esteve-Sole A, Català A, Colobran R, de la Cruz X, Sayós J, Martínez-Gallo M. Molecular analysis of the novel L243R mutation in STXBP2 reveals impairment of degranulation activity. Int J Hematol 2019; 111:440-450. [PMID: 31865540 DOI: 10.1007/s12185-019-02796-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
The presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection. Remarkably, the results of the degranulation assay showed reduction of CD107a median fluorescence intensity (MFI) and absent cytotoxicity. Genetic analysis identified compound heterozygous mutations in STXBP2 gene: a previously reported splicing defect in exon 15 (c.1247-1G>C, p.V417LfsX126) and a novel missense mutation in exon 9 (c.728T>G, p.L243R). Transfection experiments of STXBP2-L243R or STXBP2-WT constructs showed an undetectable protein expression of the STXBP2-L243R mutation. The residue L243 is highly preserved evolutionarily; moreover, computational analysis of its structure revealed its participation in the rich network of interactions that stabilizes domains 2 and 3 of the protein. Altogether, we demonstrated by molecular and in silico analysis that the new L243R mutation in STXBP2 plays a pathogenic role that, together with the p.Val417Leufsc mutation, shows the synergistic negative effect of these two mutations on STXBP2 function, leading to a decrease of degranulatory activity in vivo.
Collapse
Affiliation(s)
- Laura Viñas-Giménez
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Laura Donadeu
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Rafael Rincón
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elena Álvarez de la Campa
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Esteve-Sole
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Hematology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Catala per la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain.
- Institut de Recerca Vall hebron (VHIR), Immune Regulation and Immunotherapy Group, Edifici Mediterrania, Lab 09, Planta baixa, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain.
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Dong Y, Zhang T, Li X, Yu F, Guo Y. Comprehensive analysis of coexpressed long noncoding RNAs and genes in breast cancer. J Obstet Gynaecol Res 2018; 45:428-437. [DOI: 10.1111/jog.13840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Dong
- Schools of Medicine and Nursing Sciences; Huzhou University; Huzhou China
| | - Ting Zhang
- Schools of Medicine and Nursing Sciences; Huzhou University; Huzhou China
| | - Xining Li
- Schools of Medicine and Nursing Sciences; Huzhou University; Huzhou China
| | - Feng Yu
- Schools of Medicine and Nursing Sciences; Huzhou University; Huzhou China
| | - Yue Guo
- Schools of Medicine and Nursing Sciences; Huzhou University; Huzhou China
| |
Collapse
|
6
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
7
|
Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Sci Rep 2017; 7:13544. [PMID: 29051512 PMCID: PMC5648872 DOI: 10.1038/s41598-017-12881-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G). We identified a missense mutation arginine 33 to glutamine (R33Q) in CD300f by direct sequencing of exon 2 in peripheral blood samples from 50 patients with multiple sclerosis (MS). Levels of expression of CD300f were almost undetectable on monocytes from the patient bearing the R33Q mutation compared with healthy individuals. Whereas R33Q mutation had no effect in the formation of CD300f complexes, the inhibition of protein synthesis with cycloheximide indicated that CD300f R33Q is less stable than native CD300f. Finally, we report that the levels of expression of CD300f on the surface of classical and intermediate monocytes from MS patients are significantly lower when compared to the same cell populations in healthy individuals.
Collapse
|
8
|
Hamidi Hay E, Roberts A. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed. J Anim Sci 2017; 95:1467-1471. [PMID: 28464084 DOI: 10.2527/jas.2016.1355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Longevity is a highly important trait to the efficiency of beef cattle production. The objective of this study was to evaluate the genomic prediction of longevity and identify genomic regions associated with this trait. The data used in this study consisted of 547 Composite Gene Combination cows (1/2 Red Angus, 1/4 Charolais, 1/4 Tarentaise) born from 2002 to 2011 genotyped with Illumina BovineSNP50 BeadChip. Three models were used to assess genomic prediction: Bayes A, Bayes B and GBLUP using a genomic relationship matrix. To identify genomic regions associated with longevity 2 approaches were adopted: single marker genome wide association and Bayesian approach using GenSel software. The genomic prediction accuracy was low 0.28, 0.25, and 0.22 for Bayes A, Bayes B and GBLUP, respectively. The single-marker genome wide association study (GWAS)identified 5 loci with -value less than 0.05 after false discovery correction: UA-IFASA-7571 on chromosome 19 (58.03 Mb), ARS-BFGL-BAC-15059 on BTA 1 (28.8 Mb), ARS-BFGL-NGS-104159 on BTA3 (29.4 Mb), ARS-BFGL-NGS-32882 on BTA9 (104.07 Mb) and ARS-BFGL-NGS-32883 on BTA25 (33.77 Mb). The Bayesian GWAS yielded 4 genomic regions overlapping with the single marker GWAS results. The region with the highest percentage of genomic variance (3.73%) was detected on chromosome 19. Both GWAS approaches adopted in this study showed evidence for association with various chromosomal locations.
