1
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 PMCID: PMC12069715 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
2
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Li X, Wang D, Su Z, Mao X. TNFAIP3-interacting protein 1 (ABIN-1) negatively regulates caspase-8/FADD-dependent pyroptosis. FEBS J 2025; 292:1972-1990. [PMID: 39827378 DOI: 10.1111/febs.17404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein. In a mouse model of polymicrobial sepsis, myeloid-specific deletion of Abin-1 rendered mice more sensitive to pyroptosis, apoptosis and necroptosis, and exacerbated disease severity. Interestingly, ABIN-1 deficiency triggered gasdermin-E-mediated pyroptosis in mouse embryonic fibroblasts, but induced gasdermin-D-mediated pyroptosis in macrophages, both in a caspase-8-dependent manner. Furthermore, we demonstrated that, upon poly(I:C) + 5Z-7-oxozeaenol stimulation, ABIN-1 deficiency facilitates FAS-associated death domain protein recruitment to caspase-8; thus, the mechanism by which ABIN-1 downregulates caspase-8 activity is conserved in tumor necrosis factor receptor type 1 and Toll-like receptor 3 signaling-induced cell death. Together, our work identifies a previously unrecognized role for ABIN-1 as a negative regulator of pyroptosis in addition to apoptosis and necroptosis, suggesting that ABIN-1 represents a promising molecule to halt or reverse progression of refractory inflammatory disorders whose pathogenesis involves multiple forms of programmed cell death.
Collapse
Affiliation(s)
- Xueyi Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
| | - Daoyong Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
| | - Zhenyi Su
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, China
| | - Xiaohua Mao
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental genes and Human Diseases, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Safi C, Camaioni L, Othman M, Lambert D, Buisine M, Lawson AM, Ghinet A, Daïch A, Jawhara S. Cyclic N, O-acetals and corresponding opened N, N-aminals as new scaffolds with promising anti-inflammatory and antifungal activities against Candida albicans. Sci Rep 2025; 15:8364. [PMID: 40069300 PMCID: PMC11897400 DOI: 10.1038/s41598-025-92635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
P2 × 7R is crucial in the pathogenesis of chronic inflammatory diseases, and its activation leads to the release of pro-inflammatory cytokines, exacerbating the inflammatory response. Two new series of scarce cyclic N, O-acetals (ATF 61-74) and corresponding opened N, N-aminals (CS 1-14) have been designed as novel potential P2RX7 antagonists, then synthesized and evaluated for their anti-inflammatory properties through investigating the pro-inflammatory markers and also for their antifungal activity against Candida albicans. Three compounds (ATF 64, CS 8, and CS 9) exhibited dual antifungal and anti-inflammatory properties. ATF 64, CS 8, and CS 9 reduced ROS production and IL-1β expression in macrophages and intestinal cells in a manner correlated with NF-KB expression. These compounds showed excellent antifungal activity against clinical isolates of C. albicans resistant to fluconazole and caspofungin, and reduced C. albicans biofilm formation. Treatment with CS 8 or CS 9 protected the nematode Caenorhabditis elegans against infection with C. albicans and enhanced antimicrobial gene expression. This duality of action offers a promising new pharmacological strategy to counteract inflammatory diseases and propels N, N-aminals as promising candidates for future optimization and investigation.
Collapse
Affiliation(s)
- Christine Safi
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000, Lille, France
| | - Louis Camaioni
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Mohamed Othman
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Dylan Lambert
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Mathys Buisine
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France
- Medicine Faculty, University of Lille, 59000, Lille, France
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France
| | - Ata Martin Lawson
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Alina Ghinet
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000, Lille, France
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Adam Daïch
- URCOM UR 3221, Université Le Havre Normandie, Normandie Université, Le Havre, 76600, France
- INC3M, FR CNRS 3038, 25 Rue Philippe Lebon, BP 1123, 76063, Le Havre Cedex, France
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Institut National de la Santé et de la Recherche Médicale U1285, Centre National de la Recherche Scientifique, University of Lille, 59000, Lille, France.
- Medicine Faculty, University of Lille, 59000, Lille, France.
- Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, CHU Lille, 59000, Lille, France.
| |
Collapse
|
5
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Kolesov D. Unravelling approaches to study macrophages: from classical to novel biophysical methodologies. PeerJ 2025; 13:e19039. [PMID: 39989743 PMCID: PMC11847493 DOI: 10.7717/peerj.19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages play crucial roles in immune responses and tissue homeostasis. Despite the fact that macrophages were described more than a century ago, they continue to be the cells of intensive interest. Advanced understanding of phenotypic diversity in macrophages holds great promise for development of cell-based therapeutic strategies. The introduction of innovative approaches in cell biology greatly enhances our ability to investigate the unique characteristics of macrophages. The review considers both classical methods to study macrophages and high-tech approaches, including single-cell sequencing, single-cell mass spectrometry, droplet microfluidics, scanning probe microscopy and atomic force spectroscopy. This review will be valuable both to specialists beginning their study of macrophages and to experienced scientists seeking to deepen their understanding of methods at the intersection of biological and physical sciences.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dmitry Kolesov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Moscow Polytechnic University, Moscow, Russia
| |
Collapse
|
6
|
Bento CA, Arnaud-Sampaio VF, Glaser T, Adinolfi E, Coutinho-Silva R, Ulrich H, Lameu C. P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior. Purinergic Signal 2025; 21:51-68. [PMID: 39425818 PMCID: PMC11958906 DOI: 10.1007/s11302-024-10051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) exhibit antitumor or protumor responses related to inflammatory (or M1) and alternative (or M2) phenotypes, respectively. The P2X7 receptor plays a key role in macrophage polarization, influencing inflammation and immunosuppression. In this study, we investigated the role of the P2X7 receptor in TAMs. Using P2X7 receptor-deficient macrophages, we analyzed gene expression profiles and their implications for neuroblastoma invasion and chemoresistance. Our results showed that P2X7 receptor deficiency altered the expression of classical polarization markers, such as nitric oxide synthase 2 (Nos2) and tumor necrosis factor-α (Tnf), as well as alternative phenotype markers, including mannose receptor C-type 1 (Mrc1) and arginase 1 (Arg1). P2X7 deficiency also influenced the expression of the ectonucleotidases Entpd1 and Nt5e and other purinergic receptors, especially P2ry2, suggesting compensatory mechanisms involved in macrophage polarization. In particular, TAMs deficient in P2X7 showed a phenotype with characteristics intermideiate between resting macrophages (M0) and M1 polarization rather than the M2-type phenotype like and wild-type TAM macrophages. In addition, P2rx7-/- TAMs regulated the expression of P2X7 receptor isoforms in neuroblastoma cells, with downregulation of the P2X7 A and B isoforms leading to a decrease in chemotherapy-induced cell death. However, TAMs expressing P2X7 downregulated only the B isoform, suggesting that TAMs play a role in modulating tumor behavior through P2X7 receptor isoform regulation. Taken together, our data underscore the regulatory function of the P2X7 receptor in orchestrating alternative macrophage polarization and in the interplay between tumor cells and TAMs. These findings help to clarify the complex interplay of purinergic signaling in cancer progression and open up avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Carolina Adriane Bento
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Fernandes Arnaud-Sampaio
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Talita Glaser
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elena Adinolfi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudiana Lameu
