1
|
Shah M, Moon SU, Shin J, Choi J, Kim D, Woo HG. Pan-Variant SARS-CoV-2 Vaccines Induce Protective Immunity by Targeting Conserved Epitopes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409919. [PMID: 40014015 PMCID: PMC12021035 DOI: 10.1002/advs.202409919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/27/2025] [Indexed: 02/28/2025]
Abstract
The development of a globally effective COVID-19 vaccine faces significant challenges, particularly in redirecting the B-cell response from immunodominant yet variable regions of viral proteins toward their conserved domains. To address this, an integrated strategy is implemented that combines classical B-cell epitope prediction with protein-antibody cluster docking and antibody titer analysis from 30 vaccinated and convalescent individuals. This approach yields stable immunodominant and immunoprevalent B-cell epitopes capable of eliciting robust antibody responses in BALB/c mice and effectively neutralizing pseudoviruses expressing the Spike protein of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron. To achieve a broader T-cell-based immune response, promiscuous T-cell epitopes are identified by integrating classical T-cell epitope predictions, differential scanning fluorimetry, and peptide-MHC structural analysis. Unique peptides with conserved MHC-anchoring residues are identified, enabling binding to a spectrum of MHC-I and MHC-II haplotypes. These peptides elicit strong interferon gamma responses in human peripheral blood mononuclear cells and demonstrate cross-species efficacy by activating both CD4+ and CD8+ T-cells in BALB/c mice. Collectively, these findings highlight the significance of innovative vaccine strategies targeting immunodominant/immunoprevalent B-cell and promiscuous T-cell epitopes to drive broad and robust humoral and cellular immune responses against a wide range of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Masaud Shah
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Sung Ung Moon
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Ji‐Yon Shin
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- AI‐Superconvergence KIURI Translational Research CenterAjou University School of MedicineSuwon16499Republic of Korea
| | - Ji‐Hye Choi
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Doyoon Kim
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
| | - Hyun Goo Woo
- Department of PhysiologyAjou University School of MedicineSuwon16499Republic of Korea
- Ajou Translational Omics Center (ATOC)Research Institute for Innovative MedicineAjou University Medical CenterSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate SchoolAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
2
|
Zhang S, Huang C, Li Y, Li Z, Zhu Y, Yang L, Hu H, Sun Q, Liu M, Cao S. Anti-cancer immune effect of human colorectal cancer neoantigen peptide based on MHC class I molecular affinity screening. Front Immunol 2024; 15:1473145. [PMID: 39559350 PMCID: PMC11570797 DOI: 10.3389/fimmu.2024.1473145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Background Tumor antigen peptide vaccines have shown remarkable efficacy, safety, and reliability in recent studies. However, the screening process for immunopotent antigenic peptides is cumbersome, limiting their widespread application. Identifying neoantigen peptides that can effectively trigger an immune response is crucial for personalized cancer treatment. Methods Whole exome sequencing was performed on patient-derived colon cancer cells to predict 9-amino-acid (9aa) neoantigen peptides. In vitro simulation of endogenous antigen presentation by antigen-presenting cells (dendritic cells) to CD8+ T cells was conducted, aiming to activate the CD8+ immune response to the predicted antigens. The immunological effects of each neoantigen were assessed using flow cytometry and ELISpot assays, while the relationship between neoantigen immunogenicity and MHC molecular affinity was examined. Results 1. Next-generation sequencing (NGS) predicted 9-amino acid (9aa) neoantigen peptides for subsequent immunological analysis.2. Higher mDC Levels in Experimental Group: CD11c+CD83+ mature dendritic cells (mDCs) were 96.6% in the experimental group, compared to 0.051% in the control group. CD80 fluorescence intensity was also significantly higher in the experimental group, confirming a greater mDC presence.3. Neoantigen Peptides Promote CD4+, CD8+ T, and NK Cell Proliferation: After 14 days, flow cytometry showed higher percentages of CD4+ T (37.41% vs 7.8%), CD8+ T (16.67% vs 14.63%), and NK cells (33.09% vs 7.81%) in the experimental group, indicating that the neoantigen peptides induced proliferation of CD4+, CD8+ T cells, and NK cells. 4. The results, analyzed using two-way ANOVA, showed that the standardized T-value for HLA molecular affinity variation in the 1-4 range (Group B) was significantly higher than for ≤1 (Group A, p < 0.0001) and >4 (Group C, p < 0.05). Regarding HLA-allele genotypes, HLA-Type 1 had a significantly higher standardized T-value than HLA-Type 2 (p < 0.05) and HLA-Type 3 (p < 0.0001). HLA-Type 1 was identified as the allele associated with the highest T-value. Conclusion 1. The most immunogenic neoantigens typically exhibit an MHC molecular affinity variation between 1 and 4, indicating that stronger immunogenicity correlates with higher MHC molecular affinity variation. 2. Each patient's HLA molecules were classified into Types 1, 2, and 3, with Type 1 showing the highest binding capacity for neoantigens. Our findings indicate that the most immunogenic neoantigens were associated with HLA Type 1. 3. Neoantigen peptides were shown to activate the proliferation of both CD8+ T-cells and induce proliferation of CD4+ T-cells and NK cells. 4. Variation in MHC molecular affinity and HLA neoantigen genotype are anticipated to serve as valuable variables for screening highly immunogenic neoantigens, facilitating more efficient preparation of effective polypeptide tumor vaccines.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Changxin Huang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongqiang Li
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhaoyang Li
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Zhu
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Yang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haokun Hu
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Quan Sun
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengmeng Liu
- Department of Psychiatry and Psychology, 155 Hospital of Kaifeng City, Kaifeng, China
| | - Songqiang Cao
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
3
|
van de Weijer ML, Samanta K, Sergejevs N, Jiang L, Dueñas ME, Heunis T, Huang TY, Kaufman RJ, Trost M, Sanyal S, Cowley SA, Carvalho P. Tapasin assembly surveillance by the RNF185/Membralin ubiquitin ligase complex regulates MHC-I surface expression. Nat Commun 2024; 15:8508. [PMID: 39353943 PMCID: PMC11445256 DOI: 10.1038/s41467-024-52772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Krishna Samanta
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - LuLin Jiang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Altos Labs-Bay Institute of Science, Redwood City, CA, USA
| | - Maria Emilia Dueñas
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Telethon Kids Institute, Perth, Nedlands, WA, 6009, Australia
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Immunocore Ltd, 92 Park Drive, Abingdon, OX14 4RY, UK
| | - Timothy Y Huang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
4
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
5
|
Zhang T, Zhang X, Chen J, Zhang X, Zhang Y. Harnessing microbial antigens as cancer antigens: a promising avenue for cancer immunotherapy. Front Immunol 2024; 15:1411490. [PMID: 39139570 PMCID: PMC11319170 DOI: 10.3389/fimmu.2024.1411490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by leveraging the immune system's innate capabilities to combat malignancies. Despite the promise of tumor antigens in stimulating anti-tumor immune responses, their clinical utility is hampered by limitations in eliciting robust and durable immune reactions, exacerbated by tumor heterogeneity and immune evasion mechanisms. Recent insights into the immunogenic properties of host homologous microbial antigens have sparked interest in their potential for augmenting anti-tumor immunity while minimizing off-target effects. This review explores the therapeutic potential of microbial antigen peptides in tumor immunotherapy, beginning with an overview of tumor antigens and their challenges in clinical translation. We further explore the intricate relationship between microorganisms and tumor development, elucidating the concept of molecular mimicry and its implications for immune recognition of tumor-associated antigens. Finally, we discuss methodologies for identifying and characterizing microbial antigen peptides, highlighting their immunogenicity and prospects for therapeutic application.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xilong Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Burns and Plastic Surgery, First People’s Hospital of Xuzhou City, Xuzhou, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhang L, Song W, Zhu T, Liu Y, Chen W, Cao Y. ConvNeXt-MHC: improving MHC-peptide affinity prediction by structure-derived degenerate coding and the ConvNeXt model. Brief Bioinform 2024; 25:bbae133. [PMID: 38561979 PMCID: PMC10985285 DOI: 10.1093/bib/bbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
Peptide binding to major histocompatibility complex (MHC) proteins plays a critical role in T-cell recognition and the specificity of the immune response. Experimental validation such peptides is extremely resource-intensive. As a result, accurate computational prediction of binding peptides is highly important, particularly in the context of cancer immunotherapy applications, such as the identification of neoantigens. In recent years, there is a significant need to continually improve the existing prediction methods to meet the demands of this field. We developed ConvNeXt-MHC, a method for predicting MHC-I-peptide binding affinity. It introduces a degenerate encoding approach to enhance well-established panspecific methods and integrates transfer learning and semi-supervised learning methods into the cutting-edge deep learning framework ConvNeXt. Comprehensive benchmark results demonstrate that ConvNeXt-MHC outperforms state-of-the-art methods in terms of accuracy. We expect that ConvNeXt-MHC will help us foster new discoveries in the field of immunoinformatics in the distant future. We constructed a user-friendly website at http://www.combio-lezhang.online/predict/, where users can access our data and application.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Wenkai Song
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Tinghao Zhu
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Nuclear Power Institute of China, Chengdu 610213, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China
| |
Collapse
|
7
|
Custodio JM, Ayres CM, Rosales TJ, Brambley CA, Arbuiso AG, Landau LM, Keller GLJ, Srivastava PK, Baker BM. Structural and physical features that distinguish tumor-controlling from inactive cancer neoepitopes. Proc Natl Acad Sci U S A 2023; 120:e2312057120. [PMID: 38085776 PMCID: PMC10742377 DOI: 10.1073/pnas.2312057120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Neoepitopes arising from amino acid substitutions due to single nucleotide polymorphisms are targets of T cell immune responses to cancer and are of significant interest in the development of cancer vaccines. However, understanding the characteristics of rare protective neoepitopes that truly control tumor growth has been a challenge, due to their scarcity as well as the challenge of verifying true, neoepitope-dependent tumor control in humans. Taking advantage of recent work in mouse models that circumvented these challenges, here, we compared the structural and physical properties of neoepitopes that range from fully protective to immunologically inactive. As neoepitopes are derived from self-peptides that can induce immune tolerance, we studied not only how the various neoepitopes differ from each other but also from their wild-type counterparts. We identified multiple features associated with protection, including features that describe how neoepitopes differ from self as well as features associated with recognition by diverse T cell receptor repertoires. We demonstrate both the promise and limitations of neoepitope structural analysis and predictive modeling and illustrate important aspects that can be incorporated into neoepitope prediction pipelines.