Collapse
|
9
|
Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 2016; 12:1239-1249. [PMID: 27266327 PMCID: PMC5158012 DOI: 10.1080/1744666x.2016.1196138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The events in the cellular and molecular signaling triggered during inflammation mitigate tissue healing. The metabolic check-point control mediated by 5'-adenosine monophosphate-activated protein kinase (AMPK) is crucial for switching the cells into an activated state capable of mediating inflammatory events. The cell metabolism involved in the inflammatory response represents a potential therapeutic target for the pharmacologic management of inflammation. Areas covered: In this article, a critical review is presented on triggering receptor expressed on myeloid cell (TREM) receptors and their role in the inflammatory responses, as well as homeostasis between different TREM molecules and their regulation. Additionally, we discussed the relationship between TREM and AMPK to identify novel targets to limit the inflammatory response. Literature search was carried out from the National Library of Medicine's Medline database (using PubMed as the search engine) and Google Scholar and identified relevant studies up to 30 March 2016 using inflammation, TREM, AMPK, as the key words. Expert commentary: The prevention of phenotype switching of immune cells during inflammation by targeting AMPK and TREM-1 could be beneficial for developing novel management strategies for inflammation and associated complications.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
10
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Lepone LM, Donahue RN, Grenga I, Metenou S, Richards J, Heery CR, Madan RA, Gulley JL, Schlom J. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types. J Circ Biomark 2016; 5:5. [PMID: 28936253 PMCID: PMC5548330 DOI: 10.5772/62322] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Recent advances in human immunology have led to the identification of novel immune cell subsets and the biological function of many of these subsets has now been identified. The recent US Food and Drug Administration approval of several immunotherapeutics for the treatment of a variety of cancer types and the results of ongoing immunotherapy clinical studies requires a more thorough interrogation of the immune system. We report here the use of flow cytometry-based analyses to identify 123 immune cell subsets of peripheral blood mononuclear cells. The use of these panels defines multiple differences in younger (< 40 years) vs. older (≥ 40 years) individuals and between aged-matched apparently healthy individuals and metastatic cancer patients, aspects not seen in the analysis of the following standard immune cell types: CD8, CD4, natural killer, natural killer-T, regulatory T, myeloid derived suppressor cells, conventional dendritic cells (DCs), plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identification of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.
Collapse
Affiliation(s)
- Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Metenou
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Peluffo H, Solari-Saquieres P, Negro-Demontel ML, Francos-Quijorna I, Navarro X, López-Vales R, Sayós J, Lago N. CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. J Neuroinflammation 2015; 12:145. [PMID: 26259611 PMCID: PMC4531482 DOI: 10.1186/s12974-015-0364-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has recently become evident that activating/inhibitory cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). The immunoreceptor CD300f expressed on monocytes, neutrophils, and mast cells modulates inflammation, phagocytosis, and outcome in models of autoimmune demyelination, allergy, and systemic lupus erythematosus. On the other hand, a finely regulated inflammatory response is essential to induce regeneration after injury to peripheral nerves since hematogenous macrophages, together with resident macrophages and de-differentiated Schwann cells, phagocyte distal axonal and myelin debris in a well-orchestrated inflammatory response. The possible roles and expression of CD300f and its ligands have not been reported under these conditions. METHODS By using quantitative PCR (QPCR) and CD300f-IgG2a fusion protein, we show the expression of CD300f and its ligands in the normal and crush injured sciatic nerve. The putative role of CD300f in peripheral nerve regeneration was analyzed by blocking receptor-ligand interaction with the same CD300f-IgG2a soluble receptor fusion protein in sciatic nerves of Thy1-YFP-H mice injected at the time of injury. Macrophage M1/M2 polarization phenotype was also analyzed by CD206 and iNOS expression. RESULTS We found an upregulation of CD300f mRNA and protein expression after injury. Moreover, the ligands are present in restricted membrane patches of Schwann cells, which remain stable after the lesion. The lesioned sciatic nerves of Thy1-YFP-H mice injected with a single dose of CD300f-IgG2a show long lasting effects on nerve regeneration characterized by a lower number of YFP-positive fibres growing into the tibial nerve after 10 days post lesion (dpl) and a delayed functional recovery when compared to PBS- or IgG2a-administered control groups. Animals treated with CD300f-IgG2a show at 10 dpl higher numbers of macrophages and CD206-positive cells and lower levels of iNOS expression than both control groups. At later time points (28 dpl), increased numbers of macrophages and iNOS expression occur. CONCLUSIONS Taken together, these results show that the pair CD300f ligand is implicated in Wallerian degeneration and nerve regeneration by modulating both the influx and phenotype of macrophages.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay.
| | - Patricia Solari-Saquieres
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Maria Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| | - Isaac Francos-Quijorna
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Ruben López-Vales
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
- Neurodegeneration Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay.