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Luo J, Li X, Zhang L, Deng M, Zhao J, Zhang J, Tang W, Guo Q, Wang L. 5-deoxy-rutaecarpine protects against LPS-induced acute lung injury via inhibiting NLRP3 inflammasome-related inflammation. Front Pharmacol 2025; 16:1522146. [PMID: 39981175 PMCID: PMC11841402 DOI: 10.3389/fphar.2025.1522146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a significant medical condition characterized by severe pulmonary inflammation and tissue damage. NLRP3 inflammasome-driven inflammation is essential in ALI pathogenesis, inspiring novel therapeutic strategies that focus on NLRP3 and inflammation. In this study, we investigated the therapeutic potential of 5-deoxy-rutaecarpine (5-DR), a rutaecarpine derivative, in attenuating LPS-induced ALI. Methods In this study, we evaluated the effects of 5-DR treatment in mice exposed to LPS, lung tissues, bronchoalveolar lavage fluid, and serum were collected for analysis. LPS-stimulated J774A.1 mouse macrophages were used to further investigate the anti-inflammatory effects of 5-DR in vitro. Various techniques including histopathology, Western blotting, and luciferase reporter assay were employed. Results 5-DR treatment significantly reduced lung edema, inflammatory cell infiltration in mice with LPS burden, and reduced the levels of inflammatory mediators like interleukin-1β in the mice and in LPS-stimulated J774A.1 mouse macrophages. Further western blotting analysis showed 5-DR decreased the levels of NLRP3, cleaved caspase-1, and mature IL-1β in mice and J774A.1 cells exposed to LPS. Additionally, NF-κB pathway activation significantly diminished the inhibition of the NLRP3 inflammasome by 5-DR. Discussion Our findings highlight the therapeutic potential of 5-DR as a promising candidate for treating LPS-induced ALI, offering insights into its underlying mechanism that targets NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Li Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Meijing Deng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jieyang Zhao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Jinghuan Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Wenyu Tang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Qinghua Guo
- Department of Emergency, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
8
|
Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, Neuwirt E, Marada A, Koentges C, Urban C, Aktories P, Reuther P, Giese S, Kirschnek S, Mayer C, Pilic J, Falquez-Medina H, Oelgeklaus A, Deepagan VG, Shojaee F, Zimmermann JA, Weber D, Tai YH, Crois A, Ciminski K, Peyronnet R, Brandenburg KS, Wu G, Baumeister R, Heimbucher T, Rizzi M, Riedel D, Helmstädter M, Buescher J, Neumann K, Misgeld T, Kerschensteiner M, Walentek P, Kreutz C, Maurer U, Rambold AS, Vince JE, Edlich F, Malli R, Häcker G, Kierdorf K, Meisinger C, Köttgen A, Jakobs S, Weber ANR, Schwemmle M, Groß CJ, Groß O. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity 2025; 58:90-107.e11. [PMID: 39571574 DOI: 10.1016/j.immuni.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
How mitochondria reconcile roles in functionally divergent cell death pathways of apoptosis and NLRP3 inflammasome-mediated pyroptosis remains elusive, as is their precise role in NLRP3 activation and the evolutionarily conserved physiological function of NLRP3. Here, we have shown that when cells were challenged simultaneously, apoptosis was inhibited and NLRP3 activation prevailed. Apoptosis inhibition by structurally diverse NLRP3 activators, including nigericin, imiquimod, extracellular ATP, particles, and viruses, was not a consequence of inflammasome activation but rather of their effects on mitochondria. NLRP3 activators turned out as oxidative phosphorylation (OXPHOS) inhibitors, which we found to disrupt mitochondrial cristae architecture, leading to trapping of cytochrome c. Although this effect was alone not sufficient for NLRP3 activation, OXPHOS inhibitors became triggers of NLRP3 when combined with resiquimod or Yoda-1, suggesting that NLRP3 activation requires two simultaneous cellular signals, one of mitochondrial origin. Therefore, OXPHOS and apoptosis inhibition by NLRP3 activators provide stringency in cell death decisions.
Collapse
Affiliation(s)
- Benedikt S Saller
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clara Dufossez
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabella L Ingerl
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felix Lange
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Chiara Urban
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Carolin Mayer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hugo Falquez-Medina
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Aline Oelgeklaus
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Veerasikku Gopal Deepagan
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farzaneh Shojaee
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Julia A Zimmermann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Damian Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Yi-Heng Tai
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Anna Crois
- Faculty of Biology, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Katharina S Brandenburg
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Helmstädter
- EMcore, Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Joerg Buescher
- Metabolomics and FACS Core Facilities, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Walentek
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Maurer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frank Edlich
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany; Clusters of Excellence EXC-2180 (iFIT) and -2124 (CMFI), University of Tübingen, Tübingen, Germany
| | - Martin Schwemmle
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Yang S, Huang G, Ting JPY. Mitochondria and NLRP3: To die or inflame. Immunity 2025; 58:5-7. [PMID: 39813994 PMCID: PMC11998340 DOI: 10.1016/j.immuni.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Mitochondria play critical roles in intrinsic apoptosis and NLRP3 inflammasome activation, but how these processes are interconnected remains unclear. In this issue of Immunity, Saller et al. unveiled the complexity of NLRP3 activators, highlighting mitochondria's roles in switching apoptosis to NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guannan Huang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Guo J, Li CG. Commentary: BAFF blockade attenuates DSS-induced chronic colitis via inhibiting NLRP3 inflammasome and NF-кB activation. Front Immunol 2024; 15:1528731. [PMID: 39776908 PMCID: PMC11703703 DOI: 10.3389/fimmu.2024.1528731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Jie Guo
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Chen-guang Li
- School of Medicine, Shenzhen University, Shenzhen, China
- Pain Department of Shenzhen Nanshan People's Hospital, Shenzhen, China
| |
Collapse
|
11
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Wang H, Chen L, Xing J, Shi X, Xu C. Reduction of TRPV1 expression on neurons due to downregulation of P2X7R in neonatal rat dorsal root ganglion satellite glial cells under co-culture conditions. Biol Cell 2024; 116:e2400021. [PMID: 39159475 DOI: 10.1111/boc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND INFORMATION The purinergic ligand-gated ion channel 7 receptor (P2X7R) is an ATP-gated ion channel that transmits extracellular signals and induces corresponding biological effects, transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that maintains normal physiological functions; numerous studies showed that P2X7R and TRPV1 are associated with inflammatory reactions. RESULTS The effect of P2X7R knockdown in satellite glial cells (SGCs) on neuronal TRPV1 expression under high glucose and high free fat (HGHF) environment was investigated. P2X7 short hairpin RNA (shRNA) was utilized to downregulate P2X7R in SGCs, and treated and untreated SGCs were co-cultured with neuronal cell lines. The expression levels of inflammatory factors and signaling pathways in SGCs and neurons were measured using Western blot analysis, RT-qPCR, immunofluorescence, and enzyme-linked immunosorbent assays. Results suggested that P2X7 shRNA reduced the expression levels of P2X7R protein and mRNA in SGCs surrounding DRG neurons and downregulated the release of tumor necrosis factor-alpha and interleukin-1 beta via the Ca2+/p38 MAPK/NF-κB pathway. Additionally, the downregulation of P2X7R might decrease TRPV1 expression in neurons via the Ca2+/PKC-ɛ/p38 MAPK pathway. CONCLUSIONS Reducing P2X7R expression in SCGs in an HGHF environment could decrease neuronal TRPV1 expression via the Ca2+/PKC-ɛ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- College of Economics and Management, Shanghai Ocean University, Shanghai, P.R. China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Xiangchao Shi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao, P.R. China
| |
Collapse
|
13
|
Yang JK, Kim J, Ahn YH, Bae SH, Baek MJ, Lee SH, Moon JS. Inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human hepatocellular carcinoma. BMB Rep 2024; 57:459-464. [PMID: 39219047 PMCID: PMC11524825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/07/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. HCC occurs people with chronic liver diseases. The purinergic receptor P2X 7 (P2RX7) is involved in tumor proliferation and growth. Also, P2RX7 is associated with tumor invasion and metastatic dissemination. High glucose utilization is important for the survival of various types of tumors. However, the role of P2RX7 in glucose metabolism and cellular survival of HCC remains unclear. Here, our results show that the gene and protein levels of P2RX7 were elevated in tumor cells of patients with HCC. The pharmacological inhibition of P2RX7 by A-804598, a selective P2RX7 antagonist, and genetic inhibition by P2RX7 knockdown suppressed the glycolytic activity by reduction of hexokinase 2 (HK2), a key enzyme of the glycolysis pathway, in human HCC cells. Also, both A-804598 treatment and P2RX7 knockdown induced cytotoxicity via inhibition of AKT activation which is critical for tumor cell survival in human HCC cells. Moreover, A-804598 treatment and P2RX7 knockdown increased cytotoxicity and caspase-3 activation in human HCC cells. These results suggest that inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human HCC. [BMB Reports 2024; 57(10): 459-464].