Collapse
Affiliation(s)
- Jean M. Custodio
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Alyssa G. Arbuiso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Lauren M. Landau
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Grant L. J. Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Pramod K. Srivastava
- Department of Immunology, and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT06030
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
8
|
Neto TAP, Sidney J, Grifoni A, Sette A. Correlative CD4 and CD8 T-cell immunodominance in humans and mice: Implications for preclinical testing. Cell Mol Immunol 2023; 20:1328-1338. [PMID: 37726420 PMCID: PMC10616275 DOI: 10.1038/s41423-023-01083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Antigen-specific T-cell recognition is restricted by Major Histocompatibility Complex (MHC) molecules, and differences between CD4 and CD8 immunogenicity in humans and animal species used in preclinical vaccine testing are yet to be fully understood. In this study, we addressed this matter by analyzing experimentally identified epitopes based on published data curated in the Immune Epitopes DataBase (IEDB) database. We first analyzed SARS-CoV-2 spike (S) and nucleoprotein (N), which are two common targets of the immune response and well studied in both human and mouse systems. We observed a weak but statistically significant correlation between human and H-2b mouse T-cell responses (CD8 S specific (r = 0.206, p = 1.37 × 10-13); CD4 S specific (r = 0.118, p = 2.63 × 10-5) and N specific (r = 0.179, p = 2.55 × 10-4)). Due to intrinsic differences in MHC molecules across species, we also investigated the association between the immunodominance of common Human Leukocyte Antigen (HLA) alleles for which HLA transgenic mice are available, namely, A*02:01, B*07:02, DRB1*01:01, and DRB1*04:01, and found higher significant correlations for both CD8 and CD4 (maximum r = 0.702, p = 1.36 × 10-31 and r = 0.594, p = 3.04-122, respectively). Our results further indicated that some regions are commonly immunogenic between humans and mice (either H-2b or HLA transgenic) but that others are human specific. Finally, we noted a significant correlation between CD8 and CD4 S- (r = 0.258, p = 7.33 × 1021) and N-specific (r = 0.369, p = 2.43 × 1014) responses, suggesting that discrete protein subregions can be simultaneously recognized by T cells. These findings were confirmed in other viral systems, providing general guidance for the use of murine models to test T-cell immunogenicity of viral antigens destined for human use.
Collapse
Affiliation(s)
- Tertuliano Alves Pereira Neto
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
9
|
Witney MJ, Tscharke DC. BMX-A and BMX-S: Accessible cell-free methods to estimate peptide-MHC-I affinity and stability. Mol Immunol 2023; 161:1-10. [PMID: 37478775 DOI: 10.1016/j.molimm.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
The affinity and stability of peptide binding to Major Histocompatibility Complex Class I (MHC-I) molecules are fundamental parameters that underpin the specificity and magnitude of CD8+ T cell responses. These parameters can be estimated in some cases by computational tools, but experimental validation remains valuable, especially for stability. Methods to measure peptide binding can be broadly categorised into either cell-based assays using TAP-deficient cell lines such as RMA/S, or cell-free strategies, such as peptide competition-binding assays and surface plasmon resonance. Cell-based assays are subject to confounding biological activity, including peptide trimming by peptidases and dilution of peptide-loaded MHC-I on the surface of cells through cell division. Current cell-free methods require in-house production and purification of MHC-I. In this study, we present the development of new cell-free assays to estimate the relative affinity and dissociation kinetics of peptide binding to MHC-I. These assays, which we have called BMX-A (relative affinity) and BMX-S (kinetic stability), are reliable, scalable and accessible, in that they use off-the-shelf commercial reagents and standard flow cytometry techniques.
Collapse
Affiliation(s)
- Matthew J Witney
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
10
|
Lie-Andersen O, Hübbe ML, Subramaniam K, Steen-Jensen D, Bergmann AC, Justesen D, Holmström MO, Turtle L, Justesen S, Lança T, Hansen M. Impact of peptide:HLA complex stability for the identification of SARS-CoV-2-specific CD8 +T cells. Front Immunol 2023; 14:1151659. [PMID: 37275886 PMCID: PMC10232890 DOI: 10.3389/fimmu.2023.1151659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Induction of a lasting protective immune response is dependent on presentation of epitopes to patrolling T cells through the HLA complex. While peptide:HLA (pHLA) complex affinity alone is widely exploited for epitope selection, we demonstrate that including the pHLA complex stability as a selection parameter can significantly reduce the high false discovery rate observed with predicted affinity. In this study, pHLA complex stability was measured on three common class I alleles and 1286 overlapping 9-mer peptides derived from the SARS-CoV-2 Spike protein. Peptides were pooled based on measured stability and predicted affinity. Strikingly, stability of the pHLA complex was shown to strongly select for immunogenic epitopes able to activate functional CD8+T cells. This result was observed across the three studied alleles and in both vaccinated and convalescent COVID-19 donors. Deconvolution of peptide pools showed that specific CD8+T cells recognized one or two dominant epitopes. Moreover, SARS-CoV-2 specific CD8+T cells were detected by tetramer-staining across multiple donors. In conclusion, we show that stability analysis of pHLA is a key factor for identifying immunogenic epitopes.
Collapse
Affiliation(s)
- Olivia Lie-Andersen
- Immunitrack ApS, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Mie Linder Hübbe
- Immunitrack ApS, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krishanthi Subramaniam
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
11
|
Hey S, Whyte D, Hoang MC, Le N, Natvig J, Wingfield C, Onyeama C, Howrylak J, Toby IT. Analysis of CDR3 Sequences from T-Cell Receptor β in Acute Respiratory Distress Syndrome. Biomolecules 2023; 13:biom13050825. [PMID: 37238695 DOI: 10.3390/biom13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are significantly ill or have serious injuries. ARDS is characterized by fluid build-up that occurs in the alveoli. T-cells are implicated as playing a role in the modulation of the aberrant response leading to excessive tissue damage and, eventually, ARDS. Complementarity Determining Region 3 (CDR3) sequences derived from T-cells are key players in the adaptive immune response. This response is governed by an elaborate specificity for distinct molecules and the ability to recognize and vigorously respond to repeated exposures to the same molecules. Most of the diversity in T-cell receptors (TCRs) is contained in the CDR3 regions of the heterodimeric cell-surface receptors. For this study, we employed the novel technology of immune sequencing to assess lung edema fluid. Our goal was to explore the landscape of CDR3 clonal sequences found within these samples. We obtained more than 3615 CDR3 sequences across samples in the study. Our data demonstrate that: (1) CDR3 sequences from lung edema fluid exhibit distinct clonal populations, and (2) CDR3 sequences can be further characterized based on biochemical features. Analysis of these CDR3 sequences offers insight into the CDR3-driven T-cell repertoire of ARDS. These findings represent the first step towards applications of this technology with these types of biological samples in the context of ARDS.