| |
Collapse
|
13
|
Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol 2015; 66:463-71. [PMID: 26021803 DOI: 10.1016/j.molimm.2015.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/08/2015] [Accepted: 05/10/2015] [Indexed: 11/23/2022]
Abstract
Cholera toxin (CTX) is a virulent factor of Vibrio cholerae that causes life-threatening diarrheal disease. Its non-toxic subunit CTB has been extensively studied for vaccine delivery. In immune cells, CTB induces a number of signaling molecules related to cellular activation and cytokine production. The mechanisms by which CTB exerts its immunological effects are not understood. We report here the immunological targets of CTB. The unexpected finding that GM1 ganglioside inhibited NF-κB activation in human monocytes stimulated with CTX and agonists of Toll-like receptors (TLR) suggests the possibility of CTX-TLR interaction. Indeed, CTX-induced IL-6 production was substantially reduced in MyD88(-/-) or TLR4(-/-) macrophages. Ectopic expression of TLR4 was required for CTX-induced NF-κB activation in HEK 293 cells. Furthermore, the inflammatory capacity of CTB was lost in the absence of TLR4, adaptor protein FcRγ, or its downstream signaling molecule CARD9. Attempts have been made to identify CTB-binding targets from various C-type lectin and immunoglobulin-like receptors. CTB targeted not only GM1 and TLR4 but also TREM2 and LMIR5/CD300b. CTB-TREM2 interaction initiated signal transduction through adaptor protein DAP12. The binding of CTB inhibited LMIR5 activation induced by its endogenous ligand 3-O-sulfo-β-d-galactosylceramide C24:1. In summary, CTB targets TLR4, FcRγ-CARD9, TREM2, and LMIR5. These findings provide new insights into the immunobiology of cholera toxin.
Collapse
|
14
|
Ejarque-Ortiz A, Solà C, Martínez-Barriocanal Á, Schwartz S, Martín M, Peluffo H, Sayós J. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation. PLoS One 2015; 10:e0123928. [PMID: 25927603 PMCID: PMC4415817 DOI: 10.1371/journal.pone.0123928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/02/2022] Open
Abstract
CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Margarita Martín
- Biochemistry Unit, Faculty of Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Hugo Peluffo
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
15
|
Phongsisay V. Campylobacter jejuni targets immunoglobulin-like receptor LMIR5. Mol Immunol 2015; 63:574-8. [DOI: 10.1016/j.molimm.2014.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 01/28/2023]
|
16
|
Phongsisay V, Iizasa E, Hara H, Yamasaki S. 3-O-sulfo-β-d-galactose moiety of endogenous sulfoglycolipids is a potential ligand for immunoglobulin-like receptor LMIR5. Mol Immunol 2015; 63:595-9. [DOI: 10.1016/j.molimm.2014.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/25/2022]
|
17
|
LMIR5 extracellular domain activates myeloid cells through toll-like receptor 4. Mol Immunol 2014; 62:169-77. [PMID: 25004110 DOI: 10.1016/j.molimm.2014.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
LMIR5/CD300b is an activating immunoglobulin-like receptor whose extracellular domain (LMIR5-Fc) is constitutively released from immune cells. The release of LMIR5-Fc is augmented upon stimulation with TLR agonists. LMIR5-Fc is reported to possess inflammatory activity and amplify LPS-induced lethal inflammation; however, its action mechanism has not been clarified. This study was aimed to identify receptors for LMIR5-Fc. Using NF-κB reporter cells in human monocytes THP1, LMIR5-Fc was solely found to trigger NF-κB activation among various signaling receptors examined. In addition, an injection of LMIR5-Fc into the mouse peritoneal resulted in a rapid production of inflammatory mediators and an amplification of LPS activity. Moreover, LMIR5-Fc-induced cytokine production was markedly reduced in TLR4-deficient mouse macrophages. Using TLR4 reporter cells, the LMIR5-Fc sample that contained a trace amount of endotoxin under the sensitivity of reporter cells triggered a potent NF-κB activation. Furthermore, the inflammatory activity of LMIR5-Fc was completely lost by heating but unchanged by polymyxin B pretreatment. Using TLR4 fusion protein, TLR4 was found to interact specifically with LMIR5-overexpressing cells. Therefore, LMIR5-Fc is new inflammatory mediator and endogenous ligand of TLR4. This study provides an insight into the positive feedback mechanism of inflammation through TLR4-LMIR5-Fc axis.