Collapse
Affiliation(s)
- Jae Kook Yang
- Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital, Cheonan 31151, Korea
| | - Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Young Hyeon Ahn
- Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital, Cheonan 31151, Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University College of Medicine Cheonan Hospital, Cheonan 31151, Korea
| | - Moo-Jun Baek
- Department of Surgery, Soonchunhyang University College of Medicine Cheonan Hospital, Cheonan 31151, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine Cheonan Hospital, Cheonan 31151, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
14
|
Lee MML, Chan BD, Ng YW, Leung TW, Shum TY, Lou JS, Wong WY, Tai WCS. Therapeutic effect of Sheng Mai San, a traditional Chinese medicine formula, on inflammatory bowel disease via inhibition of NF-κB and NLRP3 inflammasome signaling. Front Pharmacol 2024; 15:1426803. [PMID: 39156108 PMCID: PMC11327010 DOI: 10.3389/fphar.2024.1426803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is a globally emergent chronic inflammatory disease which commonly requires lifelong care. To date, there remains a pressing need for the discovery of novel anti-inflammatory therapeutic agents against this disease. Sheng Mai San (SMS) is a traditional Chinese medicine prescription with a long history of use for treating Qi and Yin deficiency and recent studies have shown that SMS exhibits anti-inflammatory potential. However, the effects of SMS on the gastrointestinal system remain poorly studied, and its therapeutic potential and underlying molecular mechanisms in IBD have yet to be discovered. In this study, we examined the therapeutic efficacy of SMS in IBD and its anti-inflammatory activity and underlying molecular mechanism, in vivo and in vitro. Methods The therapeutic efficacy of SMS in IBD was assessed in the DSS-induced acute colitis mouse model. Body weight, stool consistency, rectal bleeding, colon length, organ coefficient, cytokine levels in colon tissues, infiltration of immune cells, and colon pathology were evaluated. The anti-inflammatory activity of SMS and related molecular mechanisms were further examined in lipopolysaccharide (LPS)-induced macrophages via assessment of pro-inflammatory cytokine secretion and NF-κB, MAPK, STAT3, and NLRP3 signalling. Results SMS significantly ameliorated the severity of disease in acute colitis mice, as evidenced by an improvement in disease activity index, colon morphology, and histological damage. Additionally, SMS reduced pro-inflammatory cytokine production and infiltration of immune cells in colon tissues. Furthermore, in LPS-induced macrophages, we demonstrated that SMS significantly inhibited the production of cytokines and suppressed the activation of multiple pro-inflammatory signalling pathways, including NF-κB, MAPK, and STAT3. SMS also abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion, suggesting a new therapeutic target for the treatment of IBD. These mechanistic findings were also confirmed in in vivo assays. Conclusion This study presents the anti-inflammatory activity and detailed molecular mechanism of SMS, in vitro and in vivo. Importantly, we highlight for the first time the potential of SMS as an effective therapeutic agent against IBD.
Collapse
Affiliation(s)
- Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yuen-Wa Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tsz-Wing Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tan-Yu Shum
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| |
Collapse
|
15
|
Üstündağ H, Kara A, Doğanay S, Kurt N, Erbaş E, Kalindemirtaş FD, Kariper İA. Molecular mechanisms of resveratrol and its silver nanoparticle conjugate in addressing sepsis-induced lung injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6249-6261. [PMID: 38546748 PMCID: PMC11329585 DOI: 10.1007/s00210-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 08/18/2024]
Abstract
Sepsis is a life-threatening condition characterized by a systemic inflammatory response to infection. Despite extensive research on its pathophysiology, effective therapeutic approaches remain a challenge. This study investigated the potential of resveratrol (RV) and silver nanoparticle-enhanced resveratrol (AgNP-RV) as treatments for sepsis-induced lung injury using a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The study focused on evaluating changes in oxidative status (TAS, TOS, and OSI) and the expression of inflammatory and apoptotic markers (IL-1β, TNF-α, P2X7R, TLR4, Caspase-3, and Bcl-2) in lung tissue. Both RV and AgNP-RV demonstrated potential in mitigating oxidative stress, inflammation, and apoptosis, with AgNP-RV exhibiting greater efficacy than RV alone (p < 0.05). These findings were corroborated by histopathological analyses, which revealed reduced tissue damage in the RV- and AgNP-RV-treated groups. Our study highlights the therapeutic potential of RV and, particularly, AgNP-RV in combating sepsis-induced oxidative stress, inflammation, and apoptosis. It also underscores the promise of nanoparticle technology in enhancing therapeutic outcomes. However, further investigations are warranted to fully understand the mechanisms of action, especially concerning the role of the P2X7 receptor in the observed effects. Nonetheless, our research suggests that RV and AgNP-RV hold promise as novel strategies for sepsis management.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 2400, Türkiye.
| | - Adem Kara
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Songül Doğanay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Elif Erbaş
- Department of Veterinary Histology and Embryology, Faculty of Veterinary Medicine, Veterinary Medicine Basic Sciences, Erzurum, Türkiye
| | | | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
16
|
Kim SS, Seo SR. Caspase-3 targets pro-interleukin-1β (IL-1β) to restrict inflammation. FEBS Lett 2024; 598:1366-1374. [PMID: 38553939 DOI: 10.1002/1873-3468.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 06/12/2024]
Abstract
The interleukin (IL)-1 family of cytokines plays a pivotal role in immune responses. Among the members of IL-1 family, IL-1β is synthesized as an inactive precursor (pro-IL-1β) and becomes active upon cleavage, which is typically facilitated by inflammasomes through caspase-1. In our research, we explored the potential role of caspase-3 in the cleavage of pro-IL-1β and found that caspase-3 cleaves pro-IL-1β, specifically at Asp26. Moreover, we found that in the absence of caspase-3 cleavage, the release of active IL-1β via the inflammasome is increased. Our study introduces pro-IL-1β as a new substrate for caspase-3 and suggests that caspase-3-mediated cleavage has the potential to suppress IL-1β-mediated inflammatory responses.