Collapse
Affiliation(s)
- Sara Hey
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Dayjah Whyte
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Minh-Chau Hoang
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Nick Le
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Joseph Natvig
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Claire Wingfield
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | | | - Judie Howrylak
- Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Inimary T Toby
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| |
Collapse
|
12
|
Kossack C, Fuentes N, Maisey K. In silico prediction of B and T cell epitopes of infectious salmon anemia virus proteins and molecular modeling of T cell epitopes to salmon major histocompatibility complex (MHC) class I. FISH & SHELLFISH IMMUNOLOGY 2022; 128:335-347. [PMID: 35963560 DOI: 10.1016/j.fsi.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Infectious salmon anemia (ISA) can be devastating in farmed Atlantic salmon (Salmo salar). The disease can evolve into epidemics if it is not contained and controlled. ISA epidemics were seen in Norway in the early 1990s and Chile in 2007-2009. Consequently, there is an urgent need to develop a vaccine to prevent or treat the infection. In this study, an immunoinformatic approach was employed to predict 32 lineal B-cell epitopes based on antigenicity and surface accessibility prediction for ISAV fusion (F), hemagglutinin-esterase (HE), and matrix (M) proteins. On the other hand, twelve conformational B-cell epitopes were also predicted. We further identified six antigenic cytotoxic T lymphocyte (CTL) epitopes and investigated the binding interactions with five salmon MHC-I proteins after docking the peptides to the binding groove of the MHC-I proteins. Our results showed that all the predicted epitopes could bind to salmon MHC-I with high negative ΔG values with medium to high binding affinities. Hence, the predicted epitopes have a high potential of being recognized by Atlantic salmon MHC-I to elicit a CD8+ T cell response in salmon. The predicted and analyzed B and T cell antigenic epitopes in this work might present an initial set of peptides for future vaccine development against ISAV. The ability to model and predict these interactions will ultimately lead to the ability to predict potential binding for MHCs and epitopes that were not studied previously. As current knowledge of salmon MHC specificity is limited, studying and modeling interactions in the peptide/MHC complex is a key to resolving unknown epitope specificity.
Collapse
Affiliation(s)
- C Kossack
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - N Fuentes
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - K Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
13
|
Immunoinformatics-based characterization of immunogenic CD8 T-cell epitopes for a broad-spectrum cell-mediated immunity against high-risk human papillomavirus infection. Microb Pathog 2022; 165:105462. [DOI: 10.1016/j.micpath.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
|
14
|
Ebrahimi-Nik H, Moussa M, Englander RP, Singhaviranon S, Michaux J, Pak H, Miyadera H, Corwin WL, Keller GLJ, Hagymasi AT, Shcheglova TV, Coukos G, Baker BM, Mandoiu II, Bassani-Sternberg M, Srivastava PK. Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope. Nat Commun 2021; 12:6423. [PMID: 34741035 PMCID: PMC8571378 DOI: 10.1038/s41467-021-26646-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
High-affinity MHC I-peptide interactions are considered essential for immunogenicity. However, some neo-epitopes with low affinity for MHC I have been reported to elicit CD8 T cell dependent tumor rejection in immunization-challenge studies. Here we show in a mouse model that a neo-epitope that poorly binds to MHC I is able to enhance the immunogenicity of a tumor in the absence of immunization. Fibrosarcoma cells with a naturally occurring mutation are edited to their wild type counterpart; the mutation is then re-introduced in order to obtain a cell line that is genetically identical to the wild type except for the neo-epitope-encoding mutation. Upon transplantation into syngeneic mice, all three cell lines form tumors that are infiltrated with activated T cells. However, lymphocytes from the two tumors that harbor the mutation show significantly stronger transcriptional signatures of cytotoxicity and TCR engagement, and induce greater breadth of TCR reactivity than those of the wild type tumors. Structural modeling of the neo-epitope peptide/MHC I pairs suggests increased hydrophobicity of the neo-epitope surface, consistent with higher TCR reactivity. These results confirm the in vivo immunogenicity of low affinity or ‘non-binding’ epitopes that do not follow the canonical concept of MHC I-peptide recognition. The immunogenicity of peptides is believed to be determined by their high-affinity binding to MHC I. Here authors show that low-affinity MHC I-peptide interactions are also able to trigger robust T cell response and anti-tumour immunity in vivo.
Collapse
Affiliation(s)
- Hakimeh Ebrahimi-Nik
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.,Broad Institute of MIT and Harvard, 105 Broadway, Cambridge, MA, USA
| | - Marmar Moussa
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ryan P Englander
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Summit Singhaviranon
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - Hiroko Miyadera
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Genome Medical Science Project, National Center for Global Health and Medicine, Chiba, Japan
| | - William L Corwin
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.,Arvinas, 5 science park, 395 Winchester Ave, New Haven, CT, USA
| | - Grant L J Keller
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Adam T Hagymasi
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Tatiana V Shcheglova
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Ion I Mandoiu
- Department of Computer Sciences, University of Connecticut School of Engineering, Storrs, CT, USA
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
15
|
Wellington D, Yin Z, Kessler BM, Dong T. Immunodominance complexity: lessons yet to be learned from dominant T cell responses to SARS-COV-2. Curr Opin Virol 2021; 50:183-191. [PMID: 34534732 PMCID: PMC8424056 DOI: 10.1016/j.coviro.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022]
Abstract
Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Benedikt M Kessler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
16
|
Scherman K, Råberg L, Westerdahl H. Borrelia Infection in Bank Voles Myodes glareolus Is Associated With Specific DQB Haplotypes Which Affect Allelic Divergence Within Individuals. Front Immunol 2021; 12:703025. [PMID: 34381454 PMCID: PMC8350566 DOI: 10.3389/fimmu.2021.703025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
The high polymorphism of Major Histocompatibility Complex (MHC) genes is generally considered to be a result of pathogen-mediated balancing selection. Such selection may operate in the form of heterozygote advantage, and/or through specific MHC allele–pathogen interactions. Specific MHC allele–pathogen interactions may promote polymorphism via negative frequency-dependent selection (NFDS), or selection that varies in time and/or space because of variability in the composition of the pathogen community (fluctuating selection; FS). In addition, divergent allele advantage (DAA) may act on top of these forms of balancing selection, explaining the high sequence divergence between MHC alleles. DAA has primarily been thought of as an extension of heterozygote advantage. However, DAA could also work in concert with NFDS though this is yet to be tested explicitly. To evaluate the importance of DAA in pathogen-mediated balancing selection, we surveyed allelic polymorphism of MHC class II DQB genes in wild bank voles (Myodes glareolus) and tested for associations between DQB haplotypes and infection by Borrelia afzelii, a tick-transmitted bacterium causing Lyme disease in humans. We found two significant associations between DQB haplotypes and infection status: one haplotype was associated with lower risk of infection (resistance), while another was associated with higher risk of infection (susceptibility). Interestingly, allelic divergence within individuals was higher for voles with the resistance haplotype compared to other voles. In contrast, allelic divergence was lower for voles with the susceptibility haplotype than other voles. The pattern of higher allelic divergence in individuals with the resistance haplotype is consistent with NFDS favouring divergent alleles in a natural population, hence selection where DAA works in concert with NFDS.
Collapse
Affiliation(s)
- Kristin Scherman
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Lars Råberg
- Functional Zoology, Department of Biology, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Kaseke C, Park RJ, Singh NK, Koundakjian D, Bashirova A, Garcia Beltran WF, Takou Mbah OC, Ma J, Senjobe F, Urbach JM, Nathan A, Rossin EJ, Tano-Menka R, Khatri A, Piechocka-Trocha A, Waring MT, Birnbaum ME, Baker BM, Carrington M, Walker BD, Gaiha GD. HLA class-I-peptide stability mediates CD8 + T cell immunodominance hierarchies and facilitates HLA-associated immune control of HIV. Cell Rep 2021; 36:109378. [PMID: 34260940 PMCID: PMC8293625 DOI: 10.1016/j.celrep.2021.109378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Defining factors that govern CD8+ T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes. HLA class-I-peptide stability is also strongly correlated with overall immunodominance hierarchies, particularly for epitopes from high-abundance proteins (e.g., Gag). Moreover, HLA alleles associated with HIV protection are preferentially stabilized by epitopes derived from topologically important viral regions at a greater frequency than neutral and risk alleles. These findings indicate that relative stabilization of HLA class-I is a key factor for CD8+ T cell epitope immunodominance hierarchies, with implications for HIV control and the design of T-cell-based vaccines.