Collapse
|
18
|
Paradowska-Gorycka A, Jurkowska M. Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Hum Immunol 2013; 74:730-7. [DOI: 10.1016/j.humimm.2013.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/24/2013] [Accepted: 02/19/2013] [Indexed: 01/05/2023]
|
19
|
Simhadri VR, Mariano JL, Gil-Krzewska A, Zhou Q, Borrego F. CD300c is an activating receptor expressed on human monocytes. J Innate Immun 2013; 5:389-400. [PMID: 23571507 DOI: 10.1159/000350523] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022] Open
Abstract
Human CD300 molecules comprise a family of receptors that regulate many immune cell processes. They are mostly expressed on myeloid cells, although expression of two members, CD300a and CD300c, has also been described on lymphocytes. However, due to the lack of specific antibodies that distinguish between these two receptors, it has been difficult to determine the expression pattern and function of CD300a and CD300c in primary cells. Here, we have identified a specific monoclonal antibody, clone TX45, that recognizes only CD300c and show that within freshly isolated blood leukocytes, monocytes are the only cells that express CD300c on the cell surface. In vitro differentiation experiments revealed that CD300c is differentially expressed on different monocyte-derived cells, including macrophages and dendritic cells. Furthermore, TLR ligands LPS and flagellin dynamically regulate the expression of CD300c. Cross-linking of this receptor with clone TX45 monoclonal antibody induced calcium mobilization, upregulation of the costimulatory molecule CD86 and the production of inflammatory cytokines. Importantly, LPS-mediated production of inflammatory cytokines by monocytes was further enhanced if CD300c was simultaneously engaged by the agonist antibody. Altogether, our results show that human CD300c is an activating receptor expressed on monocytes and that it has a potential role in inflammatory responses.
Collapse
Affiliation(s)
- Venkateswara R Simhadri
- Laboratory of Molecular and Developmental Immunology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
The CD300 family of molecules modulates a broad and diverse array of immune cell processes via their paired activating and inhibitory receptor functions. The description that CD300 molecules are able to recognize lipids, such as extracellular ceramide, phosphatidylserine, and phosphatidylethanolamine, that are exposed on the outer leaflet of the plasma membrane of dead and activated cells has opened a new field of research. Through their binding to lipids and other ligands, this family of receptors is poised to have a significant role in complex biological processes and in the host response to severe pathological conditions. Indeed, published data have demonstrated their participation in the pathogenesis of several disease states. Moreover, this family of receptors has great potential as targets for diagnosis and therapeutic purposes in infectious diseases, allergies, cancer, and other pathological situations. For instance, one member of the family, CD300a, has been studied as a possible biomarker. Here, a review is provided on the cellular distribution of the human and mouse families of receptors, the stimuli that regulate their expression, their ability to tune leukocyte function and immune responses, their signaling pathways, ligand recognition, and their clinical relevance.
Collapse
|
21
|
CD300 molecule regulation of human dendritic cell functions. Immunol Lett 2012; 149:93-100. [PMID: 23072861 DOI: 10.1016/j.imlet.2012.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/24/2022]
Abstract
Dendritic cells (DC) are a heterogeneous population of leucocytes which play a key role in initiating and modulating immune responses. The human CD300 family consists of six immunoregulatory leucocyte membrane molecules that regulate cellular activity including differentiation, viability, cytokine and chemokine secretion, phagocytosis and chemotaxis. Recent work has identified polar lipids as probable ligands for these molecules in keeping with the known evolutionary conservation of this family. CD300 molecules are all expressed by DC; CD300b, d, e and f are restricted to different subpopulations of the myeloid DC lineage. They have been shown to regulate DC function both in vitro and in vivo. In addition DC are able to regulate their CD300 expression in an autocrine manner. The potential to form different CD300 heterodimers adds further complexity to their role in fine tuning DC function. Expression of CD300 molecules is altered in a number of diseases including many where DC are implicated in the pathogenesis. CD300 antibodies have been demonstrated to have significant therapeutic effect in animal models. The mechanisms underlying the immunoregulatory effects of the CD300 family are complex. Deciphering their physiology will allow effective targeting of these molecules as novel therapies in a wide variety of inflammatory diseases.
Collapse
|
22
|
Comas-Casellas E, Martínez-Barriocanal Á, Miró F, Ejarque-Ortiz A, Schwartz S, Martín M, Sayós J. Cloning and characterization of CD300d, a novel member of the human CD300 family of immune receptors. J Biol Chem 2012; 287:9682-9693. [PMID: 22291008 DOI: 10.1074/jbc.m111.279224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein we present the cloning and molecular characterization of CD300d, a member of the human CD300 family of immune receptors. CD300d cDNA was cloned from RNA obtained from human peripheral blood mononuclear cells, and RT-PCR revealed the gene to be expressed in cells of myeloid lineage. The cloned cDNA encoded for a type I protein with a single extracellular Ig V-type domain and a predicted molecular mass of 21.5 kDa. The short cytoplasmic tail is lacking in any known signaling motif, but there is a negatively charged residue (glutamic acid) within the transmembrane domain. CD300d forms complexes with the CD300 family members, with the exception of CD300c. Contrary to other activating members of the CD300 family of receptors, surface expression of CD300d in COS-7-transfected cells required the presence of an immunoreceptor tyrosine-based activating motif-bearing adaptor (FcεRγ). Accordingly, we found that CD300d was able to recruit FcεRγ. Unexpectedly, we could not detect CD300d on the surface of cells expressing FcεRγ, suggesting the existence of unknown mechanisms regulating the trafficking of this molecule. The presence of other CD300 molecules also did not modify the intracellular expression of CD300d. In fact, the presence of CD300d decreased the levels of surface expression of CD300f but not CD300c. Our data suggest that the function of CD300d would be related to the regulation of the expression of other CD300 molecules and the composition of CD300 complexes on the cell surface.