Collapse
Affiliation(s)
- Seon Sook Kim
- Institute of Life Science, Kangwon National University, Chuncheon, Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
17
|
Akaho R, Kiyoura Y, Tamai R. Synergistic effect of Toll-like receptor 2 ligands and alendronate on proinflammatory cytokine production in mouse macrophage-like RAW-ASC cells is accompanied by upregulation of MyD88 expression. J Oral Biosci 2024; 66:412-419. [PMID: 38614429 DOI: 10.1016/j.job.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES Toll-like receptors (TLRs) recognize whole cells or components of microorganisms. Alendronate (ALN) is an anti-bone-resorptive drug that has inflammatory side effects. The aim in this study was to examine whether ALN augments TLR2 ligand-induced proinflammatory cytokine production using mouse macrophage-like RAW264.7 cells transfected with murine apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) gene (hereafter, referred to as "RAW-ASC cells"). METHODS RAW-ASC cells were pretreated with or without ALN and then incubated with or without TLR2 ligands. The levels of secreted mouse IL-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in culture supernatants and the activation of activator protein-1 (AP-1) or nuclear factor-κB (NF-κB) were measured using enzyme-linked immunosorbent assay (ELISA). The expressions of myeloid differentiation factor 88 (MyD88), caspase-11, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), ASC, NF-κB p65, and actin were analyzed via Western blotting. TLR2 expression was analyzed using flow cytometry. RESULTS ALN substantially upregulated the Pam3CSK4-induced release of IL-1α, IL-1β, IL-6, and TNF-α and MyD88 expression in RAW-ASC cells. ST-2825, a MyD88 inhibitor, inhibited the ALN-augmented release of these cytokines. Pretreatment with ALN augmented Pam3CSK4-induced NF-κB activation in RAW-ASC cells and upregulated AP-1 activation. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein and ALN synergically upregulated the release of IL-1α, IL-1β, IL-6 and TNF-α in RAW-ASC cells. CONCLUSIONS Our findings suggest that ALN augments TLR2 ligand-induced proinflammatory cytokine production via the upregulation of MyD88 expression, and this augmentation is accompanied by the activation of NF-κB and AP-1 in RAW-ASC cells.
Collapse
Affiliation(s)
- Reiko Akaho
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
18
|
Cauvi DM, Hawisher D, Derunes J, Rodriguez E, De Maio A. Membrane phospholipids activate the inflammatory response in macrophages by various mechanisms. FASEB J 2024; 38:e23619. [PMID: 38661031 DOI: 10.1096/fj.202302471r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (Mϕ) gene expression. We herewith report that these two phospholipids modulate gene expression in Mϕs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Dennis Hawisher
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Julia Derunes
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Enrique Rodriguez
- Initiative for Maximizing Student Development (IMSD Program), University of California San Diego, La Jolla, California, USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Li Y, Xia X, Niu Z, Wang K, Liu J, Li X. hCeO 2@ Cu 5.4O nanoparticle alleviates inflammatory responses by regulating the CTSB-NLRP3 signaling pathway. Front Immunol 2024; 15:1344098. [PMID: 38711511 PMCID: PMC11070469 DOI: 10.3389/fimmu.2024.1344098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Inflammatory responses, especially chronic inflammation, are closely associated with many systemic diseases. There are many ways to treat and alleviate inflammation, but how to solve this problem at the molecular level has always been a hot topic in research. The use of nanoparticles (NPs) as anti-inflammatory agents is a potential treatment method. We synthesized new hollow cerium oxide nanomaterials (hCeO2 NPs) doped with different concentrations of Cu5.4O NPs [the molar ratio of Cu/(Ce + Cu) was 50%, 67%, and 83%, respectively], characterized their surface morphology and physicochemical properties, and screened the safe concentration of hCeO2@Cu5.4O using the CCK8 method. Macrophages were cultured, and P.g-lipopolysaccharide-stimulated was used as a model of inflammation and co-cultured with hCeO2@Cu5.4O NPs. We then observe the effect of the transcription levels of CTSB, NLRP3, caspase-1, ASC, IL-18, and IL-1β by PCR and detect its effect on the expression level of CTSB protein by Western blot. The levels of IL-18 and IL-1β in the cell supernatant were measured by enzyme-linked immunosorbent assay. Our results indicated that hCeO2@Cu5.4O NPs could reduce the production of reactive oxygen species and inhibit CTSB and NLRP3 to alleviate the damage caused by the inflammatory response to cells. More importantly, hCeO2@Cu5.4O NPs showed stronger anti-inflammatory effects as Cu5.4O NP doping increased. Therefore, the development of the novel nanomaterial hCeO2@Cu5.4O NPs provides a possible new approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ke Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Miyawaki S, Sawamoto A, Okuyama S, Nakajima M. Sulconazole induces pyroptosis promoted by interferon-γ in monocyte/macrophage lineage cells. J Pharmacol Sci 2024; 154:166-174. [PMID: 38395517 DOI: 10.1016/j.jphs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Imidazole derivatives are commonly used as antifungal agents. Here, we aimed to investigate the functions of imidazole derivatives on macrophage lineage cells. We assessed the expression levels of inflammatory cytokines in mouse monocyte/macrophage lineage (RAW264.7) cells. All six imidazole derivatives examined, namely ketoconazole, sulconazole, isoconazole, luliconazole, clotrimazole, and bifonazole, reduced the expression levels of inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-α, after induction by lipopolysaccharide (LPS) in RAW264.7 cells. These imidazole derivatives also induced cell death in RAW264.7 cells, regardless of the presence or absence of LPS. Since the cell death was characteristic in morphology, we investigated the mode of the cell death. An imidazole derivative, sulconazole, induced gasdermin D degradation together with caspase-11 activation, namely, pyroptosis in RAW264.7 cells and peritoneal macrophages. Furthermore, priming with interferon-γ promoted sulconazole-induced pyroptosis in RAW264.7 cells and macrophages and reduced the secretion of the inflammatory cytokine, IL-1β, from sulconazole-treated macrophages. Our results suggest that imidazole derivatives suppress inflammation by inducing macrophage pyroptosis, highlighting their modulatory potential for inflammatory diseases.
Collapse
Affiliation(s)
- Shiori Miyawaki
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2, Bunkyo-cho, Matsuyama, Ehime, 790-0826, Japan.
| |
Collapse
|
21
|
Flores-Concha M, Gómez LA, Soto-Shara R, Molina RE, Coloma-Rivero RF, Montero DA, Ferrari Í, Oñate Á. Brucella abortus triggers the differential expression of immunomodulatory lncRNAs in infected murine macrophages. Front Immunol 2024; 15:1352306. [PMID: 38464511 PMCID: PMC10921354 DOI: 10.3389/fimmu.2024.1352306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction The lncRNAs (long non-coding RNAs) are the most diverse group of non-coding RNAs and are involved in most biological processes including the immune response. While some of them have been recognized for their influence on the regulation of inflammatory activity, little is known in the context of infection by Brucella abortus, a pathogen that presents significant challenges due to its ability to manipulate and evade the host immune system. This study focuses on characterize the expression profile of LincRNA-cox2, Lethe, lincRNA-EPS, Malat1 and Gas5 during infection of macrophages by B. abortus. Methods Using public raw RNA-seq datasets we constructed for a lncRNA expression profile in macrophages Brucella-infected. In addition, from public RNA-seq raw datasets of RAW264.7 cells infected with B. abortus we constructed a transcriptomic profile of lncRNAs in order to know the expression of the five immunomodulating lncRNAs studied here at 8 and 24 h post-infection. Finally, we performed in vitro infection assays in RAW264.7 cells and peritoneal macrophages to detect by qPCR changes in the expression of these lncRNAs at first 12 hours post infection, a key stage in the infection cycle where Brucella modulates the immune response to survive. Results Our results demonstrate that infection of macrophages with Brucella abortus, induces significant changes in the expression of LincRNA-Cox2, Lethe, LincRNA-EPS, Gas5, and Malat1. Discussion The change in the expression profile of these immunomodulatory lncRNAs in response to infection, suggest a potential involvement in the immune evasion strategy employed by Brucella to facilitate its intracellular survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ángel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
22
|
Teske KA, Corona C, Wilkinson J, Mamott D, Good DA, Zambrano D, Lazar DF, Cali JJ, Robers MB, O'Brien MA. Interrogating direct NLRP3 engagement and functional inflammasome inhibition using cellular assays. Cell Chem Biol 2024; 31:349-360.e6. [PMID: 37858335 DOI: 10.1016/j.chembiol.2023.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
As a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1β and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway. However, for a subset of these ligands the functional link between live-cell target engagement and pathway inhibition has yet to be fully established. Herein we present a cohort of mechanistic assays to both query direct NLRP3 engagement in cells, and functionally interrogate different nodes of NLRP3 pathway activity. This system enabled the stratification of potency for five confirmed NLRP3 inhibitors, and identification of two reported NLRP3 inhibitors that failed to demonstrate direct pathway antagonism.