Collapse
Affiliation(s)
- Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan J Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA
| | - Nishant K Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wilfredo F Garcia Beltran
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46556, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Program in Virology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth J Rossin
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA 02114, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashok Khatri
- Massachusetts General Hospital Endocrine Unit and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael E Birnbaum
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46556, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Broad Institute, Cambridge, MA 02142, USA; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa; Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
19
|
McShan AC, Devlin CA, Morozov GI, Overall SA, Moschidi D, Akella N, Procko E, Sgourakis NG. TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap. Nat Commun 2021; 12:3174. [PMID: 34039964 PMCID: PMC8154891 DOI: 10.1038/s41467-021-23225-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Chaperones Tapasin and TAP-binding protein related (TAPBPR) perform the important functions of stabilizing nascent MHC-I molecules (chaperoning) and selecting high-affinity peptides in the MHC-I groove (editing). While X-ray and cryo-EM snapshots of MHC-I in complex with TAPBPR and Tapasin, respectively, have provided important insights into the peptide-deficient MHC-I groove structure, the molecular mechanism through which these chaperones influence the selection of specific amino acid sequences remains incompletely characterized. Based on structural and functional data, a loop sequence of variable lengths has been proposed to stabilize empty MHC-I molecules through direct interactions with the floor of the groove. Using deep mutagenesis on two complementary expression systems, we find that important residues for the Tapasin/TAPBPR chaperoning activity are located on a large scaffolding surface, excluding the loop. Conversely, loop mutations influence TAPBPR interactions with properly conformed MHC-I molecules, relevant for peptide editing. Detailed biophysical characterization by solution NMR, ITC and FP-based assays shows that the loop hovers above the MHC-I groove to promote the capture of incoming peptides. Our results suggest that the longer loop of TAPBPR lowers the affinity requirements for peptide selection to facilitate peptide loading under conditions and subcellular compartments of reduced ligand concentration, and to prevent disassembly of high-affinity peptide-MHC-I complexes that are transiently interrogated by TAPBPR during editing.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine A Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Giora I Morozov
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah A Overall
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Danai Moschidi
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Neha Akella
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Yang X, Zhao L, Wei F, Li J. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information. BMC Bioinformatics 2021; 22:231. [PMID: 33952199 PMCID: PMC8097772 DOI: 10.1186/s12859-021-04155-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epitope prediction is a useful approach in cancer immunology and immunotherapy. Many computational methods, including machine learning and network analysis, have been developed quickly for such purposes. However, regarding clinical applications, the existing tools are insufficient because few of the predicted binding molecules are immunogenic. Hence, to develop more potent and effective vaccines, it is important to understand binding and immunogenic potential. Here, we observed that the interactive association constituted by human leukocyte antigen (HLA)-peptide pairs can be regarded as a network in which each HLA and peptide is taken as a node. We speculated whether this network could detect the essential interactive propensities embedded in HLA-peptide pairs. Thus, we developed a network-based deep learning method called DeepNetBim by harnessing binding and immunogenic information to predict HLA-peptide interactions. RESULTS Quantitative class I HLA-peptide binding data and qualitative immunogenic data (including data generated from T cell activation assays, major histocompatibility complex (MHC) binding assays and MHC ligand elution assays) were retrieved from the Immune Epitope Database database. The weighted HLA-peptide binding network and immunogenic network were integrated into a network-based deep learning algorithm constituted by a convolutional neural network and an attention mechanism. The results showed that the integration of network centrality metrics increased the power of both binding and immunogenicity predictions, while the new model significantly outperformed those that did not include network features and those with shuffled networks. Applied on benchmark and independent datasets, DeepNetBim achieved an AUC score of 93.74% in HLA-peptide binding prediction, outperforming 11 state-of-the-art relevant models. Furthermore, the performance enhancement of the combined model, which filtered out negative immunogenic predictions, was confirmed on neoantigen identification by an increase in both positive predictive value (PPV) and the proportion of neoantigen recognition. CONCLUSIONS We developed a network-based deep learning method called DeepNetBim as a pan-specific epitope prediction tool. It extracted the attributes of the network as new features from HLA-peptide binding and immunogenic models. We observed that not only did DeepNetBim binding model outperform other updated methods but the combination of our two models showed better performance. This indicates further applications in clinical practice.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyuan Zhao
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Batool H, Batool S, Mahmood MS, Mushtaq N, Khan AU, Ali M, Sahibzada KI, Ashraf NM. Prediction of putative epitope-based vaccine against all corona virus strains for the Chinese population: Approach toward development of vaccine. Microbiol Immunol 2021; 65:154-160. [PMID: 33295677 DOI: 10.1111/1348-0421.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/30/2022]
Abstract
Currently, the whole world is facing the coronavirus disease-19 pandemic. As of now, approximately 0.15 million people around the globe are infected with the novel coronavirus. In the last decade, two strains of the coronavirus family, severe acute respiratory syndrome-related coronavirus and Middle East respiratory syndrome coronavirus, also resulted in epidemics in south Asian and the Middle Eastern countries with high mortality rate. This scenario demands the development of a putative vaccine which may provide immunity against all current and new evolving coronavirus strains. In this study, we designed an epitope-based vaccine using an immunoinformatic approach. This vaccine may protect against all coronavirus strains. The vaccine is developed by considering the geographical distribution of coronavirus strains and host genetics (Chinese population). Nine experimentally validated epitopes sequences from coronavirus strains were used to derive the variants considering the conservancy in all strains. Further, the binding affinities of all derived variants were checked with most abundant human leukocyte antigen alleles in the Chinese population. Three major histocompatibility complex (MHC) Class I epitopes from spike glycoprotein and nucleoprotein showed sufficient binding while one MHC Class II epitope from spike glycoprotein was found to be an effective binder. A cocktail of these epitopes gave more than 95% population coverage in the Chinese population. Moreover, molecular dynamics simulation supported the aforementioned predictions. Further, in vivo studies are needed to confirm the immunogenic potential of these vaccines.
Collapse
Affiliation(s)
- Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| | - Sana Batool
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Malik Siddique Mahmood
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, NUR International University, Lahore, Pakistan
| | - Nada Mushtaq
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Kashif Iqbal Sahibzada
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Division of Viral Hepatitis, CDC, Atlanta, Georgia, USA
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
22
|
Mansurkhodzhaev A, Barbosa CRR, Mishto M, Liepe J. Proteasome-Generated cis-Spliced Peptides and Their Potential Role in CD8 + T Cell Tolerance. Front Immunol 2021; 12:614276. [PMID: 33717099 PMCID: PMC7943738 DOI: 10.3389/fimmu.2021.614276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
The human immune system relies on the capability of CD8+ T cells to patrol body cells, spot infected cells and eliminate them. This cytotoxic response is supposed to be limited to infected cells to avoid killing of healthy cells. To enable this, CD8+ T cells have T Cell Receptors (TCRs) which should discriminate between self and non-self through the recognition of antigenic peptides bound to Human Leukocyte Antigen class I (HLA-I) complexes-i.e., HLA-I immunopeptidomes-of patrolled cells. The majority of these antigenic peptides are produced by proteasomes through either peptide hydrolysis or peptide splicing. Proteasome-generated cis-spliced peptides derive from a given antigen, are immunogenic and frequently presented by HLA-I complexes. Theoretically, they also have a very large sequence variability, which might impinge upon our model of self/non-self discrimination and central and peripheral CD8+ T cell tolerance. Indeed, a large variety of cis-spliced epitopes might enlarge the pool of viral-human zwitter epitopes, i.e., peptides that may be generated with the exact same sequence from both self (human) and non-self (viral) antigens. Antigenic viral-human zwitter peptides may be recognized by CD8+ thymocytes and T cells, induce clonal deletion or other tolerance processes, thereby restraining CD8+ T cell response against viruses. To test this hypothesis, we computed in silico the theoretical frequency of zwitter non-spliced and cis-spliced epitope candidates derived from human proteome (self) and from the proteomes of a large pool of viruses (non-self). We considered their binding affinity to the representative HLA-A*02:01 complex, self-antigen expression in Medullary Thymic Epithelial cells (mTECs) and the relative frequency of non-spliced and cis-spliced peptides in HLA-I immunopeptidomes. Based on the present knowledge of proteasome-catalyzed peptide splicing and neglecting CD8+ TCR degeneracy, our study suggests that, despite their frequency, the portion of the cis-spliced peptides we investigated could only marginally impinge upon the variety of functional CD8+ cytotoxic T cells (CTLs) involved in anti-viral response.