Collapse
Affiliation(s)
- Emma Comas-Casellas
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine, Instituto de Salud Carlos III, Barcelona 08035, Spain
| | - Águeda Martínez-Barriocanal
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine, Instituto de Salud Carlos III, Barcelona 08035, Spain,.
| | - Francesc Miró
- Gene Translation Laboratory, Institute for Research in Biomedicine, Barcelona Science Park, Barcelona 08028, Spain, and
| | - Aroa Ejarque-Ortiz
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine, Instituto de Salud Carlos III, Barcelona 08035, Spain
| | - Simo Schwartz
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine, Instituto de Salud Carlos III, Barcelona 08035, Spain,; Drug Delivery and Targeting Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Margarita Martín
- Biochemistry Unit, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona 08036, Spain
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain; Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine, Instituto de Salud Carlos III, Barcelona 08035, Spain,.
| |
Collapse
|
23
|
Peluffo H, Alí-Ruiz D, Ejarque-Ortíz A, Heras-Alvarez V, Comas-Casellas E, Martínez-Barriocanal A, Kamaid A, Alvarez-Errico D, Negro ML, Lago N, Schwartz S, Villaverde A, Sayós J. Overexpression of the immunoreceptor CD300f has a neuroprotective role in a model of acute brain injury. Brain Pathol 2011; 22:318-28. [PMID: 21951326 DOI: 10.1111/j.1750-3639.2011.00537.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is well known that cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). We have analyzed the function of cluster of differentiation (CD)300f immunoreceptor in a model of excitotoxic rat brain damage. First, to explore the presence of endogenous ligand(s) for this receptor we used a human CD300f-Ig soluble protein and confocal microscopy, showing specific staining mainly in CNS white matter and on the surface of oligodendrocytes and certain astrocytes. Next, we demonstrated in a model of in vivo rat brain excitotoxic damage that the overexpression of human CD300f induced a significant reduction in the lesion volume. To validate these results, we cloned the rat ortholog of CD300f protein (rCD300f). The overexpression of rCD300f receptor had a comparable neuroprotective effect after the acute brain injury and a similar CNS staining pattern when stained with the rCD300f-Ig soluble protein. Interestingly, when we analyzed the expression pattern of rCD300f in brain cells by quantitative polymerase chain reaction and immunohistochemistry, we detected the expression of CD300f as expected in microglial cells, but also in oligodendrocytes and neurons. These data suggest that the neuroprotective role of CD300f would be the result of a complex network of cell interactions.
Collapse
Affiliation(s)
- Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cannon JP, O'Driscoll M, Litman GW. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics 2011; 64:39-47. [PMID: 21800138 DOI: 10.1007/s00251-011-0562-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
CD300, triggering receptor expressed on myeloid cells (TREM), and TREM-like (TREML) receptors are important regulators of the mammalian immune response. Homologs of these receptors, which occur in activating and inhibitory transmembrane forms as well as soluble variants, are found throughout the jawed vertebrates. Specific ligands for most members of these receptor families remain elusive. We report here that at least 11 separate receptors from the CD300, TREM, and TREML families engage in robust and specific interactions with major polar lipids found in prokaryotic and eukaryotic cell membranes. Both soluble and membrane-bound receptor forms exhibit lipid interactions in the solid phase as well as in a physiological signaling context. Overlapping but distinctive patterns of receptor specificity suggest that the CD300/TREM system as a whole may discriminate immunological stimuli based on lipid signatures, thereby influencing downstream responses.
Collapse
Affiliation(s)
- John P Cannon
- Department of Pediatrics, Children's Research Institute, University of South Florida, 140 Seventh Avenue South, CRI 3008, St. Petersburg, FL 33701, USA
| | | | | |
Collapse
|
25
|
Wu Y, Chen Q, Pai T, Ross AC. All-trans-retinoic acid and Erk1/2 signaling synergistically regulate the expression of CD300B in human monocytic cells. Cell Immunol 2011; 268:68-78. [PMID: 21450279 DOI: 10.1016/j.cellimm.2011.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/20/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022]
Abstract
The regulation of the cell-surface receptors that constitute the gene cluster, CD300, also known as the Myeloid Activating/Inhibitory Receptor (MAIR) family, is poorly understood. In the present study, we tested the hypothesis that all-trans-RA (RA), a bioactive form of vitamin A long recognized for its role in regulation of immune cell activities, may be a potent regulator of the expression of human CD300B. In monocytic THP-1 cells, RA (20nM) alone significantly increased CD300B mRNA within 2h and up to 20-fold after 24h; however, CD300B protein determined by flow cytometry and confocal microscopy showed little change. A search for coactivating molecules revealed that phorbol myristyl acetate (PMA), a mimetic of diacylglycerol, alone increased CD300B mRNA by less than 5-fold; however, the combination of at-RA and PMA increased CD300B mRNA nearly 60-fold. Moreover, CD300B protein was increased. CD300B molecules were mainly located on the plasma membrane and in the endosomal compartment, sharing a distribution/recycling pattern similar to transferrin receptor CD71. The induction of CD300B mRNA by PMA required signaling through the MEK/ERK branch of the MAP kinase pathway, as PD98059, a MEK1/2 inhibitor, abrogated this response, while SB203580, an inhibitor of the p38 pathway, had no effect. Our data suggest a model in which RA alone induces a CD300B mRNA response in which transcripts accumulate but remain untranslated and therefore "sterile," whereas RA combined with signals from the ERK1/2 pathway results in both increased CD300B transcription and protein expression on the cell surface and in endocytic vesicles.