Collapse
Affiliation(s)
- Kelly A Teske
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Cesear Corona
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | | | - Daniel Mamott
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - David A Good
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Delia Zambrano
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Dan F Lazar
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - James J Cali
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Matthew B Robers
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| | - Martha A O'Brien
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| |
Collapse
|
23
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
24
|
Agafonova I, Chingizova E, Chaikina E, Menchinskaya E, Kozlovskiy S, Likhatskaya G, Sabutski Y, Polonik S, Aminin D, Pislyagin E. Protection Activity of 1,4-Naphthoquinones in Rotenone-Induced Models of Neurotoxicity. Mar Drugs 2024; 22:62. [PMID: 38393033 PMCID: PMC10890484 DOI: 10.3390/md22020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1β and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.
Collapse
Affiliation(s)
- Irina Agafonova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Kozlovskiy
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (I.A.); (E.C.); (E.C.); (E.M.); (S.K.); (G.L.); (Y.S.); (S.P.); (D.A.)
| |
Collapse
|
25
|
Teng W, Subsomwong P, Narita K, Nakane A, Asano K. Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 2024; 13:127. [PMID: 38247818 PMCID: PMC10814802 DOI: 10.3390/cells13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.
Collapse
Affiliation(s)
- Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Kouji Narita
- Insititue for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| |
Collapse
|
26
|
Naaldijk Y, Sherman LS, Turrini N, Kenfack Y, Ratajczak MZ, Souayah N, Rameshwar P, Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses. Stem Cell Rev Rep 2024; 20:218-236. [PMID: 37851277 DOI: 10.1007/s12015-023-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Lauren S Sherman
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Rutgers School of Graduate Studies at NHMS, Newark, NJ, USA
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Neuroscience and Physiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
27
|
Watanabe N, Tamai R, Kiyoura Y. Alendronate augments lipid A‑induced IL‑1β release by ASC‑deficient RAW264 cells via AP‑1 activation. Exp Ther Med 2023; 26:577. [PMID: 38023354 PMCID: PMC10655061 DOI: 10.3892/etm.2023.12276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Alendronate (ALN) is an anti-bone-resorptive drug with inflammatory side effects. ALN upregulates lipid A-induced interleukin (IL)-1α and IL-1β release by J774.1 cells via apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) activation. The present study examined whether ALN augmented lipid A-induced proinflammatory cytokine production using ASC-deficient mouse macrophage-like RAW264 cells. Pretreatment of RAW264 cells with ALN significantly augmented lipid A-induced IL-1β release, although ALN did not upregulate the expression of Toll-like receptor 4, myeloid differentiation factor 88 (MyD88) and caspase-11. Moreover, pretreatment of caspase-11-deficient RAW264.7 cells with ALN significantly augmented lipid A-induced IL-1β release. Notably, ALN upregulated the activation of FosB, c-Jun or JunD, but not c-Fos or NF-κB in RAW264 cells. Furthermore, pretreatment with the activator protein 1 (AP-1) inhibitor SR11302, but not the c-Fos inhibitor T-5224, before addition of ALN inhibited ALN-augmented IL-1β release by lipid A-treated RAW264 cells. SR11302 also reduced ALN-augmented lactate dehydrogenase release by the cells. These findings collectively suggested that ALN augmented lipid A-induced IL-1β release and cell membrane damage in ASC-deficient RAW264 cells via activation of AP-1, but not NF-κB.
Collapse
Affiliation(s)
- Noriyuki Watanabe
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Riyoko Tamai
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Oral Infectious Diseases, Ohu University Graduate School of Dentistry, Koriyama, Fukushima 963-8611, Japan
- Department of Oral Medical Science, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
28
|
Heo J, Park YJ, Kim Y, Lee HS, Kim J, Kwon SH, Kang MG, Rhee HW, Sun W, Lee JH, Cho H. Mitochondrial E3 ligase MARCH5 is a safeguard against DNA-PKcs-mediated immune signaling in mitochondria-damaged cells. Cell Death Dis 2023; 14:788. [PMID: 38040710 PMCID: PMC10692114 DOI: 10.1038/s41419-023-06315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is important in various chronic degenerative disorders, and aberrant immune responses elicited by cytoplasmic mitochondrial DNA (mtDNA) may be related. Here, we developed mtDNA-targeted MTERF1-FokI and TFAM-FokI endonuclease systems to induce mitochondrial DNA double-strand breaks (mtDSBs). In these cells, the mtDNA copy number was significantly reduced upon mtDSB induction. Interestingly, in cGAS knockout cells, synthesis of interferon β1 and interferon-stimulated gene was increased upon mtDSB induction. We found that mtDSBs activated DNA-PKcs and HSPA8 in a VDAC1-dependent manner. Importantly, the mitochondrial E3 ligase MARCH5 bound active DNA-PKcs in cells with mtDSBs and reduced the type І interferon response through the degradation of DNA-PKcs. Likewise, mitochondrial damage caused by LPS treatment in RAW264.7 macrophage cells increased phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA in a DNA-PKcs-dependent manner. Accordingly, in March5 knockout macrophages, phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA were prolonged after LPS stimulation. Together, cytoplasmic mtDNA elicits a cellular immune response through DNA-PKcs, and mitochondrial MARCH5 may be a safeguard to prevent persistent inflammatory reactions.
Collapse
Affiliation(s)
- June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Jeongah Kim
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Soon-Hwan Kwon
- Department of Infectious Diseases, Research Center of Infectious and Environmental Diseases, Armed Forces Medical Research Institute, Daejeon, South Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea.
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
29
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
30
|
Cho HJ, Lee DJ, Yi YS. Anti-inflammatory activity of calmodulin-lysine N-methyltransferase through suppressing the caspase-11 non-canonical inflammasome. Immunobiology 2023; 228:152758. [PMID: 37948850 DOI: 10.1016/j.imbio.2023.152758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Calmodulin (CaM)-lysine N-methyltransferase (CAMKMT) is a novel methyltransferase that catalyzes lysine trimethylation in CaM. However, its specific roles in inflammatory responses and diseases remain unclear. In this study, we investigated the effects of CAMKMT on caspase-11 non-canonical inflammasomes. CAMKMT expression levels were significantly decreased during inflammatory responses activated by caspase-11 non-canonical inflammasome in macrophages. Moreover, CaM lysine trimethylation was markedly inhibited, but no change was observed in CaM expression during these inflammatory responses in macrophages. Activation of the CaM downstream effectors, CaM-dependent proteinkinase kinase 2 and CaM-dependent proteinkinase type IV, was also inhibited during inflammatory responses activated by caspase-11 non-canonical inflammasome in macrophages. Notably, forced expression of CAMKMT restrained caspase-11 non-canonical inflammasome activation via inhibiting proteolytic activation of caspase-11 and gasdermin D (GSDMD), which in turn suppressed pyroptosis and the release of interleukin (IL)-1β and IL-18 in macrophages. Finally, an in vivo study revealed that CAMKMT ameliorated lipopolysaccharide (LPS)-stimulated acute lethal sepsis in mice by increasing the survival rate and reducing the serum levels of IL-1 β. These findings suggest CAMKMT as a novel methyltransferase that plays an anti-inflammatory role through restraining caspase-11 non-canonical inflammasome in macrophages.