Collapse
Affiliation(s)
- Artem Mansurkhodzhaev
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) and Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Juliane Liepe
- Quantitative and Systems Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
23
|
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021; 13:743. [PMID: 33670139 PMCID: PMC7916861 DOI: 10.3390/cancers13040743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Alexey Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
24
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
25
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
26
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Stryhn A, Kongsgaard M, Rasmussen M, Harndahl MN, Østerbye T, Bassi MR, Thybo S, Gabriel M, Hansen MB, Nielsen M, Christensen JP, Randrup Thomsen A, Buus S. A Systematic, Unbiased Mapping of CD8 + and CD4 + T Cell Epitopes in Yellow Fever Vaccinees. Front Immunol 2020; 11:1836. [PMID: 32983097 PMCID: PMC7489334 DOI: 10.3389/fimmu.2020.01836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.
Collapse
Affiliation(s)
- Anette Stryhn
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kongsgaard
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Nors Harndahl
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerbye
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Thybo
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Nielsen
- Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Sachs A, Moore E, Kosaloglu-Yalcin Z, Peters B, Sidney J, Rosenberg SA, Robbins PF, Sette A. Impact of Cysteine Residues on MHC Binding Predictions and Recognition by Tumor-Reactive T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:539-549. [PMID: 32571843 PMCID: PMC7413297 DOI: 10.4049/jimmunol.1901173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
The availability of MHC-binding prediction tools has been useful in guiding studies aimed at identifying candidate target Ags to generate reactive T cells and to characterize viral and tumor-reactive T cells. Nevertheless, prediction algorithms appear to function poorly for epitopes containing cysteine (Cys) residues, which can oxidize and form disulfide bonds with other Cys residues under oxidizing conditions, thus potentially interfering with their ability to bind to MHC molecules. Analysis of the results of HLA-A*02:01 class I binding assays carried out in the presence and absence of the reducing agent 2-ME indicated that the predicted affinity for 25% of Cys-containing epitopes was underestimated by a factor of 3 or more. Additional analyses were undertaken to evaluate the responses of human CD8+ tumor-reactive T cells against 10 Cys-containing HLA class I-restricted minimal determinants containing substitutions of α-aminobutyric acid (AABA), a cysteine analogue containing a methyl group in place of the sulfhydryl group present in Cys, for the native Cys residues. Substitutions of AABA for Cys at putative MHC anchor positions often significantly enhanced T cell recognition, whereas substitutions at non-MHC anchor positions were neutral, except for one epitope where this modification abolished T cell recognition. These findings demonstrate the need to evaluate MHC binding and T cell recognition of Cys-containing peptides under conditions that prevent Cys oxidation, and to adjust current prediction binding algorithms for HLA-A*02:01 and potentially additional class I alleles to more accurately rank peptides containing Cys anchor residues.
Collapse
Affiliation(s)
- Abraham Sachs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201
| | - Eugene Moore
- La Jolla Institute for Immunology, La Jolla, CA 92037; and
| | | | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037; and
| | - John Sidney
- La Jolla Institute for Immunology, La Jolla, CA 92037; and
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201;
| | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, CA 92037; and
- Department of Medicine, University of California, San Diego, San Diego, CA 92122
| |
Collapse
|
29
|
Identification of Common CD8 + T Cell Epitopes from Lassa Fever Survivors in Nigeria and Sierra Leone. J Virol 2020; 94:JVI.00153-20. [PMID: 32269122 PMCID: PMC7307091 DOI: 10.1128/jvi.00153-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine. Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity. IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.
Collapse
|
30
|
Mohamed YS, Borthwick NJ, Moyo N, Murakoshi H, Akahoshi T, Siliquini F, Hannoun Z, Crook A, Hayes P, Fast PE, Mutua G, Jaoko W, Silva-Arrieta S, Llano A, Brander C, Takiguchi M, Hanke T. Specificity of CD8 + T-Cell Responses Following Vaccination with Conserved Regions of HIV-1 in Nairobi, Kenya. Vaccines (Basel) 2020; 8:E260. [PMID: 32485938 PMCID: PMC7349992 DOI: 10.3390/vaccines8020260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.
Collapse
Affiliation(s)
- Yehia S. Mohamed
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Nicola J. Borthwick
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Nathifa Moyo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomohiro Akahoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Francesca Siliquini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Zara Hannoun
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Alison Crook
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
| | - Peter Hayes
- International AIDS Vaccine Initiative IAVI-Human Immunology Laboratory, Imperial College London, London SW10 9NH, UK;
| | - Patricia E. Fast
- International AIDS Vaccine Initiative-New York, New York, NY 10004, USA;
| | - Gaudensia Mutua
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Walter Jaoko
- KAVI-Institute of Clinical Research, University of Nairobi, Nairobi 19676 00202, Kenya; (G.M.); (W.J.)
| | - Sandra Silva-Arrieta
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain; (S.S.-A.); (A.L.); (C.B.)
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (Y.S.M.); (N.J.B.); (N.M.); (F.S.); (Z.H.); (A.C.)
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (H.M.); (T.A.); (M.T.)
| |
Collapse
|
31
|
Debebe BJ, Boelen L, Lee JC, Thio CL, Astemborski J, Kirk G, Khakoo SI, Donfield SM, Goedert JJ, Asquith B. Identifying the immune interactions underlying HLA class I disease associations. eLife 2020; 9:54558. [PMID: 32238263 PMCID: PMC7253178 DOI: 10.7554/elife.54558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Variation in the risk and severity of many autoimmune diseases, malignancies and infections is strongly associated with polymorphisms at the HLA class I loci. These genetic associations provide a powerful opportunity for understanding the etiology of human disease. HLA class I associations are often interpreted in the light of 'protective' or 'detrimental' CD8+ T cell responses which are restricted by the host HLA class I allotype. However, given the diverse receptors which are bound by HLA class I molecules, alternative interpretations are possible. As well as binding T cell receptors on CD8+ T cells, HLA class I molecules are important ligands for inhibitory and activating killer immunoglobulin-like receptors (KIRs) which are found on natural killer cells and some T cells; for the CD94:NKG2 family of receptors also expressed mainly by NK cells and for leukocyte immunoglobulin-like receptors (LILRs) on myeloid cells. The aim of this study is to develop an immunogenetic approach for identifying and quantifying the relative contribution of different receptor-ligand interactions to a given HLA class I disease association and then to use this approach to investigate the immune interactions underlying HLA class I disease associations in three viral infections: Human T cell Leukemia Virus type 1, Human Immunodeficiency Virus type 1 and Hepatitis C Virus as well as in the inflammatory condition Crohn's disease.
Collapse
Affiliation(s)
- Bisrat J Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James C Lee
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | -
- Johns Hopkins University, Baltimore, United States.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chloe L Thio
- Johns Hopkins University, Baltimore, United States
| | | | - Gregory Kirk
- Johns Hopkins University, Baltimore, United States
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, United States
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Brennick CA, George MM, Srivastava PK, Karandikar SH. Prediction of cancer neoepitopes needs new rules. Semin Immunol 2020; 47:101387. [PMID: 31952902 DOI: 10.1016/j.smim.2020.101387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
Abstract
Tumors are immunogenic and the non-synonymous point mutations harbored by tumors are a source of their immunogenicity. Immunologists have long been enamored by the idea of synthetic peptides corresponding to mutated epitopes (neoepitopes) as specific "vaccines" against tumors presenting those neoepitopes in context of MHC I. Tumors may harbor hundreds of point mutations and it would require effective prediction algorithms to identify candidate neoepitopes capable of eliciting potent tumor-specific CD8+ T cell responses. Our current understanding of MHC I-restricted epitopes come from the observance of CD8+ T cell responses against viral (vaccinia, lymphocytic choriomeningitis etc.) and model (chicken ovalbumin, hen egg lysozyme etc.) antigens. Measurable CD8+ T cell responses elicited by model or viral antigens are always directed against epitopes possessing strong binding affinity for the restricting MHC I alleles. Immense collective effort to develop methodologies combining genomic sequencing, bioinformatics and traditional immunological techniques to identify neoepitopes with strong binding affinity to MHC I has only yielded inaccurate prediction algorithms. Additionally, new evidence has emerged suggesting that neoepitopes, which unlike the epitopes of viral or model antigens have closely resembling wild-type counterparts, may not necessarily demonstrate strong affinity to MHC I. Our bearing need recalibration.