Collapse
Affiliation(s)
- Yong Wu
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
26
|
Ribeiro CMS, Bird S, Raes G, Ghassabeh GH, Schijns VEJC, Pontes MJSL, Savelkoul HFJ, Wiegertjes GF. A novel soluble immune-type receptor (SITR) in teleost fish: carp SITR is involved in the nitric oxide-mediated response to a protozoan parasite. PLoS One 2011; 6:e15986. [PMID: 21305002 PMCID: PMC3031540 DOI: 10.1371/journal.pone.0015986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
Background The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite.
Collapse
Affiliation(s)
- Carla M S Ribeiro
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Martínez-Barriocanal A, Comas-Casellas E, Schwartz S, Martín M, Sayós J. CD300 heterocomplexes, a new and family-restricted mechanism for myeloid cell signaling regulation. J Biol Chem 2010; 285:41781-94. [PMID: 20959446 DOI: 10.1074/jbc.m110.140889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CD300 family of myeloid immunoglobulin receptors includes activating (CD300b, CD300e) and inhibitory members (CD300a, CD300f), as well as molecules of uncertain function presenting a negative charge within their transmembrane domain (CD300c, CD300d). In this paper, we establish that CD300c is a functional immune receptor able to deliver activating signals upon ligation in RBL-2H3 mast cells. CD300c signaling is partially mediated by a direct association with the immune receptor tyrosine-based activation motif-bearing adaptor FcεRγ. The existence of complementary transmembrane-charged residues in certain CD300 receptors suggested the formation of heterodimers within this family. Indeed, we proved the interaction between CD300b and CD300c in transfected COS-7 cells and demonstrated that it has important functional consequences. Unexpectedly, dimmer formation was dependent on the immunoglobulin domains rather than the charged transmembrane residues. Concordantly, all CD300 members were found to interact with each other, even with themselves, forming both homo- and heterodimers. We found that the combination of CD300 receptors in a complex differentially modulates the signaling outcome, strongly suggesting a new mechanism by which CD300 complexes could regulate the activation of myeloid cells upon interaction with their natural ligands.
Collapse
Affiliation(s)
- Agueda Martínez-Barriocanal
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d'Hebrón, Institut de Recerca, Universitat Autónoma de Barcelona, Barcelona 08035, Spain.
| | | | | | | | | |
Collapse
|
28
|
Brckalo T, Calzetti F, Pérez-Cabezas B, Borràs FE, Cassatella MA, López-Botet M. Functional analysis of the CD300e receptor in human monocytes and myeloid dendritic cells. Eur J Immunol 2010; 40:722-32. [PMID: 20039296 DOI: 10.1002/eji.200939468] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The CD300e surface molecule, originally termed immune receptor expressed by myeloid cells (IREM)-2, was reported to associate with the DNAX-activating protein (DAP) 12 adaptor in co-transfected cells, and is capable of signaling. In the present report, we investigated in detail the function of CD300e in monocytes and myeloid DC (mDC) freshly isolated from peripheral blood of normal blood donors. Upon engagement by an agonistic mAb, CD300e triggered an intracellular calcium mobilization and superoxide anion O(2) (-) production in monocytes. Activation via CD300e provided survival signals that prevented monocyte and mDC apoptosis, triggered the production of pro-inflammatory cytokines and upregulated the expression of cell surface co-stimulatory molecules in both cell types. Moreover, CD300e activation of mDC enhanced the alloreactive response of naive T cells. Overall, our data formally support the notion that CD300e functions as an activating receptor capable of regulating the innate immune response in myeloid cells.
Collapse
Affiliation(s)
- Tamara Brckalo
- Immunology Unit, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Feng LN, Lu DQ, Bei JX, Chen JL, Liu Y, Zhang Y, Liu XC, Meng ZN, Wang L, Lin HR. Molecular cloning and functional analysis of polymeric immunoglobulin receptor gene in orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:282-9. [DOI: 10.1016/j.cbpb.2009.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 01/14/2023]
|
30
|
Clark GJ, Ju X, Azlan M, Tate C, Ding Y, Hart DNJ. The CD300 molecules regulate monocyte and dendritic cell functions. Immunobiology 2009; 214:730-6. [PMID: 19592130 DOI: 10.1016/j.imbio.2009.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The CD300 glycoproteins are a family of related leucocyte surface molecules that modulate a diverse array of cell processes via their paired triggering and inhibitory receptor functions. All family members have a single Ig-V like domain and they share a common evolutionary pathway. At least one member of the family has undergone significant positive selection (ranked second in the top 50) indicating a need to maintain some crucial function. Here we have reviewed the CD300 family members, and their expression on cells of the monocyte and dendritic cell lineages. The consequences of CD300 molecule expression by these leucocyte lineages are only now beginning to be understood. The ability to fine tune monocyte and dendritic cell function and immune responses highlights several potential options to exploit these molecules as therapeutic targets in chronic inflammatory diseases, allergy and other disease states.