Collapse
Affiliation(s)
- Hui-Jin Cho
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Dong Joon Lee
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
31
|
Pan Y, Ikoma K, Matsui R, Nakayama A, Takemura N, Saitoh T. Dasatinib suppresses particulate-induced pyroptosis and acute lung inflammation. Front Pharmacol 2023; 14:1250383. [PMID: 37705538 PMCID: PMC10495768 DOI: 10.3389/fphar.2023.1250383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Background: Humans are constantly exposed to various industrial, environmental, and endogenous particulates that result in inflammatory diseases. After being engulfed by immune cells, viz. Macrophages, such particulates lead to phagolysosomal dysfunction, eventually inducing pyroptosis, a form of cell death accompanied by the release of inflammatory mediators, including members of the interleukin (IL)-1 family. Phagolysosomal dysfunction results in the activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, an immune complex that induces pyroptosis upon exposure to various external stimuli. However, several particulates induce pyroptosis even if the NLRP3 inflammasome is inhibited; this indicates that such inhibition is not always effective in treating diseases induced by particulates. Therefore, discovery of drugs suppressing particulate-induced NLRP3-independent pyroptosis is warranted. Methods: We screened compounds that inhibit silica particle (SP)-induced cell death and release of IL-1α using RAW264.7 cells, which are incapable of NLRP3 inflammasome formation. The candidates were tested for their ability to suppress particulate-induced pyroptosis and phagolysosomal dysfunction using mouse primary macrophages and alleviate SP-induced NLRP3-independent lung inflammation. Results: Several Src family kinase inhibitors, including dasatinib, effectively suppressed SP-induced cell death and IL-1α release. Furthermore, dasatinib suppressed pyroptosis induced by other particulates but did not suppress that induced by non-particulates, such as adenosine triphosphate. Dasatinib reduced SP-induced phagolysosomal dysfunction without affecting phagocytosis of SPs. Moreover, dasatinib treatment strongly suppressed the increase in IL-1α levels and neutrophil counts in the lungs after intratracheal SP administration. Conclusion: Dasatinib suppresses particulate-induced pyroptosis and can be used to treat relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yixi Pan
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kenta Ikoma
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Risa Matsui
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Wang HY, Lin X, Huang GG, Zhou R, Lei SY, Ren J, Zhang KR, Feng CL, Wu YW, Tang W. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol Sin 2023; 44:1687-1700. [PMID: 36964308 PMCID: PMC10374890 DOI: 10.1038/s41401-023-01054-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 03/26/2023]
Abstract
Aberrant NLRP3 activation has been implicated in the pathogenesis of numerous inflammation-associated diseases. However, no small molecular inhibitor that directly targets NLRP3 inflammasome has been approved so far. In this study, we show that Atranorin (C19H18O8), the secondary metabolites of lichen family, effectively prevents NLRP3 inflammasome activation in macrophages and dendritic cells. Mechanistically, Atranorin inhibits NLRP3 activation induced cytokine secretion and cell pyroptosis through binding to ASC protein directly and therefore restraining ASC oligomerization. The pharmacological effect of Atranorin is evaluated in NLRP3 inflammasome-driven disease models. Atranorin lowers serum IL-1β and IL-18 levels in LPS induced mice acute inflammation model. Also, Atranorin protects against MSU crystal induced mice gouty arthritis model and lowers ankle IL-1β level. Moreover, Atranorin ameliorates intestinal inflammation and epithelial barrier dysfunction in DSS induced mice ulcerative colitis and inhibits NLRP3 inflammasome activation in colon. Altogether, our study identifies Atranorin as a novel NLRP3 inhibitor that targets ASC protein and highlights the potential therapeutic effects of Atranorin in NLRP3 inflammasome-driven diseases including acute inflammation, gouty arthritis and ulcerative colitis.
Collapse
Affiliation(s)
- Hao-Yu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guan-Gen Huang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Zhou
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shu-Yue Lei
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ren
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai-Rong Zhang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
33
|
Liu M, Liu D, Yu C, Fan HH, Zhao X, Wang H, Zhang C, Zhang M, Bo R, He S, Wang X, Jiang H, Guo Y, Li J, Xu X, Liu Q. Caffeic acid, but not ferulic acid, inhibits macrophage pyroptosis by directly blocking gasdermin D activation. MedComm (Beijing) 2023; 4:e255. [PMID: 37090118 PMCID: PMC10119582 DOI: 10.1002/mco2.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Regulated pyroptosis is critical for pathogen elimination by inducing infected cell rupture and pro-inflammatory cytokines secretion, while overwhelmed pyroptosis contributes to organ dysfunction and pathological inflammatory response. Caffeic acid (CA) and ferulic acid (FA) are both well-known antioxidant and anti-inflammatory phenolic acids, which resemble in chemical structure. Here we found that CA, but not FA, protects macrophages from both Nigericin-induced canonical and cytosolic lipopolysaccharide (LPS)-induced non-canonical pyroptosis and alleviates LPS-induced mice sepsis. It significantly improved the survival of pyroptotic cells and LPS-challenged mice and blocked proinflammatory cytokine secretion. The anti-pyroptotic effect of CA is independent of its regulations in cellular lipid peroxidation, mitochondrial function, or pyroptosis-associated gene transcription. Instead, CA arrests pyroptosis by directly associating with gasdermin D (GSDMD) and blocking its processing, resulting in reduced N-GSDMD pore construction and less cellular content release. In LPS-induced septic mice, CA inhibits GSDMD activation in peritoneal macrophages and reduces the serum levels of interleukin-1β and tumor necrosis factor-α as the known pyroptosis inhibitors, disulfiram and dimethyl fumarate. Collectively, these findings suggest that CA inhibits pyroptosis by targeting GSDMD and is a potential candidate for curbing the pyroptosis-associated disease.
Collapse
Affiliation(s)
- Mingjiang Liu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Dandan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Chenglong Yu
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Hua hao Fan
- Beijing University of Chemical TechnologyBeijingChina
| | - Xin Zhao
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Huiwen Wang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Chi Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Minxia Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Ruonan Bo
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Shasha He
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xuerui Wang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Hui Jiang
- Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Yuhong Guo
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Jingui Li
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Xiaolong Xu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Qingquan Liu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
34
|
Kothari P, Dhaniya G, Sardar A, Sinha S, Girme A, Rai D, Chutani K, Hingorani L, Trivedi R. A glucuronated flavone TMMG spatially targets chondrocytes to alleviate cartilage degeneration through negative regulation of IL-1β. Biomed Pharmacother 2023; 163:114809. [PMID: 37167724 DOI: 10.1016/j.biopha.2023.114809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
Chondrocytes are the only resident cell types that form the extracellular matrix of cartilage. Inflammation alters the anabolic and catabolic regulation of chondrocytes, resulting in the progression of osteoarthritis (OA). The potential of TMMG, a glucuronated flavone, was explored against the pathophysiology of OA in both in vitro and in vivo models. The effects of TMMG were evaluated on chondrocytes and the ATDC5 cell line treated with IL-1β in an established in vitro inflammatory OA model. An anterior cruciate ligament transection (ACLT) model was used to simulate post-traumatic injury in vivo. Micro-CT and histological examination were employed to examine the micro-architectural status and cartilage alteration. Further, serum biomarkers were measured using ELISA to assess OA progression. In-vitro, TMMG reduced excessive ROS generation and inhibited pro-inflammatory IL-1β secretion by mouse chondrocytes and macrophages, which contributes to OA progression. This expression pattern closely mirrored osteoclastogenesis prevention. In-vivo results show that TMMG prevented chondrocyte apoptosis and degradation of articular cartilage thickness, subchondral parameters, and elevated serum COMP, CTX-II, and IL-1β which were significantly restored in 5 and 10 mg.kg-1day-1 treated animals and comparable to the positive control Indomethacin. In addition, TMMG also improved cartilage integrity and decreased the OARSI score by maintaining chondrocyte numbers and delaying ECM degradation. These findings suggest that TMMG may be a prospective disease-modifying agent that can mitigate OA progression.