Collapse
Affiliation(s)
- Cory A Brennick
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Mariam M George
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Pramod K Srivastava
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Sukrut H Karandikar
- Department of Immunology, Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
34
|
Zika viral proteome analysis reveals an epitope cluster within NS3 helicase as a potential vaccine candidate: An in silico study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Koumantou D, Barnea E, Martin-Esteban A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Pratsinis H, Georgiadis D, Stern LJ, Admon A, Stratikos E. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol Immunother 2019; 68:1245-1261. [PMID: 31222486 PMCID: PMC6684451 DOI: 10.1007/s00262-019-02358-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/metabolism
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunogenicity, Vaccine
- Immunotherapy/methods
- Lymphocyte Activation
- Melanoma/drug therapy
- Minor Histocompatibility Antigens/metabolism
- Molecular Targeted Therapy
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protease Inhibitors/pharmacology
- Protein Binding
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Despoina Koumantou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Adrian Martin-Esteban
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas, Universidad Autonoma), Madrid, Spain
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Athanasios Papakyriakou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Harris Pratsinis
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
36
|
Wang Y, Tian M, Wang F, Heng BC, Zhou J, Cai Z, Liu H. Understanding the Immunological Mechanisms of Mesenchymal Stem Cells in Allogeneic Transplantation: From the Aspect of Major Histocompatibility Complex Class I. Stem Cells Dev 2019; 28:1141-1150. [PMID: 31215341 DOI: 10.1089/scd.2018.0256] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation therapy appears to be an ideal strategy for repairing structural defects and restoring the functions of diseased tissues and organs. Additionally, MSCs are also used as immunosuppressants in allogeneic organ transplantation. However, owing to their inherent immunogenicity, MSC transplantation can induce the activation of an immune response, which can lead to the death and clearance of the transplanted MSCs. Major histocompatibility complex (MHC) molecules are responsible for antigen presentation, help T lymphocytes to recognize endogenous/extrinsic antigens, and trigger immune activation. Many studies have shown that MHC molecules (particularly class I) play key roles in the immunogenicity of MSCs. This review, therefore, focuses on the relationship between MHC-I surface expression on MSCs and its immunogenicity, as well as potential strategies to overcome the hurdle of MHC incompatibility.
Collapse
Affiliation(s)
- Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Fei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
37
|
Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nat Commun 2019; 10:2846. [PMID: 31253788 PMCID: PMC6599079 DOI: 10.1038/s41467-019-10661-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
The magnitude of T cell responses to infection is a function of the naïve T cell repertoire combined with the context and duration of antigen presentation. Using mass spectrometry, we identify and quantify 21 class 1 MHC-restricted influenza A virus (IAV)-peptides following either direct or cross-presentation. All these peptides, including seven novel epitopes, elicit T cell responses in infected C57BL/6 mice. Directly presented IAV epitopes maintain their relative abundance across distinct cell types and reveal a broad range of epitope abundances. In contrast, cross-presented epitopes are more uniform in abundance. We observe a clear disparity in the abundance of the two key immunodominant IAV antigens, wherein direct infection drives optimal nucleoprotein (NP)366–374 presentation, while cross-presentation is optimal for acid polymerase (PA)224–233 presentation. The study demonstrates how assessment of epitope abundance in both modes of antigen presentation is necessary to fully understand the immunogenicity and response magnitude to T cell epitopes. CTL responses are critical in protection against pathogens. Here, using mass spectrometry and flow cytometry, the authors characterize the kinetics of influenza A virus class I MHC epitopes cross-presented in professional antigen presenting cells and identify new epitopes that elicit T cell responses in infected mice.
Collapse
|
38
|
Ebrahimi-Nik H, Michaux J, Corwin WL, Keller GL, Shcheglova T, Pak H, Coukos G, Baker BM, Mandoiu II, Bassani-Sternberg M, Srivastava PK. Mass spectrometry driven exploration reveals nuances of neoepitope-driven tumor rejection. JCI Insight 2019; 5:129152. [PMID: 31219806 PMCID: PMC6675551 DOI: 10.1172/jci.insight.129152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neoepitopes are the only truly tumor-specific antigens. Although potential neoepitopes can be readily identified using genomics, the neoepitopes that mediate tumor rejection constitute a small minority, and there is little consensus on how to identify them. Here, for the first time to our knowledge, we use a combination of genomics, unbiased discovery mass spectrometry (MS) immunopeptidomics, and targeted MS to directly identify neoepitopes that elicit actual tumor rejection in mice. We report that MS-identified neoepitopes are an astonishingly rich source of tumor rejection-mediating neoepitopes (TRMNs). MS has also demonstrated unambiguously the presentation by MHC I, of confirmed tumor rejection neoepitopes that bind weakly to MHC I; this was done using DCs exogenously loaded with long peptides containing the weakly binding neoepitopes. Such weakly MHC I–binding neoepitopes are routinely excluded from analysis, and our demonstration of their presentation, and their activity in tumor rejection, reveals a broader universe of tumor-rejection neoepitopes than presently imagined. Modeling studies show that a mutation in the active neoepitope alters its conformation such that its T cell receptor–facing surface is substantially altered, increasing its exposed hydrophobicity. No such changes are observed in the inactive neoepitope. These results broaden our understanding of antigen presentation and help prioritize neoepitopes for personalized cancer immunotherapy. Neoepitopes identified by mass spectrometry are a rich source of tumor rejection antigens, including those with a weak binding to MHC I.
Collapse
Affiliation(s)
- Hakimeh Ebrahimi-Nik
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Justine Michaux
- University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - William L Corwin
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Grant Lj Keller
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tatiana Shcheglova
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - HuiSong Pak
- University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ion I Mandoiu
- Department of Computer Sciences, University of Connecticut School of Engineering, Storrs, Connecticut, USA
| | - Michal Bassani-Sternberg
- University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
39
|
Jurewicz MM, Willis RA, Ramachandiran V, Altman JD, Stern LJ. MHC-I peptide binding activity assessed by exchange after cleavage of peptide covalently linked to β2-microglobulin. Anal Biochem 2019; 584:113328. [PMID: 31201791 DOI: 10.1016/j.ab.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
A common approach to measuring binding constants involves combining receptor and ligand and measuring the distribution of bound and free states after equilibration. For class I major histocompatibility (MHC-I) proteins, which bind short peptides for presentation to T cells, this approach is precluded by instability of peptide-free protein. Here we develop a method wherein a weakly-binding peptide covalently attached to the N-terminus of the MHC-I β2m subunit is released from the peptide binding site after proteolytic cleavage of the linker. The resultant protein is able to bind added peptide. A direct binding assay and method for estimation of peptide binding constant (Kd) are described, in which fluorescence polarization is used to follow peptide binding. A competition binding assay and method for estimation of inhibitor binding constant (Ki) using the same principle also are also described. The method uses a cubic equation to relate observed binding to probe concentration, probe Kd, inhibitor concentration, and inhibitor Ki under general reaction conditions without assumptions relating to relative binding affinities or concentrations. We also delineate advantages of this approach compared to the Cheng-Prusoff and Munson-Rodbard approaches for estimation of Ki using competition binding data.
Collapse
Affiliation(s)
- Mollie M Jurewicz
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Richard A Willis
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - John D Altman
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States; Department of Microbiology and Immunology, Emory Vaccine Center at Yerkes, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Lawrence J Stern
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
40
|
Kefalakes H, Koh C, Sidney J, Amanakis G, Sette A, Heller T, Rehermann B. Hepatitis D Virus-Specific CD8 + T Cells Have a Memory-Like Phenotype Associated With Viral Immune Escape in Patients With Chronic Hepatitis D Virus Infection. Gastroenterology 2019; 156:1805-1819.e9. [PMID: 30664876 PMCID: PMC7367679 DOI: 10.1053/j.gastro.2019.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIM Hepatitis D virus (HDV) superinfection of patients with chronic HBV infection results in rapid progression to liver cirrhosis. Little is known about HDV-specific T cells and how they contribute to the antiviral immune response and liver disease pathogenesis. METHODS We isolated peripheral blood mononuclear cells from 28 patients with chronic HDV and HBV infection, identified HDV-specific CD8+ T-cell epitopes, and characterized HDV-specific CD8+ T cells. We associated these with HDV sequence variations and clinical features of patients. RESULTS We identified 6 CD8+ T-cell epitopes; several were restricted by multiple HLA class I alleles. HDV-specific CD8+ T cells were as frequent as HBV-specific CD8+ T cells but were less frequent than T cells with specificity for cytomegalovirus, Epstein-Barr virus, or influenza virus. The ex vivo frequency of activated HDV-specific CD8+ T cells correlated with transaminase activity. CD8+ T-cell production of interferon gamma after stimulation with HDV peptides correlated inversely with HDV titer. HDV-specific CD8+ T cells did not express the terminal differentiation marker CD57, and fewer HDV-specific than Epstein-Barr virus-specific CD8+ T cells were 2B4+CD160+PD1+, a characteristic of exhausted cells. Approximately half of the HDV-specific CD8+ T cells had a memory-like PD1+CD127+TCF1hiT-betlow phenotype, which associated with HDV sequence variants with reduced HLA binding and reduced T-cell activation. CONCLUSIONS CD8+ T cells isolated from patients with chronic HDV and HBV infection recognize HDV epitopes presented by multiple HLA molecules. The subset of activated HDV-specific CD8+ T cells targets conserved epitopes and likely contributes to disease progression. The subset of memory-like HDV-specific CD8+ T cells is functional but unable to clear HDV because of the presence of escape variants. ClinicalTrials.gov, Numbers: NCT02511431, NCT00023322, NCT01495585, and NCT00001971. GenBank accession, Number: MK333199-333226.