Collapse
Affiliation(s)
- Georgina J Clark
- Mater Medical Research Institute, South Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
The CD300 family of molecules are evolutionarily significant regulators of leukocyte functions. Trends Immunol 2009; 30:209-17. [PMID: 19359216 DOI: 10.1016/j.it.2009.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/23/2022]
Abstract
The CD300 glycoproteins are a family of cell surface molecules that modulate a diverse array of cell processes via their paired triggering and inhibitory receptor functions. Family members share a common evolutionary pathway and at least one member of the family has undergone significant positive selection, indicating their crucial value to the host. This review clarifies the occasionally confusing usage of nomenclature for the CD300 family and summarizes our current understanding of their genomics, expression and function. Their ability to fine tune leukocyte function and immune responses highlights several potential options to exploit the CD300 molecules as therapeutic targets in chronic inflammatory diseases, allergy and other disease states.
Collapse
|
32
|
Abstract
The DAP10 and DAP12 signaling subunits are highly conserved in evolution and associate with a large family of receptors in hematopoietic cells, including dendritic cells, plasmacytoid dendritic cells, neutrophils, basophils, eosinophils, mast cells, monocytes, macrophages, natural killer cells, and some B and T cells. Some receptors are able to associate with either DAP10 or DAP12, which contribute unique intracellular signaling functions. Studies of humans and mice deficient in these signaling subunits have provided surprising insights into the physiological functions of DAP10 and DAP12, demonstrating that they can either activate or inhibit immune responses. DAP10- and DAP12-associated receptors have been shown to recognize both host-encoded ligands and ligands encoded by microbial pathogens, indicating that they play an important role in innate immune responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Autoantigens/immunology
- Autoantigens/metabolism
- Carbohydrates/immunology
- Conserved Sequence/immunology
- Evolution, Molecular
- Feedback, Physiological/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Infections/immunology
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Natural Cytotoxicity Triggering Receptor 2/immunology
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Semaphorins/immunology
- Semaphorins/metabolism
- Signal Transduction/immunology
- Stress, Physiological/immunology
- Triggering Receptor Expressed on Myeloid Cells-1
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0414, USA.
| |
Collapse
|
33
|
Yamanishi Y, Kitaura J, Izawa K, Matsuoka T, Oki T, Lu Y, Shibata F, Yamazaki S, Kumagai H, Nakajima H, Maeda-Yamamoto M, Tybulewicz VLJ, Takai T, Kitamura T. Analysis of mouse LMIR5/CLM-7 as an activating receptor: differential regulation of LMIR5/CLM-7 in mouse versus human cells. Blood 2008; 111:688-98. [PMID: 17928527 DOI: 10.1182/blood-2007-04-085787] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have analyzed leukocyte mono-Ig-like receptor 5 (LMIR5) as an activating receptor among paired LMIRs. Mouse LMIR5 (mLMIR5) is expressed in myeloid cells such as mast cells, granulocytes, macrophages, and dendritic cells. Cross-linking of transduced mLMIR5 in bone marrow-derived mast cells (BMMCs) caused activation events, including cytokine production, cell survival, degranulation, and adhesion to the extracellular matrix. mLMIR5 associated with DAP12 and to a lesser extent with DAP10, and mLMIR5-mediated functions of BMMCs were strongly inhibited by DAP12 deficiency. Importantly, cross-linking of endogenous mLMIR5 induced Syk-dependent activation of fetal liver-derived mast cells. Unlike mLMIR5, cross-linking of human LMIR5 (hLMIR5) induced cytokine production of BMMCs even in the absence of both DAP12 and DAP10, suggesting the existence of unidentified adaptors. Interestingly, hLMIR5 possessed a tyrosine residue (Y188) in the cytoplasmic region. Signaling via Y188 phosphorylation played a predominant role in hLMIR5-mediated cytokine production in DAP12-deficient, but not wild-type BMMCs. In addition, experiments using DAP10/DAP12 double-deficient BMMCs suggested the existence of Y188 phoshorylation-dependent and -independent signals from unidentified adaptors. Collectively, although both mouse and human LMIR5 play activatory roles in innate immunity cells, the functions of LMIR5 were differentially regulated in mouse versus human cells.