Collapse
Affiliation(s)
- Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aboli Girme
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
35
|
Ma DW, Ha J, Yoon KS, Kang I, Choi TG, Kim SS. Innate Immune System in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:2068. [PMID: 37432213 DOI: 10.3390/nu15092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.
Collapse
Affiliation(s)
- Dae Won Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
36
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
The P2X7 Receptor as a Mechanistic Biomarker for Epilepsy. Int J Mol Sci 2023; 24:ijms24065410. [PMID: 36982485 PMCID: PMC10049244 DOI: 10.3390/ijms24065410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Epilepsy, characterized by recurrent spontaneous seizures, is a heterogeneous group of brain diseases affecting over 70 million people worldwide. Major challenges in the management of epilepsy include its diagnosis and treatment. To date, video electroencephalogram (EEG) monitoring is the gold-standard diagnostic method, with no molecular biomarker in routine clinical use. Moreover, treatment based on anti-seizure medications (ASMs) remains ineffective in 30% of patients, and, even if seizure-suppressive, lacks disease-modifying potential. Current epilepsy research is, therefore, mainly focussed on the identification of new drugs with a different mechanism of action effective in patients not responding to current ASMs. The vast heterogeneity of epilepsy syndromes, including differences in underlying pathology, comorbidities and disease progression, represents, however, a particular challenge in drug discovery. Optimal treatment most likely requires the identification of new drug targets combined with diagnostic methods to identify patients in need of a specific treatment. Purinergic signalling via extracellularly released ATP is increasingly recognized to contribute to brain hyperexcitability and, consequently, drugs targeting this signalling system have been proposed as a new therapeutic strategy for epilepsy. Among the purinergic ATP receptors, the P2X7 receptor (P2X7R) has attracted particular attention as a novel target for epilepsy treatment, with P2X7Rs contributing to unresponsiveness to ASMs and drugs targeting the P2X7R modulating acute seizure severity and suppressing seizures during epilepsy. In addition, P2X7R expression has been reported to be altered in the brain and circulation in experimental models of epilepsy and patients, making it both a potential therapeutic and diagnostic target. The present review provides an update on the newest findings regarding P2X7R-based treatments for epilepsy and discusses the potential of P2X7R as a mechanistic biomarker.
Collapse
|
38
|
Li M, Jiang P, Wei S, Wang J, Li C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front Immunol 2023; 14:1113312. [PMID: 36845095 PMCID: PMC9947507 DOI: 10.3389/fimmu.2023.1113312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have revealed that tumor-associated macrophages are the most abundant stromal cells in the tumor microenvironment and play an important role in tumor initiation and progression. Furthermore, the proportion of macrophages in the tumor microenvironment is associated with the prognosis of patients with cancer. Tumor-associated macrophages can polarize into anti-tumorigenic phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor progression. Besides, there also is wide communication between tumor-associated macrophages and other immune compositions, such as cytotoxic T cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on. Furthermore, the crosstalk between tumor-associated macrophages and other immune cells greatly influences tumor development and treatment outcomes. Notably, many functional molecules and signaling pathways have been found to participate in the interactions between tumor-associated macrophages and other immune cells and can be targeted to regulate tumor progression. Therefore, regulating these interactions and CAR-M therapy are considered to be novel immunotherapeutic pathways for the treatment of malignant tumors. In this review, we summarized the interactions between tumor-associated macrophages and other immune compositions in the tumor microenvironment and the underlying molecular mechanisms and analyzed the possibility to block or eradicate cancer by regulating tumor-associated macrophage-related tumor immune microenvironment.
Collapse
Affiliation(s)
| | | | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| | - Chunxiao Li
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| |
Collapse
|
39
|
Yu TY, Feng YM, Kong WS, Li SN, Sun XJ, Zhou G, Xie RF, Zhou X. Gallic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via inhibiting NLRP3 inflammasome. Front Pharmacol 2023; 14:1095721. [PMID: 36762118 PMCID: PMC9905138 DOI: 10.3389/fphar.2023.1095721] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease (IBD). The conventional drugs for UC may induce severe side effects. Herbal medicine is considered as a complementary and alternative choice for UC. Purpose: This study aims to estimate the effect of natural polyphenol gallic acid (GA) on the NLRP3 inflammasome with dextran sulfate sodium (DSS)-induced colitis in mice. Study design: The body weights and symptoms of BALB/c mice were recorded. Histological evaluation, ELISA, q-PCR, immunohistochemistry, and western blotting were carried out to observe the morphology, cytokine contents, mRNA expressions, and protein expressions, respectively. Lipopolysaccharide (LPS)-induced RAW264.7 macrophage was used to probe GA's effect on relative protein expression. Results: GA attenuated weight loss (p < 0.05), relieved symptoms, and ameliorated colonic morphological injury (p < 0.05) in mice with colitis induced by DSS. GA also lowered the contents of TNF-α, IL-1β, IL-18, IL-33, and IFN-γ in the serum and colon of mice, which were elevated by DSS, downregulated protein, and mRNA expressions of the NLRP3 pathway in the colon tissue. Furthermore, GA downregulated the expressions of NLRP3 (p < 0.05), iNOS (p < 0.01), COX2 (p < 0.01), and P-p65 (p < 0.05), and suppressed NO release (p < 0.001) in LPS-induced RAW264.7 cells. Conclusion: GA ameliorated DSS-induced UC in mice via inhibiting the NLRP3 inflammasome. These findings furnish evidence for the anti-inflammatory effect of herbal medicines containing GA on UC.
Collapse
Affiliation(s)
- Tian-Yuan Yu
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan-Ni Li
- Shanghai Nanyang Model Private High School, Shanghai, China
| | - Xue-Jiao Sun
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Fengdu County People’s Hospital of Chongqing, Chongqing, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xin Zhou,
| |
Collapse
|
40
|
Jatrorrhizine Suppresses Murine-Norovirus-Triggered N-GSDMD-Dependent Pyroptosis in RAW264.7 Macrophages. Vaccines (Basel) 2023; 11:vaccines11010164. [PMID: 36680009 PMCID: PMC9866343 DOI: 10.3390/vaccines11010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Human norovirus (HNV) is one of the emerging and rapidly spreading groups of pathogens and the main cause of epidemic viral gastroenteritis globally. Due to a lack of in vitro culture systems and suitable animal models for HNV infection, murine norovirus (MNV) has become a common model. A recent study showed that MNV activates NLRP3 inflammasome leading to pyroptosis. Jatrorrhizine (JAT) is a natural isoquinoline alkaloid isolated from Coptis Chinensis, which has been proven to have antibacterial, anti-inflammatory, and antitumor effects. However, whether JAT has an effect on norovirus gastroenteritis and the underlying molecular mechanism remain unclear. Here, we found that JAT could ameliorate NLRP3-N-GSDMD-dependent pyroptosis induced by MNV infection through inhibiting the MAPKs/NF-κB signaling pathways and decrease MNV replication in RAW264.7 macrophages, suggesting that JAT has the potential to be a therapeutic agent for treating norovirus gastroenteritis.