Collapse
Affiliation(s)
- Helenie Kefalakes
- Immunology Section, Liver Diseases Branch, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, DHHS, Bethesda, MD, USA (HK, visiting fellow; BR; senior investigator)
| | - Christopher Koh
- Translational Hepatology Section, Liver Diseases Branch,
National Institute of Diabetes and Digestive and Kidney Diseases, National
Institutes of Health, DHHS, Bethesda, MD, USA (CK, staff clinician; TH, senior
investigator)
| | - John Sidney
- La Jolla Institute of Immunology, La Jolla, CA, USA (JS,
Scientific Associate; AS, Center Head and Division Head)
| | - Georgios Amanakis
- Laboratory of Cardiac Physiology, Cardiovascular Branch,
National Heart, Lung and Blood Institute, National Institutes of Health, DHHS,
Bethesda, MD, USA (GA, visiting fellow)
| | - Alessandro Sette
- La Jolla Institute of Immunology, La Jolla, CA, USA (JS,
Scientific Associate; AS, Center Head and Division Head)
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch,
National Institute of Diabetes and Digestive and Kidney Diseases, National
Institutes of Health, DHHS, Bethesda, MD, USA (CK, staff clinician; TH, senior
investigator)
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland.
| |
Collapse
|
41
|
Bonsack M, Hoppe S, Winter J, Tichy D, Zeller C, Küpper MD, Schitter EC, Blatnik R, Riemer AB. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set. Cancer Immunol Res 2019; 7:719-736. [DOI: 10.1158/2326-6066.cir-18-0584] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
|
42
|
Karandikar SH, Sidney J, Sette A, Selby MJ, Korman AJ, Srivastava PK. New epitopes in ovalbumin provide insights for cancer neoepitopes. JCI Insight 2019; 5:127882. [PMID: 30869653 DOI: 10.1172/jci.insight.127882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MHC I-restricted epitopes of chicken ovalbumin (OVA) were originally identified using CD8 T cells as probes. Here, using bioinformatics tools, we identify four additional epitopes in OVA in addition to a cryptic epitope. Each new epitope is presented in vivo, as deduced from the lack of CD8 response to it in OVA-transgenic mice. In addition, CD8 responses to the known and novel epitopes are examined in C57BL/6 mice exposed to the OVA-expressing tumor E.G7 in several ways. No responses to any epitope including SIINFEKL are detected in mice with growing E.G7 or mice immunized with the tumor. Only in E.G7-bearing mice treated with an anti-CTLA4 antibody which depletes tumor-infiltrating regulatory T cells, CD8 responses to SIINFEKL and the novel epitope EKYNLTSVL are detected. Finally, all epitopes fails to treat mice with pre-existing tumors. These observations force an important re-consideration of the common assumptions about the therapeutic value of neoepitopes detected by CD8 responses in tumor-bearing hosts.
Collapse
Affiliation(s)
- Sukrut Hemant Karandikar
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, California, USA
| | | | | | - Pramod Kumar Srivastava
- Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
43
|
Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, Witney MJ, Sebastian P, Flesch IEA, Heading SL, Sette A, La Gruta NL, Purcell AW, Tscharke DC. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc Natl Acad Sci U S A 2019; 116:3112-3117. [PMID: 30718433 PMCID: PMC6386720 DOI: 10.1073/pnas.1815239116] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD8+ T cells are essential effectors in antiviral immunity, recognizing short virus-derived peptides presented by MHC class I (pMHCI) on the surface of infected cells. However, the fraction of viral pMHCI on infected cells that are immunogenic has not been shown for any virus. To approach this fundamental question, we used peptide sequencing by high-resolution mass spectrometry to identify more than 170 vaccinia virus pMHCI presented on infected mouse cells. Next, we screened each peptide for immunogenicity in multiple virus-infected mice, revealing a wide range of immunogenicities. A surprisingly high fraction (>80%) of pMHCI were immunogenic in at least one infected mouse, and nearly 40% were immunogenic across more than half of the mice screened. The high number of peptides found to be immunogenic and the distribution of responses across mice give us insight into the specificity of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Jana Pickering
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Pouya Faridi
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Witney
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Prince Sebastian
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Inge E A Flesch
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Sally L Heading
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nicole L La Gruta
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
44
|
Smith KN, Llosa NJ, Cottrell TR, Siegel N, Fan H, Suri P, Chan HY, Guo H, Oke T, Awan AH, Verde F, Danilova L, Anagnostou V, Tam AJ, Luber BS, Bartlett BR, Aulakh LK, Sidhom JW, Zhu Q, Sears CL, Cope L, Sharfman WH, Thompson ED, Riemer J, Marrone KA, Naidoo J, Velculescu VE, Forde PM, Vogelstein B, Kinzler KW, Papadopoulos N, Durham JN, Wang H, Le DT, Justesen S, Taube JM, Diaz LA, Brahmer JR, Pardoll DM, Anders RA, Housseau F. Persistent mutant oncogene specific T cells in two patients benefitting from anti-PD-1. J Immunother Cancer 2019; 7:40. [PMID: 30744692 PMCID: PMC6371497 DOI: 10.1186/s40425-018-0492-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Several predictive biomarkers are currently approved or are under investigation for the selection of patients for checkpoint blockade. Tumor PD-L1 expression is used for stratification of non-small cell lung (NSCLC) patients, with tumor mutational burden (TMB) also being explored with promising results, and mismatch-repair deficiency is approved for tumor site-agnostic disease. While tumors with high PD-L1 expression, high TMB, or mismatch repair deficiency respond well to checkpoint blockade, tumors with lower PD-L1 expression, lower mutational burdens, or mismatch repair proficiency respond much less frequently. Case presentation We studied two patients with unexpected responses to checkpoint blockade monotherapy: a patient with PD-L1-negative and low mutational burden NSCLC and one with mismatch repair proficient colorectal cancer (CRC), both of whom lack the biomarkers associated with response to checkpoint blockade, yet achieved durable clinical benefit. Both maintained T-cell responses in peripheral blood to oncogenic driver mutations – BRAF-N581I in the NSCLC and AKT1-E17K in the CRC – years after treatment initiation. Mutation-specific T cells were also found in the primary tumor and underwent dynamic perturbations in the periphery upon treatment. Conclusions These findings suggest that T cell responses to oncogenic driver mutations may be more prevalent than previously appreciated and could be harnessed in immunotherapeutic treatment, particularly for patients who lack the traditional biomarkers associated with response. Comprehensive studies are warranted to further delineate additional predictive biomarkers and populations of patients who may benefit from checkpoint blockade. Electronic supplementary material The online version of this article (10.1186/s40425-018-0492-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kellie N Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas J Llosa
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Tricia R Cottrell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Siegel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hongni Fan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Prerna Suri
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hok Yee Chan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Haidan Guo
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Teniola Oke
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Anas H Awan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Franco Verde
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Ludmila Danilova
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Brandon S Luber
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD, USA
| | - Bjarne R Bartlett
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,The Swim Across America Laboratory, John Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA.,Present address: B.R.B.,Bioinformatics Core, Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Laveet K Aulakh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,The Swim Across America Laboratory, John Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - John-William Sidhom
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Leslie Cope
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD, USA
| | - William H Sharfman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,The Swim Across America Laboratory, John Hopkins University, Baltimore, MD, USA
| | - Joanne Riemer
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen A Marrone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jarushka Naidoo
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Victor E Velculescu
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Bert Vogelstein
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer N Durham
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Wang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD, USA
| | - Dung T Le
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | - Janis M Taube
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Luis A Diaz
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,The Swim Across America Laboratory, John Hopkins University, Baltimore, MD, USA.,Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julie R Brahmer
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Robert A Anders
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
45
|
Forsyth KS, DeHaven B, Mendonca M, Paul S, Sette A, Eisenlohr LC. Poor Antigen Processing of Poxvirus Particles Limits CD4 + T Cell Recognition and Impacts Immunogenicity of the Inactivated Vaccine. THE JOURNAL OF IMMUNOLOGY 2019; 202:1340-1349. [PMID: 30700590 DOI: 10.4049/jimmunol.1801099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022]
Abstract
CD4+ T cells play critical roles in defending against poxviruses, both by potentiating cellular and humoral responses and by directly killing infected cells. Despite this central role, the basis for pox-specific CD4+ T cell activation, specifically the origin of the poxvirus-derived peptides (epitopes) that activate CD4+ T cells, remains poorly understood. In addition, because the current licensed poxvirus vaccines can cause serious adverse events and even death, elucidating the requirements for MHC class II (MHC-II) processing and presentation of poxviral Ags could be of great use. To address these questions, we explored the CD4+ T cell immunogenicity of ectromelia, the causative agent of mousepox. Having identified a large panel of novel epitopes via a screen of algorithm-selected synthetic peptides, we observed that immunization of mice with inactivated poxvirus primes a virtually undetectable CD4+ T cell response, even when adjuvanted, and is unable to provide protection against disease after a secondary challenge. We postulated that an important contributor to this outcome is the poor processability of whole virions for MHC-II-restricted presentation. In line with this hypothesis, we observed that whole poxvirions are very inefficiently converted into MHC-II-binding peptides by the APC as compared with subviral material. Thus, stability of the virion structure is a critical consideration in the rational design of a safe alternative to the existing live smallpox vaccine.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian DeHaven
- Department of Biology, La Salle University, Philadelphia, PA 19141
| | - Mark Mendonca
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Medicine, University of California, San Diego, La Jolla, CA, 92093; and
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
46
|
Jurtz VI, Olsen LR. Computational Methods for Identification of T Cell Neoepitopes in Tumors. Methods Mol Biol 2019; 1878:157-172. [PMID: 30378075 DOI: 10.1007/978-1-4939-8868-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has experienced several major breakthroughs in the past decade. Most recently, technical advances in next-generation sequencing methods have enabled discovery of tumor-specific mutations leading to protective T cell neoepitopes. Many of the successes are enabled by computational methods, which facilitate processing of raw data, mapping of mutations, and prediction of neoepitopes. In this book chapter, we provide an overview of the computational tasks related to the identification of neoepitopes, propose specific tools and best practices, and discuss strengths, weaknesses, and future challenges.