Collapse
|
34
|
Dimasi N, Flot D, Dupeux F, Márquez JA. Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:204-8. [PMID: 17329815 PMCID: PMC2330191 DOI: 10.1107/s1744309107004903] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/30/2007] [Indexed: 11/11/2022]
Abstract
IREM-1 is an inhibitory receptor involved in the functional regulation of myeloid cells. The expression, in vitro folding, purification, crystallization and X-ray data collection of the Ig-V like domain of IREM-1 are reported. X-ray data were collected from a microcrystal (300 x 10 x 10 microm) at 100 K and a diffraction pattern was obtained to 2.6 A resolution on microfocus beamline ID23-2 at the ESRF. The crystal belongs to space group P3(1)21, with unit-cell parameters a = b = 54.23, c = 72.02 A, alpha = gamma = 90, beta = 120 degrees. Assuming the presence of one molecule per asymmetric unit, V(M) (the Matthews coefficient) was calculated to be 1.96 A3 Da(-1) and the solvent content was estimated to be 37.27%. Determination of the IREM-1 structure will provide insights into its structural requirements for ligand discrimination and binding.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Istituto Giannina Gaslini, Largo Gerolamo Gaslini 5, 16147 Genova, Italy
| | - David Flot
- European Molecular Biology Laboratory, Grenoble Outstation, Polygon Scientifique, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Florine Dupeux
- European Molecular Biology Laboratory, Grenoble Outstation, Polygon Scientifique, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - José A. Márquez
- European Molecular Biology Laboratory, Grenoble Outstation, Polygon Scientifique, 6 Rue Jules Horowitz, 38000 Grenoble, France
| |
Collapse
|
35
|
Márquez JA, Galfré E, Dupeux F, Flot D, Moran O, Dimasi N. The Crystal Structure of the Extracellular Domain of the Inhibitor Receptor Expressed on Myeloid Cells IREM-1. J Mol Biol 2007; 367:310-8. [PMID: 17275839 DOI: 10.1016/j.jmb.2007.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 11/21/2022]
Abstract
The immune receptors expressed on myeloid cells (IREM) are type I transmembrane proteins encoded on human chromosome 17 (17q25.1), whose function is believed to be important in controlling inflammation. To date, three IREM receptors have been identified. IREM-1 functions as an inhibitory receptor, whereas IREM-2 and IREM-3 serve an activating function. Here, we report the crystal structure of IREM-1 extracellular domain at 2.6 A resolution. The overall fold of IREM-1 resembles that of a V-type immunoglobulin domain, and reveals overall close homology with immunoglobulin domains from other immunoreceptors such as CLM-1, TREM-1, TLT-1 and NKp44. Comparing the surface electrostatic potential and hydrophobicity of IREM-1 with its murine homologous CLM-1, we observed unique structural properties for the complementary determining region of IREM-1, which suggests that they may be involved in recognition of the IREM-1 ligand. Particularly interesting is the structural conformation and physical properties of the antibody's equivalent CDR3 loop, which we show to be a structurally variable region of the molecule and therefore could be the main structural determinant for ligand discrimination and binding. In addition, the analysis of the IREM-1 structure revealed the presence of four structurally different cavities. Three of these cavities form a continuous hydrophobic groove on the IREM-1 surface, which point to a region of the molecule capable of accommodating potential ligands.
Collapse
Affiliation(s)
- José Antonio Márquez
- European Molecular Biology Laboratory, Grenoble Outstation Polygon Scientifique, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | | | | | | | | | | |
Collapse
|
36
|
Alvarez-Errico D, Sayós J, López-Botet M. The IREM-1 (CD300f) inhibitory receptor associates with the p85alpha subunit of phosphoinositide 3-kinase. THE JOURNAL OF IMMUNOLOGY 2007; 178:808-16. [PMID: 17202342 DOI: 10.4049/jimmunol.178.2.808] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune receptor expressed by myeloid cell 1 (IREM-1) (CD300f) inhibitory receptor displays five cytoplasmic tyrosine residues, two of them (Y205 and Y249) fit with ITIMs, whereas Y236 and Y263 constitute putative binding sites for PI3K. In the present study, immunoprecipitation analysis revealed that both the p85alpha subunit of PI3K and Src homology region 2 domain-containing phosphatase-1 could be recruited by IREM-1 in transfected cells as well as in the U937 monocytic leukemia cells, which constitutively express the receptor. By assaying the ability of different IREM-1 mutants to regulate the secretion of beta-hexosaminidase induced via FcRepsilonI in rat basophilic leukemia cells, both Y205 and Y249 appeared crucial for IREM-1-mediated inhibition. Remarkably, engagement of an IREM-1 mutant (Y(205,249,284)F), which did not recruit Src homology region 2 domain-containing phosphatase-1 and lost its inhibitory function, induced rat basophilic leukemia cell degranulation. This effect was dependent on the recruitment of PI3K, requiring the integrity of Y236 and Y263, and was blocked by PI3K inhibitors (i.e., wortmannin and LY-294002). Altogether, these data reveal a putative functional duality of the IREM-1 myeloid cell receptor.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Molecular Immunopathology Unit, Department de Ciéncies Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|