Collapse
|
41
|
Abstract
Pyroptosis is a form of lytic, programmed cell death that functions as an innate immune effector mechanism to facilitate host defense against pathogenic microorganisms, including viruses. This type of proinflammatory cell death is orchestrated by proteolytic activation of human or mouse caspase-1, mouse caspase-11 and human caspase-4 and caspase-5 in response to infectious and inflammatory stimuli. Induction of pyroptosis requires either a canonical inflammasome responsible for caspase-1 activation or a noncanonical complex composed of caspase-11 in mice or caspase-4 or caspase-5 in humans. Recent studies have identified the pore-forming protein gasdermin D, a substrate of these inflammatory caspases, as an executioner of pyroptosis. The membrane pores formed by gasdermin D facilitate release of proinflammatory cytokines IL-1β and IL-18 and consequent biologic effects of these cytokines together with other released components. Pyroptosis, like other forms of programmed cell death, helps eliminate infected cells and thereby restricts the replicative niche, undermining survival and proliferation of intracellular pathogens. This includes viruses as well as bacteria, where ample evidence supports a critical role for inflammasome effector functions and cell death in host defense. Viruses have evolved their own mechanisms to modulate inflammasome signaling and pyroptosis. Here, we review the current literature regarding the role of pyroptosis in antiviral immune responses.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, 38105-3678, Memphis, TN, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, 38105-3678, Memphis, TN, USA.
| |
Collapse
|
42
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
43
|
Triazoles with inhibitory action on P2X7R impaired the acute inflammatory response in vivo and modulated the hemostatic balance in vitro and ex vivo. Inflamm Res 2022; 72:237-250. [PMID: 36463339 PMCID: PMC9734322 DOI: 10.1007/s00011-022-01664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate five triazole compounds as P2X7R inhibitors and evaluate their ability to reduce acute inflammation in vivo. MATERIAL The synthetic compounds were labeled 5e, 8h, 9i, 11, and 12. TREATMENT We administered 500 ng/kg triazole analogs in vivo, (1-10 µM) in vitro, and 1000 mg/kg for toxicological assays. METHODS For this, we used in vitro experiments, such as platelet aggregation, in vivo experiments of paw edema and peritonitis in mice, and in silico experiments. RESULTS The tested substances 5e, 8h, 9i, 11, and 12 produced a significant reduction in paw edema. Molecules 5e, 8h, 9i, 11, and 12 inhibited carrageenan-induced peritonitis. Substances 5e, 8h, 9i, 11, and 12 showed an anticoagulant effect, and 5e at a concentration of 10 µM acted as a procoagulant. All derivatives, except for 11, had pharmacokinetic, physicochemical, and toxicological properties suitable for substances that are candidates for new drugs. In addition, the ADMET risk assessment shows that derivatives 8h, 11, 5e, and 9i have high pharmacological potential. Finally, docking tests indicated that the derivatives have binding energies comparable to the reference antagonist with a competitive inhibition profile. CONCLUSIONS Together, the results indicate that the molecules tested as antagonist drugs of P2X7R had anti-inflammatory action against the acute inflammatory response.
Collapse
|
44
|
Wagner AR, Weindel CG, West KO, Scott HM, Watson RO, Patrick KL. SRSF6 balances mitochondrial-driven innate immune outcomes through alternative splicing of BAX. eLife 2022; 11:e82244. [PMID: 36409059 PMCID: PMC9718523 DOI: 10.7554/elife.82244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
To mount a protective response to infection while preventing hyperinflammation, gene expression in innate immune cells must be tightly regulated. Despite the importance of pre-mRNA splicing in shaping the proteome, its role in balancing immune outcomes remains understudied. Transcriptomic analysis of murine macrophage cell lines identified Serine/Arginine Rich Splicing factor 6 (SRSF6) as a gatekeeper of mitochondrial homeostasis. SRSF6-dependent orchestration of mitochondrial health is directed in large part by alternative splicing of the pro-apoptosis pore-forming protein BAX. Loss of SRSF6 promotes accumulation of BAX-κ, a variant that sensitizes macrophages to undergo cell death and triggers upregulation of interferon stimulated genes through cGAS sensing of cytosolic mitochondrial DNA. Upon pathogen sensing, macrophages regulate SRSF6 expression to control the liberation of immunogenic mtDNA and adjust the threshold for entry into programmed cell death. This work defines BAX alternative splicing by SRSF6 as a critical node not only in mitochondrial homeostasis but also in the macrophage's response to pathogens.
Collapse
Affiliation(s)
- Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| |
Collapse
|
45
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
46
|
Zhuang W, Zhang L, Zheng Y, Liu B, Ma C, Zhao W, Liu S, Liu F, Gao C. USP3 deubiquitinates and stabilizes the adapter protein ASC to regulate inflammasome activation. Cell Mol Immunol 2022; 19:1141-1152. [PMID: 36050480 PMCID: PMC9508167 DOI: 10.1038/s41423-022-00917-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasomes are essential components of the innate immune system and its defense against infections, whereas the dysregulation of inflammasome activation has a detrimental effect on human health. The activation of inflammasomes is subjected to tight regulation to maintain immune homeostasis, yet the underlying mechanism remains elusive. Here, we identify USP3 as a direct deubiquitinating enzyme (DUB) for ASC, the central adapter mediating the assembly and activation of most inflammasomes. USP3 removes the K48-linked ubiquitination on ASC and strengthens its stability by blocking proteasomal degradation. Additionally, USP3 promotes inflammasome activation, and this function was confirmed in mouse models of aluminum (Alum)-induced peritonitis, F. novicida infection and flagellin-induced pneumonia in vivo. Our work unveils that USP3 functions as a key regulator of ASC ubiquitination and maintains the physiological role of ASC in mediating inflammasome activation, and we propose a new mechanism by which the ubiquitination of ASC regulates inflammasome activation.
Collapse
Affiliation(s)
- Wanxin Zhuang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunhong Ma
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Suxia Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, PR China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
47
|
Jiang M, Chen ZG, Li H, Zhang TT, Yang MJ, Peng XX, Peng B. Succinate and inosine coordinate innate immune response to bacterial infection. PLoS Pathog 2022; 18:e1010796. [PMID: 36026499 PMCID: PMC9455851 DOI: 10.1371/journal.ppat.1010796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1β and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1β and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.
Collapse
Affiliation(s)
- Ming Jiang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhuang-gui Chen
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Tian-tuo Zhang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Man-jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Xuan-xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
49
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
50
|
Caufriez A, Tabernilla A, Van Campenhout R, Cooreman A, Leroy K, Sanz Serrano J, Kadam P, dos Santos Rodrigues B, Lamouroux A, Ballet S, Vinken M. Effects of Drugs Formerly Suggested for COVID-19 Repurposing on Pannexin1 Channels. Int J Mol Sci 2022; 23:ijms23105664. [PMID: 35628472 PMCID: PMC9146942 DOI: 10.3390/ijms23105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Arthur Lamouroux
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Correspondence: ; Tel.: +32-2477-4587
| |
Collapse
|