Collapse
Affiliation(s)
- Vanessa Isabell Jurtz
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Lars Rønn Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
47
|
Blaha DT, Anderson SD, Yoakum DM, Hager MV, Zha Y, Gajewski TF, Kranz DM. High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions. Cancer Immunol Res 2018; 7:50-61. [PMID: 30425106 DOI: 10.1158/2326-6066.cir-18-0395] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022]
Abstract
Mutated peptides (neoantigens) from a patient's cancer genome can serve as targets for T-cell immunity, but identifying which peptides can be presented by an MHC molecule and elicit T cells has been difficult. Although algorithms that predict MHC binding exist, they are not yet able to distinguish experimental differences in half-lives of the complexes (an immunologically relevant parameter, referred to here as kinetic stability). Improvement in determining actual neoantigen peptide/MHC stability could be important, as only a small fraction of peptides in most current vaccines are capable of eliciting CD8+ T-cell responses. Here, we used a rapid, high-throughput method to experimentally determine peptide/HLA thermal stability on a scale that will be necessary for analysis of neoantigens from thousands of patients. The method combined the use of UV-cleavable peptide/HLA class I complexes and differential scanning fluorimetry to determine the Tm values of neoantigen complexes. Measured Tm values were accurate and reproducible and were directly proportional to the half-lives of the complexes. Analysis of known HLA-A2-restricted immunogenic peptides showed that Tm values better correlated with immunogenicity than algorithm-predicted binding affinities. We propose that temperature stability information can be used as a guide for the selection of neoantigens in cancer vaccines in order to focus attention on those mutated peptides with the highest probability of being expressed on the cell surface.
Collapse
Affiliation(s)
- Dylan T Blaha
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Scott D Anderson
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Daniel M Yoakum
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Marlies V Hager
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Yuanyuan Zha
- Department of Pathology, Department of Medicine, and the Ben May Department of Cancer, University of Chicago, Chicago, Illinois
| | - Thomas F Gajewski
- Department of Pathology, Department of Medicine, and the Ben May Department of Cancer, University of Chicago, Chicago, Illinois
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois.
| |
Collapse
|
48
|
Koşaloğlu-Yalçın Z, Lanka M, Frentzen A, Logandha Ramamoorthy Premlal A, Sidney J, Vaughan K, Greenbaum J, Robbins P, Gartner J, Sette A, Peters B. Predicting T cell recognition of MHC class I restricted neoepitopes. Oncoimmunology 2018; 7:e1492508. [PMID: 30377561 PMCID: PMC6204999 DOI: 10.1080/2162402x.2018.1492508] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
Epitopes that arise from a somatic mutation, also called neoepitopes, are now known to play a key role in cancer immunology and immunotherapy. Recent advances in high-throughput sequencing have made it possible to identify all mutations and thereby all potential neoepitope candidates in an individual cancer. However, most of these neoepitope candidates are not recognized by T cells of cancer patients when tested in vivo or in vitro, meaning they are not immunogenic. Especially in patients with a high mutational load, usually hundreds of potential neoepitopes are detected, highlighting the need to further narrow down this candidate list. In our study, we assembled a dataset of known, naturally processed, immunogenic neoepitopes to dissect the properties that make these neoepitopes immunogenic. The tools to use and thresholds to apply for prioritizing neoepitopes have so far been largely based on experience with epitope identification in other settings such as infectious disease and allergy. Here, we performed a detailed analysis on our dataset of curated immunogenic neoepitopes to establish the appropriate tools and thresholds in the cancer setting. To this end, we evaluated different predictors for parameters that play a role in a neoepitope's immunogenicity and suggest that using binding predictions and length-rescaling yields the best performance in discriminating immunogenic neoepitopes from a background set of mutated peptides. We furthermore show that almost all neoepitopes had strong predicted binding affinities (as expected), but more surprisingly, the corresponding non-mutated peptides had nearly as high affinities. Our results provide a rational basis for parameters in neoepitope filtering approaches that are being commonly used. Abbreviations: SNV: single nucleotide variant; nsSNV: nonsynonymous single nucleotide variant; ROC: receiver operating characteristic; AUC: area under ROC curve; HLA: human leukocyte antigen; MHC: major histocompatibility complex; PD-1: Programmed cell death protein 1; PD-L1 or CTLA-4: cytotoxic T-lymphocyte associated protein 4.
Collapse
Affiliation(s)
- Zeynep Koşaloğlu-Yalçın
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Manasa Lanka
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Angela Frentzen
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Kerrie Vaughan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Jason Greenbaum
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Paul Robbins
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jared Gartner
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Abstract
Somatic variations are frequent and important drivers in cancers. Amino acid substitutions can yield neoantigens that are detected by the immune system. Neoantigens can lead to immune response and tumor rejection. Although neoantigen load and occurrence have been widely studied, a detailed pan-cancer analysis of the occurrence and characterization of neoepitopes is missing. We investigated the proteome-wide amino acid substitutions in 8-, 9-, 10-, and 11-mer peptides in 30 cancer types with the NetMHC 4.0 software. 11,316,078 (0.24%) of the predicted 8-, 9-, 10-, and 11-mer peptides were highly likely neoepitope candidates and were derived from 95.44% of human proteins. Binding affinity to MHC molecules is just one of the many epitope features. The most likely epitopes are those which are detected by several MHCs and of several peptide lengths. 9-mer peptides are the most common among the high binding neoantigens. 0.17% of all variants yield more than 100 neoepitopes and are considered as the best candidates for any application. Amino acid distributions indicate that variants at all positions in neoepitopes of any length are, on average, more hydrophobic than the wild-type residues. We characterized properties of neoepitopes in 30 cancer types and estimated the likely numbers of tumor-derived epitopes that could induce an immune response. We found that amino acid distributions, at all positions in neoepitopes of all lengths, contain more hydrophobic residues than the wild-type sequences implying that the hydropathy nature of neoepitopes is an important property. The neoepitope characteristics can be employed for various applications including targeted cancer vaccine development for precision medicine.
Collapse
|
50
|
Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A. Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 2018; 9:1369. [PMID: 29963059 PMCID: PMC6010533 DOI: 10.3389/fimmu.2018.01369] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an “immunogenicity score.” We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|